

# Litografia Top-Down (Aula Anterior)

- Litografia na Indústria de CIs
  - Litografia Óptica
  - Litografia por Raios-X
- Litografia Top-Down para Nanotecnologia
- Aplicações



### Litografia na Indústria de CIs

 A indústria de CIs avança muito rápido e põe mitos por terra

#### 4. NEC Nanoscale Transistor ·· (2005)

Today, silicon transistors are used almost everywhere, as the key processing device, embedded in various kinds of equipments. By nature, higher speed, lower power, and increased functionality can be achieved by decreasing the size of the transistors.NEC fabricated a 5-nm-gate world-smallest transistor and successfully confirmed the transistor operation at room temperature. This small transistor is expected to be realized around 2020. NEC also succeeded to develop the high-resolution electron beam resist (Calixarene) for the precise fabrication of such minute devices. NEC investigates the possibility of future LSI through the investigation of nanoscale transistor.



Photograph and figure of 5-nm-gate transistor.



Calixarene resist and its 8-nm pattern... (This work is in collaboration with TOKUYAMA Co.)

http://www.labs.nec.co.jp/Eng/Overview/soshiki/kiso/nanotech2004.pdf

2015

#### Litografia para MEMS



# Litografia para MEMS







#### Digital Light Processor! (DLP)







# Litografia Top-Down para Nanotecnologia

- Não precisa de 35 níveis
- Não precisa ter a mesma produtividade
- Precisa ter resolução na faixa 10-100nm
- Precisa ter capacidade de alinhamento para apenas 2-3 níveis







### Litografia Top-Down para Nanotecnologia

- Principais técnicas litográficas (top-down) para aplicação em nanotecnologia
  - Feixe de elétrons
  - · Raios-X (EUV)
  - Feixe de lons
  - Holografia
  - Nanoimpressão
  - Varredura de Sonda (SPL ou PPL)
  - Litografia óptica!

2015



# Litografia por feixe de elétrons

Afinal, é um microscópio eletrônico de varredura?



| Litografia por Feixe de Elétrons                                                                                   |           |    |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----------|----|--|--|
| <ul> <li>Difração não limita a resolução</li> </ul>                                                                |           |    |  |  |
| <ul> <li>Resolução depende basicamente do diâmetro<br/>~5nm</li> </ul>                                             | o do feix | e, |  |  |
| <ul> <li>Aplicações</li> </ul>                                                                                     |           |    |  |  |
| <ul> <li>Escrita direta (inclusive para fabricação de máscaras)</li> <li>Pesquisa</li> <li>Prototipagem</li> </ul> |           |    |  |  |
| Projeção (stepper)                                                                                                 |           |    |  |  |
| <ul> <li>Limitações</li> </ul>                                                                                     |           |    |  |  |
| <ul> <li>Serial, produtividade adequada para pequenas séries e pesquisa</li> </ul>                                 |           |    |  |  |
| Efeito de proximidade                                                                                              |           |    |  |  |
| <ul> <li>Opera em alto vácuo (10<sup>-6</sup> ~10<sup>-10</sup> torr)</li> </ul>                                   |           |    |  |  |
| Prof. A.C. Seabra <b>Processos Avançados de Microeletrônica</b>                                                    | 2015      | 17 |  |  |







