- Radiaçao Acuistica

9- N_{a} adiabatica temos

$$
\begin{align*}
& N_{a} \text { adiabotica temos } \tag{1}\\
& \quad \frac{P}{I_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{a} \text { ou } P=P_{0}\left(\frac{\rho}{\rho_{0}}\right)^{a} \quad \text { (1) } \tag{2}\\
& P=P I_{\rho_{0}}+\left.\frac{\partial P}{\partial \rho}\right|_{\rho_{0}} \Delta \rho+\frac{1}{2}\left(\frac{\partial^{2} P}{\partial \rho_{0}^{2}}\right)_{0} \Delta \rho^{2} \tag{3}\\
& P=P_{0}+\frac{a \cdot I_{0}}{\rho_{0}}\left(\frac{\rho}{\rho_{0}}\right)^{a-1}\left|\Delta \rho_{\rho}+\frac{1}{2} \frac{a}{\rho_{0}(a-1)} \cdot P_{0}\left(\frac{\rho}{\rho_{0}}\right)\right|_{0}^{a-2} \Delta \rho^{2} \\
& I=I_{0}+A \frac{\Delta \rho}{\rho_{0}}+\frac{B}{2} \frac{\Delta \rho^{2}}{\rho_{0}^{2}} \tag{4}\\
& \text { Sando } A=\underline{a P_{0}}=\beta \quad \frac{B}{A}=\frac{a^{2}-a}{2 a}=a-1 \\
& B=\left(\underline{\left.a^{2}-a\right)} P_{0}\right.
\end{align*}
$$

de (3) tanse

$$
\begin{equation*}
I=P_{0}\left(1+a s+\frac{1}{2} a(a-1) s^{2}\right), \quad \text { ando } s=\frac{\Delta s}{\rho_{0}}=\frac{\frac{s}{\rho_{0}}}{\rho_{0}} \tag{5}
\end{equation*}
$$

Sendo $P=\rho_{0} \frac{\partial P}{\partial S}$ is onts

$$
\frac{B}{A}=\frac{\left.\frac{\partial^{2} P}{\partial P^{2}}\right|_{B}(P)}{\partial \rho}=\frac{\rho_{0}}{\partial \rho} \frac{\partial B}{\partial S}=a-1
$$

A equorao oxota da contimuidade dis jus.

$$
\begin{aligned}
& 18 \text { (A equa, as } \\
& \frac{d \rho}{d t}=\frac{\partial s}{\partial t}+\frac{\partial s}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial s}{\partial s} \frac{\partial u}{\partial t}+\frac{\partial \rho}{\partial z} \frac{\partial z}{\partial t} \\
& \frac{d s}{d t}=\frac{\partial s}{\partial t}+\vec{u} \cdot \overrightarrow{\nabla f}
\end{aligned}
$$

KE-Da oquaroo da continuidade tum.
2
a) $\frac{\partial s}{\partial t}+\nabla_{0}(\rho u ̈)=0$ ou $\frac{\partial \rho}{\partial t}+\rho \vec{V} \cdot \vec{u}+u \cdot \nabla \rho=0$

$$
\text { so-do } \frac{\partial p}{\partial t}+\vec{u} \cdot \nabla s=0 \text { s-ton } \rho \vec{\nabla} \cdot \vec{u}=0
$$

b)

2玟b) A equara de culer to flono encriseives of

Aplicando o divergente tem-ue
So $\frac{\partial\left(\nabla \rho \vec{u}^{3}\right)^{0}}{\partial t}=-\nabla^{2} p$
$-\nabla^{2} p=0$
entoo $\nabla P=c t_{e}$

