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The efficiency of a transport system depends on several elements, such as available
technology, governmental policies, the planning process, and control strategies. Indeed,
the interaction between these elements is quite complex, leading to intractable decision
making problems. The planning process and real-time control strategies have been widely
studied in recent years, and there are several practical implementations with promising
results. In this paper, we review the literature on Transit Network Planning problems
and real-time control strategies suitable to bus transport systems. Our goal is to present
a comprehensive review, emphasizing recent studies as well as works not addressed in
previous reviews.
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1. Introduction

City growth in terms of surface and population is one of the most important global trends of the last century. Too often
the speed of this phenomenon has prevented an organic or well-planned urban development. Instead, cities worldwide are
suffering from long travel times, severe traffic congestion, pollution, road accidents, etc. Public transport is considered an
important backbone of sustainable urban development, since it should allow more efficient movements across a city.
However, public transport systems often struggle to provide a good level of service at an affordable cost for the public
administration and the user: these systems need to provide a high level of service in order to be attractive to the non-captive
user, while at the same time affordable for the low income segments of the population. To achieve this, public systems
inevitably face the need of subsidies that are increasingly contested by society.

These systems vary quite a bit around the globe. Very often multi-modal, they provide different integration opportunities
across services: while some cities provide fare integration citywide, in others, all services compete as independent alterna-
tives. While some cities have relied on the operations of private companies, others maintain this responsibility within a pub-
lic agency. Planning, operating and controlling a public transport system, which is the focus of this document, is very
challenging. Several actors with different goals are involved: the authorities, users, non-users, and operators. And not all
users or non-users are identical since their traveling needs vary significantly in space and time. They are also different in
their socioeconomic characteristics, which affects their choices: gender, age, income, knowledge of the system, and disabili-
ties. Also, users and non-users interact in the city in a space that is increasingly limited: road congestion and limited vehicu-
lar capacity implies that each traveler’s decision will affect the experience of many others. The urban context in which all this
activity happens is very dynamic and often unpredictable, so such key elements as demand and travel times follow inher-
ently stochastic time-dependent patterns.

The last decades have seen the development of new technologies aimed at improving the information available for plan-
ning and operating public transport systems: fare-box and Automated Fare Collection systems (AFC); Automatic Passenger
Counter systems (APC); and Automated Vehicle Location systems (AVL), and Geographical Positioning Systems (GPS), among
others. These tools are increasingly being installed in public transport systems. Their use has allowed a better understanding
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of the impact of decisions and an improved performance. The large amount of data that these systems provide has become an
important asset that could be exploited more intensively.

The primary trade-off faced in the planning and operating tasks is between the level of service faced by the user and the
operating costs for agencies. Users expect to reach their destinations quickly where the total travel time is decomposed into
access and egress to/from the stops, waiting, in-vehicle traveling, and transferring. The user also expects the trip to be
reliable and hopefully comfortable. For this model to be realistic, these dimensions should be adequately weighted in terms
of each user’s behavior (Ortúzar and Willumsen, 2001; Raveau et al., 2011; Cepeda et al., 2006; Schmöcker et al., 2011). In
case of operators, they are interested in a profitable system where costs of vehicles usage and drivers wages are low.

The planning process spans every decision that should be taken before the operation of the system, and is known as the
Transit Network Planning problem denoted as TNP. Due to its complexity, TNP is commonly divided into the following sub-
problems that span tactical, strategical, and operational decisions (Desaulniers and Hickman, 2007; Ceder, 2007).

� Transit Network Design (TND): Defines the lines layouts and associated operational characteristics such as rolling stock
types and space between stops in order to optimize specific objective functions such as the minimization of the weighted
sum of operators’ and users’ costs. Notice that in this strategic process, frequencies must also be preliminarily set, but
they are later adjusted in the Frequency Setting problem.
� Frequency Setting (FS): Characterizes the periods of operation based on demand patterns (morning peak, morning non-

peak, afternoon peak, and so on) and determines the number of trips per hour needed to satisfy the passenger demand in
each planning period.
� Transit Network Timetabling (TNT): Defines arrival and departure times of buses at all stops along the transit network in

order to achieve different goals such as: meet a given frequency, satisfy specific demand patterns, maximize the number
of well-timed passenger transfers, and minimize waiting times. In some cases, the number of trips is given while other
problems may also determine the number of trips based on vehicle capacity and demand patterns.
� Vehicle Scheduling Problem (VSP): Determines the trips-vehicles assignment to cover all the planned trips such that

operational costs based on vehicle usage are minimized.
� Driver Scheduling Problem (DSP): Defines daily duties that cover all the scheduled trips and minimize the cost of driver

wages. A solution of the DSP must satisfy specific labor regulations for drivers such as minimum/maximum work length,
maximum working time without a rest, and daily rest for all drivers.
� Driver Rostering Problem (DRP): Given a set of generic duties defined over a certain time horizon (e.g., a month) for the

drivers assigned to a particular depot, the DRP assigns these duties to the available drivers to their work schedules, called
rosters, such that labor regulations are satisfied and driver wages are minimized.

The interdependence between the sub-problems of the TNP is represented in Fig. 1. For example, different frequencies
may imply different vehicle schedules and driver duties which strongly influence operational costs. Therefore, an integral
approach considering all decisions towards solving the TNP would be desirable. However, each sub-problem may be complex
to solve thus, the usual approach to obtain a solution for the TNP is to implement sequential methodologies. These methods
are iterative procedures that solve one or more sub-problems in each iteration, taking as input the current solutions obtained
for previous sub-problems.

Even when a solution for the planning process is given, operation of transport systems is affected by uncertainty of travel
times, demand patterns and disturbances such as: public protest activities or parades; vehicle breakdowns; weather condi-
tions; and activities of specific days. To address these situations, real-time control strategies are implemented to guarantee
an efficient service during the operation of the system. The most widely implemented strategies are the following:

� Station control: are strategies that take decisions such as hold vehicles in some stops or skip specific stops in order to
increase service regularity, reduce travel or waiting times, and allow passenger transfers.
� Inter-station control: decisions that should be taken between stops (also called stations) of the transit networks, i.e. while

the bus is traveling between control stops, in order to achieve an efficient operation. Some strategies belonging to this
category are operating speed control and traffic signal priority.

The previous control strategies have greatly benefited by the advances in technology and the development of monitoring
tools such as AVL, APC, and GPS. Using these tools, decision makers are able to know the actual behavior of the transit net-
work and implement real-time control strategies.

Each one of the decision levels-strategic, tactical, and operational-as well as real-time decisions impact the efficiency of
the system which is an important element in achieving a sustainable public transportation system in urban areas. Indeed, the
efficient operation of transport systems not only influences the levels of pollutants, fuel use, and noise, but it can also encour-
age interaction between individuals and reduce the segregation of communities by establishing communication channels
between them. Because of these potential benefits, developing efficient tools for the planning and operation of transport sys-
tems remains a challenging research area which requires the careful considerations of different characteristics in the context
of different cities.

In this paper, we review the literature on the planning, operation, and control of urban transport systems based on buses.
Our goal is to provide a comprehensive classification of the studies presented in the literature by meeting two particular
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goals: (i) complement previous reviews emphasizing foundational studies, recent papers, and some work previously
overlooked and (ii) try to incorporate most relevant approaches to address the aforementioned problems. In this review,
we complemented our previous knowledge of the field by using the SCOPUS search engine to identify new studies, and
the paper they use as references. This method proved to be a successful methodology for the purposes of this review.
Some of the journals more extensively used include: Transportation Research (all parts), Transportation Science, Public
Transport, Transportation Research Record, Journal of Transportation Engineering, European Journal of Operational Research,
and Operations Research. Occasionally, we will refer to rail-based works that are applicable to the case of buses.

The structure of this paper is as follows. Section 2 presents a literature review for the Transit Network Design Problem.
Section 3 focuses on tactical decisions embedded in Frequency Setting and Transit Network Timetabling. Section 4 is based
on the sub-problems of the planning process that minimize operational costs considering vehicles’ usage and driver wages.
Section 5 presents integration approaches for sub-problems of the TNP. Section 6 regards studies of different real-time con-
trol strategies. Finally, Section 7 presents some conclusions drawn from our literature review regarding different areas of
further research.
2. Strategic planning decisions

Long-term decisions in the Transit Network Planning process are the focus of the Transit Network Design which
determines the lines, types of vehicles, and stop spacing to meet population’s movement requirements. A representation of an
urban zone can be defined based on a network NðV ;AÞ where the set of nodes V represents either specific points or a geo-
graphical zone called centroid while arcs ði; jÞ 2 A represent a transportation mode between nodes i and j thus, a line l is a set
of connected arcs. Common inputs are the following: potential stops; estimated travel times for each arc ði; jÞ 2 A; available
budget; types of buses and their capacities; and an origin–destination matrix denoted as OD which represents the demand
along the nodes in the network N. Then, each element ði; jÞ 2 OD denotes the number of passengers that need to travel from i
to j during a planning period (the demand of a centroid node i 2 V can be properly estimated proportionally to the distance
between the centroid i and the real origin/destination points).

In real life, passengers choose from different routes (that may consist of different trip legs covered by different lines) to
travel from a specific origin to a specific destination in order to optimize their own criteria. Fig. 2 shows an example with
four routes that cover a specific origin-destination pair ði; jÞ 2 OD: (i) a direct trip via line 2; (ii) a trip starting with line 2
and then, transferring to line 1 at transfer point T1; (iii) a trip starting along line 3 and then, transferring to line 1 at transfer
point T2; (iv) a direct trip via line 4. The previous passenger choices are embedded in an optimization problem called transit
assignment problem and it leads to an endogenous passenger demand for the bus network. Even though most authors
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assume an inelastic demand, i.e. demand independent of the level of service, the demand for each line will depend on the
level of service provided. In addition, user route choices depends on their individual valuation of different attributes such
as: access, waiting, travel time, transfers and comfort. These weights may not coincide with those used by the system
designer. For example, it is not uncommon for authorities to minimize total travel time in the system weighting different
stages of the trip identically, while users are well known to weight waiting and walking heavier than traveling inside the
vehicle. Also, the design may not give any value to comfort (just assume a fixed capacity per vehicle) while we know it
heavily affects users preference once vehicle occupation approximates capacity. Moreover, users are not homogeneous in
their preferences; i.e. different users assign different weights to these attributes.

Another challenge of this problem is the presence of congestion in which the level of service of a user is affected by the
decisions of other travelers in the system. Other users may cause increasing waiting time, discomfort inside a vehicle or
preventing entering a vehicle whose capacity has been reached. In these cases the minimization of the sum of the total costs
of all users may not represent the interest of some individual users which may be forced to take lines, that would be best for
the system as a whole, but will not represent their best alternative. Thus, under the presence of congestion, we should recog-
nize that individual choices might not coincide with the system optimal. A common assumption to simplify these decisions
are homogenous passengers taking the minimum cost route (all or nothing).

From the user’s perspective, a transit network should cover a large service area, be highly accessible, offer numerous
direct-through trips, not deviate much from the shortest paths, and should globally be able to meet the demand. From
the agency’s perspective, the transit network must stay within the current budget, be efficient in obtaining revenues, and
be able to satisfy the demand. Hence, TND considers elements such as the service area, line coverage, spacing of stop, direct-
ness of the lines, line lengths, policy headway (separation time between consecutive trips), loading standards, and road
speeds (see Fan and Machemehl, 2004).

The TND problem can be modeled as a discrete optimization problem to determine the set of lines for a given OD matrix
and predicted travel times per link on the network. An alternative to this approach is to represent the TND through analytical
models which represent continuous approximation approaches where passenger demand is represented as a continuous
function over a geographical space instead of an OD matrix (see Clarens and Hurdle, 1975; Daganzo, 2010; Ouyang et al.,
2014). Using these approaches, decisions are made in regard to the optimal spacing between lines and their frequencies.
The solution of a continuous approximation is based on an idealized representation of the city which considers specific grid
structures such as rectangular, circular, hub-and-spooks, and so on. In this section, we will present studies that complement
reviews of Desaulniers and Hickman (2007), Guihaire and Hao (2008a), Kepaptsoglou and Karlaftis (2009), Farahani et al.
(2013).

2.1. Continuous approximations for the Transit Network Design

As stated by Kepaptsoglou and Karlaftis (2009), analytical approaches develop relationships between components of the
public transportation network represented with idealized structures. The first studies focused on determining the line spac-
ing, stop spacing, and line frequency, assuming demand is uniformly distributed along the service area (Holryod, 1967; Byrne
and Vuchic, 1972). Other approaches were developed to consider time dependent demand (Salzborn, 1972), space dependent
demand (Byrne, 1975; Black, 1979), and time-and-space dependent demand (Hurdle, 1973). Later, Chien and Schonfeld
(1997) define a TND problem to determine the stop locations as well as the lines, and their headways in order to minimize
total user and operator costs. To avoid oversimplifying urban areas, the authors propose an analytical model which assumes
a rectangular grid and zone dependent passenger demand.

Chien and Spasovic (2002) consider elastic demand, i.e. demand dependent on the level of service to determine the line
and stop spacing, headways, and fares. Their objective function is to maximize the social welfare, i.e. consumer surplus plus
the operators’ profit. The authors assume irregular service regions, many-to-many demand patterns, and vehicle capacity
constraints.

Daganzo (2010) propose a transit network structure for an idealized uniform demand square region, combining the grid
and the hub-and-spoke concepts. The experimental results suggest the following: a hub-and-spoke structure becomes more
attractive in cities where infrastructure is expensive; Bus Rapid Transit systems are a good option for cities with medium to
high density, recommending it over metro as long as the city has enough suitable streets; user costs dominate over
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operational costs and both decline with low demand densities; and bus stop spacing and inter line distance should be kept
over a critical threshold. Later, Estrada et al. (2011) implemented the methodology of Daganzo (2010) to generate lines for
the city of Barcelona. Moreover, the authors develop a simulation stage to map the transit network in the city, obtaining a
more accurate estimation of costs and level of service.

More recently, Medina et al. (2013) formulate an optimization problem to simultaneously determine the stop density in a
bi-directional corridor and the lines’ frequency for several periods. The objective is to minimize the user costs and operating
costs based on waiting time, in-vehicle travel time, fleet operating costs, and stops installation. Since the proposed mathe-
matical formulation is a non-linear optimization program, they propose a sequential approach consisting of two steps:
(i) determining the optimal headway replacing the stop density decision variable with the analytic expression obtained from
the first-order conditions of the optimization problem; and (ii) finding the density of stops along the corridor. The proposed
approach is implemented to analyze a corridor in the transit network of Santiago, Chile. Numerical results show that the
proposed set of stop locations results in a reduction of total costs by about 20% and longer headways than the current ones
(an increase of more than 60%), especially in the off-peak period.

To address different densities across a city, Ouyang et al. (2014) propose a hierarchical system in which a city-wide net-
work of few lines with long bus stop spacing and long distances between lines is complemented by more lines visiting local
high density neighborhoods. The authors minimize the generalized cost based on buses’ idle times, total traveled distance,
total vehicle usage time, walking time for passengers, waiting times at stops, in-vehicle travel times, and penalties for trans-
fers. Numerical results show that the heterogeneous network configurations produce lower generalized costs than the
homogeneous grids.

Kim and Schonfeld (2014) propose a probabilistic analytical model to design and synchronize a bus transit network that
must provide service from a major terminal to multiple regions. The decisions which need to be made in this problem
include the type of service provided for particular regions (fixed lines and a fixed schedule or demand responsive lines
and a flexible schedule), the vehicle size, the number of zones, frequency, fleet type, and slack times. A GA is developed
to solve examples of the problem and numerical results show that the solutions leading to an optimal synchronization have
either common headway or integer-ratio headways.

2.2. Discrete optimization approaches for the Transit Network Design

To overcome passenger demand endogeneity in discrete optimization versions of the TND, several approaches have been
considered. One approach is decomposing the problem into sequential subproblems; e.g. define potential lines first and then,
solve the transit assignment problem for the proposed network and iterate hoping for convergence. Another approach to
achieve a user-operator equilibrium consists in modeling the TND as a bi-level optimization problem, where the design
of lines is carried out in a ‘‘first level’’ and the transit assignment used to determine the passenger flow in the network is
determined in a ‘‘lower-level’’ (e.g., Chiou, 2005). A third approach models the passenger assignment decisions in the
TND using non-linear constraints or non-linear objective functions, leading to non-convex problems which can be solved
through heuristic algorithms. In this section, we present studies addressing these three types of approaches.

2.2.1. Sequential approaches and simplified cases for the Transit Network Design
One of the early approaches to solve TND is to decompose it into line generation and transit assignment stages. For exam-

ple, Marwah et al. (1984) assign the demand to lines of the network in a first stage and then design a set of potential bus lines
to select the ones minimizing the number of transfers. Another example is van Nes et al. (1988), where a heuristic procedure
starts with a given set of potential lines: the one with the highest number of direct trips is then selected, and the frequency
on that line is increased until it reaches the budget limit and the fleet size limit. Similar decompositions are proposed by Baaj
and Mahmassani (1991, 1992, 1995) to solve the TND with the objective of maximizing the number of direct trips and mini-
mizing transfer times.

Mathematical formulations for the Transit Network Design are usually intractable by exact approaches. However, it is
possible to solve them in an exact way by considering cases such as small instances (Wan and Lo, 2003), single-line design
cases (Guan et al., 2003), simplifications that reduce the size of the transit network (Lownes and Machemehl, 2010), and
determine just some decisions, for example, stop spacing (Furth and Rahbee, 2000). Then, advanced meta-heuristics are com-
monly implemented to tackle TND problems, some times, formulated with bi-level models to consider transit assignment
decisions.

