Fundamentos de Processamento Gráfico

Helton H. Bíscaro ; Fátima Nunes

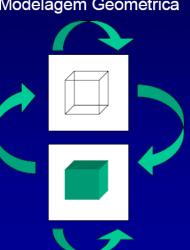
12 de setembro de 2019

1/73

Áreas Correlatas

Modelagem Geométrica

Visão Computacional

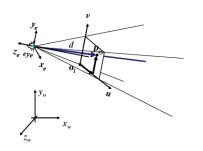


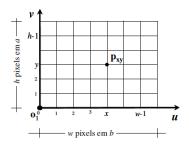
Computação Gráfica

Processamento de Imagens

Pipeline de Visualização

Projeção de um ponto.

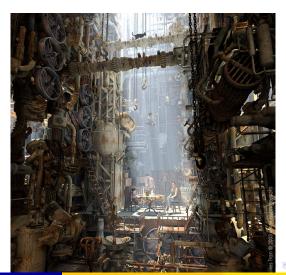




3/73

Pipeline de Visualização

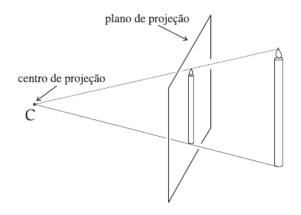
Uma cena um pouquinho mais complexa.



Pipeline de Visualização

- Espaço do Objeto: Onde cada objeto é modelado. Ele possui um sistema de coordenadas associado à geometria do objeto.
- Espaço de Cena: É um sistema de coordenadas global
- Espaço de Câmera: Esse espaço é determinado pelo sistema de coordenadas associado à projeção cônica da câmera virtual
- Espaço Normalizado: Espaço utilizado para operações de recorte de objetos que estão fora do campo de visão da câmera
- Espaço de Ordenação: Espaço que facilita a operação de visibilidade (verifica se um objeto está ou não na frente de outro)
- Espaço de Imagem: Espaço da tela virtual no plano de projeção da câmera virtual
- Espaço do Dispositivo: (Espaço de Tela) Espaço associado à superfície de exibição do dispositivo de saída gráfica

Definição da Câmera Virtual



6/73

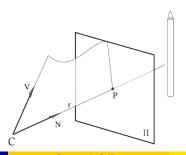
Dados:

Centro ótico C;

Ponto de visão P;

Vetor Vertical V;

Precisamos definir um sistema de coordenadas ortonormais com centro em *C*.

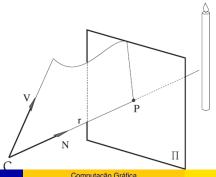


Definimos

O vetor
$$n = \frac{P - C}{\|P - C\|}$$
;

O vetor
$$n = \frac{P-C}{\|P-C\|}$$
;
O vetor $v = \frac{V-\langle V, n \rangle n}{\|V-\langle V, n \rangle n\|}$;

O vetor $u = v \times n$.



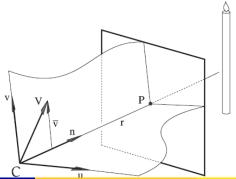
8/73

Definimos

O vetor
$$n = \frac{P-C}{\|P-C\|}$$
;

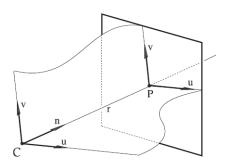
O vetor
$$n = \frac{P-C}{\|P-C\|}$$
;
O vetor $v = \frac{V-\langle V, n \rangle n}{\|V-\langle V, n \rangle n\|}$;

O vetor $u = v \times n$.

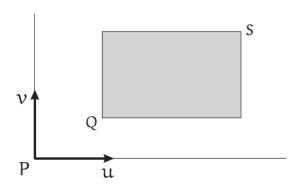


9/73

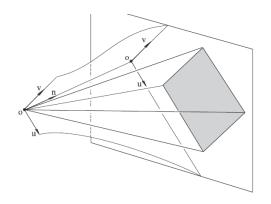
O Espaço de Câmera define naturalmente uma sistema de coordenadas no plano de projeção.



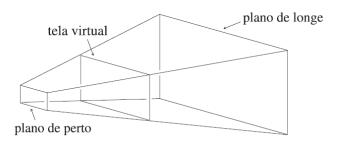
O Espaço de Câmera define naturalmente uma sistema de coordenadas no plano de projeção.



Pirâmede de Visão.