2*(1.C) $\nabla^{2} p=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0$ no thevo incoapursiut into implica $c \rightarrow \infty$
12. $P_{0}=1 \mathrm{~atm}=1.01325 \mathrm{~cm} \mathrm{C}^{2}=\beta / \rho_{0}=$?
$3 \quad \begin{array}{lll}T=0{ }^{\circ} \mathrm{C} \\ \gamma=1.41 & S_{0}=0.09 \quad J=8 \quad \text { atm }=1.035 \times 10^{5} \mathrm{~Pa}\end{array}$

a) $\beta=r P_{0} \Rightarrow c^{2}=\frac{\gamma P_{0}}{\rho_{0}}=\left(\frac{1.41 \times 1.01325 \times 10^{5}}{0.09}\right)$

$$
c=1260 \mathrm{~m} / 0
$$

b) $\begin{aligned} & c_{r}=c_{0}+\Delta c \\ & c^{2}=\gamma r T_{k}\end{aligned} \Rightarrow \frac{\Delta C=9,5 m / 1}{\text { ou } \quad c=c_{0}\left(1+T_{i} / 273\right)^{1 / 2}}$
C) $T=\left(\left(\frac{c}{c_{0}}\right)^{2}-1\right)+273=\left(\left(\frac{1269,5}{1260}\right)^{2}-1\right) * 273=4,1{ }^{\circ} \mathrm{C}$

$$
T=4.1 \mathrm{C}
$$

DS:

$$
\begin{aligned}
& c(P, t)=1402, t+1488 \cdot t-482 t^{2}+135 t^{3}+\cdots \\
& 4+\left(15,9+2.1 t+2.4 t^{2}\right)\left(P_{\mathrm{G}} / 100\right) \\
& P_{0}=1 \text { at. }=1.0132510^{5} \mathrm{~Pa} \text {. } \\
& P_{G}=P-P_{0} \\
& =P-P=0 \\
& T=30^{\circ} \mathrm{C} \\
& t=\frac{T}{100}=0.3 \\
& \text { ज) } C=1.505,7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) $\quad \operatorname{taxa}=\frac{\Delta c}{\Delta T}=\frac{1,505.7-1481}{30-20}=2,47 \mathrm{~m} / \mathrm{sic}^{\circ}$ ou seje. pr cade $1{ }^{\circ} \mathrm{C}$ a vebocidude da som ne. ioguc made d. $2.47 \mathrm{~m} / \mathrm{s}$

Na) $\mu=U \exp [j(\omega t-\operatorname{ex})]$
5
a)

$$
\begin{aligned}
& \nabla p=\rho_{0} \frac{\partial u}{\partial t} \\
& \text { (1) e c. cxpencosan pl a premser sanai } \\
& p=D \exp [j(\omega t-k+)] \text { (2) } \\
& \nabla p=-j k p \\
& \frac{\partial u}{\partial t}=j \omega u \\
& \text { - de (3) tenc } \\
& -(-j \quad k p)=\text { sojuru } \\
& k P=\operatorname{son} k l \text {, sondo } \omega=\text { rec } \\
& U_{c}=P / \rho_{a} c^{2}
\end{aligned}
$$

1) De oq. 5.76 do $1: 00$ Frondomontal aceisfics

$$
\begin{gathered}
s=p / \rho_{0} c^{2}, \text { e } \omega_{0} \\
|s|=p / \rho_{0} c^{2} \text { ocsoja } \\
C l / c=|s|
\end{gathered}
$$

15. $p=A e^{j\left(\omega t-k_{x} x-k, y-k_{z} z\right)}$

$$
\phi=\nabla u=?
$$

da eq 5.59 do Fundomental accistics, tate
como \vec{k} apoufa na direicas de pro pagaeno, ata
μ épanalelea a dinesou de propaga,as.
$\langle(-2) \rho=$?
s) $u=$?
c) $\phi=$?

$$
\partial S
$$

d) $\varepsilon=$?

$$
\int_{\rho_{0}}^{\rho} \partial \rho=\frac{\partial \rho}{c^{2}}
$$

e) $I=$?