2.2.2. Metaheuristic algorithms for the Transit Network Design
Although TND is often decomposed to solve each stage through heuristic algorithms (see Ceder and Wilson, 1986; van

Nes et al., 1988), it is important to define the feedback between the different stages trying to integrate the decisions of
the line design with those of the transit assignment. This can be naturally embedded in Genetic Algorithms (GA) (see
Chakroborty, 2003; Szeto and Wu, 2011). For example, Chakroborty (2003) solves the line generation and Frequency
Setting stages using GA consisting of two main modules: (i) line exploration through random line generation and movements
of cross-over and mutation, and (ii) line evaluation through a fitness function that determines the demand for the current
lines, the direct trips, and the average travel time, in order to get a measure of the set of lines. We stress that the fitness
function of the GA algorithms may be complex to evaluate since it may contain another optimization problem. Then,
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Argwal and Mathew (2004) propose the parallelization of the fitness function of a GA to solve a case of the TND with the
objective of minimizing the costs based on travel time and round trip distances with bounded frequency, limited load factor,
and demand satisfaction constraints. The performance of the GA is improved, since the computational time is reduced by
increasing the number of processors.

Bagloee and Ceder (2011) also address a population-based approach for the TND with additional considerations. Given a
road network, an exogenous fixed transit demand, and a budget, the problem is to derive a comprehensive transit plan
(including lines and assignments of vehicles of different types) so that the total passengers’ discomfort is minimized. The
authors propose a heuristic approach, consisting of three components: (i) locating the stops based on proximity to highly
concentrated transit demand places a clustering factor of nodes; (ii) generating a set of candidate lines passing through those
stops; and (iii) running a search algorithm over the candidate lines to seek a good solution. This search procedure is encoded
by means of a GA and equipped with Ant-System (AS) collective points as the search engine. The solution approach is tested
on instances up to 903 nodes, 2975 links, and 5394 OD pairs.

Yu et al. (2012) extend the direct traveler density model of Yang et al. (2007) to design a transit network that maximizes
the number of direct travelers carried per unit length of a line (passengers/km). The optimization approach consists of the
following three stages, with feedback between them: (i) generate potential lines that satisfy directness, passenger demand,
and line length constraints; (ii) lay main lines into the transit line network according to the maximum traveler density; and
finally (iii) place branch lines in the transit network, including skeleton lines and main lines according to the maximum trav-
eler density. The authors implement an Ant Colony Optimization algorithm (ACO) to design the transit network while a tran-
sit assignment problem based on minimum travel distance is solved to obtain the passengers flows. The proposed approach
is tested using data from a Chinese city and numerical results show that the optimized transit line network is an improve-
ment, in terms of transfers, on the existing transit network.

Fan and Machemehl (2006b) assumed fixed demand, i.e. demand not dependent on the level of service. The authors
addressed the TND to minimize the weighted sum of operator cost, user cost, and unsatisfied demand cost subject to
constraints such as headway bounds, load factor constraints, limited line length, and fleet-size bounds. A Simulated
Annealing algorithm is implemented to solve the proposed problem. Fan and Machemehl (2006a) and Fan and
Machemehl (2008) enhance the problem definition of Fan and Machemehl (2006b) by considering elastic demand, i.e.
demand dependent on the level of service. These studies implemented a Network Analysis Procedure (NAP) consisting
of assigning transit trips, determining line frequencies, and computing performance measures. Fan and Machemehl
(2006a) develop a GA implementing the NAP as the fitness function while Fan and Machemehl (2008) design a local
search algorithm consisting of (i) implementing an heuristic procedure to generate a feasible solution and (ii) imple-
menting an iterative local search to generate the lines and their frequency as well as the NAP to re-assign the demand
based on the current lines.

Cipriani et al. (2012) address the TND with elastic demand to define lines, frequencies, and vehicle sizes maximizing
the total welfare. The authors propose a solution approach consisting of two stages: (i) implementing a heuristic algo-
rithm to generate potential lines and their frequencies and (ii) a GA that recombines lines to generate new population
individuals while the fitness function evaluates them using a probabilistic modal split model which determines the
mode choice behavior of users and a hyper-path transit assignment model which determines the route choice behavior
of users.

Recently, Szeto and Jiang (2012) implement three versions of the Artificial Bee Colony algorithm (ABC) (see details of
ABC in Karaboga et al. (2012)) to solve the TND, minimizing the weighted sum of the number of transfers and the total
travel time of the users. The ABC algorithms, together with a stop-sequence improvement heuristic, are used to design
lines, whereas a neighborhood search heuristic is implemented to solve the Frequency Setting problem, allowing the
exploration of different potential lines. Numerical results show that the frequency of each line found by the best pro-
posed algorithm is reduced by 5.5%, without increasing the fleet size, compared with the other two population-based
algorithms proposed. However, the study lacks any comparison with other algorithms in the literature. Another ABC
is implemented by Nikolić and Teodorović (2013) to solve the TND with static demand that minimizes the number of
transfers and the total travel time. The authors define a passenger as satisfied if two or less transfers are needed in
his/her trip. They solve test instances and compare their results with previous approaches, such as Baaj and
Mahmassani (1991) and Chakroborty and Dwivedi (2002). Experimental results show that the ABC improves (compared
with the current operation) the percentage of demand satisfied without transfers, and the satisfied demand with one
transfer, in three out of four instances. Improvements are obtained also for the average travel time. Later, Nikolić and
Teodorović (2014) extend their previous approach outlined by Nikolić and Teodorović (2013) considering elastic demand
and the minimization of the weighted sum of the total number of unsatisfied passengers, the total travel time of all pas-
sengers, and the fleet size.

Nayeem et al. (2014) develop two versions of a GA with elitism to solve the TND with static demand which minimizes the
weighted sum of unsatisfied passengers, the total number of transfers, and the total travel time of all served passengers.
Moreover, the authors also implemented an alternative algorithm that increases the population size after each iteration.
The later study present a comparison between the proposed algorithms and the ones by Baaj and Mahmassani (1991),
Chakroborty and Dwivedi (2002), Fan and Machemehl (2008), Nikolić and Teodorović (2013). Numerical results show that
the GA with elitism outperforms the other approaches compared in the study in all three criteria in most of the tested
instances.
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2.2.3. Bi-level approaches for the Transit Network Design
Gao et al. (2004) address the TND where the upper-level define lines minimizing the weighted sum of the average travel

time, average waiting time, and operational cost while the lower-level is a transit assignment problem. The authors propose
an algorithm based on a sensitivity analysis to solve some numerical examples. Later, Fernández et al. (2008) present a
Transit Network Design problem in the context of Santiago, Chile. The TND has the objective of minimizing the total cost
based on the lines’ travel times, vehicle operation, and users’ travel times. Due to endogenous characteristic of demand in
the Network Design problem, the authors propose a heuristic approach consisting of: (i) determining the potential network
topologies and then, (ii) measuring each topology by solving the bi-level problem which defines the Frequency Setting at the
upper-level and the transit assignment decisions at a lower-level.

Recently, Szeto and Jiang (2014) formulate the TND where the upper-level defines the bus lines minimizing the number of
passenger transfers and the lower-level problem is the transit assignment problem with capacity constraints. As in the pre-
vious study of the authors for a single level problem (Szeto and Jiang, 2012), a Bee Colony Algorithm is also implemented to
solve the optimization problem. The proposed approach is tested on transits networks in Tin Shui Wai, Hong Kong and
Winnipeg, Canada.

Re-design of transit networks may be useful for old transport systems. For example, Fan and Machemehl (2011) state that
significant spatial redistribution and demographic changes have been taking place in most U.S. cities, making the land use
patterns increasingly decentralized. Thus, current transit networks are not necessarily suitable for cities with multi-centered
and spatially dispersed trip patterns. To overcome this situation, the authors propose a bi-level optimization model to solve
the Transit Network Re-Design problem. The upper-level determines network structures minimizing the weighted sum of
use cost, operator cost, and unsatisfied demand, while the lower-level is a transit assignment problem. In this formulation,
the improvement of the current minimum travel time for each OD pair is modeled as a hard constraint within the upper-
level problem. To solve the problem, the authors develop a GA and numerical results show that the spatial equity increases
the total travel cost in the network.

2.2.4. Robust and stochastic Transit Network Design
In practice demand is uncertain. To tackle this issue, robust optimization, chance-constrained optimization, and stochas-

tic optimization have been implemented. For example, Chen and Yang (2004) address a TND to minimize the total travel
time considering equity issues and demand uncertainty. The authors assume that the passenger demand fits a Normal dis-
tribution probability and they propose two different stochastic formulations: (i) one where they minimize the expected
value of the total travel time and (ii) a stochastic version minimizing the total travel time considering chance-constraints
associated with equity performance. To solve the problems the authors developed an iterative solution approach consisting
of a GA algorithm to solve the TND and a simulation procedure to simulate the demand uncertainty. Numerical results show
that there is a trade-off between the spatial equity measure and the expected value of the total travel time.

Amiripour et al. (2014) determine a set of lines to be implemented for an entire year considering seasonal demand
patterns with a probability of occurrence. The authors propose a mathematical formulation to minimize the expected value
of the weighed sum of passengers’ total waiting time, unused seat capacity, unsatisfied demand (passengers with more than
a specific number n of trip legs), and the fleet size. Constraints of the problem for each scenario are headway bounds, limited
fleet size, maximum number of transfers, and maximum unsatisfied demand. To solve the proposed formulation the authors
develop GA algorithm where the fitness function solves a transit assignment problem.

Stochastic travel times are considered by Yan et al. (2013), which addressed a robust optimization version of the TND
minimizing the weighted sum of the expected value of the operator cost and its variability. To solve the problem, the authors
implemented a solution methodology consisting of the following four components: (i) a k-shortest path algorithm to
generate candidate lines; (ii) a Simulated Annealing algorithm to solve the transit assignment problem; (iii) a Monte
Carlo simulation to define the passenger flow loading; and (iv) a probit-type discrete choice model embedded in the
simulation to determine the passengers’ choices.

2.2.5. Multi-objective Transit Network Design
Recent studies of TND problems focus on the analysis of the compromises between different evaluation criteria. For

example, Fan and Machemehl (2004) implement a decomposition approach to solve the TND. However, a contribution of that
study is an extensive experimentation stage considering different weight parameters for an objective function based on
users’ and operators’ costs. Using this experimentation, the authors analyze the trade-offs between different objectives since
weighted objective functions can be used to approximate the set of Pareto optimal solutions. Mauttone and Urquhart (2009)
propose a multi-objective optimization approach for the TND minimizing users’ costs (based on in-vehicle time, waiting
time, and transfer time) and the fleet size. The authors propose a GRASP algorithm for the multi-objective optimization prob-
lem. Numerical results on instances presented by Mandl (1979), show that the proposed heuristic is capable of obtaining
more Pareto optimal solutions that using a weighted objective function. Recently, Chew et al. (2013) formulate a bi-objective
version of the TND that minimizes the user costs and operator costs subject to constraints such as a limited number of lines,
limited number of line nodes, and a limited percentage of passengers using several transfers. To solve the proposed
approach, a GA was designed and tested on a Benchmark data set.

Tables 1 and 2 summarizes our literature review for the TND. The second and third columns present the objective and
constraints considered in the formulation addressed in each paper. The fourth column exhibits the solution approach.



Table 1
Literature review for the Transit Network Design problem.

Authors (year) Objective Constraints of the system Solution
method

Case

Clarens and Hurdle
(1975)

Min total users’ and operators’ costs Vehicle capacity Analytical Example

Marwah et al. (1984) Min passenger riding-time and operation costs Demand satisfaction Decomposition
& Heuristic

Test

Ceder and Wilson
(1986)

Min excess travel time, transfer and waiting time Minimum frequency Heuristic Examples

van Nes et al. (1988) Max number of direct trips Budget and fleet size Decomposition
& Heuristic

Example

Baaj and Mahmassani
(1991, 1992, 1995)

Max number of direct trips Fleet size and headway bounds Decomposition
& Heuristic

Example

Chien and Schonfeld
(1997)

Min total users’ and operators’ costs Vehicle capacity Analytical Example

Furth and Rahbee
(2000)

Min walking distance, riding delay, and operator
costs

Maximum stop distance Dynamic
programming

Real

Chakroborty and
Dwivedi (2002)

Min unsatisfied demand, total travel time, and
passengers with more than two transfers

Route feasibility GA Examples

Chien and Spasovic
(2002)

Min consumers’ surplus and operators’ profit Vehicle capacity Analytical Example

Chakroborty (2003) Min passenger waiting time Fleet size, capacity, policy headway, and
maximum transfer time

Decomposition
& GA

Example

Guan et al. (2003) Min in-vehicle travel time and number of
transfers

Demand satisfaction Solver Benchmark

Wan and Lo (2003) Min operating costs Capacity and bounded frequency CPLEX Example
Argwal and Mathew

(2004)
Min cost based on travel times and trip distances Bounded frequency, load factor, and demand

satisfaction
Parallel GA Real

Chen and Yang (2004) Min total travel time Spatial equity and budget GA &
Simulation

Example

Fan and Machemehl
(2004)

Min weighted sum of user and operator costs Headway bounds, load factor bounds, fleet
size, trip length, and number of lines

Decomposition
& Heuristic

Examples

Gao et al. (2004) Min weighted sum of user and operator Minimum frequency Sensitivity
analysis

Example

Chiou (2005) Min travel and construction costs Link capacity Gradient-based
method

Examples

Fan and Machemehl
(2006a)

Min total users’ and operators’ costs Headway bounds, load factor bounds, line
length, and fleet size

GA Example

Fan and Machemehl
(2006b)

Min unsatisfied demand, users’ costs, and
operators’ costs

Load factor, headway bounds, line length,
and fleet size

SA Example

Yang et al. (2007) Max direct travels per unit length Bus capacity, minimum direct travelers, and
stop spacing

ACO Examples

Fan and Machemehl
(2008)

Min total users’ and operators’ costs Headway bounds, load factor bounds, line
length, and fleet size

TS Example

Fernández et al. (2008) Min cost based on travel times, vehicle
operations, and users’ travel time

Load factor and demand assignment Heuristic Real

Mauttone and
Urquhart (2009)

Min users’ cost vs. minimum fleet size Frequency bounds and load factor GRASP Example

46 O.J. Ibarra-Rojas et al. / Transportation Research Part B 77 (2015) 38–75
Finally, the fifth column presents the type of instances used for the experimental stage. In that column, there are several
categories where ‘‘Example’’ represents small instances designed by the authors or simplified networks of real systems; ‘‘Real’’
represents the implementation in real transit networks; ‘‘Test’’ means that the authors use instances that are generated randomly
or based on real contexts; and ‘‘Benchmark’’ represents comparing the approach with instance sets from the literature. The pre-
vious format to summarize our review was used in each section of this paper except for the Real-Time Control strategies.
3. Tactical planning decisions

Tactical decisions associated to the TNP are related to improving the level of service and reducing the operational costs. In
this planning horizon, which is normally few months, the fleet size and characteristics is fixed. In addition, most lines and the
origin-destination demand matrix are considered given. In this context, the remaining questions are: (i) the frequency and
fleet (number and type of vehicles) assigned to different lines in each period; (ii) the timetables for low frequency lines; and
(iii) the design of operational strategies to be considered during the execution.

3.1. Frequency Setting problem

In the previous section, we address the TND problem which usually defines preliminary frequencies. However, the opera-
tion of a transport system is dynamic, and so the service policies must be adjusted to the demand behavior and system



Table 2
Literature review for the Transit Network Design problem (continue).

Authors (year) Objective Constraints of the system Solution
method

Case

Lownes and Machemehl
(2010)

Min weighted sum of user, operator, and
unmet demand costs

Capacity and fleet size TS Example

Daganzo (2010) Min total users’ and operators’ costs Number of corridors, space between them, Analytical Examples
Bagloee and Ceder (2011) Min passenger’s discomfort Demand satisfaction and budget Decomposition

& GA
Example

Estrada et al. (2011) Min total users’ and operators’ costs Number of corridors, space between them, and
systems capacity

Analytical Simulation

Fan and Machemehl (2011) Min weighted sum of user, operator, and
unmet demand costs

Trip length, number of lines, headway bounds,
Load factor, fleet size, and spatial equity

GA Examples

Szeto and Wu (2011) Min weighted sum of number of
transfers and total travel time

Fleet size, frequency bounds, number of
Intermediate stops, and maximum travel time

GA Real

Cipriani et al. (2012) Min total users’ and operators’ costs and
line length

Bus capacity, minimum frequency, GA Real

Roca-Riu et al. (2012) Min planner and user costs Demand satisfaction and speed bounds TS Real
Szeto and Jiang (2012) Min weighted sum of number of

transfers and total travel time
Fleet size, frequency bounds, number of
Intermediate stops, and maximum travel time

ABC Real

Yu et al. (2012) Max trip density Demand satisfaction ACO Real
Chew et al. (2013) Min users’ costs vs Min operators’ costs Number of stops and lines and percentage of

passengers using n transfers
GA Benchmark

Medina et al. (2013) Min total users’ and operators’ costs Bus capacity, stop capacity, and equivalence of
stop density in each direction

Decomposition
& Analytical

Real

Nikolić and Teodorović
(2013)

Min weighted sum of number of
transfers and total travel time

Demand satisfaction ABC Benchmark

Yan et al. (2013) Min expected value of operator cost and
its variability

Fleet size, bus capacity, line feasibility, and travel
time reliability

SA Examples

Amiripour et al. (2014) Min total waiting time, fleet size, total
differences from shortest paths, and total
empty-seat hours

Budget, maximum unsatisfied demand, headway
bounds, number of transfer, and bounded
deviation from short paths

GA Examples

Kim and Schonfeld (2014) Min total users’, operators, and transfer
costs

Bus sizes and number of zones Analytical Examples

Ouyang et al. (2014) Min users’ generalized costs Fleet size Analytical Examples
Nayeem et al. (2014) Min unsatisfied passengers, number of

transfers, and travel times
Demand satisfaction GA Real

Nikolić and Teodorović
(2014)

Min weighted sum of unsatisfied
passengers, total travel time, and fleet
size

Demand satisfaction, link capacity, and vehicle
capacity

ABC Benchmark

Szeto and Jiang (2014) Min transfers Bounds for frequency, capacity and ABC Real
the fleet size
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performance, i.e. it is necessary to make changes in the network design, frequencies, and fare structure, among other things.
The Frequency Setting problem (denoted as FS) determines the number of trips for a given set of lines L to provide a high level of
service in a planning period. Since frequency changes influence the passengers’ perception of the level of service it may lead to
an increment or decrement of the system usage.

