
42 Earth and Planetary Science Letters, 48 (1980) 42-52 
© Elsevier Scientilic Publishing Company, Amsterdam - Printed in The Netherlands 

12] 

SEDIMENTARY BASIN FORMATION WITH FINITE EXTENSION RATES 

GARY T. JARVIS 

Department of  Physics. University of  Toronto, Toronto, Ont. M5S IA 7 fCanada) 

and 

DAN P. McKENZIE 

Department of Earth Sciences, Madingley Rise, Madingley Road, Cambridge CB3 0EZ (England] 

Received October 24, 1979 
Revised version received March I0, 1980 

Thinning of continental crust by rapid stretching of the lithosphere produces an initial subsidence and thermal 
anomaly. When stretching ceases, slow decay of the thermal anomaly produces subsidence (due to thermal contrac- 
tion) on a time scale of approximately 60 Ma. The dependence of the heat flow and subsidence histories on the rate of 
extension is determined here using a time-dependent analytical model. Results are compared with the predictions of 
a simpler instantaneous stretching model and constraints on the use of the latter are provided in terms of the dura- 
tion and amount of stretching. For most basins the simple model gives reasonably accurate results provided the 
duration of stretching is less than 20 Ma. 

!. Introduction 

The problem of  how sedimentary basins originate 

and develop has had a long and controversial history. 
A wide variety of  models has been proposed, most of  
which have limited predictive power and require un- 
observed processes to opei'ate in the crust and upper 
mantle. A major advance in this problem was Sleep's 
[ 1] demonstrat ion that the subsidence of  a number 
of  basins was very similar to that of  the ocean floor as 
it moves away from ridges. This observation suggested 
that sudden heating followed by conductive cooling 
o f  the lithosphere was in some way involved, but 
at tempts [2,3] to produce a sudden temperature 
increase and to thin the continental crust at the same 
time were in disagreement with the widely accepted 
observation that the first event in the development of 
a basin was block faulting and subsidence, not eleva- 
tion and erosion. Principally as a result of studies of  
heat flow, focal mechanisms and seismic refraction in 
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the Aegean [4], McKenzie [5] proposed that the 
cause of  both the thermal anomaly and o f  the thin- 
ning of  the continental crust was an extensional event 
which stretched the lithosphere. This model took 
account of  the difference between continental 
deformation,  which is distributed, and oceanic 
deformation,  which is principally confined to regions 
within 10 km of  extensional plate boundaries. In this 
model the continental crust is thinned by a factor of  
t3 and the thermal anomaly is produced by passive 
upwelling of  the hot asthenosphere. A sudden initial 
subsidence is associated with the crustal thinning. Af- 
ter the stretching event, heat is lost by vertical con- 
duction and subsidence continues due to thermal con- 
traction. Such a sequence of  events can occur in any 
extensional environment. The principal difficulty 
with this model is the large values of  the required 
extension, which must be taken up on listric normal 
faults. Though values of/3 of  two have been reported 
from detailed studies o f  fault geometry in the Basin 
and Range region of  the western U.S.A. [6], other 
studies of  thin continental crust [7] have found insuf- 



ficient displacement on the faults to account for the 
observed continental thinning. Though this problem 
remains, the predicted relationship between the 
crustal thickness, subsidence and heat flow and the 
timing of  the stretching event proposed in McKenzie 
[5] has now been confirmed in two basins. Sclater et 
al. [8] have looked in detail at the stratigraphy of  the 
Pannonian Basin (Hungary), which appears to have 
been produced by extensional tectonics during the 
Miocene followed by rapid subsidence. With an aver- 
age value of/3 = 3 the stretching model successfully 
accounts for the subsidence history, high heat flow, 
crustal thinning and the maturation of  hydrocarbons 
at unusually shallow depths in the Pannonian Basin. 

Christie and Sclater [9] have compared the subsi- 
dence history of  the North Sea recorded in holes 
drilled west of  the central graben with the crustal 
thickness obtained from seismic refraction. Both indi- 
cate extension by a factor of  about 1.5. The success 
of the model in relating crustal thickness, subsidence 
and heat flow with one parameter,/3, strongly sug- 
gests it is basically correct. 

In McKenzie [5] it was assumed that stretching 
occurred instantaneously and therefore that the ther- 
mal anomaly was produced entirely by vertical advec- 
tion, with no heat loss due to diffusion during exten- 
sion. Provided the period of  stretching is short com- 
pared to the relevant thermal time constant the con- 
clusions drawn in that paper [5] are valid. However, 
when stretching occurs over a period comparable to 
the diffusion time scale some of  the heat diffuses 
away before stretching is completed. The resultant 
thermal anomaly (and hence subsequent contraction) 
is thus reduced. In the case of  very slow extension, no 
thermal anomaly is produced. 

