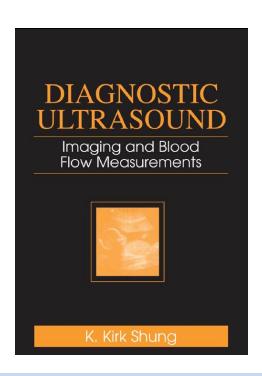


Ultrassom em biomedicina

Atenuação → Espalhamento e Absorção

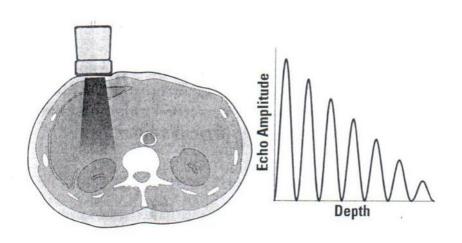
Adilton Carneiro


Universidade de São Paulo, FFCLRP, Departamento de Física

Bibliografia

K. Kirk Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, 2006. Cap. 2.

A atenuação implica em perda da energia acústica que pode ocorrer por diferentes processos tais como: espalhamento, reflexão e principalmente pela absorção da onda ultrassônica.


- Reflexão ou espalhamento > energia da onda é espacialmente redistribuída.
- Absorção → conversão de energia ultrassônica em energia térmica.



Reflexão e espalhamento

MMM Absorção

A pressão de uma onda plana viajando em um meio atenuante

$$p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$

 $\alpha \rightarrow$ o coeficiente de atenuação

$$p(x) = p(0)e^{-\alpha x}$$

$$\alpha (Np/cm) = \frac{1}{x} \ln \left(\frac{p(0)}{p(x)} \right)$$

 $\alpha \; (Np/cm) = \frac{1}{x} \ln \; \left(\frac{p(0)}{n(x)} \right) \quad \text{Nesse caso a atenuação \'e representada pela unidade de nepers}$ por centímetro (Np/cm).

Atenuação - Decibel

Nível Relativo de Intensidade = 10 log (I_1 / I_2) Nível Relativo do Sinal = 20 log (A_1 / A_2)

Coeficiente de atenuação

$$\alpha(dB/cm) = \frac{20}{x} \log \left(\frac{p(0)}{p(x)} \right)$$

O grau de atenuação do feixe sonoro é dado em: dB/cm

É preciso destacar que a absorção é uma função da frequência.

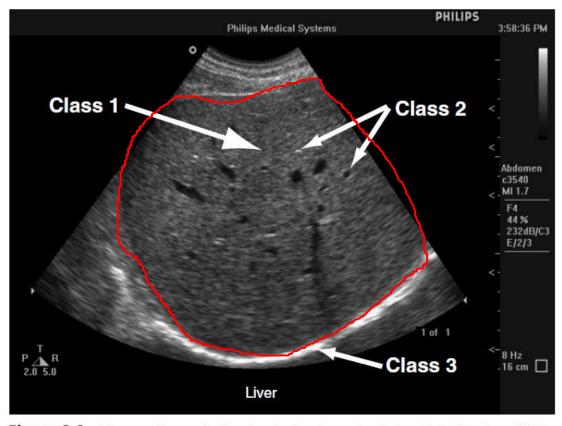
Em grande parte dos tecidos o coeficiente de absorção obedece uma lei de potência.

$$\alpha(f) = \alpha_0 |f|^{y}$$

$$\alpha(f) = \alpha_0 |f|^{y}$$

TABLE B.1 Properties of Tissues

Tissue	c	α	у	ρ	z	B/A
(units)	M/s	dB/MHz ^y -cm		Kg/m³	megaRayls	
Blood	1584	0.14	1.21	1060	1.679	6
Bone	3198	3.54	0.9^{b}	1990	6.364	_
Brain	1562	0.58	1.3	1035	1.617	6.55
Breast	1510	0.75	1.5	1020	1.540	9.63
Fat	1430	0.6	1*	928	1.327	10.3
Heart	1554	0.52	1 *	1060	1.647	5.8
Kidney	1560	10	2 ^b	1050	1.638	8.98
Liver	1578	0.45	1.05	1050	1.657	6.75
Muscle	1580	0.57	1*	1041	1.645	7.43
Spleen	1567	0.4	1.3	1054	1.652	7.8
Milk	1553c	0.5	1	1030	1.600	_
Honey	2030 ^s	_	_	1420s	2.89 ^s	_
Water @ 20°C	1482.3	2.17e-3	2	1.00	1.482	4.96