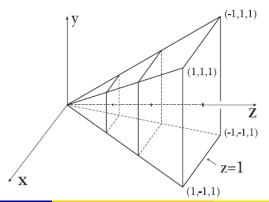


Volume de Visão: Operações de recorte e de ordenação.



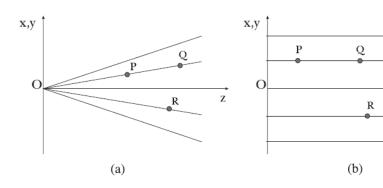
Pipeline de Visualização Espaço de Normalizado:

Volume de Visão: Operações de recorte.



Pipeline de Visualização Espaço de Ordenação:

Volume de Visão: Operações ordenação.



 \mathbf{Z}

Pipeline de Visualização Exercício:

• Verifique que a base $\{C, n, v, n\}$ do espaço de câmera é ortonoemal;

Modelagem

A coleção de métodos para descrever a forma e outras características geométricas de um objeto é conhecida como **Modelagem Geométrica**

Modelagem

A geometria pode ser complicada.

Modelagem Histórico:

- Modelagem por arames (Wireframe):
 - Representa um objeto por arestas e pontos sobre o objeto;
 - Gera modelos ambíguos.
- Modelagem por superfície (década de 60):
 - Representa um objeto por meio de sua descrição matemática;
 - Paramétrica × Implícita.
- Modelagem por sólidos(década de 70):
 - Contém informações sobre o fechamento e conectividade do objeto.
- Modelagem de dimensão mista ou Non Manifold:
 - Permite modelar objetos com estruturas internas ou elementos pendentes de dimensão diferente.
 - Delimita o sólido por superfícies que não são necessáriamente linear por partes

Modelagem : Sólidos

Propriedade Requeridas.

- Rigidez:
 - Distância e ângulos fixos no espaço Euclidiano;
 - A forma deve ser invariante sobre transformações rígidas.
- Finitude:
 - O objeto deve estar contido em uma porção limitada do espaço;
 - O obeto deve ser descrito através de um número finito de símbolos;
- Momogeneidade:
 - O objeto n\u00e3o deve partes isoladas ou penduradas em sua fronteira.
- Determinismo de fronteira:
 - Deve ser possível descrever a fronteira e, consequentemente, o interior e exterior do objeto.
- Fechamento sobre operações:
 - O resultado de operações geométricas sobre objetos válidos devem ser ainda objetos válidos.

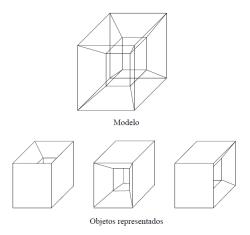
Modelagem : Sólidos

Quatro Categorias de Representação.

- Modelos de Arame: (Wireframe);
- Modelos de Decomposição: (BSP-trees, octrees, etc..);
- Modelos de Superfícies: (Surface Modeling);
- Modelos de Sólido: (Solid Modeling);
 - Modelos Construtivos (CSG Constructive Solid Geometry);
 - Modelos de Fronteira (B-rep: Boundary Representation);
 - Modelos Hibridos (CSG e B-rep);
 - Modelos Baseados em Features (Feature Based Modeling);
 - Modelos de Dimensão Mista (Non Manifold).

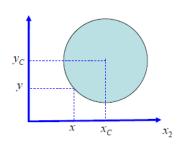
Modelagem : WireFrame

Ambiguidade de representação.



Modelagem:

Representação Implícita



Equação da circunferência

Centro (x_c, y_c) e raio r.

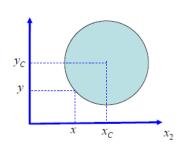
$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

.

23/73

Modelagem:

Representação Paramétrica



Equação da circunferência

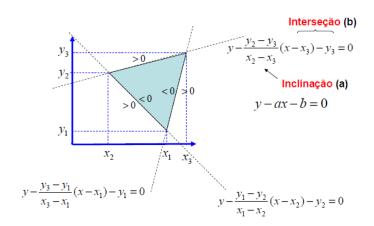
Centro (x_c, y_c) e raio r.

$$x = x_c + r\cos(\theta)$$

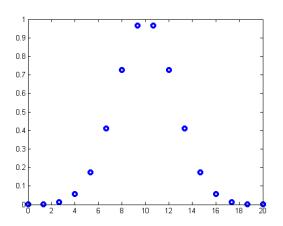
$$y = y_c + r\sin(\theta)$$

Modelagem:

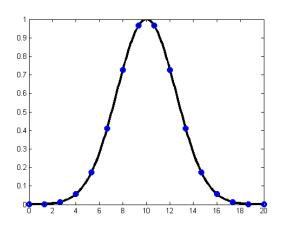
Representação Implícita de um Triângulo.