In this paper we investigate the effects of  finite 
rates o f  extension on the heat flux and subsidence 
histories of  sedimentary basins and provide con- 
straints on the use of  the simpler model given in 
McKenzie [5] (hereafter referred to as model 1). 

2 .  M a t h e m a t i c a l  f o r m u l a t i o n  

2.1. Physical model  

We consider the two-dimensional physical model 
shown in Fig. 1. The lithosphere and crust are 
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Fig. 1. Physical model for time-dependent stretching solu- 
tion. 
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c,X 

stretching with horizontal velocity u(x), and astheno- 
spheric material is flowing upwards across the plane 
z = 0 to replace the outflowing lithosphere. The 
upper surface, z = a, is maintained at T =  0°C and the 
surface z = 0 is maintained at T = TI (the temperature 
of  the asthenosphere below). For simplicity we 
deform the lithosphere in a pure shear strain field and 
let v(x, 0) = Iio, a constant, so that aT/ax = 0 at all 
times. (v is the vertical component of  velocity; see 
Fig. 1.) Hence the origin can be chosen anywhere on 
the line z = 0. The vertical velocity vanishes at z = a 
and is assumed to vary linearly with z: 

v(z) = G(a - z)  (1) 

where G = Vo/a is the magnitude of the vertical veloc- 
ity gradient across the depth a. The horizontal veloc- 
ity vanishes at x --- 0. 

The relevant heat flow equation is: 

a T  + G(a - z)  ~ Kan t  
at az - az 2 (2) 

where T is temperature, t is time, and K is the thermal 
diffusivity. Solving (2) allows us to follow the tempo- 
ral development of the thermal anomaly. 

The parameter G in equation (2) is related to the 
horizontal velocity through the continuity equation: 

au av 
- - - G ( 3 )  

ax az 

Solving (3) for u gives: 

u = Gx (4) 
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G can also be related to/3, the stretching factor intro- 
duced in McKenzie [5]. Since u = dx/dt, integrating 
(4) over a time interval At yields: 

X.X = eG ZXt (5 )  
Xo 

where Xo = x  (At = 0), and since x/xo =/3 we have: 

[3 = e G At ( 6 )  

Equation (6) relates/3, G and the duration of  
stretching, At. 

During the stretching phase there is an initial subsi- 
dence Si due in part to the thinning of  the low-den- 
sity crust and in part to the thermal anomaly pro- 
duced by the upwelling asthenosphere. For instanta- 
neous stretching, as in model 1, assuming isostatic 
compensation both before and after stretching we 
have :  

S i - _ _  /3 (7) 
[Po(1 -- 0~Tn) -- Pw] 

where P0 and Pc are the densities of  the lithosphere 
and crust, respectively, both at 0°C, Pw is the density 
o f  seawater, and tc is the initial thickness of  continen- 
tal crust. When stretching occurs over a finite period 
of time, Si is greater than that given by equation (7) 
due to the reduced thermal anomaly generated during 
the stretching. After stretching ceases diffusive decay 
of  the thermal anomaly will produce a further subsi- 
dence St, a function of  G, which approaches a final 
value SG as t ~ oo. The total subsidence, achieved long 
after stretching has ceased, is Sto ta  I (= S i + SG)  and 
depends only on the original crustal thickness t c and 
the amount of  stretching/3. Assuming isostatic com- 
pensation throughout we have: 

6Oo - Pc) t¢ 
St° ta l  = [p0(l - ~Ti) - Pw] 

In particular, if tc = 0 (or Pc = Po), then Sto t a  I = 0 ,  
and hence Si = --SG, where SG is the total post-exten- 
sional subsidence. In section 2.3 below an explicit 
expression for SG is given; thus Si can be determined 
as a function of  t3, G and tc as Si = Stota l  - SG.  