- Em frequências usadas no ultrassom diagnóstico, o espalhamento é responsável, tipicamente, por cerca de 10% a 20% do total da atenuação causada pelo tecido.
- O espalhamento é extremamente importante para a formação da imagem.
- Tanto o espalhamento como a absorção são dependentes da frequência de propagação do ultrassom.

Tipos de espalhamento

Figure 9.1 Ultrasound image of a liver showing four types of scattering effects (courtesy of Philips Medical Systems).

Espalhamento

Ao incidir em um objeto, parte da onda será absorvida e parte será espalhada.

Incident wave

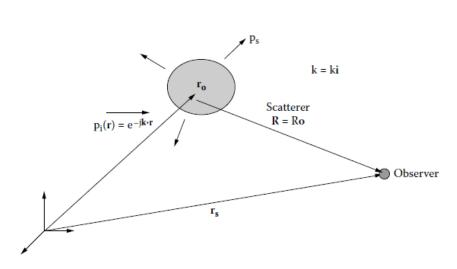
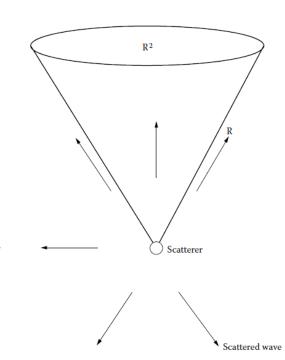



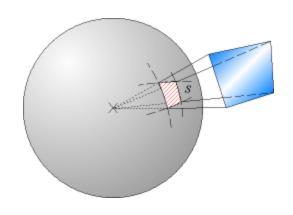
FIGURE 2.15 A plane wave incident upon a scatterer.

Seção de choque

A seção de choque é uma área efetiva (m²) que informa a probabilidade que ocorra um evento de espalhamento da onda em um alvo que possui partículas discretas.

$$\sigma_{s}=\frac{\alpha_{s}}{n}$$

 $\sigma_s \rightarrow$ seção de choque de espalhamento da onda acústica


 $\alpha_s \rightarrow$ coeficiente de atenuação devido ao espalhamento

 n → densidade numérica de alvos dada em m⁻³

Ângulo sólido -

Assim, o ângulo sólido é dado por:

$$\Omega = \frac{A}{r^2}[sr]$$

O ângulo sólido pode ser definido como aquele que, visto do centro de uma esfera, percorre uma dada área sobre a superfície dessa esfera. Ângulos sólidos assim definidos são medidos em esferorradianos (também designados esterradianos) e explicitados pela letra Ω (ómega). Tratase do equivalente tridimensional do ângulo ordinário, com o esferorradiano (unidade de ângulo sólido, com o símbolo sr) análogo ao radiano. Ângulos sólidos também podem ser definidos como a elevação ao quadrado dos graus ordinários.

Seção de choque diferencial

A seção de choque diferencial informa qual a taxa de espalhamento em um determinado ângulo

$$\sigma_{d=}^{d\sigma_{\!\scriptscriptstyle S}}/_{d\Omega}$$

$$I_s = \frac{\sigma_d(o, i)I_i}{R^2}$$

o → direção da onda espalhadai → direção da onda incidente

Quando $o=-i \rightarrow \sigma_d(-i,i)$ é conhecido como seção de choque de retroespalhamento

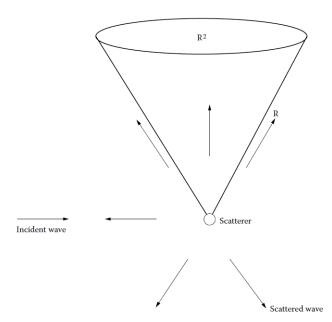


FIGURE 2.16 The differential scattering cross-section of a scatterer represents the power scattered by the scatterer into one solid angle or steradian that encompasses an area of R^2 .