A simple version of the problem is to determine the frequency f l (buses/hour) for each line l 2 L such that travel times are
minimized and the fleet size is bounded. This problem can be formulated as follows.
½P� ¼ min
X
i2V

X
j2V

DijT
l
ij :
X
l2L

dtl � f le 6 F

( )
ð1Þ
where Tl
ij is the travel time between i and j via line l; Dij is the demand for the origin–destination pair ði; jÞ; tl is the cycle time

of line l, and F is the maximum fleet size.
Early works on Frequency Setting when we assume a fixed demand-line assignment were based on analytic models (see

Newell, 1971; Salzborn, 1972; Scheele, 1980; Han and Wilson, 1982) or heuristic solution methods (see Furth and Wilson,
1981). These seminal approaches were later extended including uncertainty in the demand observed in each line or other
considerations.

Hadas and Shnaiderman (2012) address the minimization of a total cost based on empty seats and not-served demand.
Thanks to GPS, APC, and AVL tools, the authors defined probability distributions for travel times and passenger demand.
Based on this information, they defined an analytical optimization approach that determines frequencies and vehicle sizes.
Implementing the proposed approach in examples shows that the most significant cost reduction is obtained in cases with
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low-level of service. Li et al. (2013) also consider stochastic parameters such as demand, arrival times, boarding/alighting
times, and travel times. The authors define a stochastic optimization approach to find the optimal frequency that minimizes
the sum of the expected value of the company profit and the waiting time costs for passengers. The authors develop a GA to
solve the problem and compare their approach with traditional Frequency Setting models of Newell (1971) and Ceder
(1984). The authors state that the headways obtained are usually larger than those using the approach by Newell (1971)
and shorter than those using Ceder (1984). They claim that these moderate headways provide a better balance between
the bus operational costs and the passengers’ satisfaction.

Verbas and Mahmassani (2013) and Verbas et al. (2015) extend the model presented by Furth and Wilson (1981)
considering demand variation along time and line route. The authors re-define a line as a set of ‘‘line patterns’’-consisting
of subset of stops of the normal line-for which a frequency must be set in order to properly satisfy demand patterns in speci-
fic time intervals. The variation of demand is modeled by assuming temporal and spatial heterogeneity of ridership elasticity
with respect to frequencies. The problem is formulated with a non-linear program which minimizes the weighted sum of
ridership and wait time savings over all stops, lines, and time intervals subject to constraints such as budget, fleet size, head-
way bounds for each line pattern, and bounds for load factors. Verbas and Mahmassani (2013) test the model on an example
in order to analyze the impact of the constraints. Numerical results show that increasing the fleet size may lead to reduce
operational costs since vehicles may be assigned to low-cost, high-ridership line patterns. Verbas et al. (2015) test the model
on large instances in order to analyze the impact of temporal/spatial demand elasticities and the authors state that demand
is not temporally stable.

In the previously mentioned approaches, transit assignment decisions are not considered. To address these them,
Martínez et al. (2014) propose a MILP to jointly determine the frequency and demand over each line. The problem considers
discrete frequencies, uncapacitated vehicles, and limited fleet size. The major contribution of this study is the modeling of
transit assignment decisions assuming that each passenger choose his/her minimal travel time path. The proposed for-
mulation has a special structure that allow decomposition into independent problems where frequencies are fixed (but this
is not explored by the authors). The model is tested on the real transit network of Rivera, Uruguay and numerical results
show that the model diminishes the travel times 13% compared with the current operation of the system. Since the model
is intractable for large instances, the authors develop a Tabu Search heuristic which is tested on the transit network of
Montevideo, Uruguay where solutions lead to improvements of 1.7% compared with the current operation.

Other approaches including transit assignment decisions in FS are based on bi-level optimization models. Their hierarchi-
cal nature allows determining frequencies at an upper-level and transit assignment decisions at a lower-level.
3.1.1. Bi-level approaches for the Frequency Setting
Constantin and Florian (1995) define the upper-level as determining the frequencies which minimize the total travel and

waiting times while at the lower-level a transit assignment problem is modeled. Then, they develop a projected sub-gradient
algorithm to solve instances based on the transit networks of Stockholm, Sweden; Winnipeg, Canada; and Portland, OR, U.S.

dell’Olio et al. (2012) address the problem of determining the vehicle capacity and the needed frequency in order to sat-
isfy a given demand. The upper-level considers the optimization of the sum of user and operator costs while the lower-level
represents transit assignment decisions. To solve the optimization problem, the authors propose an iterative heuristic
approach consisting of three steps at each iteration: (i) generate an initial set of frequencies; (ii) solve the transit assignment
model using commercial software; and (iii) implement the Hooke–Jeeves algorithm to find new frequencies and determine
vehicle capacities. The numerical result of implementing the proposed approach in a sub-network in Santander, Spain quan-
tify the benefits from using an heterogeneous fleet.

Demand uncertainty incorporates a new element into the FS problem since passengers may not board the first arriving
bus even though the aggregated frequency is enough to carry all passengers. Yu et al. (2010) propose a formulation that
minimizes the total travel time of passengers subject to fleet size constraints and considering users’ route choices. The
upper-level determines the bus frequencies while the lower-level solves a transit assignment problem assuming uncertain
passenger arrivals at bus stops. To solve the proposed problem, the authors implement a heuristic algorithm consisting of
two procedures: (i) a GA to compute potential frequencies and (ii) a label-marking method that assigns the demand to
the current network configuration according to the minimization of the total expected cost. The proposed solution approach
is tested on the transit network of Dalia, China. Numerical results show that it is possible to reduce travel times by 6% com-
pared with the current operation of the system. Moreover, the authors compare the operation of four private companies
under two scenarios: (i) an integrated system, i.e. companies sharing vehicles; and (ii) independent operation. Numerical
results show a 13% reduction of the total travel time in the integrated case.

Yoo et al. (2010) present a FS model based on a non-cooperative Stackelberg game. The upper-level maximizes the
demand, subject to fleet size and frequency constraints. At the lower-level a capacity-constrained stochastic user equilib-
rium assignment model is solved considering variable demand and transfer delays. To solve the proposed formulation the
authors develop an iterative procedure consisting of two stages: (i) solving the lower-level for a given frequency; and (ii)
determining new frequencies using a gradient projection method.

Huang et al. (2013) present a FS problem with uncertain demand to minimize the weighted sum of the operating costs
and travel times variance. In this study, the upper-level determines the frequencies while the lower-level computes the
mean and variance of the passenger flow through each link of the transit network. The proposed problem is solved through
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GA and implemented on the transit network of Liupanshui, China which consists of 16 lines, 270 stops, and 260 buses.
Numerical results show that the total cost can be reduced by about 6% compared with the current operation.

Verbas and Mahmassani (2015) propose a bi-level solution method which: (i) determines frequencies at the upper-level
maximizing waiting time savings considering constraints such as budget, fleet size, vehicle load, and headway policy; and (ii)
runs a simulation algorithm at the lower-level modelling the demand response to the new Frequency Setting. The proposed
approach is tested on the transit network of Chicago. Compared with the base scenario, the method obtain a reduction of
45.7% in waiting times, and an increasing of 9% in the number of boardings.
3.1.2. Frequency Setting to coordinate different transport modes
Coordination of different lines or transport modes is rarely considered in FS problems, even when coordination affects

costs that are imparted to transit operators as well as its users (Sun and Hickman, 2004). In this matter, Shrivastava and
Dhingra (2002) and Shrivastava et al. (2002) develop a non-linear integer formulation for the FS of feeder lines connecting
trunk lines (with given schedules) in order to minimize transfer times at connection stops and the operational cost.
Assumptions of the problem are fixed demand and bounds for transfer waiting times, fleet size, and load factors. Since
the problem is intractable by commercial software, the authors develop a GA taking into account the load factor as a quality
measure. The proposed algorithm is tested on the transit network of Mumbai, India and numerical results show that there is
a trade-off between the load factor and transfer waiting time. The later GA is also implemented by Verma and Dhingra (2006)
and Shrivastava and O’Mahony (2006, 2009) in sequential approaches that heuristically generate lines and then coordinate
them.

More recently, Sivakumaran et al. (2012) propose a continuous approximation approach which determines the frequency
of feeder lines minimizing the weighted sum of wait times at feeder stops, their transfer wait at the trunk stop, and the
feeder operating cost. The demand is modeled through a time-independent density function which varies gradually along
distance. The authors finds out that by dispatching feeder vehicles in coordination with the given trunk schedule, total user
cost can significantly diminish while little or no extra cost is imparted to the operator of the feeder lines. Moreover, they
Table 3
Literature review of the Frequency Setting problem.

Authors (year) Objective Constraints of the system Solution method Case

Newell (1971) Min total waiting time Capacity constraints Analytical None
Salzborn (1972) Min total waiting time and fleet size Passenger arrival rates Analytical None
Scheele (1980) Min travel time Capacity and fleet size Heuristic Real
Furth and Wilson

(1981)
Max costumer utilization Budget, fleet size, maximum

headway
Heuristic Example

Han and Wilson (1982) Min maximum load factor Passenger assignment choice,
capacity, and fleet size

Decomposition &
Heuristic

Real

Ceder (1984) Min bus runs Load profiles and vehicle
capacity

Heuristic Example

Constantin and Florian
(1995)

Min expected value of travel and waiting times Fleet size Sub-gradient
algorithm

Real

Shrivastava and
Dhingra (2002)

Min transfer time and operator costs Bounds for transfer waiting times, GA Real

Shrivastava et al.
(2002)

Fleet size, and load factor

Mohaymany and
Amiripour (2009)

Min expected waiting time Fleet size Simulation Example

Yoo et al. (2010) Max demand Fleet size, frequency, and vehicle
capacity

Iterative heuristic Example

Yu et al. (2010) Min total travel time Fleet size GA Real
Hadas and

Shnaiderman (2012)
Min empty seats and unfulfilled demand Headway bounds Analytical Example

dell’Olio et al. (2012) Min total users’ and operators’ costs Bus capacity and limited number of lines
that a bus can cover

Heuristic Real

Huang et al. (2013) Min operators’ costs and travel time variance Fleet size and minimum number of trips GA Real
Li et al. (2013) Min expected value of company’s profit and

waiting time costs
Bus capacity GA Test

Martínez et al. (2014) Min travel time Demand satisfaction and fleet size bound CPLEX & TS Real
Sivakumaran et al.

(2012)
Min weighted sum of waiting time, transfer
time, and operator cost

Demand satisfaction and vehicles
capacity

Analytical None

Wu et al. (2014) Min weighted sum of waiting time, transfer cots,
drivers/vehicles costs

Frequency bounds GA Example

Verbas and
Mahmassani (2015)

Min waiting time Budget, fleet size, and
headway bounds, and load factor

Heuristic Real

Verbas and
Mahmassani (2013)

Min weighted sum of ridership and waiting
time savings

Budget, fleet size, and headway
bounds, and load factor

KNITRO Example&Test

Verbas et al. (2015)
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extend the analysis to jointly determine the headways for trunk and feeder lines. In this case, it is shown that schedule
coordination can often be Pareto improving which benefits both users and operators.

Wu et al. (2014) propose a non-linear formulation for the FS with static demand in order to coordinate feeder bus lines
with trunk lines in BRT corridors. The model considers vehicles’ capacity and frequencies’ bound. The objective is to mini-
mize the weighted sum of users’ and operators’ cost including waiting time, transfer cots, in-vehicle waiting time, drivers’
wages, vehicle operation, and vehicle maintenance. To solve the problem, the authors develop a GA and test it on two kinds
of scenarios: (i) coordination of all-stop BRT and bus; (ii) coordination of all-stop BRT, limited-stop BRT, and bus. Numerical
results show that in case (i), passenger costs reduce significantly through coordinated operation. However, operation costs
may increase caused by the larger number of vehicles needed after implementing coordinated operation. In case (ii), opera-
tors’ costs are diminish by shorter cycle times but waiting times and transfer times are reduced only when the stopping stops
are carefully coordinated.

Other approaches that consider, at some level, the design of lines and Frequency Setting decisions include the design of
short-turn lines and limited-stop lines which satisfy the passenger demand more efficiently. We explore these strategies in
Section 3.3. Now, we summarize our literature review of the Frequency Setting problem in Table 3.
3.2. Transit Network Timetabling problem

There are two types of transit systems operation: (i) frequency-based operation where a frequency f (buses/hour) should
be met with hopefully a regular service, i.e. buses are expected to pass every 60

f minutes; and (ii) timetable-based operation

where specific departure and arrival times for selected stops are set for all trips. Commonly, the TND and FS problems
assume a frequency-based operation where it is possible to estimate the waiting times, fleet size, and waiting times at trans-
fers stops in terms of the lines’ frequencies. However, the timetable-based operation arise from the need of consider specific
operation characteristics such as satisfy known demand patterns, synchronize different bus lines, and maximize the number
of well timed transfers.

The Transit Network Timetabling problem, denoted as TNT, is the first decision level that determines the schedules of the
lines, i.e. the departure and arrival times for a set of trips along the stops of the transit network in order to optimize a specific
objective function. An example of a timetable solution is given in Table 4, where the pair ða; dÞ represents the arrival time
a and departure time d for each stop in the line. Notice that the headways (separation time between consecutive trips)
are different, and thus the transport service is not regular. The relevance of generating a timetable relies on the fact that
inadequate and/or inaccurate timetables not only confuse the passengers but also reinforce the bad image of public transit
as a whole (Ceder, 2007).

The objectives of TNT involve different criteria such as satisfying headway bounds, satisfying specific demand patterns,
maximizing synchronization events of the bus lines, and minimizing other measures such as load unevenness, headways
unevenness, travel times, vehicle/driver schedules costs, and/or passenger waiting times (see reviews of Desaulniers and
Hickman, 2007; Guihaire and Hao, 2008a).

An important aspect of the planning process is to consider heterogeneous conditions of the system along the day. A com-
mon approach to handle the latter issue is to divide the day into smaller planning periods with low variability of demand and
travel times. The definition of these planning periods is not straightforward. For example, a method used for generating run-
time values consists of the following steps (see Salicrú et al., 2011): purging and screening atypical trips based on the con-
sideration of confidence intervals for median trips; segmenting the day into time bands based on a classification algorithm;
creating run-time values based on criteria derived from statistical analysis; and adjusting and validating run-time values
using micro simulations. Once the smaller planning periods are defined, deterministic timetabling problems could be
implemented.
3.2.1. Transit Network Timetabling to meet specific demand patterns
The efficiency of timetables is strongly related to passenger demand, which may be highly variable during the day and

even within short planning periods. Examples of how to create timetables with balanced passenger loads are shown by
Ceder (2007), where the rate of passenger arrivals is assumed to be constant (based on data recollection) in small planning
periods and departure times are generated through analytic procedures. It is unusual to address load and headway evenness
in a timetabling problem. However, Ceder et al. (2013) propose to minimize the deviation from the desired passenger load
while trying to maintain even headways using buses with different sizes. A handicap is the determination of the headway to
be used in the timetable. Hence, the authors develop a heuristic approach to determining the desired headway to satisfy the
Table 4
Timetable of three trips of a line l that cover 5 stops.

Trips stop 1 stop 2 stop 3 stop 4 stop 5

1 (7:00, 7:01) (7:05, 7:06) (7:11, 7:11) (7:18, 7:18) (7:25, 7:26)
2 (7:10, 7:11) (7:15, 7:16) (7:21, 7:21) (7:28, 7:28) (7:35, 7:36)
3 (7:15, 7:16) (7:20, 7:21) (7:26, 7:26) (7:33, 7:33) (7:40, 7:41)
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demand based on the following three strategies: (i) maximizing the size of the bus; (ii) minimizing the size of the bus; and
(iii) selecting the bus whose capacity is closer to the average passenger load. Moreover, the desired headway is used in a
heuristic algorithm to determine the timetable. Tests are made with a real case study considering three planning periods
of (08:00 to 14:00, 14:00 to 19:00, and 19:00 to 24:00) and buses with capacities of 20, 50, and 75 passengers.
Numerical results show that the objectives are indeed in conflict.

Li et al. (2010) address the periodic timetabling problem in a multi-modal system in order to maximize the total user net
utility. One of its major contributions is that the activity and travel choices of transit passengers are considered explicitly in
terms of departure time choice, activity/trip chain choices, activity duration choice, and mode choice, through a supply–
demand equilibrium model. The authors propose a bi-level mathematical programming problem with supply–demand
equilibrium constraints and implement heuristic procedures to solve small instances leading to headway values that
improve the user’s net utility.

Punctuality is important for a transport system since delays of departures lead to losing transfers, and giving the service a
bad image. Palma and Lindsey (2001) assume that each passenger has an ideal boarding time and incurs a varying schedule
delay cost from traveling earlier or later. Then, the authors develop an analytical model considering two steps: (i) a demand
allocation problem is solved to assign individuals to line runs then, (ii) an optimization process is solved to set departure
times in such a way as to minimize the passengers’ total schedule delay costs. The minimization of the user’s inconvenience
is also studied by Mesa et al. (2013). Constraints of the system are the limited number of trips in a given planning period,
limits to the fleet size, and with respect to the vehicles’ capacities. The authors propose a mathematical formulation based
on the q-median problem, and design a clustering algorithm to reduce the number of requests (origin-destination trips with
preferred departure time). This reduction allows the authors solving randomly generated instances (up to 500 requests and
four vehicles) using CPLEX’s solver.
3.2.2. Transit Network Timetabling to minimize waiting times
Passenger transfers are present in all transport systems. Then, the minimization of waiting time costs at transfer stops

may be a reasonable objective for the TNT. For example, Klemt and Stemme (1988) propose a quadratic semi-assignment
formulation for the TNT minimizing transfer waiting times in order to schedule a given number of trips. The authors develop
a constructive process in which trips are scheduled one at a time with consideration to transfer synchronization. Later,
Domschke (1989) designed B&B, local search, and SA algorithms that outperform the solutions obtained by Klemt and
Stemme (1988). Chakroborty et al. (1995) present a non-linear mathematical formulation for the TNT minimizing the total
waiting time (including transfers). Constraints of the problem are fleet size, arrival times bounds, maximum headway value,
and maximum transfer times. The authors develop a Genetic Algorithm (GA) which is tested on examples of the problem
obtaining high quality feasible solutions in short time.