(8) 

2.2. Temperature and heat flow during extension 

Equation (2) is solved using the technique of  
separation o f  variables. Substituting: 

T(z, t) = O(z) r(t) 

into (2) we have: 

1 d r  K d20 G ( z - a )  dO 
- 4 

r dt 0 dz 2 0 dz 

(9) 

K 
- -Ka2  (10) 

where K is a dimensionless constant. From (10) we 
have: 

r = ro exp(--Kt~/a 2) (i 1) 

and: 

d 2 0 + G ( z - a )  dO KO = 0  (12) 
dz 2 ~ dz + a - i -  

Equation (12) poses an eigenvalue problem with nth 
eigenvalue Kn and corresponding eigenfunction O n. 
The complete solution T(z, t) is obtained analytically, 
in the Appendix, as: 

-T, erf[(z/a - l ) x / ~ ' / 2 ]  
T(z, t) e r f ~  

+ Tn ~ anon e -KnKt/a2 (13) 
n = l  

where an, the nth coefficient, is determined from the 
initial conditions (see Appendix), and G' -- a2G/K. 
The dimensionless parameter G' provides a relative 
measure of  the velocities associated with advection 
and thermal diffusion. Hence for large values of  G' we 
can expect the solution for T to reduce to that given 
by the simpler model in McKenzie [5]. From (13) we 
can see that a steady solution: 

-T l  er f[(z /a-  1 ) ~ ]  
To(z) - er fx/ 'G-~ (14) 

will be achieved after an infinite time (since the K n 
are all positive - see Appendix). In the steady state a 
balance is maintained between the heat conducted 
and advected upwards and heat conducted across the 
upper surface. Consequently, the steady temperature 
solution is a function of  the parameter G'. The sum- 
mation in equation (13) represents a transient depar- 



ture from the steady solution and decays with time. 
The heat flux across the upper surface is: 

F(t) = -k  (15) 
z = a  

where k is the thermal conductivity. Evaluating the 
temperature gradient from (13), we have: 

F(,) kT-'''!l [ 
= a [ e r f ~  

o o  

- a ~ an exp(-Kn~t/a2)(dzOn)lz=a~ (16) 
r l = l  J 

where a(dzOn)lz--a is determined in the Appendix. 

2.3. Cooling and subsidence 

At t = At stretching ceases and diffusive cooling 
begins. The steady-state solution of  (2) when G = 0 
is: 

r ( z )  = r , ( l  - z / a )  (17) 

Hence during the cooling phase: 

r(z, t) = r l ( l  - z/a) 

o o  

+ Ti ~ bn exp[-n2rr2(t  -- At)g/a 2] sin mrz/a 
t l  = I 

(18) 

where the coefficients bn are given by: 

2 a 
On = aT,-- o f IT(z, At) + T, (z/a - 1 )] sin mrz/a dz 

(19) 

The summation in equation (18) describes the tran- 
sient temperature perturbation. The term T(z, At) in 
(19) is given by equation (13) evaluated at t = At. In 
McKenzie [5] the initial temperature at the onset of  
cooling was specified analytically as: 

T = T , ,  O<z/a<~(1-1/ /3)  

= T,/~(1 --z/a) (1 - l/{3)<zla<. 1 (20) 

and (19) was integrated to give: 

bn - - ~--- sin (21 ) 
f f  H \ n ? / "  

45 

Substitution of  (21) into (18) gives the equation used 
in McKenzie [5]. 

The surface heat flux during the cooling phase is 
given by a similar expression to (16). Differentiating 
(18) we have: 

( " F(t) =kTI l +rr ~ nbn(-1) n+l 
a n = l  

× exp [-n=Tr = (t - At) r/a = 1} (22) 

The subsidence due to thermal contraction is 
determined in terms of the elevation e(t), at time t, 
measured relative to that as t ~ ,,o. Following an 
approach very similar to that of  Parsons and Sclater 
[ 10], assuming isostatic equilibrium at the base of  the 
old lithosphere and ignoring terms of  order (te]a) 2 we 
have: 

e(t) = - -  
-aaTi 

[Po(l - c~Tl) - Pw + Btc/a] rr 

X ~ bn exp[_n2rf lg( t  _ At)/a2] 
n = l  n 

x { p o  I I - c o s  n ~ ( 1  - tda)l 

+pc[cos  nrr(1 - tJa) - ( -1)n]}  

where: 

(23) 

B =  Ipw( l  + I c~T~TI) (1 -pe /po)+  (Pc-Po)  1 (24) 

If there is no crust, that is if either Pc = P0 or tc = 0, 
then (23) reduces to" 

-2apoc~T~ 
e(t) = 

[po(1 - c, r l )  - Pw] 7r 

oo 

X ~ b2k+l 
k=O (2k + 1) 

X e x p [ - ( 2 k  + 1) 2 lr2K(t - At)/a 2] (25) 

which to first order in aT1 is the same as the equation 
given in McKenzie [5] but expressed here in a form 
consistent with (7) and (8). 