R -> distância do espalhador ao ponto de observação

Seção de choque de espalhamento

A seção de choque (σ_s) pode ser entendida então como a integral da seção de choque diferencial (σ_d) sobre o ângulo sólido 4π .

$$\sigma_s = \int_{4\pi} \sigma_d d\Omega$$

Potência espalhada pelo objeto por unidade de intensidade incidente

 $d\Omega$ o ângulo sólido diferencial

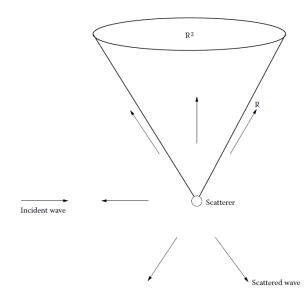
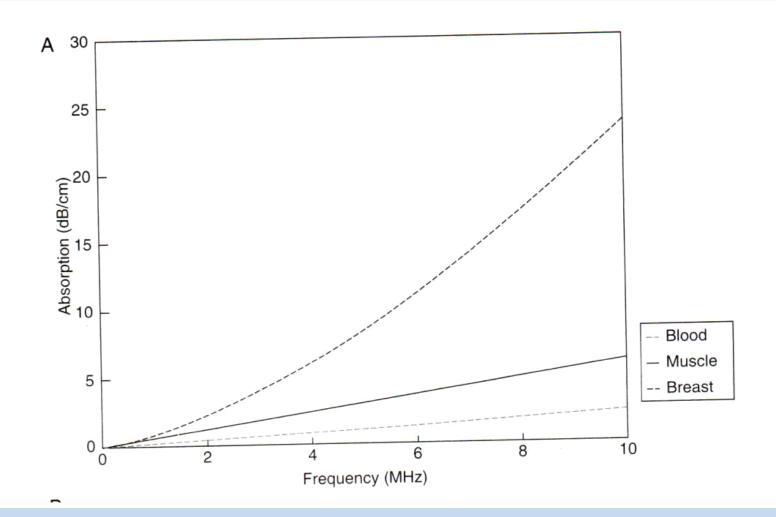


FIGURE 2.16 The differential scattering cross-section of a scatterer represents the power scattered by the scatterer into one solid angle or steradian that encompasses an area of R².

Seção de choque de atenuação

Podemos também definir uma seção de choque de absorção σ_a .

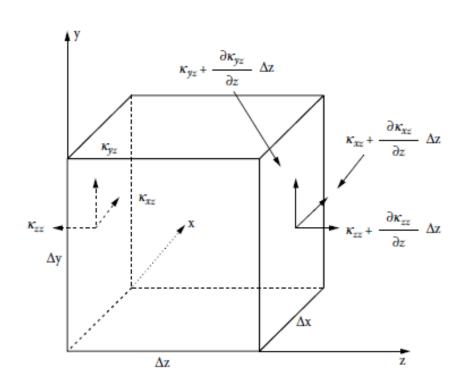

$$\alpha = n(\sigma_a + \sigma_s)$$

n → densidade numérica de alvos dada em m⁻³

Absorção

Absorção

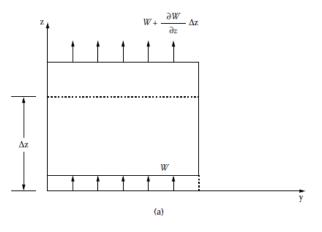
O processo de absorção no tecido é um efeito bastante complexo.


Dois principais causadores:

- Absorção devido à viscosidade do tecido.
- Modelo de relaxação múltipla (não linear).