Daduna and Voß (1995) propose a timetabling problem to synchronize arrival times at transfer zones minimizing the
waiting time incurred. Moreover, the authors consider alternative objectives such as a weighted objective function based
on different transfers and the maximum waiting time at a transfer zone. A mathematical model based on quadratic semi-
assignment is used to formulate the TNT. Due to its complexity, a heuristic is used to compute initial solutions, which are
then improved by a Simulated Annealing algorithm and different versions of Tabu Search (TS).

Bookbinder and Désilets (1992) address a TNT that minimizes transfer costs. The authors assume stochastic travel times
and a unique headway value for each line, i.e. the first departure is the only decision variable while the rest of departures
time are computed from it. The proposed solution approach combines a simulation procedure with a mathematical for-
mulation like the one presented by Klemt and Stemme (1988). Wong et al. (2008) address a similar objective but considering
headway bounds and deterministic travel times. The authors propose an optimization-based heuristic that iteratively solves
linear sub-problems and then fixes/releases some variables until a feasible solution is obtained. This solution algorithm is
able to solve instances of up to four lines and 16 transfer stops. Even when the latter study is focus on rail systems, the
considered characteristics are suitable for general transit networks.

Castelli et al. (2004) address a timetabling problem to minimize the weighted sum of passenger costs (based on time
spent in the system) and operational costs (based on vehicles usage). The authors define a mathematical formulation includ-
ing transfer coordination decisions. Since the proposed model has a large number of decision variables, the authors develop a
Lagrangian relaxation method to solve generated instances considering a planning period of one hour.

Schröder and Solchenbach (2006) state that minimizing transfer waiting times may lead to risky passenger transfers due
to the usual delays in bus arrivals at stops. Then, they define a TNT considering the following types of transfers and their
costs based on the waiting time incurred: (i) impossible transfer; (ii) almost transfer; (iii) risky transfer; (iv) acceptable
transfer; and (v) patience transfer. Then, a mathematical formulation to shift trips (of a given timetable) is defined in order
to minimize the total transfers cost. A few instances are solved using a commercial solver, and numerical results show that
trip shifting leads to significant improvements in transfer coordination.

Guihaire and Hao (2010b) address the TNT with an objective function based on quantity and quality of transfers, evenness
of line headways, feet size and length of the deadheads. The authors consider a constraint that bounds the deviation from an
initial timetable. This constraint allows the authors to develop a preprocessing stage to define feasible intervals for departure
times. Then, the information of the preprocessing stage is used to implement shifting movements embedded in a Tabu
Search algorithm to solve generated instances of the problem.
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As analyzed in Zhao and Zeng (2008), uncertainty of travel times influence the chances of achieving well-timed passenger
transfers. For this reason, Liebchen and Stiller (2012) implement buffer times to generate delay resistant timetables. The
authors define an optimization problem to minimize the expected total weighted delay for planned trips considering head-
way bounds and fleet size constraints. To solve the problem, the authors develop a heuristic algorithm which is capable of
obtaining optimal solutions for problems that can be modeled through series-parallel graphs. Although this is implemented
in periodic timetables for railway systems, the main idea of implementing buffer times can also be used for general transit
networks with aperiodic timetables.
3.2.3. Transit Network Timetabling to maximize the number of synchronization events
The synchronization of different lines can be used to bus congestion at common stops or allow passenger transfers. For

example, Ceder and Tal (2001) and Ceder et al. (2001), address a TNT focused on maximizing the number of pairwise
simultaneous arrivals at common nodes in order to benefit passenger transfers. The problem consider headway bounds
and an initial frequency. Since the problem is intractable by commercial solvers, the authors design a heuristic procedure
to generate timetables for some examples. Later, Liu et al. (2007) redefined the synchronization measure of Ceder and Tal
(2001) as the ratio of the number of lines where there are vehicles arriving simultaneously at a connection stop to the num-
ber of all lines passing through the same stop. Then, a nesting Tabu Search is designed to obtain feasible solutions for small
instances (up to eight bus lines and three synchronization nodes).

More recently, Ibarra-Rojas and Rios-Solis (2012) redefine a synchronization event as the arrival of two trips belong-
ing to different lines at a specific stop such that the separation time between these arrivals is within a specific time
window. These synchronization events are used to benefit passenger transfers and to reduce bus congestion at common
stops. The authors consider headway bounds and specific departure time for the first/last departure of each line in order
to guarantee an almost regular service over the entire planning period. The problem is modeled with a Mixed integer
linear formulation that is intractable by commercial solvers, even for small instances. Besides, the NP-hardness of the
timetabling problem is proved. Then, an Iterated Local Search Algorithm (ILS) is designed to solve large instances of
the problem.

As we mentioned before, the division of a day into smaller planning periods based on demand and travel times variability
is not straightforward (see Salicrú et al., 2011). Moreover, the divisions are not necessarily the same for different lines. On the
basis of this fact, Ibarra-Rojas et al. (2015) extend the approach of Ibarra-Rojas and Rios-Solis (2012) to consider multiple
planning periods. The authors define a synchronization event between trips belonging to different periods as the pair wise
arrival at synchronization nodes such that the separation between arrivals is between minimum and maximum that are
function of the headways of the related trips. Then, they define the optimization problem to determine a timetable for
the entire day maximizing the number of synchronization events. The size of the problem increases significantly when an
entire day is considered compared with a single-period case. Thus, the authors develop metaheuristics such as multi-start
ILS and multi-start Variable Neighborhood Search (VNS) to solve the proposed problem. Numerical results of implementing
the metaheuristics on generated instances show that, even when optimality is not guaranteed, the system synchronization
obtained with the proposed multi-period approach significantly improved the system synchronization obtained by merging
the timetables of a single period case.
3.2.4. Multi-objective Transit Network Timetabling
As we saw in the previous sections, there are different criteria for timetabling problems and it is possible that some of

those criteria are in conflict. Then, multi-objective optimization approaches can be used to properly represent the trade-offs
between different objective functions.

Kwan and Chang (2008) present a bi-objective formulation for the TNT: minimizing the cost of the number of transfers
and minimizing the cost caused by deviations from an initial timetabling. The authors implement the Non-dominated
Sorting Genetic Algorithm II (NSGA II) (Deb et al., 2002) and multi-objective EA, and local search procedures to solve the
problem formulation. Hassold and Ceder (2012), study the TNT problem with the objective of minimizing the expected pas-
senger waiting time (a level of service feature) and the empty seat penalty (operational efficiency). The main idea of the
study is that the disadvantages of the even-headway and even-load approaches for timetabling can be avoided by using more
than one vehicle size on the same line. The authors design a network flow bi-objective formulation assuming known poten-
tial departure times, and determine the vehicle type to cover all trips. They implement a multi-objective label-correcting
algorithm to solve the problem. Numerical results for a case of study in New Zealand show significantly savings in passenger
waiting times but also acceptable passenger loads on all vehicles.

Since it is difficult to compare efficient solutions for multi-objective optimization problems, an alternative way to
model the preferences of the decision maker is to implement fuzzy approaches (see an introduction to fuzzy optimiza-
tion in Lodwick and Untiedt (2010)). For example, Tilahun and Ong (2012) minimize the waiting time of different trans-
fers which are in conflict. The TNT is formulated as a fuzzy multi-objective problem considering a set of lines with a
unique daily trip and deterministic travel times. The authors implement a GA to solve small instances consisting of
10 intersecting lines.

Table 5 summarizes our literature review and shows the details of the studies presented in this section.



Table 5
Literature review of the Transit Network Timetabling problem.

Authors (year) Objective Constraints of the system Solution method Case

Klemt and Stemme
(1988)

Min transfer waiting times Number of trips Heuristic Example

Domschke (1989) Min transfer waiting times Number of trips SA & B&B Example
Bookbinder and

Désilets (1992)
Min waiting times Even headways Simulation and

mathematical
programming

Example

Daduna and Voß
(1995)

Min transfer waiting times Fulfill demand TS Examples

Chakroborty et al.
(1995, 1997)

Min passengers total waiting time Fleet size, stopping times bounds, and
maximum headways and travel times

GA Example

Ceder et al. (2001) Max number of simultaneous
arrivals

Headway bounds Heuristic Example

Ceder and Tal (2001)
Palma and Lindsey

(2001)
Min total delay costs Desired boarding times Analytical None

Ceder (2003) Demand and number of trips Headway bounds Heuristic Example
Castelli et al. (2004) Min passenger transfer waiting time Frequency bounds Lagrangian heuristic Test
Schröder and

Solchenbach
(2006)

Min waiting times costs Deviation from a timetable CPLEX Real

Ceder (2007) Min bus runs Load profiles and vehicle capacity Heuristic Example
Liu et al. (2007) Min transfer time Headway bounds Nesting TS Example
Wong et al. (2008) Min waiting time costs Headway bounds Lagrangian heuristic Real
Zhao and Zeng

(2008)
Min travel time costs Headways, fleet size, line length, and load

factor
SA & TS Benchmark

Kwan and Chang
(2008)

Max syncs vs. min deviation from an
initial timetable

Frequency, limited load and drivers, and
bounded run time

NSGA2, TS, & SA Example

Guihaire and Hao
(2010a)

Max number and quality of transfers Vehicle and driver schedule TS Real

Li et al. (2010) Min cost of fulfilling demand
considering uneven headways

Fleet size Hooke-Jeeves Example

Guihaire and Hao
(2010b)

Min waiting time costs Vehicle and driver schedules TS Test

Hassold and Ceder
(2012)

Min waiting times vs. min empty
seat penalty

Potential departure times Heuristic Test

Ibarra-Rojas and
Rios-Solis (2012)

Max number of synchronizations Headway bounds, departure dispersion along
the planning period

ILS Test

Liebchen and Stiller
(2012)

Min expected waiting delay Budget of buffer times Heuristic Example

Tilahun and Ong
(2012)

Multi-objective min of waiting times
for different transfers

Arrivals precedence GA Example

Mesa et al. (2013) Min user inconvenience Number of trips and fleet size Cluster pre-processing&
CPLEX

Test

Ceder et al. (2013) Min load discrepancy vs. Deviation from given headway and Heuristics Real
Min headway unevenness demand satisfaction

Ibarra-Rojas et al.
(2015)

Max synchronization events Headway bounds for multiple planning ILS and VNS Test
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3.3. Design of operational strategies to improve the efficiency in a corridor

Unfortunately, a priori frequency calculation is not enough to guarantee providing good service and meeting the demand
in high-demand corridors due to different demand patterns and the unbalanced distribution of the passengers along the
corridor. In these cases, the following operational strategies are implemented (see Furth and Day, 1985).

� Short-turn lines: some buses serving a line make shorter cycles in order to concentrate on areas of greater demand. This is
useful when it is desired to bolster capacity along a given stretch of the line.
� Dead-heading: empty vehicles return to the line starting point in the low-demand direction in order to begin another run

as quickly as possible in the high-demand direction, thus increasing the latter direction’s frequencies.
� Limited-stop lines: lines that visit only a subset of the stops on a line where the passenger demand is concentrated. These

lines allow diminishing travel times, but passenger transfers must be considered.

The goal of using the previous strategies is to provide an optimal frequency using spatial-time considerations, i.e. to
adjust the frequency along the corridor and over the day based on the demand behavior. For example, peak hours may lead
to a large amount of people traveling from zones near the beginning of the lines to the Central Business District (CDB).
However, choosing these ‘‘zones’’ depends on many aspects, such as passenger demand, travel times, and stop separation,
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among others. The major drawback to this approach is that the perceived frequency at different stops of the same corridor
will be different and some passengers may experiment discomfort if they are not well informed about the special lines.

3.3.1. Short-turning and deadheading strategies
Early studies of short-turn lines, such as Jordan and Turnquist (1979), Furth (1986), focus on designing lines for specific

zones, where the main decisions are the number of zones, the first and last stops of each zone, and the number of buses
serving each zone. Characteristics of the system are stops outside the zone that can be served for alighting and boarding,
asymmetric boundaries that depend on the direction of the trip during any given period, and branching corridors. The
problems are solved through dynamic programming. Later, some studies have aimed at fleet size minimization through
determining the frequency of short-turning lines and deadheading interlining options for trips using heuristic algorithms
(see Furth, 1987; Ceder, 1989).

More recently, Delle Site and Filippi (1998) address the problem of determining the stops for short-turning lines, the fare
(in terms of the traveled length), the vehicle size, and the frequency for each type of line, considering an initial OD matrix.
The objective is minimizing the sum of two types of costs: (i) passengers’ costs based on waiting times, walking distances,
transfers, and fares; and (ii) operators’ costs based on fleet size, distance traveled by the buses, fixed costs, and drivers costs.
The authors design a solution methodology based on solving sub-problems to find the frequency and fares for a feasible com-
bination of stops where turn-backs can occur. This solving stage is implemented within a global optimization algorithm
based on random searches. The proposed approach is tested on generated instances and numerical results show that
short-turn lines are useful for minimizing the costs of both passengers and the operator, especially in peak periods.

Cortés et al. (2011) address the integration of short turning and dead-heading strategies. The goal is defining lines to sat-
isfy a demand profile in a more efficient way minimizing operators’ and users’ costs. An interesting characteristic is that the
authors also allow trips to arrive at stops using a probabilistic arrival rate. Thus, the assumption of deterministic travel times
could be avoided. The proposed model considers stop-to-stop demand and generalizes the formula that define the optimal
rate at which vehicles are dispatched, proportionally to the square root of the passenger arrival rate (see Welding, 1964;
Newell, 1971; Salzborn, 1972).

3.3.2. Limited-stop lines
From the users’ perspective, limited-stop lines improve the level of service by reducing travel times due to fewer stops.

From the operators’ perspective, it makes more likely to meet the demand using fewer vehicles by performing shorter bus
cycles. These lines have proven to be attractive in transit systems in Bogota, Colombia, Santiago, Chile, New York, U.S.,
Montreal, Canada, Los Angeles, CA. However, selecting the proper stops for limited-stop lines is a challenging research area,
where several aspects should be considered. For example, passengers’ changing from normal to limited-stop lines, waiting
times along the line, estimation of the running times, frequency regularization, and stop separation.

Tétreault and El-Geneidy (2010) propose a model to estimate running times considering limited-stop lines. This model
isolates the effects of passenger activity and actual stops made by the current line at skipped stops in order to estimate
the run time for the limited-stop line and the normal line. Besides, it considers direction of the line, stops covered, time
of day, type of day, delay at the first stop, passenger activity, and climatic conditions. The model is tested on a corridor in
the transit network of Montreal considering three different scenarios: (i) a normal line and a limited-stop line that covers
only transfer stops; (ii) a normal line and a limited-stop line that covers the stops in the first quartile of passenger activity;
and (iii) a normal line and a limited-stop line that covers stops with the most activity based on OD data. The authors analyze
all scenarios measuring run time savings and walking distances to bus stops. Numerical results show that significant running
time savings are obtained in all scenarios. The accuracy of the previous study is evaluated by El-Geneidy and Surprenant-
Legault (2010), where a before-and-after approach is used to measure the actual changes in running times and on-time per-
formance along two lines of the transit system in Montreal, Canada.

Even when significant benefits can be achieved by implementing limited-stop lines, only a few studies address the design
of such lines. An example is presented by Afanasiev and Liberman (1982). The authors develop a method that provides a
chain of linked bus runs. The objective is to fulfill the passenger demand and the lines can be of three types: all stops; every
other stop (limited-stop); direct trip from origin to destination (express line). The construction of the chains of limited-stop
lines is based on a model of the passenger demand pattern that determines the beginning and the end of the line along with
its frequency. Tests on a transit network in the city of Chimkent show that travel times decrease on average 30% and gasoline
consumption decreases between 30% and 40% compared with no implementation of the proposed lines.

Ulusoy et al. (2010) address the design of short-turn and limited-stop lines, along with their Frequency Setting, to mini-
mize the total costs based on waiting times, transfers, and vehicle usage. The problem formulation considers constraints such
as frequency bounds, vehicles capacity, and fleet size. The complexity of the problem lies in the combinatorial nature of the
set of potential patterns that should be considered in order to define the limited-stop lines, i.e. more potential line patterns
should be explored as the number of stops increases. The authors design a heuristic search procedure that modifies the pat-
tern of limited-stop lines after these patterns are evaluated by solving a mathematical formulation that minimizes the total
costs. The proposed approach allows reducing the fleet size, vehicle-miles traveled, and total costs. Although the case study
is a railway transit system in the northeastern region of the United States, the problem definition can be adapted to bus lines.

Leiva et al. (2010) propose an optimization problem which choose limited-stop lines and determine their frequencies,
minimizing a cost function based on wait time, travel time, and operators’ costs. This methodology assumes that the
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origin–destination matrix and the set of feasible limited-stop lines are given. The authors study the following scenarios: (i)
no capacity constraints and considering transfers; (ii) considering both capacity constraints and transfers; (iii) considering
different vehicle types. Numerical results show that value of the cost function decreased more than 10% for all scenarios
compared with no implementation of limited-stop lines. Moreover, the authors stated that the grater the trip length and
demand variability (particularly when the demand is concentrated in a few OD pairs), the higher the benefits of implement-
ing limited-stop lines. The impact of the different parameters of the previous approach is presented by Larrain et al. (2010).