The subsidence due to thermal contraction St is 
given by: 

St = e(At) - e(t) (26) 
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Since e(t) ~ 0 as t ~ ~ ,  the total post-extensional 
subsidence SG is given by e(At), or: 

-actTl 

S c  = [po(1 - a T i ) P w  +Btc./a] n 

o o  

X ~ bn {Do[ 1 ._ cos mr(1 - t J a ) ]  
n = l  r/ 

+Pclcos mr(1 - tJa)  - (-1)"1} (27) 

or, when tc/a << l : 

SG.~SOG = -2aotr ipo ~ (bUn) (28) 
[po(1 - e T a ) - a w ]  z" n=i 

where S~ is the subsidence predicted when there is no 
crust. As discussed above (section 2.1 ), S~ = - S  i 
(to = 0) or: 

S~ = aCtTlPo(1- 1//~) (29) 
210o(1 - otTI) - Pw] 

Consequently, we may write: 

Stota I = S i + S ~  + S D (30) 

where S~ is the deviation from S~ due to the presence 
of the crust. From (7), (8), (29) and (30): 

Since S~ is of  order (tcla) 2 compared to ~ ,  for sim- 
plicity we have ignored S~ and approximated SG by 
S~. The maximum error thus introduced into SG is 
less than 3% and in many cases less than 1%, which is 
less than observational uncertainties. 

3. Model calculations 

In practice the infinite sums of  the previous sec- 
tion are truncated after N terms where N is suffi- 
ciently large to ensure convergence. Due to the rapid 
decay of  high-order modes (see Appendix) only the 
first few terms were generally required, although at 
the largest value of  G' (=100)thir ty terms were 
required in order to ensure convergence at times as 
small as 1 Ma. 

Fig. 2 shows the evolution of  the temperature 
distribution during stretching for a value of  G'  = 50. 

T A B L E  1 
Va lues  o f  p h y s i c a l  p a r a m e t e r s  used  (as in Pa r sons  a n d  Sc l a t e r  

[ i O l )  

Q 

DO 
P w  
c~ 

TI 
k 
k ri/a 
K 
Q21K 
r = a2/(*r2K) 

= 125 k m  
= 3 .33  g c m  -3 

= 1 .00  g c m  -3  
= 3 .28  x l O  - s  oC-X 

= 1 3 3 3 ° C  
= 0 . 0 0 7 5  cal °C -1 c m  - l  s - I  

= 0 .8  cal  cm -2 s -1 

= 0 . 0 0 8 0 4  c m  2 s - I  

= 6 1 6  Ma 

= 62 .4  Ma 

The steady-state prof'de given by (14) is reached at t = 
oo. This same profile is obtained for all combinations 
of  K,a and G such that G'=a2G/K = 50. At G '= 50 
the model has stretched by a factor of/3 = 2 after a 
time of: 

At = (In (3)IG = (In 2)l(gG'/a 2) = 8.53 Ma (32) 

The temperature profile calculated from equation 
(13) at this time is included in Fig. 2 and compared 

iC 

8 

7 

6 

4 

curve for .B:2 from Model I 

o ~ ~ ~ ~ ~ ~ ~ ,o 

T '  m, 

Fig.  2. P lo t s  o f  d i m e n s i o n l e s s  t e m p e r a t u r e  T'  = TiT  1 as a 
f u n c t i o n  o f  d i m e n s i o n l e s s  he igh t  z '  = z[a fo r  G '  = 50 .  E a c h  

curve  s h o w s  the  t e m p e r a t u r e  p ro f i l e  a t  a d i f f e r e n t  t i m e  indi-  

c a t e d  in Ma s ince  the  o n s e t  o f  s t r e t c h i n g .  T h e  b r o k e n  l ine 

label led  1 is f r o m  m o d e l  1 fo r  13 = 2. T h e  p ro f 'de  labe l led  t = 

8 .53  c o r r e s p o n d s  to  13 = 2 in t h e  p r e s e n t  m o d e l .  
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tO the simple curve assumed in McKenzie [5]. At this 
value of  G'  model 1 gives a reasonable approximation 
to the computed curve. 

Fig. 3 shows a series of  temperature profiles all 
computed for/3 = 4, but with different values of  G'. 
As in Fig. 2 each profile shown is that which would 
occur for any combination of  a, K and G such that 
the ratio aZG/K has the value indicated. (Results pre- 
sented in this manner are independent of  changing 
estimates of  individual physical parameters.) These 
profiles were computed from (13) at times given by 
At = a2(ln 4)/KG'. The limiting case of  G' -~ oo corre- 
sponds to model 1. This figure demonstrates that for 
rapid stretching (large G') model 1 gives a good 
approximation to the thermal anomaly produced by 
stretching, while for slow stretching (small G') it 
greatly overestimates the magnitude of  the anomaly. 

