
PEF – 3528 – Ferramentas 
Computacionais na Mecânica das 

Estruturas: Criação e Concepção
Prof. Dr. Rodrigo Provasi

e-mail: provasi@usp.br

Sala 09 – LEM – Prédio de Engenharia Civil



Interfaces em C#
Oxyplot



Oxyplot

• Como dito na aula de bibliotecas, o Oxyplot é uma biblioteca que permite a 
exibição de gráficos.

• A melhor maneira de trabalhar é fazer um binding na propriedade 
PlotModel.



Interfaces em C#
Shapes



Shapes

• Shapes são a forma mais básica de fazer elementos de desenho em WPF.

• Características importantes:
• Shapes draw themselves: You don’t need to manage the invalidation and painting 

process. For example, you don’t need to manually repaint a shape when content 
moves, the window is resized, or the shape’s properties change. 



Shapes

• Shapes are organized in the same way as other elements. In other words, you can place a 
shape in any of the layout containers you learned about in Chapter 3. (Although the 
Canvas is obviously the most useful container, because it allows you to place shapes at 
specific coordinates, which is important when you’re building a complex drawing out of 
multiple pieces.)

• Shapes support the same events as other elements. That means you don’t need to go to 
any extra work to deal with focus, key presses, mouse movements, and mouse clicks. 
You can use the same set of events you would use with any element, and you have the 
same support for tooltips, context menus, and drag-and-drop operations.



Shapes



Propriedades

• Fill: Sets the brush object that paints the surface of the shape (everything inside its borders).
• Stroke: Sets the brush object that paints the edge of the shape (its border).
• StrokeThickness: Sets the thickness of the border, in device-independent units. When drawing a 

line, WPF splits the width on each side. So a line that’s 10 units wide gets 5 units of space on each 
side of where a single-unit line would be drawn. If you give a line an odd-number thickness, the 
line will have a fractional width on each side. For example, an 11-unit line has 5.5 units of space 
on each side. This pretty much guarantees that the line won’t line up evenly with the display 
pixels of your monitor, even if it’s running at 96 dpi resolution, so you’ll end up with a slightly 
fuzzy anti-aliased edge. You can use the SnapsToDevicePixels property to clean this up if it 
bothers you (as described in the section “Pixel Snapping” later in this chapter).



Propriedades

• StrokeStartLineCap and StrokeEndLineCap: Determine the contour of the edge of the 
beginning and end of the line. These properties have an effect only for the Line, the 
Polyline, and (sometimes) the Path shapes. All other shapes are closed, and so have no 
starting and ending point.

• StrokeDashArray, StrokeDashOffset, and StrokeDashCap: Allow you to create a dashed 
border around a shape. You can control the size and frequency of the dashes, and the 
contour of the edge where each dash line begins and ends.

• StrokeLineJoin and StrokeMiterLimit: Determine the contour of the shape’s corners. 
Technically, these properties affect the vertices where different lines meet, such as the 
corners of a Rectangle. These properties have no effect for shapes without corners, such as 
Line and Ellipse.



Propriedades

• Stretch: Determines how a shape fills its available space. You can use this property to create a 
shape that expands to fit its container. You can also force a shape to expand in one direction by 
using a Stretch value for the HorizontalAlignment or VerticalAlignment properties (which are 
inherited from the FrameworkElement class). 

• DefiningGeometry: Provides a Geometry object for the shape. A Geometry object describes the 
coordinates and size of a shape without including the UIElement plumbing, such as the support 
for keyboard and mouse events. 

• GeometryTransform: Allows you to apply a Transform object that changes the coordinate 
system that’s used to draw a shape. This allows you to skew, rotate, or displace a shape. 
Transforms are particularly useful when animating graphics. 

• RenderedGeometry: Provides a Geometry object that describes the final, rendered shape.



Shapes

<StackPanel>

<Ellipse Fill="Yellow" Stroke="Blue“ Height="50" Width="100" Margin="5" 
HorizontalAlignment="Left"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue“ Height="50" Width="100" 
Margin="5" HorizontalAlignment="Left"></Rectangle>

</StackPanel>



Shapes



Shapes

<Canvas>

<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="100" Canvas.Top="50“ 
Width="100" Height="50"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40“ 
Width="100" Height="50"></Rectangle>

</Canvas>



Shapes



Shapes

<Grid Margin="5">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"></RowDefinition>

<RowDefinition Height="*"></RowDefinition>

</Grid.RowDefinitions>

<TextBlock>The first row of a Grid.</TextBlock>

<Viewbox Grid.Row="1" HorizontalAlignment="Left" >

<Canvas Width="200" Height="150">

<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="10" Canvas.Top="50“ Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40“ Width="100" Height="50" HorizontalAlignment="Left"></Rectangle>

</Canvas>

</Viewbox>

</Grid>



Shapes



Line

• Linhas permitem desenhar linhas em um objeto no WPF.

• Exemplo:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>



Line

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100“ Canvas.Left="5“ 
Canvas.Top="100"></Line>

• A linha está em um canvas e trata o (0,0) da linha como sendo o (5,100) do 
canvas.



Polyline

• Cria uma sequencia de linhas:

<Canvas>

<Polyline Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130 
90,170 110,120 130,180 150,110 170,190 190,100 210,240" >

</Polyline>

</Canvas>



Polyline



Polygon

• O polígono é similar a polyline, porém, a forma é fechada ligando-se o 
último ponto ao primeiro:



Polygon



Polygon

• Para um polígono em que as linhas se cruzam, a regra de preenchimento é 
importante (FillRule).



Polygon

EvenOdd Nonzero



Polygon

<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow“ Canvas.Left="10" 
Canvas.Top="175" FillRule="Nonzero“ Points="15,200 68,70 110,200 0,125 
135,125">

</Polygon>



Line Caps

• É possível controlar o acabamento das linhas:



Line Joints

• Também é possível controlar as 
transições das linhas:



Dashes

<Polyline Stroke="Blue" StrokeThickness="14“ 
StrokeDashArray="1 2“ Points="10,30 60,0 90,40 
120,10 350,10">
</Polyline>



Brushes



Gradients

<Rectangle Width="150" Height="100">
<Rectangle.Fill>

<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Yellow" Offset="0.0" />
<GradientStop Color="Red" Offset="0.25" />
<GradientStop Color="Blue" Offset="0.75" />
<GradientStop Color="LimeGreen" Offset="1.0" />

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>



Transforms

• É possível aplicar transformações às formas:



Transforms



Transforms

<Rectangle Width="80" Height="10" 
Stroke="Blue" Fill="Yellow“ 
Canvas.Left="100" Canvas.Top="100">

<Rectangle.RenderTransform>

<RotateTransform Angle="25" />

</Rectangle.RenderTransform>

</Rectangle>



Transforms

<Rectangle Width="80" Height="10" Stroke="Blue" 
Fill="Yellow“ Canvas.Left="100" Canvas.Top="100">

<Rectangle.RenderTransform>

<RotateTransform Angle="25“ CenterX="45" 
CenterY="5" />

</Rectangle.RenderTransform>

</Rectangle>