2015



# Fonte de Elétrons

|                                        |          | Emissão T                          | ermoiônica                      |                             |                                     |  |  |
|----------------------------------------|----------|------------------------------------|---------------------------------|-----------------------------|-------------------------------------|--|--|
| Princípio<br>de operação               | Material | Brilho (B)<br>(A/cm²/Sr)           | Espalhamento<br>de energia (eV) | Temperatura do<br>Filamento | Vácuo na<br>Fonte <b>(torr)</b>     |  |  |
| Emissão de<br>Elétrons a<br>Alta Temp. | w        | ~ 10 <sup>5</sup>                  | 2 - 3                           | ~ 3000K                     | 10 <sup>-5</sup> - 10 <sup>-6</sup> |  |  |
|                                        | LaB₅     | ~ 10 <sup>6</sup>                  | 2 - 3                           | 2000 – 3000K                | 10 <sup>-7</sup> - 10 <sup>-8</sup> |  |  |
| Emissão por Campo                      |          |                                    |                                 |                             |                                     |  |  |
| Princípio de<br>Operação               | Material | Brilho (B)<br>(A/cm2Sr)            | Espalhamento<br>de Energia (eV) | Temperatura<br>do Filamento | Vácuo na<br>Fonte <b>(torr)</b>     |  |  |
| Electron<br>Tunneling in<br>High field | w        | 10 <sup>9</sup> – 10 <sup>10</sup> | 0.2 - 0.5                       | Ambiente                    | < 10 <sup>.9</sup>                  |  |  |

2015











# Estratégias para minimizar o efeito de proximidade

- Utilize resistes finos
- Utilize substratos finos
- Ajuste a tensão de aceleração
- Divida a geometria em sub-estruturas com doses diferentes



# Litografia por Feixe de Ions

Como LFE, LFI pode ser utilizada para escrita direta



| Litografia por Feixe de Lons                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Características principais</li> <li>Menos sujeita à retroespalhamento (massas maiores)</li> <li>Resistes para LFI são mais sensíveis</li> <li>Maiores energias que LFE</li> <li>Melhor resolução e produtividade</li> </ul> |  |
| <ul> <li>Dificuldades</li> <li>Fontes de íons menos confiáveis</li> <li>Mais difícil de focalizar</li> <li>Menor profundidade de penetração (30nm ~ 500nm)</li> <li>Implantador Iônico de baixa energia!</li> </ul>                  |  |
| Prof. A.C. Seabra <b>Processos Avançados de Microeletrônica</b> 2015 31                                                                                                                                                              |  |

#### Nanofabricação de estruturas no LSI-PSI-EPUSP

#### Abordagem "top-down"

- Esculpir as estruturas em substratos ou filmes previamente depositados, sendo complementar a abordagem "bottom-up". As duas abordagens provavelmente vão se encontrar na faixa de 20nm~50nm
- Embora menos elegante que a abordagem "bottom-up" possui as seguintes vantagens:
  - Utiliza todo o conhecimento acumulado das técnicas de fabricação de microeletrônica
  - Permite a fabricação de nanoestruturas em formatos e regiões previamente escolhidas, o que viabiliza a interconexão de diversas nanoestruturas de forma coerente e organizada
  - Viabiliza a fabricação de estruturas com dimensões micrométricas que no entanto precisam ser definidas por fatias ou trechos nanométricos, como por exemplo microlentes refrativas e difrativas de relevo contínuo

2015

#### Nanofabricação de estruturas no LSI-PSI-EPUSP

- Para definição de estruturas nanofabricadas empregamos um MEV adaptado para litografia por feixe de elétrons (e-beam)
  - Não usa máscara (escrita direta) e possui resolução atual de cerca de 60nm (já fabricadas). Permite prototipagem rápida diretamente a partir de desenhos gerados até mesmo em AUTOCAD. O ciclo litográfico completo leva menos de um dia a partir do layout AUTOCAD
  - Utilizamos um microscópio eletrônico de varredura com um equipamento acessório da empresa Raith GmBH
  - Baixíssimo throughtput, exposição estrutura a estrutura, porém de elevada resolução (potencialmente pode-se fabricar estruturas de até 3-5 vezes o diâmetro do feixe do MEV/SEM, cerca de 40nm). Na prática isto também significa aproximamente um campo com diversas estruturas exposto a cada 30min, ou 10 amostras por período

| Prof. A.C. Seabra | Processos Avançados de Microeletrônica | 2015 | 33 |
|-------------------|----------------------------------------|------|----|
|-------------------|----------------------------------------|------|----|