If At, the duration of  the stretching for a given 
basin, and/3 are known the mean value of  G'  can be 
determined as: 

a 2 In 
G'  = (33) 

K At 

For the Pannonian Basin, for example, (3 ~ 3 and 
At "" 5--10 Ma, giving G'  "" 120-60 .  Since the 
stretched horizontal dimension of  the basin is about 

0 1 2 3 ,4 5 6 7 8 9 [0 

T '  

I.'ig. 3. Temperature prof'des for # = 4 as computed with dif- 
ferent values of G'. The case G' = ~ corresponds to model 1. 

300 km the mean velocity between the two margins 
must have been between 20 and 40 mm/a, or compa- 
rable to that of  slowly spreading ridges and to that 
now in progress in the northern Aegean [4]. Fig. 3 
indicates that model 1 provides a good estimate of  
the thermal anomaly produced by stretching for this 
case. 

4. Heat flow and subsidence compared to model 1 

Fig. 4 shows the surface heat flux history as a 
function of  G', for/3 = 4, and compares this with the 
history obtained from model 1 (G' = oo). For small 
values of  G'  the surface heat flux at low values of  
(t - At) is considerably less than predicted by 
model 1 and this discrepancy persists for times longer 
than the thermal time constant of  the original plate. 

Fig. 5 shows the dependence of  the subsidence 
history after stretching has ceased on G', again for/3 --- 
4. The large range in post-extensional subsidence is 
due to the differing thermal anomalies produced at 
different values of  G'  (Fig. 3). The subsidence 
depends strongly on the rate of  extension when G'  < 
50, but varies little when G' />  50. 

In order to provide a quantitative measure of  this 
dependence we have computed the ratio of  the total 
post-extensional subsidence at a given value of  G', 
SG, to that predicted by model 1, S~.  Graphs of  
Sc/S® plotted as functions o f  G' are shown in Fig. 6a 

i i i - r ~ - [  i : r 1 , 

. 8 : 4  

I 3C STtT~TCHING I A ~  SUBSIDING 

~ 20 ~ 

G"IQ 
U. 

10 

-8C -60 -40 -20 20 40 60 80 ICO 
( t -~ , t )  ~nMo 

F'ig. 4. Surface heat flux F as a function of time since the end 
of stretching (t - At), for # = 4. The numbers on the curves 
indicate the corresponding values of G'. G' = ** corresponds 
to model 1. Negative values of (t - At) indicate times before 
stretching ends. 
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Fig. 5. Subsidence, S t, of an empty basin shown as a function 
of the square root of time since stretching ceased x/t - A t  for 
# = 4 and different values of G' (t is measured in Ma). G' = o o  

corresponds to model 1. 

for different values of ~. For each/3, the subsidence 
initially increases rapidly with G '  and then asymptot- 
ically approaches S.~ as G' increases. A rough estimate 
of the minimum value of G' above which the curves 
lie in the asymptotic range may be obtained from the 
thermal time constant of the depth below the 
stretched plate which has been heated to the astheno- 
spheric temperature T~. The depth of this zone is a - 
a//3 or a(/3 - 1)//3 and its thermal time constant is: 

a 2 
r '  = (/3 - 1 )2  . (/3 - 1)_____~ 

n= K / ~  = r ~2 (34) 

where r is the time constant for the original plate of 
depth a. The other relevant time constant is that of 
the stretched plate: 

a 2 7- 
7-s n2K/~2 /32 (35) 

(For/3 < 2, % > 7-'.) Substituting the larger of r '  and 
% for At in equation (33) gives the corresponding 
minimum value of G'. Values of G' so computed are 
indicated in Fig. 6a by small arrows. 

Although Fig. 6a is conceptually clear in terms of 

(a} 

125 150 
IO 

4 2! I00 

T E 

4 

6 ~o io *'o ;o ~ ~ ~o ~ ,oo 
G ) D 

~.25 IO0 

2 li~ tO 

o, j ; ,b _4 5'0 ,8o 
(At)  in Mo ~" 

Fig. 6. (a) "]'he rat io SG/Soo plot ted as a funct ion o f  G' for  
different values ofg. The small arrows indicate the estimate 
of the low end of the asymptotic range of each curve as 
determined from (34), or (35), and (33). The label on each 
arrow indicates the value ofg. (Note: S G = e(At)G. ) Co) The 
ratio SG[Soo plotted as a function of the duration of 
stretching At (in Ma), for different values of g. The numbers 
on each curve indicate the value offl for which the curve has 
been drawn. (Small arrows as in Fig. 6a.) 

the present stretching model, it is geologically more 
useful to plot S d S . o  vs. At, where At is the period 
over which stretching occurs. Such a graph is shown 
as Fig. 6b. For a given value of/3, as the stretching 
period increases, G' must decrease and hence SG/S** 

decreases. The case of model 1 corresponds to At = 0 
(instantaneous stretching) and St;[S~o = 1. From Fig. 
6b we can see that model 1 will predict the total sub- 
sidence correct to within 10% provided At ~< 10 Ma, 
and to within 20% provided At ~< 20 Ma. The exact 
value of At depends of course on/3 and may be 



almost twice as large as mentioned above in some 
cases (see Fig. 6b). 