Pontos sobre uma curva.



Pontos sobre uma curva.



Polinômio Interpolador:

Dado um conjunto : $P_0 = \{(x_0, y_0), P_1 = (x_1, y_1), ..., P_n = (x_n, y_n)\}$ queremos ajustar um polinômio da forma: $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$.

Sabemos que:

$$p(x_0) = y_0$$
;
 $p(x_1) = y_1$;
:
:
:
:
:
:

Ou ainda:

$$a_0 + a_1 x_0 + a_2 x_0^2 + ... + a_{n-1} x_0^{n-1} = y_1$$
;
 $a_0 + a_1 x_1 + a_2 x_1^2 + ... + a_{n-1} x_1^{n-1} = y_2$;
:
 $a_0 + a_1 x_n + a_2 x_n^2 + ... + a_{n-1} x_n^{n-1} = y_n$.

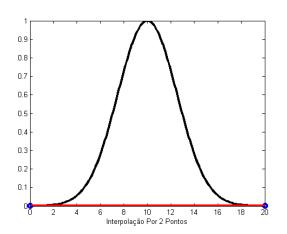
Polinômio Interpolador:

Na forma Matricial.

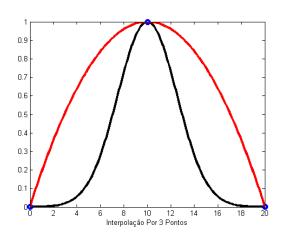
$$\begin{bmatrix} x_0^0 & x_0^1 & \cdots & x_0^{n-1} \\ x_1^0 & x_1^1 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ x_n^0 & x_n^1 & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$
Ou seja. $Ma = y$

Trabalho: Inverter a matriz M, e encontrar o vetor $a = M^{-1}y$.

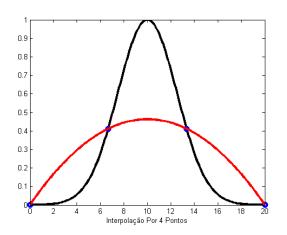
Intrepolação por dois pontos



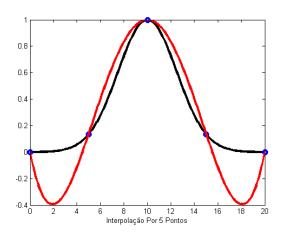
Intrepolação por três pontos



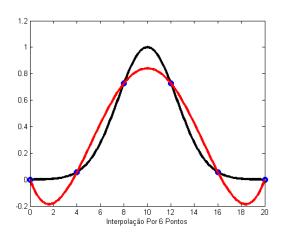
Intrepolação por quatro pontos



Intrepolação por cinco pontos



Intrepolação por seis pontos



Modelagem: Bézier

Curva de Bézier:

Dado um conjunto :
$$P_0 = \{(x_0, y_0), P_1 = (x_1, y_1), ..., P_n = (x_n, y_n)\}$$
.



$$P(t) = \sum_{i=0}^{n} P_i B_{n,i}(t)$$
, onde:
 $B_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$, $t \in [0,1]$.

Figura: Poligono de Controle

35/73

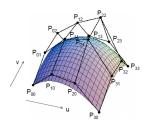
Modelagem: Bézier

Curva de Bézier - Propriedades:

- É polinomial. Se a quantidade de pontos de controle é (n+1), o grau do polinômio é n.
- Acompanha a forma do polígono de controle. Está no fecho convexo dos pontos de controle.
- Influência global de cada ponto de controle.
- Pontos extremos da curva e do polígono coincidem.
- Tangente nos pontos extremos coincidem com os segmentos extremos do polígono de controle.
- A curva não oscila mais que o polígono de controle.
- São invariantes sob transformações afins.