$$
\stackrel{\text { dudo }}{P}=P e^{j(v t-k x)}
$$

$$
c^{2}=\frac{\partial P}{\partial \rho}
$$

$$
\rho-\rho_{0}=\frac{1}{c^{2}} \int_{\rho_{0}}^{\rho} \partial P=\frac{1}{c^{2}} p
$$

$$
a)\left(\rho-p_{0}\right)=\frac{1}{c^{2}} p=\frac{P}{c^{2}} e^{j(\omega t-k x)}
$$

6) $\dot{\mu}=\dot{P_{1}} / s_{0} c=\frac{P}{\rho_{0} c} e^{j(\omega t-k x)}$
c) $\phi=-\rho / j \omega \rho_{0}=\frac{j P}{\omega \rho_{0}} e^{j\left(\omega t-k_{x}\right)}$
d) $\varepsilon_{i}=\operatorname{real}\left(\frac{p^{2}}{s_{0} c^{2}}\right)=\frac{\rho_{0}}{r_{0} c^{2}} \cos ^{2}(\omega t-k x)$
e)

$$
\begin{aligned}
& I=\langle p u\rangle_{T}=\frac{1}{T} \int_{0}^{T} p u d t \\
& I=\frac{1}{2} \frac{\rho^{2}}{\rho_{0} c^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& p=-\rho_{0} \frac{\partial \phi}{\partial t}= \\
& \phi=-\frac{1}{\rho_{0}} \int p d t=-\frac{1}{s_{0}(j \omega)} e^{j\left(\omega t-k_{r} x-k_{y} y-k_{y} z\right)} \\
& \phi=\frac{j}{\rho_{0} W} \\
& u=\nabla \phi=\frac{j}{\rho w}\left[\frac{\partial}{\partial x} \rho_{\hat{x}}+\frac{\partial p}{\partial y} \hat{y}+\frac{\partial}{\partial y} \vec{p}_{\vec{z}}\right] \\
& \mu=\frac{j}{\rho \omega}\left[-j k_{x} \dot{p} \tilde{x}-j k_{y} \dot{p} \hat{y}-j K_{3} \dot{p} \hat{\jmath}\right] \\
& \vec{u}=\left[k_{x} \vec{x}+k_{y} \vec{y}+k_{3} \overrightarrow{3}\right] \frac{\dot{p}}{\rho \omega}=
\end{aligned}
$$

Hx $\quad=A_{1} e^{-j\left(\omega_{1} t-k x\right)}+A_{2} e^{-j\left(\omega_{2} t-k x\right)}$

$$
\begin{aligned}
& z=\frac{P}{\mu}= \\
& \int \partial \mu=-\frac{1}{\rho_{0}} \int(\nabla P) d t \\
& \left.\vec{\mu}=\frac{1}{\rho_{0}}\right]\left[\frac{A_{1}}{(-j k} e^{t i\left(\omega_{1} t-k \beta\right)}+\left(-j \mu_{2} e^{t j\left(\omega_{2} t-k_{2} \alpha\right)}\right) d t\right. \\
& =-\frac{1}{s_{s}}\left[\frac{A_{1}\left(-j k_{1}\right)}{+\left(j \omega_{1}\right)} A_{1} e^{j\left(k_{1} t-k_{1} x\right)}+\frac{A(-j k)}{\left(j \omega_{2}\right)} e^{j\left(\omega t-k_{2} x_{1}\right)}\right] \\
& =\frac{1}{s_{0}}\left(\frac{k_{-}}{w_{1}} A_{1} e^{j\left(\omega t-k_{1} x\right)}+\frac{k_{2}}{\omega_{2}} A_{2} e^{j\left(\omega t-k_{2} x\right)}\right) \\
& \vec{u}=\frac{1}{\rho_{0} c}(p) \\
& z=\frac{\dot{P}}{\dot{\mu}}=\rho_{\alpha} e
\end{aligned}
$$

