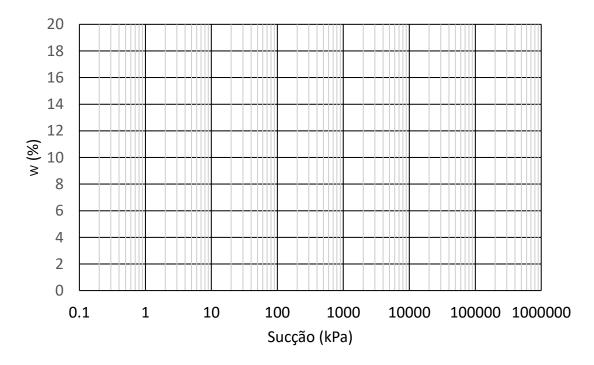
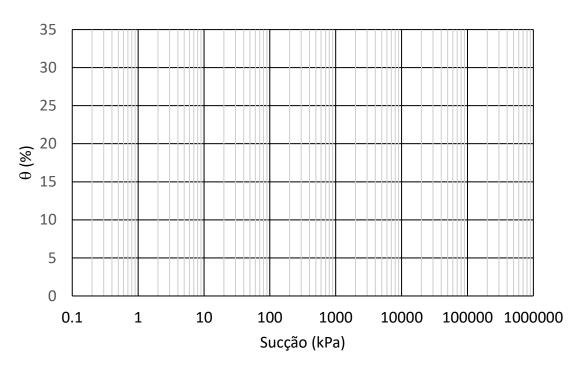
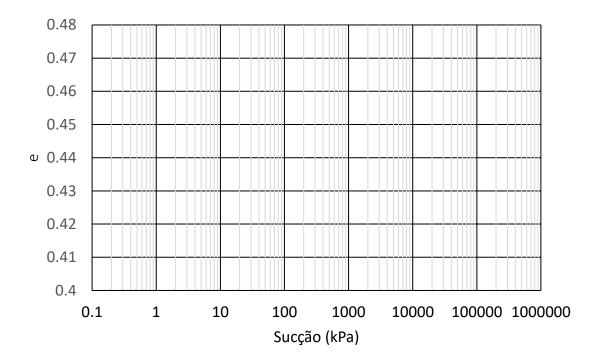


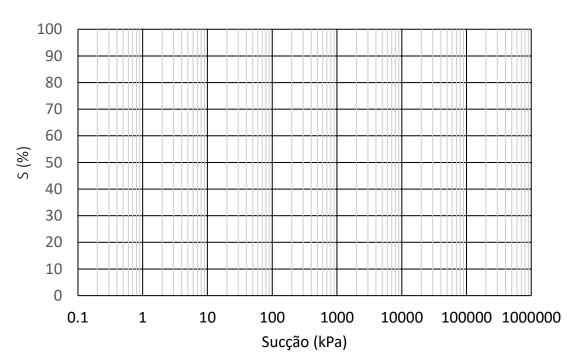
Uma amostra indeformada de solo foi obtida para a determinação da curva de retenção por três métodos (placa de sucção, placa de pressão e papel filtro). A amostra foi inicialmente saturada por capilaridade na placa de sucção e posteriormente submetida a vários níveis de sucção. Com a estabilização da sucção foram determinadas a massa e o volume do corpo de prova, e assim obtidas a densidade natural e o teor de umidade gravimétrico a cada ponto, conforme a tabela abaixo.

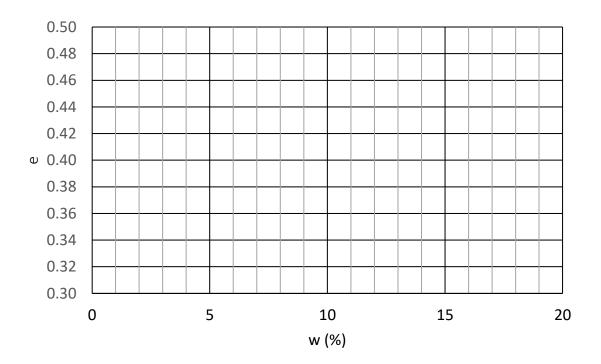

G = 2.65


		G = 2.65					
sucção							
(kPa)	ρ (g/cm ³)	w (%)	ρ_d (g/cm ³)	е	θ (%)	S (%)	
0.1	2.12	17.87					
10	2.12	17.85					
20	2.12	17.84					
40	2.12	17.83					
80	2.15	16.57					
120	2.15	16.13					
170	2.15	15.54					
200	2.15	15.19					
300	2.14	14.64					
400	2.13	13.93					
500	2.12	13.76					
600	2.12	13.43					
800	2.11	12.89					
1500	2.11	12.56					
4200	2.05	9.45					
40000	1.96	4.27					
85000	1.93	3.09					
160000	1.92	2.40					
300000	1.91	1.70					

- 1. Discuta o procedimento utilizado em cada um dos métodos aplicados comentando sobre:
 - a. Como a sução é imposta
 - b. O nível de precisão de cada método
 - c. O tempo de obtenção de cada ponto.
 - d. Como se procede a medição do volume




2. Plote os vários gráficos que compõem a interpretação da curva de retenção e a curva de contração do solo.



3. Utilizando o software RETC determine os parâmetros de ajuste para o modelo de Van Genutchen..