Modelagem: Bézier

Superfície de Bézier :



$$P(u,v) = \sum_{j=0}^{m} B_{m,j}(v) \left(\sum_{i=0}^{n} P_{i}B_{n,i}(t) P_{ij}\right) \text{ onde:}$$

$$\begin{cases}
B_{m,j}(v) = \binom{m}{j} v^{j} (1-v)^{m-j} \\
B_{n,i}(u) = \binom{n}{j} t^{i} (1-u)^{n-1}
\end{cases}$$

Modelagem: B-Splines

Curva B-Splines:

Uma Curva B-Spline de ordem $k,2 \le k \le n+1$, é definida por :

$$P:[t_0,t_{n+k}]
ightarrow\mathbb{R}$$
 , sendo que: $P(t)=\sum\limits_{i=0}^{n}p_iN_i^k(t)$

onde p_0, p_1, \ldots, p_n são pontos de controle, e as funções $N_i^k(t)$ são definidas recursivamente:

$$N_{i}^{1}(t) = \begin{cases} 1, \text{ se } t_{i} \leq t \leq t_{i+1} \\ 0, \text{ caso contrário} \end{cases}$$

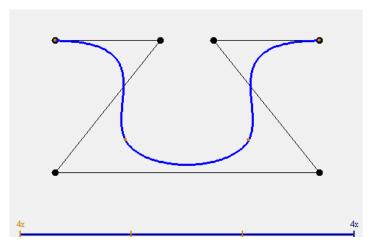
$$N_{i}^{k}(t) = \frac{(t-t_{i})N_{i}^{k-1}(t)}{t_{i+k-1}-t_{i}} + \frac{(t_{i+k}-t)N_{i+1}^{k-1}(t)}{t_{i+k}-t_{i+1}}$$

$$(1)$$

Sendo que $t_0 \le t_1 \le ... \le t_{n+k}$ são os nós da parametrização.

Modelagem: B-Spline

B-Spline - Exemplo:



Modelagem: B-Splines

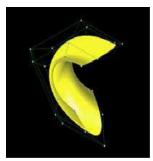
B-Splines - Propriedades:

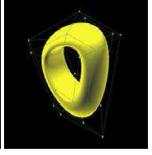
- É polinomial. P é um polinômio de grau k em $[t_i, t_{i+1}]$.
- **a** A derivada de ordem k-2 é contínua em $[t_0, t_{n+k}]$.

- Acompanha a forma do polígono de controle. Está no fecho convexo dos pontos de controle.
- Influência local de cada ponto de controle.
- Pontos extremos da curva e do polígono coincidem.
- Tangente nos pontos extremos coincidem com os segmentos extremos do polígono de controle.
- A curva não oscila mais que o polígono de controle.
- São invariantes sob transformações afins.

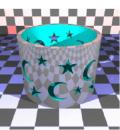
Modelagem: B-Splines

B-Splines - Superfícies: São definidas de forma idêntica à superfície de Bézier

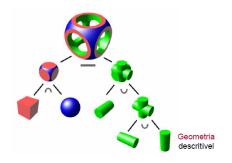




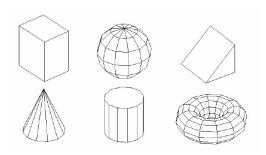
Não Há funções capazes de descrevê-las completamente



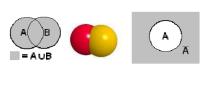
Primitivas Geométricas + Operações Booleanas



Primitivas Geométricas + Operações Booleanas



Primitivas Geométricas + Operações Booleanas



Primitivas Geométricas + Operações Booleanas Se f_1 e f_2 são funções implícitas que definem dois sólidos ($f_1(p) \le 0$ e $f_2(p) \le 0$). As operações de composição são definidas como:

```
União: f = f_1 \cup f_2 = \min\{f_1, f_2\}
```

Intersecção:
$$f = f_1 \cap f_2 = \max\{f_1, f_2\}$$

Diferença:
$$f = f_1 \setminus f_2 =_1 \cup C f_2 = \max\{f_1, -f_2\}$$

Duas Opções: Malhas, ou Decomposição Espacial

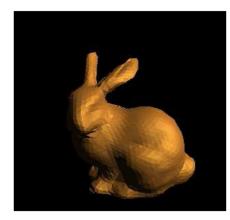
Primeira: Malhas

Primeira: Malhas

(lau.u3d)

Primeira: Malhas Poligonais





Área dos polígonos \rightarrow 0 \Rightarrow Forma \rightarrow Superfície Original

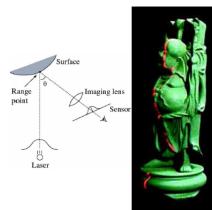
Técnicas de Amostragem

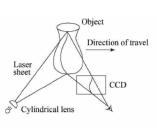
- Manual (pelo digitalizador);
- Automática;

A Volkswagan Beetle becomes the subject of a 1970 simulation project. I van Sutherland (left) and assistants plot coordinates for digitizing the car.