Recently, Freyss et al. (2013) study a system based on three types of metro stations: AB stations where all the trains stop,
A stations where only one-half of the trains stop, and type B stations where the other one-half of the trains stop. The authors
implement a continuous approximation model to determine the optimal AB station density for the lines (stations/m) based
on the local conditions (regular station density and affluence) and to compare the total cost (including in-vehicle travel time,
waiting time, transferring costs, and operational costs) involved with both stop-skipping operation and with standard ser-
vice. This operational strategy is quite suitable for transit systems without overtaking lanes, as many BRT corridors world-
wide. The strategy is tested on the metro system in Santiago, Chile, and a numerical analysis leads to identifying
characteristics less favorable for stop-skipping operations, such as short lines with few stations, low initial station density,
and low/medium frequency lines.

Chiraphadhanakul and Barnhart (2013) assume that only one limited-stop line may run in parallel with the normal line.
Moreover, the passenger assignment is a linear function of the frequency share and in-vehicle travel time savings. For each
frequency allocation, the approach finds an optimal limited-stop line using a mixed integer program together with an algo-
rithm for reducing the size of the problem. Then, it selects the frequency allocation that maximizes the total user welfare
which is defined as total in-vehicle time savings minus total increase in waiting time. The proposed approach is tested on
instances considering the peak period of 7 a.m. to 9 a.m. for 178 high-frequency bus lines. Numerical results show that line
frequency and average trip length are highly correlated with the total user welfare attained by the optimal solutions.

As we have seen in this section, the design of different types of lines such as short-turning and limited-stop lines is a
promising and mostly uncovered research area.
4. Operational planning decisions

As we mentioned in Section 1, operational planning span short-term decisions focus on minimizing the cost related with
the usage of vehicles, fuel consumption, and drivers’ wages. It is divided into three problems: (i) Vehicle Scheduling Problem
(VSP), (ii) Driver Scheduling Problem (DSP), and (iii) Driver Rostering Problem (DRP). The usual approach is to consider
strategical and tactical planning decisions as input and then, determine a better way of using the agencies’ resources in order
to reduce costs.

4.1. Vehicle Scheduling Problem

In the cases of frequency-based operation, it is possible to estimate the fleet size as the smallest following integer to the
product between the cycle time and the frequency:
Fleetsize ¼
X
l2L

dtl � f le ð2Þ
Parameters tr and f r are, respectively, the cycle time and the frequency for line l 2 L. A characteristic that influences the fleet
size in frequency-based systems is the type of vehicles used. This is because determining the proper frequency to satisfy the
passenger demand depends on vehicles capacities. For example, Wei et al. (2013) address a bi-level optimization approach to
jointly solve the Vehicle Scheduling Problem and the vehicles procurement scheme. The upper-level determines the number
of vehicles to be purchased of each type satisfying passenger demand and pollutant regulations while the lower-level deter-
mines the vehicle schedules minimizing the cost of vehicle fees and mileage.

In the case of timetable-based operation, Formula (2) lacks of sense since the vehicle schedule will be defined based on
departure times, arrival times, and travel times. This leads to the Vehicle Scheduling Problem (denoted as VSP) that
determines the trips that are assigned to each bus so that all trips can be carried out as scheduled and costs based on vehicle usage
are minimized. Important elements to define the VSP are the following.

� Number of depots which vehicles may depart from. If there are multiple depots, it is important to define whether a
vehicle must return to the same depot from which it departed, or whether vehicles can share all depots.
� Number of different fleets with different capacities and operating costs.
� Resting points where vehicles may remain until the next trip (e.g. a street with low vehicles flow, a parking lot, and so on).

A depot may be used as a resting point but a resting point does not necessarily require special infrastructure.
� Operating conditions such as the following: (i) inter-routing, i.e. a vehicle could be assigned to a trip of one line and then,

be assigned to a trip of a different line; (ii) deadhead implementation, i.e. empty trips traveling from one point to another
increasing the availability of vehicles at specific points where they are more required. Allowing these conditions may
prevent under-utilization of a fleet.
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The more flexible the system is, the greater the potential benefits but also the greater the difficulty of exploring the solu-
tion space. Now, we review different approaches for Vehicle Scheduling Problems.
4.1.1. Single-Depot Vehicle Scheduling Problem
The simplest version of the VSP is known as the Single-Depot Single-Type VSP (denoted as SDVSP). This problem deter-

mines the vehicles’ schedules so that all trips are covered by vehicles departing (returning) from (to) the same location,
called the depot. A vehicle schedule is composed of vehicle blocks, where each block represents the departure from the depot
to serve a sequence of trips and then return to the depot. The SDVSP admits several types of representations, such as assign-
ment models, transportation models, and network flow models (see reviews in Freling et al., 2001b; Bunte and Kliewer,
2009). Moreover, the SDVSP can be efficiently solved by auction algorithms (see auction algorithm details in Bertsekas,
1992).

Although the SDVSP can be easily solved, practical considerations may lead to more intractable problems. For example,
Baita et al. (2000) present several approaches to solve the VSP considering the following practical elements: it is possible to
perform deadheading; it is possible to fuel a vehicle after finishing a trip; and it is possible to hold a bus at the end of the trip
to wait for the starting time of the following assigned trip. Moreover, the authors considered criteria such as minimizing the
fleet size, minimizing the number of lines that a bus is assigned to, minimizing the deadhead costs, and minimizing the idle
times of buses waiting for the next trip. The authors provided a pool of solutions for operators and compare three solution
approaches: (i) solving a mathematical formulation with a solver considering a weighted objective function; (ii) implement-
ing a logic programming method considering a lexicographic order for the different criteria; and (iii) implementing a multi-
objective GA to find Pareto optimal solutions.

The proper division of an operational day into smaller planning periods based on demand behavior is an important aspect
in the implementation of deterministic optimization approaches. In this matter, Zhoucong et al. (2013) propose a clustering-
based method to generate short planning periods with low variability of travel times. Then, the SDVSP is solved considering
the partition of the day made by the clustering approach. The authors implement the proposed methodology in a transit
network in Shanghai. Numerical result show that a proper division of the day leads to a more accurate representation of
vehicles’ usage costs.
4.1.2. Multi-Depot Vehicle Scheduling Problem
Another version of the VSP is the Multi-Depot Vehicle Scheduling Problem (MDVSP), where vehicles can depart from dif-

ferent locations. This assumption leads to complex formulations, such as multi-commodity network flow problems. The
MDVSP is intractable since it is NP-hard (proved by Bertossi et al., 1987).

Exact approaches towards solving large instances of MDVSP have been presented in recent studies. For example, Löbel
(1998) address the MDVSP minimizing the costs of vehicle pullouts from depots subject to constraints such as fleet size,
depot capacity, and vehicle-depot compatibility. The authors develop a Column Generation approach (CG) based on
Lagrangian relaxations of a multi-commodity network flow formulation. The proposed solution approach is tested on large
instances of the problem based on a German transit network. Numerical results suggests that Lagrangian relaxation is a key
element to solve large instances, and that the combination of CG with heuristics exploiting the solutions of the solved
restricted LPs leads to high quality feasible solutions within few iterations and few hours of computational time.

Kliewer et al. (2006) develop a time-space formulation that significantly reduces the size of the network which allow
solving large instances using commercial solvers. Hadjar et al. (2006) develop a Branch & Bound (B&B) approach that
combines CG, variable fixing, and Branch & Cut (B&C). By implementing the proposed solution approaches, the authors suc-
ceed in solving randomly generated instances up to six depots and 750 trips. Other authors propose heuristic methods, such
as schedule-first/cluster-second approaches, shortest-path-based heuristics, and ILS algorithms (see details of ILS in Daduna
and Paixão, 1995; Laurent and Hao, 2009). Pepin et al. (2009) compare B&C, CG, Lagrangian Heuristic, Tabu Search, and Large
Neighborhood Search (LNS). Computational results on randomly generated instances show that the truncated Column
Generation method performs the best when enough computational time is available while the Large Neighborhood
Search method is the best alternative when looking for good quality with the MDVSP case, the consideration of different
vehicle types also leads to intractable problems where the usual solution approaches are heuristic procedures (Gintner
et al., 2005).

Route time constraints for vehicles’ schedules have been also considered for MDVSP. For example, Haghani and
Banihashemi (2002) bound the length of the blocks of vehicle schedules in order to represent vehicles’ fuel consumption.
Thus, every bus may run at most t consecutive units of time before re-fuel and then, the vehicle is unavailable for another
t0 units of time (t0 is considered to be a known parameter). The authors enhance the quasi-assignment formulation to allow
buses returning to the depot so they can be re-fueled. The proposed solution approaches are exact and heuristic methods
based on two procedures: (i) Solving iteratively the classical MDVSP quassi-assignment formulation, removing infeasibilities
of running time constraints at each iteration, and (ii) reducing the search space by merging vehicle blocks and removing vari-
ables with a slim probability of being chosen. Another example is shown by Wang and Shen (2007) where every vehicle’s
running time after fueling is limited. Thus, the vehicle must be re-fueled after taking several trips and the minimal fueling
time must be satisfied. The optimization problem aims to minimize a hierarchical objective function consisting of two levels:
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(i) the number of vehicles and (ii) the total deadhead time. To solve the proposed problem, the authors develop an ACO algo-
rithm which is tested on several examples.

More recently, Hassold and Ceder (2014) present a multilayer network flow formulation for the MDVSP minimizing vehicle
costs based on vehicles’ usage and empty seats. A set of Pareto-optimal timetables, including recommended type-of-vehicle for
each trip, is given as an input. Considering these potential timetables, the problem must build a unique timetable minimizing
operators’ costs. The authors analyze different levels of operation’s flexibility such as: (i) allow substitution of vehicles, i.e., trips
may be executed by different vehicle types (with enough capacity) than what was initially assigned in the timetable; and (ii)
using partial timetables to build a unique timetable. The authors test their model on two bi-directional lines of the transit net-
work in Auckland, New Zealand yielding a reduction up to 15% of operating costs compared with the classical MDVSP.
Moreover, they analyze the impact of the solution on the level of service, in terms of waiting times and empty seats.

4.1.3. Robust Vehicle Scheduling Problem
Vehicles schedules are strongly affected by congestion and drivers’ behavior. Then, no consideration of future disruptions

may lead to a risky operation and to penalty fees which have to be paid by transportation agencies if punctuality falls below a
contracted minimal level. An option to tackle this handicap is to define robust schedules which obtain solutions resistant to
uncertainty of parameters. For example, Kramkowski et al. (2009), implement buffer times in the SDVSP to get robust solu-
tions for the problem minimizing the average delay of the planned timetable. To solve the problem, the authors develop an
SA for noisy environments with different neighborhood operators. Numerical results show that the use of minimal buffer
times before every timetabled trip decreases the expected length of propagated delays (caused by a trip delay and the
planned schedule) to a great extent, while introducing a larger buffer times (for example, five minutes), results in almost
zero propagated delays but the planned cost also increases.

Naumann et al. (2011) present an optimization problem to reduce the sum of planned and disruption costs caused by
delays in the original schedule. The authors present a time–space formulation based on Kliewer et al. (2006), where arcs
are added to allow buses to wait a certain amount of time before running the next scheduled trip, thus making a more robust
schedule. Obviously, diminishing the disruption costs may increase the planned costs. Then, the authors obtain Pareto opti-
mal solutions which are compared with the optimal solutions from the deterministic approach and the implementation of
buffer times to diminish delay disruptions. The proposed approach is used to solve small size (up to hundreds of trips) real
instances.

Wei et al. (2012) address a robust MDVSP minimizing the operating costs including mileage expenses for their travel. The
delay of a trip caused by uncertain travel times is modeled as a random variable within a specific interval and a known esti-
mated value. Some constraints of the systems include: they limit the use of backup vehicles; they must guarantee that a
vehicle has adequate fuel to cover a series of trips between two adjacent fueling activities; and they require compatible
line-vehicle pairs. To solve several examples of the proposed problem, the authors implemented an ACO.

In order to achieve a punctual service, Yan et al. (2012) propose a VSP minimizing the deviation from an initial schedule at
specific control points. The travel times are represented as stochastic variables with a known probability distribution and the
behavior of drivers is modeled in order to meet punctuality. To achieve this, the authors assume that once a bus in operation
deviates from its schedule at a time control point, the bus driver will adjust the bus speed-by either speeding up or slowing
down on the next segment-in order to ensure schedule adherence at the next time control point. Moreover, the authors pro-
pose the concept of remaining impact after recovery, in order to describe the schedule deviation that cannot be recovered
after the driver’s adjustment. These characteristics are modeled in a Monte Carlo simulation to determine the proper bus
scheduling that guarantees adherence to the timetable based on minimizing penalties for early/late arrivals at control points.

4.1.4. Dynamic Vehicle Scheduling Problem and Vehicle Re-Scheduling Problem
Other alternatives to tackle parameter uncertainty in VSP problems are: (i) the Dynamic Vehicle Scheduling Problem

(DVSP), which assumes that it is possible to obtain accurate estimations in short planning periods and then, re-defines
vehicle-trip assignments in a rolling time horizon preventing trip delays; and (ii) the Vehicle Re-Scheduling Problem (VRSP),
which re-defines the trip-vehicle assignment when a disruption (such as a vehicle breakdown, a traffic accident, a medical
emergency, and road work) occurs, in order to minimize the impact on the original schedule.

Huisman et al. (2004) address a robust optimization approach for the Dynamic version of the MDVSP considering differ-
ent scenarios for estimation of travel times. The authors implement a cluster-reschedule heuristic, where trips are clustered
first and they are assigned to different depots using the static Vehicle Scheduling Problem, and then, dynamically reschedule
the trips per depot. The proposed heuristic is tested on real-life instances and numerical results show that the gap between
this cluster-reschedule heuristic and a lower bound on the overall problem is less than 4%, which is reasonably small.

The main goal of VRSP is to backup canceled trips to avoid losing passengers but, there may be consequences, such as the
use of extra vehicles or drivers. Thus, the optimization approach consists in minimizing the costs arising when a disruption
occurs or the timetable is changed. Although the previous problem definition may lead to important practical imple-
mentations, there have been only a few studies addressing VRSP (see Li et al. (2007, 2009)). For example, Li et al. (2007)
present mathematical formulations for the single-period case and they develop a parallel auction algorithm to solve the pro-
posed formulation. Using this algorithm, they are able to find, in minutes, optimal solutions for instances of up to 1300
remaining trips and 40 backup trips. Another study of the VRSP is presented by Li et al. (2009), where the authors define
a mathematical formulation for the single-depot case. Although the original VSP can be solved efficiently through the auction
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algorithm, the authors in this study show that their VRSP is indeed NP-hard. Then, they use a Lagrangian relaxation based
heuristic to find feasible solutions for instances of up to 700 trips.

We summarize our review of Vehicle Scheduling Problems in Table 6. Another review of VRPS including bus transport
systems is presented by Visentini et al. (2013).

4.2. Driver Scheduling Problem

The Driver Scheduling Problem (denoted as DSP), also called as duty scheduling, defines the generic daily duties to cover a
set of vehicle blocks-consisting of timetabled trips-in order to minimize the cost of duties and satisfy labor regulations constraints.
Thus, a solution of this problem determines starting and ending time of the work load for each driver. Common constraints
for DSP are the following (see a review of the DSP in Wren and Rousseau, 1995): limited duration of the work load; meal
breaks for drivers; limited amount of continuous work without break; and starting times for duties. The DSP considers
different objective functions such as minimizing the number of duties, minimizing idle times, minimizing the penalty of
constraints violation, minimize the uncovered duties, and minimizing cost of potential disruptions (robustness) among
others.The DSP is one of the last problems in TNP to be solved by sequential approaches thus, the feasible space of the
DSP is often restricted by solutions of the previous sub-problems of the TNP. This characteristic makes difficult even finding
feasible solutions for the DSP that satisfy all of its constraints.

Common formulations for the DSP are based on set partitioning and set covering problems. In these kind of formulations,
the model must be fed with all possible duties. The chosen duties must cover all trips at the minimum cost. Due to the large
number of variables this entails, these formulations are intractable by exhaustive enumeration techniques. Some approaches
to solve these formulations are reducing the number of duties being considered (e.g., Smith and Wren, 1988), using Column
Generation techniques (e.g., Desrochers and Soumis, 1989), and obtaining dual bounds through heuristics that are then fed
into a B&B algorithm (e.g., Mingozzi et al. (1999)).

4.2.1. Column Generation approaches for the Driver Scheduling Problem
A common handicap for CG approaches for the DSP is the need of solving sub-problems such as the resource-constrained

shortest path problem (RCSPP) which determines the columns that should be added to the problem in further iterations of
Table 6
Literature review for the Vehicle Scheduling Problem.