Unlike the subsidence the heat flow is controlled 
by the thermal structure of  the stretched plate for all 
values of  13. When stretching ceases, cooling is most 
rapid in the vicinity of  the knee in the temperature 
profile at the base of  the stretched plate. The surface 
heat flow will only be significantly affected after con- 
ductive cooling has propagated upwards and down- 
wards from the base of  the stretched plate for a dis- 
tance all3. The  thermal time constant for a depth of  

(a) 

1,5 
125 3 4 

0 iO 20 30 40 50 60 70 80 90 JO0 

G' 

1.25 

I0 5 4 3 2 

tO , , '" 

\ 

2 

0 
2 5 IO 20  50  tOO 2 0 0  

~t  (Ma] g, 

Fig. 7. (a) The ratio ,&FG/,~:'** plotted as a function of G' 
for different values of 0. The small arrows indicate the esti- 
mate of the low end of the asymptotic range of each curve as 
determined from (36) and (33). The label on each arrow indi- 
cates the values of/3. (Note: zXF G = F(At) G - F(*°).) (b) The 
ratio ,AFG/&F.. plotted as a function of the duration of 
stretching At (in Ma), for different values of 0. The numbers 
on each curve indicate the value of # for which the curve has 
been drawn. (Small arrows as in Fig. 7a.) 
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2a/13 is: 

4a 2 
T "  ./T2K/~2 4 r s  (36) 

(For  13 < 2 the relevant time constant is that for the 
original plate of  thickness a.) Hence model 1 will only 
give reliable estimates for the heat flow when the 
time during which stretching occurs is short com- 
pared with r " .  Fig. 7a shows the ratio of  zkFc, the 
increase in heat flow when stretching stops, to z~**, 
that predicted by model 1, as a function G '  with 
arrows to indicate the values of  G '  obtained from 
(36) and (33). The curve for 13 = 4 is constructed from 
the intercepts of  F c  at the (t - At) = 0 axis of  Fig. 4. 
Similarly the other curves summarize the convergence 
o f & F c  to AF**, at t = At, for different values of  13. 
At/3 = 2, for example,  the convergence is a much 
more rapid function of  G '  than that shown in Fig. 4. 
Plotting z3a~'d,Sa%, against the time taken to produce 
the stretching (Fig. 7b) shows that the surface heat 
flow is more sensitive to/3 and the stretching rate 
than is the subsidence. 

5. Discussion 

The model  proposed previously [5] is an idealiza- 
tion of  continental stretching, since it takes no 
account of  magmatic events, the lateral variation in 
extension and o f  the time taken to carry out the 
stretching. Of these problems the importance of  the 
first is speculative. It appears unlikely that  more than 
about 6 km of  magma can be added to the thickness 
of  the crust, even as fl -+ ~ ,  since this is the thickness 
of  the oceanic crust. This argument was used in 
McKenzie [5] and has been supported by Sclater et 
al.'s [8] study of  the Pannonian Basin. Whether 
lateral variations in/3 are impo[tant  depends on 
whether the lithosphere behaves as an elastic plate or 
whether the faults on which the extension occurred 
continue to move during subsidence. The best 
approach to this problem is to compare simple calcu- 
lations obtained from model 1 with observations in 
regions, such as continental margins, where the value 
of  13 varies rapidly. In this paper we have allowed the 
extension to occur in a finite time. In contrast to the 
other effects, the detailed tectonic history of  many 
sedimentary basins has been determined from seismic 
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reflection and drilling, and hence limits can be placed 
on the duration of the stretching event. Though it is 
not yet possible to obtain the extension rate from 
the history of fault movement,  principally because 
the fault displacements can rarely account for the 
required extension, it is generally clear how long the 
major event lasted. The detailed calculations above 
refer to a particular two-dimensional extensional 
strain field, pure shear, with a constant strain rate, 
but the results are unlikely to be very different for 
more complicated three dimensional strain field pro- 
vided the duration of the event is the same and/3 is 
obtained from the change in the crustal thickness. As 
in McKenzie [5] we have computed the subsidence of 
an empty basin and ignored the second-order effects 
of  sediments on the thermal structure of the litho- 
sphere. In order to obtain the thermal subsidence 
from observations of  the depths to sediment hori- 
zons, the effects of  sediment loading must be 
removed in accord with the stratigraphic record 
[8,11,121. 