K\& de og. 5.es. 13 do fundenafue Acustic

$$
\text { K8 da of. } 5 . \operatorname{si} 13 \quad \operatorname{tgo}=\frac{1}{K r} \quad \mathrm{car}_{\mathrm{K}}=343 \mathrm{~m}
$$

$$
K=\frac{w}{C_{a r}}=\frac{2 \pi f}{C_{a r}}=\frac{2 \pi}{343} f
$$

a) $f=10 \mathrm{~N}_{3}$

$$
\theta=\operatorname{atan}\left(\frac{1}{k r}\right)=a \operatorname{fon}\left(\frac{343}{2 \pi 10 \times 0,1}\right)=88,9 .
$$

3) $f=100 \mathrm{H}_{3}$

$$
\theta=79,6^{\circ}
$$

e) $f_{0}=1 \mathrm{NH3}$
c) $F=1000 \mathrm{k}$

$$
Z=\rho_{0} c \cos \theta
$$

8) $f=10 \mathrm{kH3} ; 0=3.1^{\circ}$
oBs. P/ unc onda naiotica
C) $f=100 \mathrm{k} ; \theta=0,31^{\circ}$ c/ frequarcic eyuivalerle as de dicamoilics x ems,θ argale de farse e praficmeto seno. eZxEs

$$
\begin{aligned}
& \text { 20- } f=1 \mathrm{MH}_{3}=10^{6} \mathrm{H}_{3} \\
& 10 P_{o}=46 \mathrm{~Pa} \\
& c_{e_{0 c}}=1.540 \mathrm{~m} / \mathrm{s} \\
& S_{t a c}=\rho_{L_{10}}=10^{3} \mathrm{k} / \mathrm{m}^{3} \\
& U_{0}=0,03 \mathrm{~mm} / \mathrm{s}=3 \times 10^{-5} \mathrm{~m} / \mathrm{s} \\
& r=\text { ? } \\
& z=\frac{P}{u}=\rho_{0} c \cos \theta=S_{0} C \frac{R r}{\left(1+(k r)^{2}\right)^{\frac{1}{2}}} \\
& \left(\frac{P}{U \rho_{0} C}\right)^{2}=\frac{(k r)^{2}}{1+(\mathbb{R} r)^{2}} \\
& r=\frac{1}{k}\left\{\frac{p^{2}}{u^{2} \rho_{0}^{2} c^{2}-p^{2}}\right\}^{1 / 2} \\
& K=\frac{2 \pi f}{c}=\frac{2 \pi \times 80^{+6}}{1540}=4,8 \times 10^{\frac{3}{0}} \\
& r=\frac{1}{4,8 \times 10^{3}}\left\{\frac{\left(46 P_{a}\right)^{2}}{\left(3 \times\left(0^{-5}\right)^{2} \times\left(10^{3}\right)^{2} \times(1540)^{2}-(466)^{2}\right.}\right\}^{1 / 2} \\
& r=2.23 \mathrm{~mm}
\end{aligned}
$$

$\Leftrightarrow I=\frac{P^{2}}{2 S_{0} c}$

$$
\begin{aligned}
& =\frac{P^{2}}{2 s_{n} c} \\
& =\frac{(100)^{2}}{2 \times 10 \times 1540}=3,24 \times 10^{-3} \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) I ? } \\
& \text { b) } \Delta_{5}=\int u d t \quad\left\{\begin{array}{l}
f=100 \\
P_{0}=180 p_{0}
\end{array}\right. \\
& \text { c) } U \text { ? } \\
& \text { d) } P_{e} \text { ! } \\
& \text { C) } 20 \log \frac{P}{P_{0}} \\
& \text { b) }=\Delta s=\frac{d u}{d t} \\
& u=u e^{i(u t-k x)}
\end{aligned}
$$

$$
\begin{aligned}
& |\Delta s|=\frac{U}{U}=\frac{P / s_{0} c}{W}= \\
& \text { c) } U=\frac{P}{S_{0} C}=
\end{aligned}
$$