Tensões

 κ_{zz} \rightarrow Tensão longitudinal na direção Z


κ_{yz} → Tensão de cisalhamento na direção Y

 $\kappa_{xz} \rightarrow$ Tensão de cisalhamento na direção X

Deformações

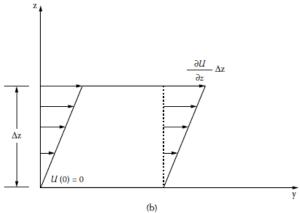
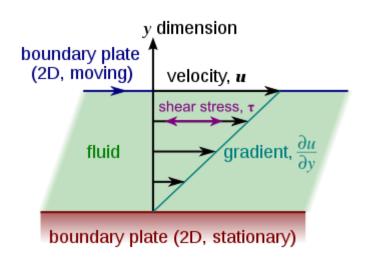


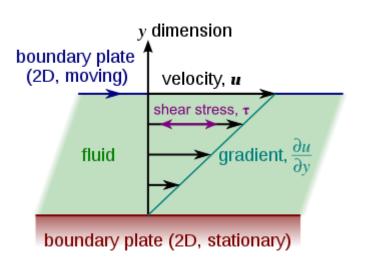
FIGURE 2.5 (a) Longitudinal strain of a Z-plane in the Z-direction. (b) Shear strain of a Z-plane in the Y-direction.

Deformação longitudinal

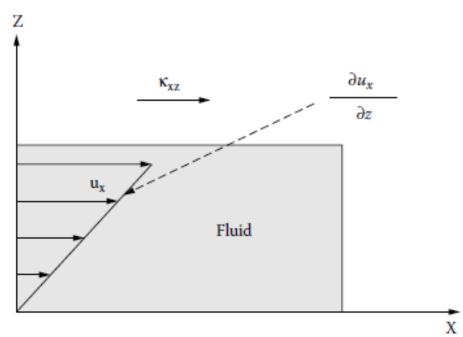
$$\varepsilon_{zz} = \frac{\partial W}{\partial z}$$

Deformação de cisalhamento


$$\varepsilon_{xz} = \frac{\partial U}{\partial z}$$


Força volumétrica de atrito interno que aparece no deslizamento de camadas fluidas dando origem a tensões tangenciais.

Esse tipo de escoamento chama-se laminar, pois o fluido se desloca em camadas planas paralelas, ou lâminas, que deslizam umas sobre as outras.



$$\frac{\partial \varepsilon_{xz}}{\partial t} = \frac{\partial}{\partial t} \frac{\partial U}{\partial z} = \frac{\partial u_x}{\partial z}$$

 $\kappa_{xz} \rightarrow$ Tensão de cisalhamento

 $\varepsilon_{xz} \rightarrow$ Deformação de cisalhamento

$$\eta = \frac{\kappa_{xz}}{\partial u_x / \partial z}$$

Nas deduções anteriores consideramos que as oscilações causadas pela onda eram totalmente livres de viscosidade.

Isso acarretava no fato de que a pressão e a velocidade de partícula estavam sempre acopladas.

Equação de Euler

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial p(x,t)}{\partial x}$$

Para o meio viscoso será preciso que a força ocasionada pela passagem da onda vença a força viscosa para que as partículas se movam.

$$\rho_0 \frac{\partial u}{\partial t} = -\frac{\partial (p - p')}{\partial x} \qquad p' \approx \eta \frac{\partial u}{\partial x'}$$

$$\rho_0 \frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} \left(p - \eta \frac{\partial u}{\partial x} \right)$$

Absorção por viscosidade

- Essa pressão extra não apresenta altas magnitudes contudo sua presença gera absorção da onda por perda de potência.
- Adotando as mesmas estratégias usadas para a dedução da equação da onda.