Authors (year) Objective Constraints of the system Solution method Case

Löbel (1998) Min fleet size costs Fleet size, depot capacity, and CG Test
vehicle-depot compatibility

Baita et al. (2000) Min the fleet size, number of lines assigned to
each bus, deadhead costs, and idle times

Fueling, bus-line compatibility, Mathematical
programing & GA

Examples

Haghani and
Banihashemi
(2002)

Vehicle operation costs based on parking, run,
and wait in street

line time, trip coverage Heuristic Test

Huisman et al.
(2004)

Min vehicle costs Single vehicle-depot assignment and
vehicle-depot compatibility

Cluster reschedule
heuristic

Real

Gintner et al.
(2005)

Min vehicle costs Trip coverage Variable fixing
heuristic

Test

Hadjar et al. (2006) Min vehicle costs Fleet size CG, variable fixing,
and cutting planes

Test

Kliewer et al.
(2006)

Min vehicle costs Trip coverage Reformulation &
solver

Test

Li et al. (2007) Min delay cost State of disrupted system Parallel auction
algorithm

Test

Wang and Shen
(2007)

Fleet size and deadhead costs Fleet size and begin and ending at the
same depot

ACO Examples

Kramkowski et al.
(2009)

Robust min of delay penalties State of disrupted system SA Real

Laurent and Hao
(2009)

Min cost based on vehicle usage Trip coverage and depot capacity ILS Benchmark

Li et al. (2009) Min weighted sum of trip cancellation,
operating, and schedule disruption costs

State of disrupted system Lagrangian Heuristic Test

Naumann et al.
(2011)

Min planned costs vs. Min disruption costs Trip coverage Solver Test

Wei et al. (2012) Min operating costs Limited backup fleet, feeling, and line-
vehicle compatibility

ACO Examples

Yan et al. (2012) Min the deviation from initial schedule Bounded slack time Simulation Examples
Wei et al. (2013) Min number of vehicles to be purchased Depot capacity, passenger demand,

fueling, and pollution regulations
GA Examples

Zhoucong et al.
(2013)

Min fleet size and operational costs Trip coverage, and even headway Formula Examples

Hassold and Ceder
(2014)

Min vehicle usage costs Potential timetables Solver Real
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the main algorithm. For this reason, some studies have developed methods to reduce the calls to solve the RCSPP. For exam-
ple, Fores et al. (2002) propose creating a set of valid shifts considering labor regulation constraints, and Then, the CG is
applied within a Branch & Bound framework to select the best set of candidates from the set of potential shifts.
Unfortunately, the proposed approach does not guarantee finding an optimal solution. Later, Chen and Shen (2013) defined
a set of potential efficient shifts (i.e. columns) through an algorithm that takes advantage of characteristics of the problem.
Then, the RCSPP is solved until no columns with reductions of cost exist in the shift pool. This idea allows of reducing the
computational time of the CG to solve the DSP. The experimentation stage considers instances of up to 701 trips, 55 vehicle
blocks, and two depots. Numerical results show that the improved CG algorithm outperforms the traditional CG.

Boschetti et al. (2004) extend the method used by Mingozzi et al. (1999) for the DSP but focus on the multi-depot case of
the DSP. By implementing Lagrangian Relaxation (LR) and CG, the authors are able to handle the constraints and generate
bounding procedures, leading to a more efficient implementation of the proposed CG approach. Although there are several
formulations in the literature, Portugal et al. (2009) states that the classical set partition/set covering model simplifies some
of the specific business aspects and issues of real problems, making it difficult to use these models as automatic planning
systems because the schedules obtained must be modified manually in order to be implemented in real situations. Then,
the authors use the actual observations of a transport network agency in Portugal to develop several mathematical for-
mulations with evaluation criteria such as total ‘‘real’’ cost, not covered work by number of pieces, and not covered work
duration of pieces. The authors conclude that decision makers prefer to have partial solutions which are easier to adjust
instead of having complete solutions with too many duties and multiple trip-duty assignments.

The homogeneity of drivers’ schedules, i.e. similar schedules for all days for each driver, is considered by Steinzen et al.
(2009). A set covering formulation is defined and the authors develop a solution approach consisting of two stages: (i) solv-
ing the linear relaxation of the formulation, through CG and LR; and (ii) implementing local branching procedures to obtain
integer solutions which keep the optimal drivers’ costs but improve the regularity of the drivers’ schedules. The proposed
approach is tested on real-world and randomly generated instances. Numerical results show that homogeneity of drivers’
schedules could be improved allowing low increments of operating costs.

4.2.2. Heuristics for the Driver Scheduling Problem
Since large instances of the DSP are intractable by commercial solvers and exact approaches may lead to unacceptable

computational time, some authors propose implementing heuristic algorithms (e.g., Kwan et al., 1999, Shen and Kwan,
2001). For example, Zhao (2006) divide the entire day into ‘‘morning’’ and ‘‘afternoon’’ problems. Each problem is solved
separately and then combined to obtain a solution for the entire day. The proposed algorithms are based on identifying criti-
cal relief opportunities that must be retained in the bus schedule, in order to reduce the number of pieces of drivers’ duties.
Kecskeméti and Bilics (2013) compares three solution methodologies: a CG, an Evolutionary Algorithm (EA), and a combined
CG-EA (hybrid). Numerical results show that although CG yields the best results in terms of the solutions’ quality, the EA and
the hybrid algorithm outperforms the CG approach in terms of running time. Although, the hybrid algorithm takes more
execution time compared with the EA, the running time is reasonable and overcomes the quality of the EA.

Chen and Niu (2012) assume that drivers are compatible with the duties belonging to specific periods of the day. For
example, a driver might be assigned only to morning trips if that driver lives too far away from the depot. The authors
formulate the problem as a 0–1 integer program with the objective of minimizing the cost of the idle time of drivers for
a circular bus line. Then, they develop a Tabu Search algorithm which is able to solve instances of up to 168 trips and 26
drivers. Chen et al. (2013) address the DSP where meal breaks for drivers should be within a specific time window of the
day. Since ‘‘meal break’’ constraints are hard constraints, the number of feasible duties is significantly smaller than in the
case where meal breaks could be assigned at any time of the day. Therefore, the authors implement heuristic procedures
based on exhaustive search among key relief opportunities. Results shows that it is possible to find feasible solutions for
instances of up to 100,000 potential shifts using the proposed approach.

Tóth and Krész (2013) states that it could be necessary to obtain several solutions based on different parameter values in
order to compare these solutions and select the most suitable one for the transit network operation. To achieve this, the
authors propose a two step greedy solution approach. The first step produces rough shifts, containing only the trips (both
timetabled and deadhead trips) and the traveling activities of the driver. The second phase produces the complete shifts, con-
taining all the obligatory activities, and fills the idle times with the proper idle activities. Experimentation in a transit net-
work in Hungary shows that the proposed solution approach is able to obtain feasible solutions for instances of up to 40
lines, 120 buses, and 160 drivers.

Yen and Birge (2006) combine robust and recovery frameworks to tackle the DSP in airline transportation. The objective is
minimizing the expected value of future actions due to disruptions in the original schedule. The authors develop a branching
algorithm to identify expensive flight connections and find alternative solutions. Moreover, this algorithm allows branching
on multiple variables without invalidating the optimality of the algorithm, and it adds buffer times to solutions becoming
less sensitive to disruptions. Computational experiments show that fewer flight changes are needed, compared with the
deterministic approach. Takahashi et al. (2008) address re-scheduling decisions for DSP problem, in which, after a disruption
occurs, the problem is to minimize the violation of the constraints, such as the number of drivers, train coverage, meal times,
continuous shifts, and work time bounds. A TS is designed to solve the problem and the experimentation stage in a real
example shows that the solutions generated surpass (in terms of the satisfaction of each constraint) the ones obtained by
the manual process employed by the agency.



Table 7
Literature review for the Driver Scheduling Problem.

Authors (year) Objective Constraints of the system Solution method Case

Smith and Wren
(1988)

Min duty costs Number of duties and uncovered work Mathematical
programming

Test

Desrochers and Soumis
(1989)

Min cost of driver schedules Labor regulations CG Real

Kwan et al. (1999) Min duty costs Duty coverage GA Test
Lourenço et al. (2001) Multi-objective min of uncovered work,

infeasibility, number of duties, and
number
of vehicle changes

Duty coverage GRASP, TS & GA Test

Shen and Kwan (2001) Minimize soft-constraints violation Max working time, limited
continuous work without break, and
meal breaks

TS Benchmark

Dias et al. (2002) Min duty costs Trip coverage and labor regulations
constraints

GA Test

Fores et al. (2002) Min duty costs or number of shifts or min
cost with minimum number of shifts

Number of shifts, meal break constraints IP & Heuristic Test

Mingozzi et al. (1999) Min costs of duties Duty coverage and initial set of duties B&B Test
Boschetti et al. (2004) Min duty costs Working time, number of drivers LR & CG Test
Abbink et al. (2005) Min duty costs Labor regulations and variation within the

duties
CG, LR, & Heuristic Test

Yen and Birge (2006) Min expected value of future actions after
a disruption

Labor regulations CG Test

Zhao (2006) Min number of duties Working time, meal breaks, No. vehicles
changes

Heuristic Test

Takahashi et al. (2008) Min constraints violation after disruption Labor regulations and number of drivers TS Example
Portugal et al. (2009) Min weighted sum of duty costs and non-

covered work
Limited duties and minimum work covered CPLEX Test

Steinzen et al. (2009) Min duty costs Trip coverage and same starting and ending
depot

Local branching Test

Chen and Niu (2012) Min drivers’ idle time Working time without break, total working
time and working time and break duration

TS Test

Chen and Shen (2013) Min duty costs Labor regulations, number of shifts CG Test
Chen et al. (2013) Min number of shifts and operational

costs
Labor regulation constraints and meal breaks
in specific time interval

IP & Heuristic Test

Kecskeméti and Bilics
(2013)

Min duty costs Spread time, change over bounds, rest time,
and duty types

IP & EA Test

Li and Kwan (2003) Min working time vs Min ratio of total
worked time to spread-over vs Min
number of duties

Duty coverage and initial set of duties GA Benchmark

Tóth and Krész (2013) Min cost of driver schedules Labor regulations Greedy heuristic Real

Table 8
Example of cyclic roster consisting of four sequences of work for a planning period of five days.

Sequences Day 1 Day 2 Day3 Day 4 Day 5

sð1Þ dutyð1Þ1 dutyð1Þ2 dutyð1Þ3 dutyð1Þ4 dutyð1Þ5

sð2Þ dutyð2Þ1 dutyð2Þ2 dutyð2Þ3 dutyð2Þ4 dutyð2Þ5

sð3Þ dutyð3Þ1 dutyð3Þ2 dutyð3Þ3 dutyð3Þ4 dutyð3Þ5

sð4Þ dutyð4Þ1 dutyð4Þ2 dutyð4Þ3 dutyð4Þ4 dutyð4Þ5
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Multi-objective DSP have been also tackled through metaheuristics. For example, Lourenço et al. (2001) consider criteria
such as drivers’ costs, the number of work pieces (parts of a duty between two breaks) not covered, total number of duties,
one-piece-work duties, and the number of vehicle changes. The authors propose multi-objective versions of the Greedy
Randomized Adaptive Search Procedure (GRASP), TS, and GA to solve the problem. Li and Kwan (2003) propose a fuzzified
weighted objective function to represent several measures of driver schedules, such as total working time, ratio of total
worked time to spread-over, and number of work pieces. Then, the authors develop a GA with fuzzified criteria in the fitness
function to solve Benchmark instances of the problem.

The previous studies summarized in Table 7, could be used to design decision support tools for decision makers. Software
such as HASTUS, IMPACTS, TRACS II, and GOAL BUS have implemented operations research techniques in order to achieve a
more efficient operation (see Lourenço et al., 2001). However, there are still interesting open research areas to explore such
as multi-objective and re-scheduling approaches.
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4.3. Driver Rostering Problem

The Driver Rostering Problem (denoted as DRP) determines the assignment of drivers to the daily duties yielded by the DSP
solution for a specific planning period, e.g. a month. This assignment, called roster, must comply with labor rules and the
company’s regulations. These regulations are not only important for the workers themselves, but also for the employer, since
worker satisfaction lowers the incidence of illness, accidents and absenteeism. The constraints that are often considered are
the following: days-off for drivers, specific day-off such as holy days and weekends, limited consecutive work days for dri-
vers, not assigning a late night duty just before an early morning duty, limits for working hours within periods of specific
length, equity in the drivers’ rosters and rotation for each driver, i.e. a driver should not be assigned always to the worst
period of the day.

There are two types of rosters: the cyclic and the non-cyclic roster.The cyclic roster scheme assign the same schedule of
duties to different drivers shifted by few days. Table 8 shows an example of four sequences of duties covering five days which
can be used to create cyclic rosters. The non-cyclic case relaxes the similarity of rosters for different drivers by allowing
different sequences of duties per driver.

Formulations such as set partitioning and set covering can be used to model the DRP. Due to the difficulty of obtaining
feasible solutions considering all types of constraints, mathematical formulations define hard constraints such as duty cover-
age and the usual objectives are based on minimizing wages costs, minimizing idle times, and minimizing the penalization of
violated soft constraints (such as the agency’s and the drivers’ preferences) among others. In the following sections, we will
present some of the recent developments related with the DRP.
4.3.1. Cyclic Driver Rostering Problem
To solve the cyclic DRP in railway systems, Hartog et al. (2009) propose to divide the problem into two modules: (i) creat-

ing a pattern where a duty (early duty, late duty, rest day, and so on) is assigned to each day; and (ii) assigning specific duties
to different places in the roster. These modules are formulated as assignment problems with additional constraints and the
goal is to minimize the total sum of the penalties, which are determined by undesirable combinations of duties, days off, etc.
The authors implement the solver of CPLEX 9.1 to solve instances of up to 188 drivers over a planning period of 13 weeks.

Obtaining dual bounds is an important contribution to efficiently solve complex integer optimization problems. Caprara
et al. (1998) implement Lagrangian relaxations to obtain dual bounds for the DRP that minimizes driver costs subject to hard
constraints related to the rests for each roster. The dual bounds are obtained by relaxing the rest of the constraints.
Moreover, the authors design a Lagrangian heuristic to find feasible solutions using information from dual bounds. The pro-
posed solution approach is able to find solutions with gaps of nearly 0.1% for real size instances (up to 900 duties) in only
hours of computational time.
4.3.2. Non-cyclic Driver Rostering Problem
Nurmi et al. (2011) divide the DRP into two sub-problems solved sequentially: (i) the days-off scheduling problem, which

assigns rest days between working days to drivers over a given planning horizon; and (ii) the shift scheduling problem,
which assigns drivers to shifts specifying the starting time and duration of the shifts. The objective of the problem is mini-
mizing the penalization of violated drivers’ and operators’ preferences. The solution approach is a population-based local
search method which is tested on a Finnish transit network with 68 drivers. Numerical results show that the minimum num-
ber of drivers is at most 50 over the course of a week. Moreover, by implementing different penalization parameters, the
authors are able to generate a pool feasible solutions.

Since the DRP has a significant impact on both agencies and drivers, it is natural to find multi-objective approaches to
tackle it. For example Moz et al. (2009) propose a DRP to minimize the total overtime during the roster period and the
number of drivers whose work load is below the level specified by the work contract. The authors implement two solution
Table 9
Literature review for the Driver Rostering Problem.

Authors (year) Objective Constraints of the system Solution method Case

Caprara et al. (1998) Drivers’ costs Duty coverage and rest constraints Lagrangian heuristic Real
Hartog et al. (2009) Min total sum of penalties Labor regulations, cyclic roster and

undesirable patterns
Heuristic Test

Moz et al. (2009) Min overtime vs. min
number of drivers

Days off per week, specific days off,
and length of consecutive work

EA & SPEA2 Real

Nurmi et al. (2011) Min penalization of
violated constraints

Duty coverage and work regulations EA Real

Montalva et al. (2012) Max global driver welfare Labor regulations and payment bounds for
specific drivers

Analytical Example

Respício et al. (2013) Min overtime vs. min number of drivers Days off per week, specific days off,
and length of consecutive work

EA & SPEA2 and length of
consecutive work

Real Test
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algorithms: (i) an EA based on utopic and lexicographic individuals (called UGH); and (ii) the improved Strength Pareto
Evolutionary Algorithm (called SPEA2, see Zitzler et al., 2002). The only difference between these algorithms is the way
the Pareto front is approximated. Computational experiments for a specific case of a bus transit company in Portugal demon-
strate that both algorithms can obtain good results while consuming an acceptable amount of CPU time. However, although
SPEA2 is able to find a larger number of potentially non-dominated points, it is unable to reach regions of the objective space
which are explored by the UGH. Recently, Respício et al. (2013) present a bi-objective approach to minimize the maximum
workload of the drivers and the drivers’ wages. Typical constraints, such as work length, rest days, and duty coverage, are
considered. The authors hybridize Evolutionary Algorithms with search procedures in order to efficiently explore the solu-
tion space.

Recently, the preference of drivers for flexible shifts, i.e. different working loads for different days, has been studied. An
analysis of different characteristics of drivers’ shifts is presented by Miranda et al. (2008). The authors propose using a mixed
logit model based on stated preference data for the choice of working shifts. The characteristics considered in this study are:
days off, workday period, weekly distribution of working hours, use of split shifts, and weekly shift variability. The authors
show that some drivers prefer heterogeneous of shifts, while one-third of them manifest a systematic preference for the typi-
cal shift structure (eight continuous working hours). Similarly, Montalva et al. (2012) show that flexible shifts may also be
implemented to improve the productivity of drivers and increase their job satisfaction. Therefore, flexible shifts could be
considered by optimization approaches which lead to new problem formulations for the DRP. Details of the studies of
DRP presented in this review are in Table 9.

5. Integrating sub-problems of the Transit Network Planning process

Even when it is possible to obtain high quality solutions for each sub-problem of the TNP. Sequential approaches lead to
solutions that not necessarily guarantee a cohesive solution for the planning problem as a whole. To overcome this situation,
recent studies address the integration of two or more sub-problems of the TNP. There are two common approaches to inte-
grate two or more problems: (i) solving partial integrated formulations that consider some characteristics of one problem
while taking decisions of other subproblems, or/and iterative sequential approaches where the main idea is to explore
the degrees of freedom of the integrated subproblems by iterations; and (ii) defining complete integrated formulations
and/or solution approaches that jointly determine the decisions of the problems. Since complete integrations consider all
degrees of freedom of each sub-problem, they are more difficult to define and to handle. Now, we show the different kind
of approaches that have arisen in recent years for integrating the different sub-problems of the TNP (see Table 10).