- Propagacero de onda

22. $P_{C}=P_{=}=200 P_{a}$
$12 P_{t \rightarrow t a i)_{0}}$?

$$
P_{e_{t a}} \approx 400 P_{a}(1 \mathrm{~ms})
$$

b) It $=$?
Itic unc onder p/an Paluate

$$
\begin{aligned}
& P / I_{\text {tec }}\left(\frac{P_{\text {cec }}^{2}}{S_{i c}}\right)_{\text {tec }}^{0}\left(\frac{100)^{2}}{1000 \times 1540}\right) \\
& I_{\text {ar }}=\left(\frac{P_{e}}{P_{0} c}\right)_{\text {ar }}=\left(\frac{(200)^{2}}{1.2 \times 330}\right)=
\end{aligned}
$$

c)

$$
\begin{aligned}
& T_{I}=10 \log \left(\frac{I_{t}}{t_{i}}\right)=20 \log \left(\frac{P_{\text {stax }}}{P_{c, a}}\right)=10 \log \left(\frac{400}{200}\right) \\
& T_{I}=20 \log (e) d B
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {citci }}=P_{c a r} 2 \cdot 1.63 \ldots 2 P_{0} \approx \quad S_{\text {tec }} \approx 1060 \mathrm{k} / \mathrm{m}
\end{aligned}
$$

24. $f=5 \mathrm{M} \mathrm{Ho}$

c) T_{p} ? $T_{I}=$?

23 $T_{p}=\frac{\frac{1}{2} z_{2}}{z_{2} 12_{1}}=\frac{2 \times 7,8}{7, x+1,63}=1,65$
$13 \quad I_{I}=\left(\frac{z_{1}}{z_{2}}\right) \Pi^{2}=\frac{4 z_{2} l_{1}}{\left(z_{2}+z_{1}\right)^{2}}$

$$
T_{I}=\frac{4 \times 7,8 \times 1,63}{(7,8+1,63)^{2}}=0,57
$$

b) Nim (forso SPL ?

$$
\begin{aligned}
& \text { Nívé do Int Midnl, IL? }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 1_{\text {lec }} 20 \text { (Ps Pof tee } \\
& \text { SPL.... } \quad\binom{P_{\text {c }}}{P_{\text {rif }}}_{0 s: 0}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta S P L=0 \quad\binom{\text { tee }}{\text { tee }}=20 \log \left(T_{p}\right) \\
& A \cdot S P= \\
& \text { Resolow to a difrioner } \\
& \text { LIL. } \quad 1 L_{0550}-I L_{\text {tec }}=10 \log \left(\frac{I_{0}}{I_{0}}\right)-10 \log \left(T_{z}\right) \\
& \Delta I L=10 \log \left(T_{I}\right)
\end{aligned}
$$

24. $f=5 \mathrm{MH}_{3}$
a) $b=1 \ldots \ldots$?

$1 厶_{1} \Delta=10 \log \frac{I_{T_{3}}}{I_{T_{1}}}=20 \log \left(\frac{P_{0}}{P_{1}}\right)$

$$
\begin{aligned}
& T_{1,2}=\frac{P_{2}}{P_{1}}=\frac{2 z_{2} z_{1}}{z_{1}+z_{2}} \\
& T_{2,3}=\frac{P_{3}}{P_{2}}=\frac{2 \times-}{z_{2}+P_{3}}+\frac{z_{3}}{z_{2}} z_{1}+z_{1} \\
& \frac{P_{3}}{P_{1}}=2 \times z_{1} \times \frac{\left(11+z_{2}^{2}\right)}{2 \times z_{2}}=\frac{z_{1}}{z_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=20 \log \left(Z_{3}\right) \\
& \Delta=20 \log \left(\frac{1,4}{7}\right)[8 B]
\end{aligned}
$$

