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Monte Carlo simulation of radiation transport

“Imitates” on a computer the propagation of radiation in matter,
by numerically sampling

1 Distance between physical interactions

2 Kind of interaction

3 Angular deflection and/or energy loss

4 Generation of secondary radiation

Advantages of MC methods

Ability to deal with arbitrary geometries

Accurate interaction models are easily implemented



Differential & total cross section

Target: one atom or molecule
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Interaction probability per unit path length

Imagine each target as a sphere of radius rs such that πr2
s = σ

Number of atoms or molecules
per unit volume
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ρ
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Interaction probability per unit path length
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PDF of s

Probability to travel a path length s without interacting

P0(s) = 1−
∫ s

0
p(s′)ds′ =

∫ ∞

s
p(s′)ds′

Probability of having the next interaction in the interval (s, s + ds)

p(s)ds = P0(s) µ ds ⇒ p(s) = µ
∫ ∞

s
p(s′)ds′

Solving this equation with the boundary condition p(∞) = 0 yields

p(s) = µ e−µ s = λ−1 e−s/λ

Mean free path

〈s〉 =
∫ ∞

0
s p(s)ds = µ−1 = λ



Scattering model & PDFs

Consider a particle with energy E
moving in an infinite, homogeneous and isotropic medium

Various interaction mechanisms i are possible,
giving angular deflections θ and/or energy losses W

DDCSs (per target)
d2σi(E; W, θ)

dW dΩ

Targets randomly oriented & unpolarized beams
⇒ DDCSs independent of φ

Total cross sections (per target)
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∫ E

0
dW

∫ π

0
2π sin θ dθ

d2σi(E; W, θ)

dW dΩ



Total interaction cross section

σT(E) = ∑
i

σi(E)

Total interaction probability per unit path length

λ−1
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i
λ−1

i = N σT

PDFs
For each E

p(s) = λ−1
T e−s/λT

pi = σi/σT

pi(W, θ) =
1
σi

2π sin θ
d2σi

dW dΩ

p(φ) = 1/2π ∀ i



Generation of random tracks: detailed simulation

State of a particle after the n-th interaction

~rn = (x, y, z), d̂n = (u, v, w) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), En

i) Sample the path length to the next interaction

s = −λT ln ξ

New position~rn+1 =~rn + s d̂n

ii) Sample the interaction mechanism
i is the index that fulfills

Pi < ξ 6 Pi+1

where

P1 = 0, P2 = p1, P3 = p1 + p2, . . . , PN+1 =
N

∑
i=1

pi = 1



Generation of random tracks (cont’d)

iii) Sample the energy loss and the angular deflection
W and θ are sampled from pi(W, θ), whereas φ = 2πξ

New energy En+1 = En −W
New direction d̂n+1 = R(θ, φ) d̂n
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iv) Store the initial state of secondary particles, if any

. The simulation of the track proceeds by repeating steps i–iv



Generation of random tracks (cont’d)

Conditions to finish a track

The particle leaves the material system

E < Eabs

. Generate a large number N of histories
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Statistical averages & type A uncertainties

i) Scalar quantities

In a formal sense Q =
∫

q p(q)dq

MC estimate of Q after a (large) number of histories N

q =
1
N

N

∑
i=1

qi

Statistical uncertainty (standard deviation) of the MC estimate

σ(q) =
σ(q)√

N
≈

√√√√ 1
N

[
1
N

N

∑
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q2
i − q2

]

• MC result: QMC = q± κ σ(q), typically κ = 2 (95% confidence)

. We have to score qi and q2
i



Statistical averages & type A uncertainties (cont’d)

ii) Continuous distributions

. Distributions are tallied as histograms

Example: depth-dose distribution D(z) in (zmin, zmax)

The interval is partitioned into M depth bins (zk−1, zk)
with zmin = z0 < z1 < . . . < zM = zmax

eij,k denotes the amount of energy deposited into the k-th bin
by the j-th particle of the i-th history

Average energy deposited into the k-th bin (per history) and
corresponding statistical uncertainty
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ei,k σ(Ek) =

√√√√ 1
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]
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Statistical averages & type A uncertainties (cont’d)

Dk ≡
Ek

zk − zk−1
σ(Dk) ≡

σ(Ek)

zk − zk−1

• MC result:

DMC(z) = Dk ± κ σ(Dk) for zk−1 < z < zk
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Type B uncertainties

Sources of “systematic” uncertainties

Geometry

Material composition

Interaction models (cross sections)

Transport mechanics for charged particles