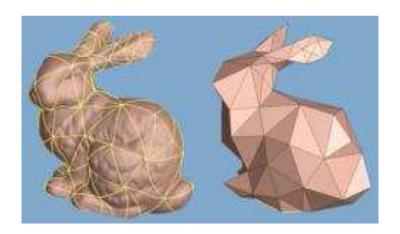
Técnicas de Amostragem

Automática;



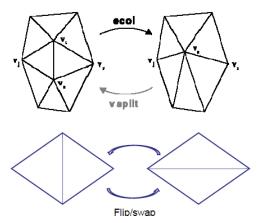


Níveis de Resolução



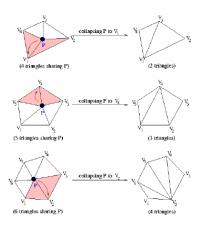
Níveis de Resolução

Colapso de Arestas e Flip

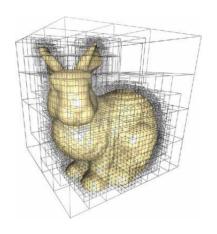


Níveis de Resolução

Colapso de Vértices



Segunda Opção: Decomposição Espacial

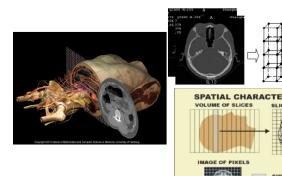


Segunda Opção: Decomposição Espacial

Realismo é mais difícil de ser alcançado

Segunda Opção: Decomposição Espacial

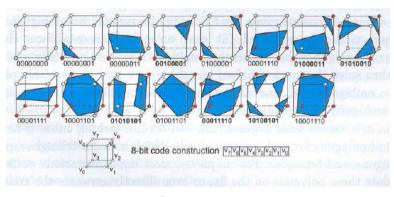
Imagens Médicas 3D.



VOXEL

Segunda Opção: Decomposição Espacial

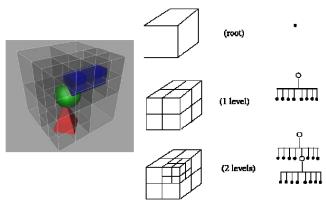
Marching Cubes;



8 vértices → 2⁸ possibilidades → 15 casos

Segunda Opção: Decomposição Espacial

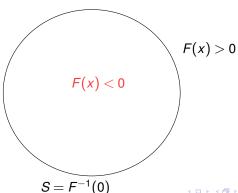
Representação por Octree;



Poligonalização

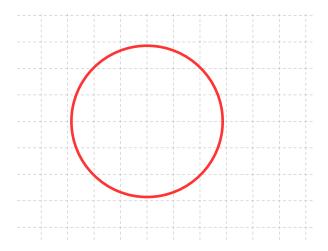
Objetivo

Aproximar por polígonos (triângulos) uma superfície implícita $S = F^{-1}(0)$, onde F é contínua e 0 é valor regular de F.



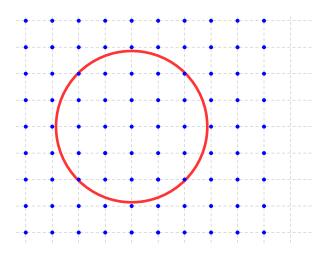
Poligonalização

Algoritmo:

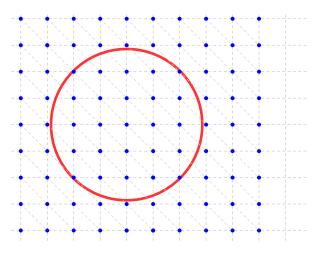


Polgonalização

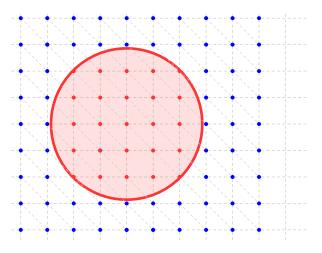
Algoritmo:



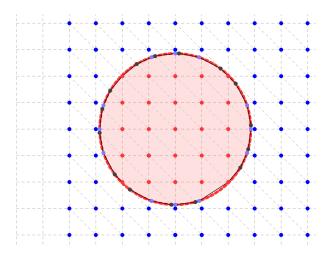
Passo 1: Fazer uma triangulação no domínio



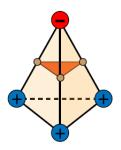
Passo 2: Avaliar F em todos os vértices do Grid

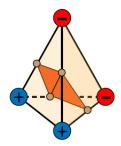


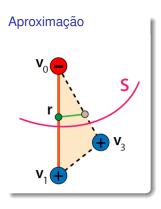
Passo 3: Aproximar linearmente nos simplexos onde F muda de sinal.