b) $R_{\pi}=|R|^{2}=\left(\frac{z_{2}-2_{1}}{2,2_{2}}\right)^{2}=\left(\frac{7, x-1,48}{1,2+1,48}\right)^{2}$
$R_{\pi}=$
c

$$
\begin{aligned}
& \begin{array}{ll}
\rho_{0,}=500 \times & \Delta \\
c_{1}=100,
\end{array} \\
& z_{\text {bor }}=\rho \cdot C_{\text {Sal }}=0.5 \times 10^{6} \mathrm{R} \cdot \boldsymbol{1} \mathrm{~L} \\
& \Delta=20 \log \left(R_{1}\right) \cdot \operatorname{ios}\left(\frac{1,48}{0,5}\right) \\
& R_{\pi}=|R|^{2}-\binom{\left.z_{2}-2,\right)^{2}}{z_{0}+2}^{2}=\left(\begin{array}{l}
0,5-1,45 \\
0,5 \\
0,1,45
\end{array}\right)^{2} \\
& =
\end{aligned}
$$

OBS: A thanswonon
1 a ocorition porcordicus
$\lambda=\frac{c}{f} \cdot \frac{1450}{5 \times 10^{6}}=3 \times 10^{-4} \quad \frac{\lambda}{\mathrm{e}}$
$\lambda \lll<m$.

$$
\begin{aligned}
& T_{I_{1,2}} \frac{4 z_{1} z_{2}}{\left(z_{1}+z_{2}\right)^{2}}=0,54_{1} \\
& T_{2,3}=\frac{4+z_{2} z_{1}}{\left(z_{1}+z_{2}\right)^{2}}=0,54
\end{aligned}
$$

25 Son s_{0} a picica man ostrita
t5 tue misio conprimento do oud a
 Scude 0 incio 1 isun on moid 3, t.

$$
\begin{aligned}
& T_{I}=\frac{4}{+\left(z_{3} / z_{1}+z_{1} / z_{3}\right) \cos ^{2} k_{2} L \cdot\left(z_{2}^{2} / z_{1} z_{3}-\frac{z_{1} z_{3}}{z z}\right) \operatorname{sen}^{2} K_{2} L} \\
& \text { P/ } \quad z_{2}^{2}=\left(z_{1} z_{3}\right) \\
& T_{I}=\frac{2+\left(\frac{Z_{3}}{z_{1}}+\frac{z_{1}}{Z_{2}}\right) \cos ^{3} K_{2} L+2 \operatorname{son}^{2} K_{2} L}{2} \\
& \int-\frac{\lambda_{1}}{2} \Rightarrow K_{2} L=\frac{2 \pi}{\lambda} \times \frac{\Delta 2}{4}=\frac{\pi}{2} \\
& I=0 \quad 0 \quad \cos ^{2} \frac{\pi}{3}=1, \text { on } \\
& T_{1}=\frac{4}{2+2}=1
\end{aligned}
$$

26) $P_{0}=100 P_{0}$

16
a) θ_{1} !as $\theta_{t}=\frac{C_{2}}{C_{1}} \sin \theta$.

$$
\theta_{1}=\operatorname{arcsan}\left(\frac{1000}{1430} \operatorname{san} 43\right)
$$

$$
\theta_{t}=a^{\circ} c_{m}\left(\frac{1000}{1430} \frac{\sqrt{2}}{c}\right)
$$

b) $P_{t}=$?

$$
\left.\begin{array}{l}
T=\frac{P_{t}}{P_{i}}=1+\left(\frac{Z_{2} / z_{1}}{\bar{Z}_{2} / z_{1}+\cos \theta_{1} / \cos \theta_{i}}\right) \\
\left.T+\frac{\theta_{7} / \cos \theta_{i}}{\frac{2}{2}-\cos \theta_{1} / \cos /(15)}\right)
\end{array}\right)
$$

c) $P_{i}+P_{r}=P_{t}$

$$
P_{r}=P_{t}-P_{i}
$$