5.1. Integrating Transit Network Timetabling and Vehicle Scheduling Problem

The integration of TNT and VSP defines a bridge between tactical and operational planning. Since SDVSP is easy to solve, it
is straightforward to implement iterative approaches which modify the current timetable and then, solves the Vehicle
Scheduling Problem. If a complete integration is desired, the departure times of trips would be decision variables. In this
case, network flow formulations/algorithms for VSP would be difficult to implement since the model lacks a fixed network,
instead, it deals with a set of potential ones depending on timetabling decisions. On the basis of the above, usual solution
approaches are partial integrations. For example, Ceder (2001) proposes a solution method to integrate the TNT and the
SDVSP consisting of the following steps: (i) generating timetables with average even loads using a graphical procedure;
(ii) determining the minimum number of vehicles needed to cover those trips; (iii) implementing deadheading and
Table 10
Literature review of holding strategies for the real-time control process.

Authors (year) Par Objective Cap Control P Veh Method

Barnett (1974) Det Wfirst þWextra No PSS One Heuristic
Abkowitz and Lepofsky (1990) Det W first No PSS One Heuristic
Eberlein et al. (2001) Det W first No PSS Multi Heuristic
Hall et al. (2001) Stoch W trans No PMS One Analytical
Hickman (2001) Stoch W first þW in�veh No PSS One Analytical
Chandrasekar et al. (2012) Det W first Yes PMS One Heuristic
Fu and Yang (2002) Det W first No PMS One Preset rules
Zhao et al. (2003) Stoch W first þW in�veh No MSC One Heuristic
Puong and Wilson (2004) Det W first þW in�veh þWextra Yes MSC Multi B&C
Zolfaghari et al. (2004) Det W first þWextra Yes SSC Multi Heuristic
Puong and Wilson (2008) Det W first þW in�veh þWextra Yes MSC Multi Heuristic & B&C
Sun and Hickman (2008) Det W first þW in�veh No PMS Multi Heuristic
Xuan et al. (2011) Stoch W first No PMS Multi Heuristic
Bartholdi and Eisenstein (2012) Det Vh Yes PMS Multi Math
Delgado et al. (2009, 2012) Det W in�veh þWextra Yes PMS Multi MINOS
Delgado et al. (2013) Det W first þW in�veh þWtrans Yes PSS One MINOS
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departure time shifting procedures to reduce the costs of that vehicle schedule; and (iv) adjusting the initial timetable and
obtaining the final vehicle schedules. The proposed approach is tested on some examples and the author states that the
obtained solutions are efficient schedules from both the passenger and operator perspectives. Another example of partial
integrations is presented by van den Heuvel et al. (2008). The authors address the integration of clock-face timetabling
and the MDVSP. They develop a Tabu Search where the main iterations consist of modifying the timetable, and then optimiz-
ing the MDVSP. The proposed approach is tested on real life data sets of a Dutch transit network. Numerical results indicate
that a significant reduction of operational costs can be achieved when there is more flexibility in the type and number of
vehicles performing the service trips and some trips are split and evenly spread in time. Guihaire and Hao (2008b) imple-
ment a similar iterative sequential idea to integrate the TNT minimizing waiting times and the VSP. The authors propose
an ILS, where each iteration implements trip-shifting operators and then, solves the VSP given the current timetable. The
solution approach is used to solve some examples where the number of vehicles is reduced up to 26% while the number
of feasible transfers increases up to 44%.

Liu and Shen (2007) integrate the TNT presented by Liu et al. (2007) and a MDVSP minimizing the number of buses and
deadhead costs. To solve the problem, the authors develop a Bi-level Nesting Tabu Search which is implemented in a small
example. Guihaire and Hao (2010b) propose a mathematical formulation for the integration of TNT and VSP minimizing a
weighted objective function based on the following elements: (i) number and quantity of transfers; (ii) headway evenness;
(iii) fleet size; and (iv) deadhead costs. The model consider a limited deviation from an initial timetable which allow the
authors define feasible shifting procedures. These procedures are embedded in an Iteratel Local Search. The solution
approach is tested on an instance based on real data and numerical results show the following: the number of vehicles drops
by 28.35%; the number of transfers increases by 112.33%; the number of headways not fitting into the allowed variation mar-
gin diminishes by 75.72%; only the value of the deadheads objective deteriorates.

Ceder (2011) addresses an interactive heuristic approach to find timetables with even loads and even headways which
take advantage of different vehicle types. The later approach is a combination of previously defined tools (Ceder, 2007) to
compute timetables with even loads, timetables with even headways, and vehicle schedules with minimum operational
costs.

Petersen et al. (2013) formulate a partial integration of TNT and MDVSP minimizing the weighted sum of the costs of
vehicles usage and passenger transfers. The authors consider metatrips which are a sets of trips that contains an original trip
of the initial timetable and also contains the ‘‘same trip’’ but with different departure times. Then, a feasible vehicle schedule
is forced to assign one, and only one trip, of each metatrip to a vehicle, i.e. a large feasible space is considered for the MDVSP.
The authors propose a Large Neighborhood Search metaheuristic to solve the proposed formulation. Numerical results show
that the flexibility of the timetables (in the form of metatrips) allows savings of up to 20% in the passenger transfer waiting
times compared with the current operation.

The weight parameters in a weighted objective functions must represent the planner’s preferences for the different objec-
tives. The later is an issue if two or more objectives are in conflict, as happens with TNT and VSP. Then, Ibarra-Rojas et al.
(2014) propose a bi-objective optimization problem to jointly solve the SDVSP and the synchronization bus timetabling
problem considering time windows for departure times and assuming constant demand. The objectives are maximizing
the number of passengers benefited by well-timed transfers and minimizing the fleet size. The authors implement an
�-constraint algorithm to obtain Pareto optimal solutions; thus, they are able to measure the ‘‘cost’’ of a vehicle in terms
of passengers transfers and vice versa. The experimental stage is performed using generated instances based on a transit net-
work in Mexico. Numerical results show that in some instances using one more vehicle lead to significant improvements in
passenger transfers.

5.2. Integrating Vehicle Scheduling Problem and Driver Scheduling Problem

In the early 1980’s, the predominant approach towards integrating the VSP and the DSP was including Driver Scheduling
considerations into the VSP, or vice verse (see Scott, 1985; Darby-Dowman et al., 1988; Tosini and Vercellis, 1988; Falkner
and Ryan, 1992; Patrikalakis and Xerocostas, 1992). The common solution approach was implementing iterative sequential
algorithms which take only one solution of the VSP and then, solve the DSP. More recently, exact and heuristic approaches
have been developed considering an objective function based on operational costs including both vehicles usage and driver
wages.

5.2.1. Exact approaches to integrate Vehicle Scheduling Problem and Driver Scheduling Problem
Haase et al. (2001) introduce a set partition formulation for DSP including side constraints for duty flow variables and bus

itineraries. This formulation guarantees that an optimal vehicle schedule can always be derived later. To solve the problem,
the authors design a Branch & Price (B&P) algorithm that relies on several acceleration strategies, e.g. a dynamic generation
of bus count constraints and the appropriate substitution of partitioning constraints in order to reduce the column density.
Borndörfer et al. (2002) also propose a CG based on Lagrangian relaxation to solve a linked multi-commodity network flow
and set partitioning formulation for the integrated VSP and DSP. Their proposed approach is able to obtain feasible solutions
for instances of up to 1457 trips and one depot. However, it takes 6.5 h to solve the largest instance. Other studies based on
set partition/covering formulations, CG approaches, and Lagrangian heuristics, are presented by Freling et al. (2001a) and
Freling et al. (2003).
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The MDVSP has been integrated with the DSP by Gaffi and Nonato (1999). The authors propose a formulation based on a
quasi-assignment model for the MDVSP and a set of linking constraints that ensure compatibility of the driver schedule.
Constraints considered in the model are number of vehicle blocks per depot and the number of duties of a specific type.
The authors assume that a driver must be assigned to the same vehicle for the whole planning period, and each work piece
starts and ends at the same depot. Then, work pieces and vehicle blocks coincide, which makes the problem computationally
much more tractable than it would have been without these assumptions. The authors develop CG approaches that allow
solving instances of up to 257 trips and 28 depots using a computational time between two and six hours on average
(but needing more than 24 h for the largest instance).

de Groot and Huisman (2004) propose to divide the MDVSP according to the following rules: (i) splitting the problem into
several instances of SDVSP and DSP, i.e. assigning each trip to a depot; and (ii) splitting an instance into a predetermined
number of smaller ones based on the number of trips and trip-vehicle assignments. The implement the proposed rules on
large instances (up to 653 trips and 1.74 depots/trip) based on data sets of a transit network in Netherlands. Numerical
results suggest that the effect of dividing these instances did not significantly deteriorate the quality of the solutions while
the proposed approach outperforms the classical sequential method.

Borndörfer et al. (2008) develop a Lagrangian relaxation approach for the VDSP minimizing overall operating costs. The
proposed approach is tested on instances of up to 1500 trips and three depots. Numerical results show a quick convergence
to obtain optimal solutions. Mesquita and Paias (2008) formulate the VDSP as a partitioning/covering model. The authors
show several conditions where just a subset of decision variables are required to be integers. Based on this information, they
propose a solution approach consisting of: (i) solving a linear relaxation of the problem through CG; and (ii) implementing a
B&B algorithm to find integer solutions. The solution approach is tested on instances of up to 400 trips and four depots
(presented by Huisman et al., 2005). Numerical results indicate that the proposed approach seems to be more efficient than
previous approaches presented by Borndörfer et al. (2008), Huisman et al. (2005).
5.2.2. Heuristic approaches to integrate Vehicle Scheduling Problem and Driver Scheduling Problem
The degrees of freedom of complete integrated formulations may lead to time consuming exact approaches. Then, a

reasonable alternative is to develop metaheuristic algorithms in order to obtain high quality solutions in acceptable com-
putational time (see Tosini and Vercellis, 1988; Falkner and Ryan, 1992; Patrikalakis and Xerocostas, 1992). For example,
Valouxis and Housos (2002) address the VDSP considering limits on the daily work and the minimum daily shift breaks that
a driver must have. Since the driver remains with the bus for the duration of the shift, rules for both drivers and buses must
be satisfied when shifts are created and assigned to a particular bus. The previous characteristics of the system are modeled
in a linear integer program and the authors implement a solution approach based on local search algorithms and CG to solve
instances of up to 89 buses and 337 trip segments.

Steinzen et al. (2007) present a mathematical formulation for a multi-depot case of the VDSP minimizing the sum of
vehicle and crew cost, considering constraints. The authors develop a EA consisting of: (i) generating potential population
members exploring trip-depot assignments; and (ii) implementing a fitness function that determines the vehicle and driver
schedules by combining CG with Lagrangian Relaxation. The proposed solution approach is tested on instances of up to 200
trips and four depots. Numerical results show reductions between 5.1% and 10.0% for the number of duties compared with
the current operation.

Laurent and Hao (2008) propose a constraint programming formulation for the VDSP minimizing the number of vehicles
and drivers subject to constraints for maximum spread time, minimum working time, and driver changeovers. The authors
develop a GRASP algorithm which is implemented on instances up to 249 trips, 50 drivers, and 47 vehicles. Numerical results
show, that even when optimality is not guaranteed by using the proposed GRASP, the obtained solutions are of better quality
compared with the sequential method.

Another GRASP implementation is proposed by Leone et al. (2011). The authors address the VDSP with several hard
constraints, such as limited spread-over, a limited number of breaks, upper bounds for idle time, limited working time, lim-
ited resting time, and compatibility between trips and drivers. Due to the large number of constraints in the proposed
mathematical formulation, small instances are solved with a commercial solver, while the GRASP algorithm is used to obtain
feasible solutions for instances of up to 400 trips.

To tackle parameters uncertainty in the planning process, Huisman et al. (2004) propose a dynamic approach for the mul-
tiple-depot VDSP, i.e. defining a schedule for the next l time units considering the following elements: (i) known travel times;
(ii) decisions already made earlier that can no longer be changed; and (iii) estimation of future after the next l time units. The
authors present mathematical formulations and solution algorithms for both single-depot and multi-depot cases. The
optimization problems consist in minimize operational costs based on fixed vehicle costs and usage of vehicles and drivers.
The authors propose several solution algorithms based on Lagrangian Relaxation based heuristics, CG, and Branch & Bound
algorithms. Numerical results show that the proposed approaches surpass the static version of the integrated problems and
it is suitable for the single-depot case, while it does not perform so well in the case of multiple depots.
5.2.3. Integrating Vehicle Scheduling Problem and Driver Scheduling Problem with flexible timetables
Gintner et al. (2008) define a sequential approach for VSP and DSP but considering multiple solutions for the VSP. The

authors use the time-space network formulation developed by Kliewer et al. (2006) in order to obtain a pool of optimal
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vehicle schedules. Then, the authors solve the DSP by a solution approach based on LR and CG. Numerical results show
significant savings compared with the classical sequential approach.

Kéri and Haase (2007a) and Kéri and Haase (2007b) address a VDSP minimizing the number of buses and crew costs sub-
ject to constraints for task covering, bus-driver coupling, and a flexible timetable. This flexibility is defined based on flexible
groups, i.e, sets of trips that could be shifted together in order to keep the level of service in terms of waiting times. The
authors design a solution algorithm based on CG and show that the proposed approach yields a much better solution in
terms of the number of buses and the drivers’ costs, but it requires much more time to solve the problem.

Recently, Kliewer et al. (2012) address the VDSP with the possibility of shifting scheduled trips within defined time win-
dows, proposing a solution methodology based on Gintner et al. (2006) and Steinzen et al. (2010), where the main idea is to
enhance these solution approaches so as to handle time windows. While flexibility is used to reduce operational costs, a pen-
alty is employed for deviations from the initial timetabling so that the level of service does not deteriorate.
5.3. Integrating Driver Scheduling Problem and Driver Rostering Problem

Abbink et al. (2011) present an integer programming formulation for the DSP considering the following elements to guar-
antee the feasibility of the DRP: average duration of daily duties; maximum number of duties assigned to a driver base; lim-
ited number of duties with duration outside a time interval; and limited night (or weekend) duties. The authors propose a
Lagrangian based heuristic combined with Column Generation to solve the problem. The proposed approach is tested on real
data sets of a transit network in Netherlands and numerical results show savings up to 3 million euros (1% of efficiency gain
compared with the current operation).

Xie et al. (2012) integrate the DSP and the cyclic version of the DRP maximizing the drivers’ satisfaction. The authors they
design a Simulated Annealing algorithm which is tested on two medium-size instances (of up to 256 drivers and 1013 duties)
based on real data from a transit network in Germany. Numerical results show that the running time of the proposed inte-
grated approach is not much longer than the running time of the sequential one (about 10 min for each instance). Besides,
drivers’ satisfaction is high for at least 71% of the drivers.

Recently, Xie and Suhl (2014) integrate the cyclic and non-cyclic versions of the DRP and the DSP. The problem considers
hard constraints, such as maximum daily working time and number of days off; and soft constraints, such as minimum sum
of days off, limited number of unpopular single-off activities, separation time between two double-off activities, and maxi-
mum overtime for all drivers. To jointly determine cyclic and non-cyclic rosters, the authors proposed a multi-commodity
network flow formulation based on the model developed for the airline crew Rostering problem by Cappanera and Gallo
(2004). The proposed formulation can be efficiently solved for instances up to 3273 duties and the authors present a com-
parison of sequential vs integrated approaches based on a German transit network where the integrated approach lead to
better quality feasible solutions.
5.4. Integrating Vehicle Scheduling Problem, Driver Scheduling Problem, and Driver Rostering Problem

Shen and Xia (2009) present an iterative sequential approach to solve VSP, DSP, and DRP (denoted as VDRP). The authors
address the context of Chinese transport systems where specific time windows for drivers’ rest should be considered.
Moreover, practical constraints include: a driver should be assigned to the same bus before and after having lunch; drivers
can be assigned to at most two vehicles; and vehicles must be identified since compatible driver-vehicle pairs are given as an
input. The transit network of the case study requires a line-by-line planning process and bus schedules are changed fre-
quently; thus, time consuming algorithms should be avoided. The authors propose an iterative sequential heuristic algo-
rithm consisting of the following steps: (i) solving the VSP with a local search based on n-opt operators; (ii) solving the
DSP with a Tabu Search based on Shen and Kwan (2001); and (iii) constructing the driver rosters and allow to be modified
through an user-friendly interface. Numerical results show that it is possible to find feasible solutions for instances up to 107
buses and 164 duties in minutes of computational time. Savings for vehicles costs and driver wages are near to 4.5% and 9.9%,
respectively, compared with solutions obtained by human expertise.

Mesquita et al. (2011) present a non-linear multi-objective formulation for the VDRP which minimizes the number of dri-
vers (cost criterion) and minimizes the maximum overtime assigned to a driver (preference criterion). Since the formulation
has a large number of constraints and it is unlikely to be solved efficiently by commercial solvers, a preemptive goal pro-
gramming based heuristic is designed to decompose the VDRP as follows: (i) solving a VDSP per day; and (ii) determining
a roster for a given time horizon. Extensive experimentation using data from a bus company in Lisbon shows that the pro-
posed iterative sequential approach easily obtain optimal solutions in short computing times where minimization of the
number of drivers alone was concerned. However, 17.8% of the instances were not solved within a reasonable time limit
when all the costs were considered in the objective function.

More recently, Mesquita et al. (2013) address a VDRP minimizing vehicle and driver costs subject to constraints regarding
roster balancing and coverage of all daily duties. An important characteristic is that driver rosters must be compatible with
predefined days-off patterns based on the requirements of a Portuguese public transit company. The problem considers a
planning period of seven weeks, where a set of drivers must be assigned to a fleet of vehicles from a set of depots in order
to cover given planned trips. The authors propose a mathematical formulation with elements of problems such as
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multi-commodity network flow, set covering, and covering-assignment. This formulation allows the authors to implement a
Bender decomposition that outperforms the traditional sequential approach.
6. Real-time control strategies

Real-time control strategies are needed in transit networks since the absence of these procedures leads to undesired
behavior of the transport system, such as vehicle bunching due to the stochastic nature of traffic flows and passenger
demand at bus stops. This may cause an increment in the variance of the headways and a consequent worsening of both
the magnitude and variability of average waiting times.