Casos possíveis em \mathbb{R}^3 : 2 casos (a menos de permutações) de configuração de sinal da função F em cada tetraedro.

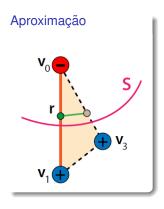






Seja
$$r = F^{-1}(0)$$
 na aresta $\langle v_0, v_1 \rangle$;
$$r = (1 - t)v_0 + tv_1$$

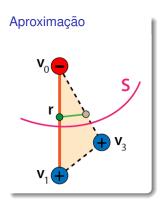
$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$



Seja
$$r = F^{-1}(0)$$
 na aresta $\langle v_0, v_1 \rangle$;

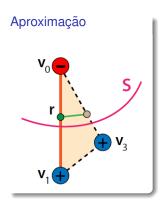
$$r = (1-t)v_0 + tv_1$$

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$



Seja
$$r=F^{-1}(0)$$
 na aresta $\langle v_0,v_1
angle;$ $r=(1-t)v_0+tv_1$

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$



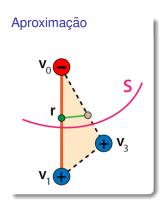
Seja
$$r=F^{-1}(0)$$
 na aresta $\langle v_0,v_1
angle;$ $r=(1-t)v_0+tv_1$

Basta encontrar o valor de t; Fazendo:

$$0 = F(r) = F((1 - t)v_0 + tv_1)$$

$$\approx (1 - t)F(v_0) + tF(v_1)$$
Portanto:

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$



Seja
$$r = F^{-1}(0)$$
 na aresta $\langle v_0, v_1 \rangle$;
$$r = (1 - t)v_0 + tv_1$$

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$

Aproximação

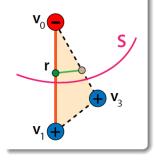
Seja
$$r=F^{-1}(0)$$
 na aresta $\langle v_0,v_1 \rangle;$
$$r=(1-t)v_0+tv_1$$

Basta encontrar o valor de t; Fazendo: $0 = F(r) = F((1-t)v_0 + tv_1)$ $\approx (1-t)F(v_0) + tF(v_1)$ Portanto:

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$

68 / 73

Aproximação



Seja
$$r = F^{-1}(0)$$
 na aresta $\langle v_0, v_1 \rangle$;

$$r = (1-t)v_0 + tv_1$$

Basta encontrar o valor de *t*; Fazendo:

$$0 = F(r) = F((1-t)v_0 + tv_1)$$

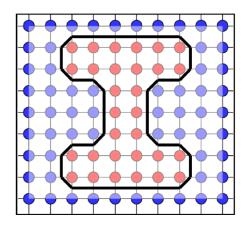
 $\approx (1-t)F(v_0) + tF(v_1)$

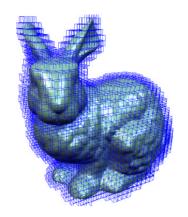
Portanto:

$$t = \frac{F(v_0)}{F(v_0) - F(v_1)}$$

Marching Cubes: Lorensen & Cline, 1987

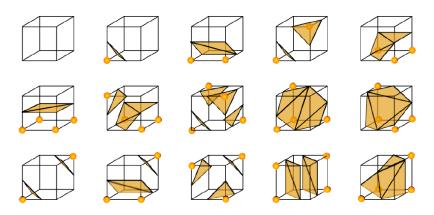
Faz uma decomposição celular do domínio de ${\it F}$, isto é, particiona o domínio em cubos.





Marching Cubes: Lorensen & Cline, 1987

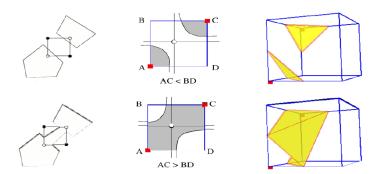
15 casos (a menos de permutações) de configuração de sinal da função ${\cal F}$ em cada cubo.



Marching Cubes: Lorensen & Cline, 1987

Problemas:

- Ambiguidades
- Dificuldade de implementação



Atividade - Curvas Implícitas