The principal result of  this study is that the simple 
model proposed previously [5], in which the exten- 
sion is instantaneous, gives results which differ little 
from the true behaviour provided the time taken to 
extend by a factor/3 is less than 60//32 Ma. This con- 
dition which applies to both heat flow and subsidence 
is over-restrictive in most cases. If only the subsidence 
is o f  concern, then the time must be shorter than 
about 60//32 Ma if/~ ~< 2 or 60(I - 1//3) 2 Ma if/3 ~> 2. 
If only the heat flow is of  interest then the time must 
be shorter than about 60 Ma if/3 ~< 2 or 60(2//3) 2 Ma 
if 13 ~> 2. Thus for j3 < 3 the heat flow predicted by 
model 1 is more reliable at a given time than is the 
subsidence, while for/3 > 3 the subsidence is more 
reliably predicted than is the heat flow. In the case of  
the Pannonian Basin,/3 "" 3 [8] and the above criteria 
indicate that the duration of stretching should be less 
than about 28 Ma for both subsidence and heat flow. 
Since the stretching event in the Pannonian Basin 
occurred over a period of less than 10 Ma [8] both 
the heat flow and subsidence should differ little from 
those obtained from model 1. In contrast the North 
Sea has extended less and over a period of perhaps as 
much as 50 Ma. Christie and Sclater [9] estimate that 
/3 ~ 1.5, hence a time constant of  28 Ma for the subsi- 
dence and 60 Ma for the heat flow. Whether this dif- 
ference strongly affects the subsidence after the 

extension ceased in the Early Tertiary depends on the 
stretching history. If it does the subsidence should be 
somewhat less than that predicted from model 1 
(though Fig. 6b shows that even periods of  stretching 
lasting as long as 90 Ma reduce the thermal subsi- 
dence by less than 50% when ~ > 1.5). In contrast, 
Fig. 7b shows that the heat flow is only slightly 
reduced for/3 = 1.5 and hence model 1 provides a 
rough estimate of  13 for the North Sea. 

This investigation shows that the duration of 
extension of  many sedimentary basins is likely to be 
sufficiently short for the instantaneous stretching 
model to be used to calculate the subsidence history. 
For/3 > 3, heat flow is more sensitive to the history 
of the extension, and care should be taken that the 
extension is sufficiently rapid before using the heat 
flow to estimate/3. Nevertheless, the extension in 
both the Aegean and Pannonian Basins has probably 
been rapid enough for the errors in the instantaneous 
model to be less than observational errors. 
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Appendix. Analytic solution of the temperature 
equation during stretching 

Scaling all variables in terms of characteristic val- 
ues we write: 

, t /2 K 
z=az  , T = T ~ T ' , t = - -  t' and G = ~  G' 

g 

(A-l)  

where the primed variables are dimensionless. Sub- 
stituting (A-I)  into equations (11) and (12) yields: 

T = To e x p ( - K t ' )  (A-2) 



and: 

d 2 0 d8 
--dz,. 2 + G '(z' --- 1 ) ~z'  + K8 = 0 ( h - 3 )  

The solution of  (A-3) is an eigenvalue problem with 
nth eigenvalue Kn and corresponding eigenfunction 
On. This equation may be written in canonical form 
as: 

d~-- e x p [ ( z ' -  1 G ' /2 ]  

+ e x p [ ( z '  - l )  ~ a ' /2 ]  K,,O,, = 0 (A-4) 

Since equation (A-4) is of  the Sturm-Liouville type, 
the eigenvalues Kn are real and the eigenfunctions On 
are orthogonal with respect to the weighting factor 
exp [ ( z ' - -  l)  2 (_]'/2]. That is: 

1 

f OnSm exp [ ( z ' - -  1) 2 G'/2] dz' = 0  f o r m  :/:n (A-5) 
0 

From (A-2) we can see that provided Kn are posi- 
live, a steady solution will be achieved after an infinite 
time. The steady-state solution can be obtained by 
solving (A-2) and (A-4) with K,  = 0. Thus from (A-2): 

7" = 7"0 , say ro = 1 , (A-6) 

and from (A-4): 

exp[(z '  - 1) 2 G'/2] dSo dz--7 = C (A-7) 

where the subscript 0 indicates the steady-state solu- 
tion and C is a constant determined by the boundary 
conditions. Solving (A-7) for 8 o gives: 

7";(z')  = roSo(Z' )  = - e r f l ( z '  - l )  x / - C ~ ]  
er fx/-G-'~ (A-8) 

The full time-dependent solution is given by the sum 
of the steady-state solution and a transient solution 
which decays with time: 

r'(z', t ' ) =  To(z')+ T;(z', t') (A-9) 

T'I (z', t ')  is determined from (A-2) and (A-3) with 
K :/: 0 and boundary conditions 8 = 0 on z '  --- 0 and 1. 