In terms of the spatial configuration of the different control strategies, they can be classified into the following categories:
station control and inter-station control.

6.1. Station control strategies

In station control strategies decisions are taken at some stops along the line. The most common approaches are the
following:

� Holding strategies are used to increase service regularity (see Turnquist and Blume, 1980) and/or reduce transfer time
between lines (Hall et al., 2001; Delgado et al., 2013). There are two types of bus holding strategies to increase regularity:
(i) headway-based which is commonly used for lines with short headways (e.g., less than 10 min); and (ii) schedule-based
which is typical on lines with long headways for meeting a timetable. Also, holding strategies are sometimes imple-
mented to avoid passengers missing a connection to another line.
� Stop-skipping strategies in which a bus might be asked to skip a stop as long as nobody inside the bus requests it, even if

there are passengers waiting to board the bus.
� Boarding limits strategies can be considered a continuous version of the stop-skipping strategy. Here, a fraction of the

passengers waiting to board the bus might be requested to wait for the next bus even when the bus has available capacity.

We present a review of station control strategies in the following section.

6.1.1. Headway-based holding strategies
The main idea of headway-based holding strategies is to provide reliable service in the form of evenly spaced arrivals at

stops. For example, the early study of Abkowitz and Lepofsky (1990) addresses a real-time strategy minimize the total wait-
ing time. This strategy holds buses at specific stops until a minimum headway time is achieved, in order to. An
implementation is done on two lines of a transit network in U.S. Based on the numerical results, the authors conclude that
some characteristics that favor the implementation of holding strategies are the following: frequency-based operation,
randomness of passenger arrivals, and selection of control points based on boarding/alighting profiles. Fu and Yang
(2002) present a formulation that minimizes headway variation in order to minimize the average waiting time at different
stops. However, in-vehicle holding delay and bus capacity constraints are not considered. In such a case, the results demon-
strate that the optimal policy is to employ holding at a single stop. Sun and Hickman (2008) state the same problem in two
dimensions, with holding of multiple buses but at a defined set of control stops. They show that if holding is applied at vari-
ous stations, bus headways can be regularized and greater cost reductions thereby achieved, compared with single station
holding.

Recently, Daganzo (2009) propose an adaptive control scheme aiming to provide quasi-regular headways while maintain-
ing as high a commercial speed as possible. The control strategy dynamically determines bus holding times at a line’s control
points based on real-time information about the arrival time of the previous bus. Although the method proves to be efficient
under small disturbances, under large perturbations it reduces performance. Other approach based on providing regular ser-
vice is presented by Xuan et al. (2011). The authors propose holding strategies to regularize headways while maximizing
commercial speeds. The assumption of their approach is that information about the current bus and the leading bus is avail-
able. Based on numerical results, the authors state that their approach outperforms headway-based methods when it is used
only to regulate headways.

Bartholdi and Eisenstein (2012) rules out a priori headway since they state that trying to adjust the trip regularity to a
unique and static headway leads to the unsatisfactory performance of the system. Instead, they propose a holding technique
depending on the state of the system in order to obtain a self coordination strategy where the natural headway arises from
the system behavior over time. In this strategy, the holding time is computed based on the separation with the previous bus
which reduces the management work and simplifies the job of the drivers. The proposed approach is tested on a real line and
simulated scenarios. Numerical results suggest that it could be useful in cases with large disruptions or surge in ridership, by
re-distributing the buses to equalize the headways. Similarly, with reduced traffic, the common headway is spontaneously
reduced and service improves. Cats et al. (2011, 2012) evaluate different holding control strategies for improving service
reliability. Moreover, transit performance is also evaluated from the operator perspective by considering the impacts of
holding strategies on fleet operations and drivers management. The evaluation is based on a simulation process, and the
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numerical results show that there are potential benefits from implementing an evaluation holding strategy that regulates
headways depending on both the preceding and succeeding buses, as proposed by Bartholdi and Eisenstein (2012).
6.1.2. Holding strategies to minimize waiting times
The previous studies assume that regular service satisfies the passenger demand in an efficient way, but there are cases

where there is high variability of demand (such as passenger arriving as a bunch) and waiting times should be considered. In
these cases, it is necessary to implement control strategies with variable headways, but based on passenger waiting times.

The early research of Barnett (1974) develop a holding model at a given control stop, where the sum of total waiting time
plus the extra delay of passengers on board is minimized.

Eberlein et al. (2001) propose a rolling horizon for the holding problem minimizing the total waiting time and considering
safety headways. The control strategy is implemented on a line of the transit network in Boston and numerical results show
that the estimated reduction in waiting times to board the first vehicle ranges from about 7% to 31% in the presence of
terminal schedule constraints and from about 21% to 50% in the absence of these constraints. Moreover, the result show that
holding reduces dwell times and inter-station stopping times, and provides earlier arrival times which could be counter-
intuitive at first glance, this can result in. Zhao et al. (2003) propose a control model based on negotiation between two
agents: one aboard the bus, and the other at a stop. The optimization problem minimizes waiting times and considers
stochastic passenger arrivals at stops. The approach is tested through simulation and numerical results indicate that the
negotiation algorithm is robust for a variety of operating conditions such as stationary and different kinds of non-stationary
passenger arrivals.

Zolfaghari et al. (2004) formulate an optimization problem which minimizes the waiting times of both of users who arrive
at a stop and those who have to wait for more than one bus due to the activation of the capacity constraint. The authors
consider vehicle capacity constraints but they do not consider the extra waiting time endured by passengers held at a stop.
Puong and Wilson (2008) extend this case by including the latter factor in their objective function in the context of inter-
ruptions in train service. They propose a non-linear mixed-integer model in which dwell time is assumed to be constant
at any given station. The problem is solved in a reasonable amount of time using a hybrid heuristic and Branch & Cut
strategy.

The combination of holding strategies with other control tools has been addressed by Delgado et al. (2012). The authors
develop a deterministic optimization model capable of executing two strategies: holding and boarding limits (limits the
amount of passengers that can board a bus even when the bus is not at full capacity). The objective function considers
the waiting time of the passengers at the bus stops, wait times on the bus due to the holding executed, and the extra waiting
time experienced because of the capacity constraint of the bus, or the boarding limits strategy. The authors show that in high
frequency and high demand scenarios, the application of both strategies reduced the total waiting time 69%, compared with
the no-control scenario, while just applying the holding strategy reduced the total waiting time 61%. In high frequency sce-
narios where bus capacity is never reached, applying only holding or both strategies yields similar results, reducing the total
wait times between 63% and 65%, compared with the no-control scenario. One important finding of their work is that the
application of these strategies allows the buses to travel at a lower capacity, ensuring a better balanced load and improving
the comfort of the passengers.
6.1.3. Holding strategies to minimize waiting times considering transfers
Another reasonable goal of implementing holding strategies is to allow well-timed passenger transfers. To achieve this, it

should be noted that passengers may arrive as a bunch at transfer stops. Then, it is inadequate to model the estimated wait-
ing time as the multiple of the square of the headway and half of the arrival rate. Hall et al. (2001) develop analytical models
that determine the optimal holding times at transfer stations with general bus arrival time distributions. The authors test the
proposed approach on generated instances based on real data of the transit network of Los Angeles, CA.

Delgado et al. (2013) implement holding strategies to benefit passengers who must walk a little to transfer from line B to
another line A at a single stop. Since it is necessary to walk for such transfers, the arrival rate of passengers that will take line
A after alighting from B is modeled as a trapezoidal function, i.e. this rate increases at the beginning of a time interval,
remains constant at the middle of the interval, and decreases at the end of the interval. The goal is to minimize the following
waiting time costs: (i) those of passengers already waiting at the stop; (ii) those of passengers on the held bus; and (iii) those
of passengers transferring from B to A. The main assumptions are the arrival rate for both lines and the estimation of the
arrival times for buses at each stop. The model is embedded in a rolling horizon approach that is tested through simulation.

Table 7 shows the studies presented in this review. The first column presents the citation; The second column ‘‘Par’’ indi-
cates whether travel times and passenger demand are deterministic (Det) or stochastic (Stoch); The third column shows the
objective of the problem that could be based on waiting time to take the first bus (W first), in-vehicle waiting time (W in�veh),
extra waiting time of passengers that could not take the first bus (Wextra), or waiting time at transfer stops (W trans); The
column ‘‘Cap’’ indicates whether using capacity (Yes) or uncapacitated systems (No); The column ‘‘Control P’’ indicates
the different types of stops, such Predefined Single Stop (PSS), Predefined Multiple Stops (PMS), Single Stop defined by
the Control process (SSC), or Multiple Stops defined by the Control process (MSC); The column ‘‘Veh’’ shows the number
of vehicles considered in the optimization process, which can involve a single (One) or multiple (Multi) vehicles; finally,
the column ‘‘Method’’ presents the proposed solution approach.
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6.1.4. Stop-skipping strategies
Different service patterns, i.e. trips that skip some of the stops of the original line, can be used to increase bus operating

speeds. However, the problem is to determine which stops should be ignored considering different criteria, such as opera-
tional costs, average waiting time, and passenger awareness, among others. Early work on rail systems is presented by Suh
et al. (2002), where a stop-skipping strategy is implemented to increase the speed of subway service. To achieve this, the
authors use information from an OD matrix, the distances between stations, the headways, and the maximum link speeds.
Numerical results implementing stop-skipping strategies yield average waiting time savings up to 12.9% compared with the
current operation.

Instead of design limited stop lines in tactical planning. Fu et al. (2003) present a real-time operating strategy that
provides a limited-stop line every other trip minimizing total waiting time costs. The authors develop a mathematical for-
mulation that determines the line pattern depending on the previous two trips and the actual passenger demand. Then, this
problem is solved using a rolling time horizon approach to define the stops to be skipped. Since the formulation determines
the line pattern for only one trip, the problem can be solved in an exact way in a short time. The authors state that stop-skip-
ping strategies are more effective on bus lines with high passenger demand, short headway, and moderate travel time
variability.

Sun and Hickman (2005) propose a stop-skipping strategy to minimize passenger waiting times but allow passengers to
alight at stops in the skipped segment. This stop-skipping strategy is formulated as a non-linear integer programming
problem, with assumptions as uncertain passenger boarding and alighting times. The size of the instances are small enough
to be solved through exhaustive methods, and it is tested through simulation. Numerical results suggest that the downtown-
oriented passenger distribution pattern may present the most desirable condition for minimizing passenger waiting times.

A multi-objective optimization approach for stop-skipping strategies is addressed by Sidi et al. (2008). The authors pre-
sent a decision support system to determine line patterns and their departure times after a disruption occurs and a time
horizon is defined. The following different criteria are considered: trip regularity; transfer time; travel time; distance trav-
eled; and the number of unsatisfied stops. Considered constraints are headway bounds, stop times ranges, and vehicle loads.
The solution approach is based on fuzzy logic to represent the subjective nature of the decision maker’s preferences.

Cortés et al. (2010) and Sáez et al. (2012) develop a hybrid predictive control formulation which jointly estimates bus
speed and implements control strategies such as skipping stations or holding buses. This formulation considers a multi-
objective case minimizing waiting times and minimizing the cost of in-vehicle travel times. The authors solve the problem
through GAs and results of a simulation show savings of 20% and 10% in the total travel time for users when the proposed
strategy is implemented. Later, Muñoz et al. (2013) provide a performance comparison of the previous approaches and
Delgado et al. (2009, 2012). Different scenarios are considered and numerical results show that the approaches of
Delgado et al. (2009, 2012) dominates when capacity constraints are binding.

The main drawback of station control strategies is negatively affecting some passengers (holding inside a bus, preventing
from boarding). Also, in many urban/cultural context these strategies may not be feasible. The control strategies presented in
the next section can be implemented instead or in addition to these strategies.

6.2. Inter-station control

Inter-station control strategies define decisions that should be taken between stops of the transit networks, i.e. while the
bus is traveling between control stops. Some approaches that belong to this kind of strategy are the control of the operating
speed and traffic signal priority.

6.2.1. Bus speed regulation strategies
Chandrasekar et al. (2012) develop a strategy based on controlling the bus’s speed along its route. The main idea is that

passengers will not notice that they are being held (speed up is not considered as a control strategy), as happens when a bus
is held at a stop. By implementing the proposed approach, the authors show that bus speed control lead to a decrease in
headway irregularity. For example, 80% of the cases studied saw a reduction of more than 10% in excess waiting time,
and 60% of the cases had more than 20% reduction.

More recently, Daganzo and Pilachowski (2011) present a control strategy that continuously adjust the bus cruising speed
based on a cooperative two-way to achieve a proper space between the front and back buses. Such a cooperative control is
shown to be effective in preventing bunching.

6.2.2. Traffic Signal Priority strategies
Traffic Signal Priority Strategies (called as TSP) optimize the traffic flow by defining the combination of traffic lights

(called phase) that favors a specific circulation at an intersection, considering priority calls of vehicles and estimation of
arrival times. These strategies should consider feasibility constraints based on the queuing process along the entire network,
i.e. we should not benefit a specific intersection if the following arcs possess full capacity (Liu et al., 2003). Such a strategy
depends on three main elements: (i) delay estimation; (ii) weight determination (commonly based on the number of
passengers in the vehicles); and (iii) the optimization problem to define the traffic signals. Studies are oriented to cyclic,
i.e. repetitiveness of traffic lights phases over time, and non-cyclic cases where the traffic lights’ phases are properly defined
due to the actual traffic flow.
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The benefits in terms of average network speed when implementing TSP are shown by Diakaki et al. (2007). The authors
implement an extension of the traffic responsive urban control strategy considering bus priority signals. This strategy con-
sists of four modules: (i) split control to minimize the risk of over saturation and queue spill back; (ii) cycle control to adapt
the cycle duration to the currently observed maximum saturation level in the network; (iii) offset control which creates suc-
cessive green lights considering vehicle queues; and (iv) Priority of public transportation. The strategy is tested on the
Jerusalem network, obtaining average travel times savings of 65% compared with the current operation. Kraus et al.
(2010) implement the previous strategy in Maxaé, Brazil and numerical results report improvements of up to a 25% increase
in average network speed.

Simultaneous traffic lights and bus holding is addressed by van Oort et al. (2012). The goal is the minimization of a cost
based on car delays, passenger delays, and bus stop cost which is relevant in cases where it is preferred to hold a bus at a stop
instead of to continue its trip and immediately stop at an intersection or a queue due to red lights. Two strategies are proposed:
(i) immediate departure where the intersection controller grants priority (e.g., extending a green light) upon request of the bus
(approaching the intersection); and (ii) controlled departure which avoids a second stop of the bus at the end of the queue
formed during a red light by holding the bus at the bus stop (near the intersection), while still granting priority to the bus lane.
The analysis shows that controlled departure is the best strategy for small values of passenger car flows in the same link, and it
is the recommended strategy when there are segregated bus lanes, as in the context of Bus Rapid Transit (BRT) systems.

Yang and Lou (2013) formulate a signal optimization procedure based on the interaction of two modules: (i) a GA to com-
pute the phases of the traffic lights along with their sequences, and (ii) a microscopic simulation that analyzes the flow of
individual vehicles and computes the total delays for a given signal timing plan obtained through the GA. The latter study
consider both cyclic and non-cyclic TSP. Numerical results show that the improvement of the non-cyclic case over the cyclic
one is a decrease of up to 6.5% in delays. Han et al. (2014) address a TSP strategy that dynamically defines the weights in the
objective functions to reflect the changing necessities of the network under different conditions. To achieve this, the authors
define a weighted objective function with two parameters, a and b, to represent the weight of the common vehicles and of
the buses, respectively. Then, before solving the optimization problem, a and b are determined through a sensitivity analysis
where the benefits and general traffic interferences are measured. On the basis of this analysis, the values of the parameters
are fixed to strike a balance between delay reduction and delay increase.

Recently, He et al. (2014) consider a multi-modal case for the TSP strategy such that the signal timing is responsive to
real-time actions of non-priority demand by allowing phases to extend and gap out. Moreover the authors compare the pro-
posed approach with the state-of-practice transit signal priority (TSP), both under the optimized signal timing plans, using a
microscopic traffic simulation based on a section of Speedway Blvd. in Tucson, Arizona. The later approach implements
robust and responsive priority policies to resolve the conflict between multiple priority requests from an optimum prospec-
tive. Numerical results show that the proposed control model is able to reduce the average bus delay up to 24.9%, especially
for highly congested conditions.

Real-time control strategies have been implemented to improve the daily operation of transit systems. Moreover, the
increasing developments in data collecting tools are leading to a better understanding of the decision process of the system,
and new technologies such as vehicle-to-vehicle communication, could be used to enhance these control strategies.
7. Conclusions

In this paper, we present a literature review on optimization approaches used for planning, operation, and control of bus
transport systems. The types of problems studied were divided according to the planning horizon into strategic, tactical, and
operational levels. We presented decision support techniques which are playing an important role on improving the effi-
ciency of transit systems.

Although there has been a fruitful development of models and solution techniques to address relevant decision problems
in bus transport systems, there are still many open research questions, such as the following:

� There are still opportunities for integrating problems that are solved separately, which forces a multi-criteria analysis
approach. For instance, the integration of timetabling and operational planning has shown promising results, however
only few authors have tackled this type of integrated problems.
� The urbanization process the world is facing creating several megapolis around the globe. In this context, bus service

becomes increasingly slow and expensive since trips and congestion grows. The adoption of fare integration world-wide
that forces some passengers to transfer opens the door to rethink the Transit Network Design by considering different
variants of limited-stop lines and transfers coordination. These new types of lines could complement the more standard
ones to improve mobility and accessibility city-wide.
� Another important aspect to handle is the natural uncertainty that transit systems face such as passenger demand and

travel times. The increasingly amount of data generated through AVL, APC, and GPS allow us to consider these uncertain-
ties to develop a more robust transit planning and operation. In this context, research opportunities to taking into account
uncertainty are the development of robust, stochastic, and dynamic approaches for vehicle/Driver Scheduling problems.
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