Equação de Euler

$$\rho_0 \frac{\partial u_x}{\partial t} = -\frac{\partial}{\partial x} \left(p - \eta \frac{\partial u_x}{\partial x} \right) \qquad \frac{\partial \delta}{\partial t} = -\rho_0 \frac{\partial u_x}{\partial x}$$

Equação da continuidade

$$\frac{\partial \delta}{\partial t} = -\rho_0 \frac{\partial u_x}{\partial x}$$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\eta}{B} \frac{\partial^3 p}{\partial x^2 \partial t} - \frac{\rho_0}{B} \frac{\partial^2 p}{\partial t^2} = 0$$

$$\delta = \Delta \rho$$

$$B = \rho \frac{\Delta P}{\Delta \rho}$$

Absorção por viscosidade

Solução típica

$$\frac{\partial^2 p}{\partial x^2} + \frac{\eta}{B} \frac{\partial^3 p}{\partial x^2 \partial t} - \frac{\rho_0}{B} \frac{\partial^2 p}{\partial t^2} = 0 \qquad \qquad p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$

$$p = P_0 e^{-\alpha x} e^{j(\omega t - kx)}$$

Sendo

$$\alpha = \frac{\eta \omega^2}{2\rho_0 c^3}$$

Proporcional à frequência ao quadrado

Absorção por viscosidade

Estudos mostram que a atenuação na maioria dos tecidos segue uma lei de potência com 1,0 < y < 1,5

$$\alpha(f) = \alpha_0 |f|^{y}$$

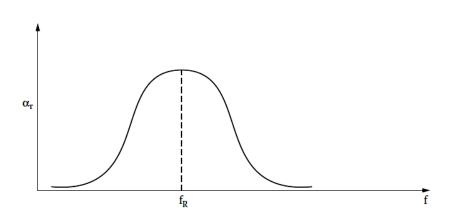
Tissue (units)	C M/s	α dB/MHz ^y -cm	у	ρ Kg/m³	Z megaRayls	B/A
Bone	3198	3.54	0.9^{b}	1990	6.364	_
Brain	1562	0.58	1.3	1035	1.617	6.55
Breast	1510	0.75	1.5	1020	1.540	9.63
Fat	1430	0.6	1*	928	1.327	10.3
Heart	1554	0.52	1*	1060	1.647	5.8
Kidney	1560	10	2 ^b	1050	1.638	8.98
Liver	1578	0.45	1.05	1050	1.657	6.75
Muscle	1580	0.57	1*	1041	1.645	7.43
Spleen	1567	0.4	1.3	1054	1.652	7.8
Milk	1553c	0.5	1	1030	1.600	_
Honey	2030s	_	_	1420s	2.89 ^s	_
Water @ 20°C	1482.3	2.17e-3	2	1.00	1.482	4.96

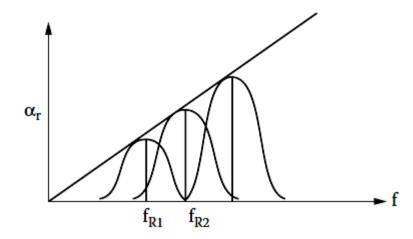
Essa dependência com o quadrado da frequência é encontrada em meios mais homogêneos como água e ar.

Modelo de relaxação múltipla

- Acredita-se que o modelo de relaxação múltipla apresenta muita influência no processo de absorção ultrassônica em tecidos.
- Vamos supor que uma molécula é movimentada para uma nova posição devido à passagem da onda.
- Tempo necessário para essa molécula voltar a sua posição de equilíbrio → tempo de relaxação (TR).

Modelo de relaxação múltipla


- Importante analisarmos TR relativo ao período da onda (T).
- TR<<T o efeito desse processo será pequeno.
- TR>>T o efeito também é pequeno já que as moléculas não se movimentarão devido a passagem da onda.
- TR ≈ T o movimento da onda e das moléculas podem estar fora de fase, o que exige mais energia para modificar a direção do movimento das moléculas.



Modelo de relaxação múltipla

- α_r → Componente da absorção devido ao processo de relaxação.;
- f_R → frequência de relaxação;
- f_{Ri} → Constantes de relaxação associadas com diferentes componentes do tecido;