Eigenvalues Kn and corresponding eigenfunctions 
8n are computed using the propagator matrix tech- 
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nique [13]. We define a two-component vector/" as: 

f=  (8, dz8) (A-10) 

in terms of which equation (A-3) may be written as: 

~ , "  A f  (A-I l) 

where A is the coefficient matrix: 

I0  1 1 A = - K ,  (1 - z ' )G'  (A-12) 

The propagator matrix P is initialized as the unit ma- 
trix at z' = 0 and satisfies the same differential equa- 
tion as f:  

dP -AP, (A-13) 
dz' 

where: 

fi(z') = Pi/(z') f/(O ) = cPi2 (z') (A-14) 

where c is an arbitrary constant. The boundary condi- 
tion 8(0) = 0 has been utilized on the far right-hand 
side of  (A-14). The second boundary condition 
8(1 ) = 0 requires: 

Pi2(z'= 1 ) = 0  (A-15) 

Equation (A-13) is solved for P(z') using a fourth- 
order Runge-Kutta-Gill procedure [14]; for a given 
value o f G '  a Newton-Raphson scheme is used to 
search for a value of Kn for which equation (A-15) is 
satisfied. Once Kn is determined both 8 n and dz8n are 
automatically known to within an arbitrary constant 
as Pt 2(z') and P22(z') respectively. (dzOn is required 
to compute surface heat flow.) 

In the limit as G'  ~ 0 equations (2), (A-2) and 
(A-3) take the form of thermal diffusion equations 
for which the eigenvalues are known to be n21r 2, n = 
I,  2, ..., and corresponding eigenfunctions are propor- 
tional to sin mrz'. This fact allows an analytical check 
of the numerical scheme and enables us to locate all 
possible eigenvalues. A test case with G' = 10 -4 repro- 
duces the diffusion results to five significant figures. 
For all G'  > 0 values of Kn are greater than n2rr2; the 
transient modes associated with advection decay 
more rapidly than those associated with diffusion. 
For G '  ~< 1.0,Kn ~ n2"/1"2; for G'  t> 10, K n -~ 2riG', 
with a smooth transition for 1.0 < G < 10. Graphs of 
8 n at G'  = 10 and G ' =  100 are shown in Fig. A-1. 
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n = l  

0 

G'= IO0 

0 

(a) 

G" lO 0'=/£90 
n=2 

(b) 

Fig. A-I. The first two eigenfunctions On(Z) for G' = 10 and 
G '=  I00: (a) n = l , (b )  n = 2. 

These show a departure from sin mrz' as G' increases. 
At large G' the largest amplitudes are concentrated 
upwards indicating the regions in which transient 
effects will persist the longest. As in all Sturm-Loui- 
ville problems the number of internal nodes in On is 
n - l .  

Since there are an infinite number ofK n and On 
which satisfy (A-3) we may write the general solution 
as:  

T'(z', t')-- -erfI(z' - 1) x / ' ~ l  
e r f ~  

+ ~ an exp(-Knt') On (A-16)  
n = l  

where  a n is the  n t h  coef f ic ien t ,  to be  d e t e r m i n e d  

f rom the  init ial  cond i t ions .  At  t = O: 

e r f [ ( z ' - 1 ) ~ 1  
( 1 - z ' ) +  e r f ~  =~n=t anon (A-17) 

Since the  On's are o r thogona l  wi th  respect  to 

e x p [ ( z '  - 1)2 G ' / 2 ]  ( equa t i on  (A-5)) ,  mu l t ip ly ing  

b o t h  sides o f ( A - 1 7 )  by  Om e x p [ ( z '  - 1) 2 G ' / 2 ]  and  

integrating over z' yields: 

an: Cl-z')+ j On 

×exp[(z ' - -1)  2 G'/2] dz') 

where the right-hand side of (A-18) is known. The a n 
are thus determined. Substituting (A-18) into (A-16) 
gives the dimensionless expression for the time-depen- 
dent solution of equation (2). 
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