Concreto Armado

PEF2604 **FAU-USP**

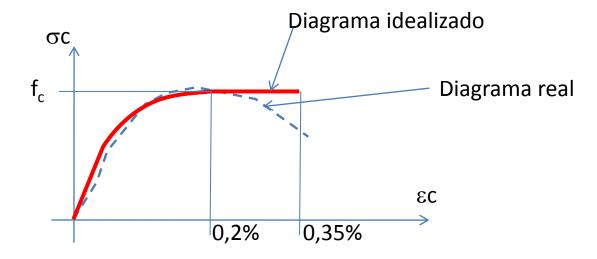
Expressões para pré-dimensionamento

Concreto como material

- Alta resistência à compressão f_{ck} (resistência característica)
- Baixa resistência à tração $-f_{ctk} = 0.1 f_{ck}$
- Crescimento da resistência com o tempo Maturidade $f_{cj} = \beta f_{ck}$ com j em dias

semanas	1	2	4	9	18	52	150	300
dias	7	14	28	63	126	364	1050	2100
β	0,78	0,90	1,00	1,09	1,14	1,20	1,23	1,25

• Por convenção $f_{ck} = f_{c28}$ com tratamento estatístico (quantil 5% inferior)


Concreto como material

- A carga permanente (mantida no tempo)
 causa uma perda à resistência do concreto
 que deve ser considerada igual a 30%. Para
 este ajuste se projeta todo o crescimento
 esperado para o concreto (maturidade) e
 toda a perda esperada para a carga mantida.
- Assim a resistência a ser utilizada será: 0,7 x $1,25 \times 0,97$ $f_{ck} = 0,85$ f_{ck}

Coef. Rüsch

Concreto como material

- Desta forma espera-se que com a segurança adequada ao ELU (estado limite último) as tensões de compressão que atuam no concreto não ultrapassem 0,85 f_{cd}
- Com $f_{cd} = f_{ck}/1,4$ (valor de cálculo da resistência)

Valores usuais para fck

classe

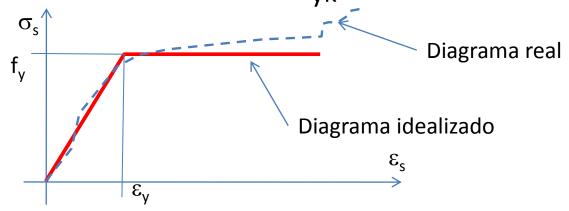
•
$$C20$$
 $f_{ck} = 20MPa$ sem agressividade ambiental

• C25
$$f_{ck} = 25MPa$$
 baixa agressividade ambiental

• C30
$$f_{ck} = 30MPa$$
 media agressividade ambiental

• C35
$$f_{ck} = 35MPa$$
 alta agressividade ambiental

• C40
$$f_{ck} = 40MPa$$
 regiões especiais de agressividade


• C45
$$f_{ck} = 45MPa$$
 regiões especiais de agressividade

• C50
$$f_{ck} = 50MPa$$
 regiões especiais de agressividade

$$f_{cd} = f_{ck}/\gamma_c$$
 $\gamma_c = 1.4$ coef de minoração do concreto

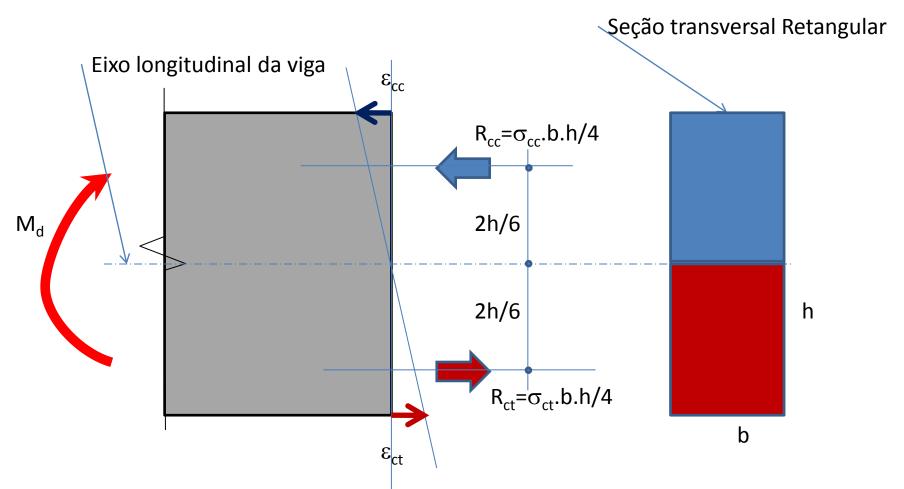
Aço como material para o concreto armado

- O Aço tem resistência à compressão e à tração iguais.
- O valor de resistência tomado é o referente ao início do escoamento do aço. Este valor é tratado estatisticamente de forma obter-se o a grandeza característica: f_{vk}

Valores usuais para o aço

Tipo de aço

• CA25
$$f_{yk} = 250MPa$$
 $f_{yd} = 217,4 MPa$

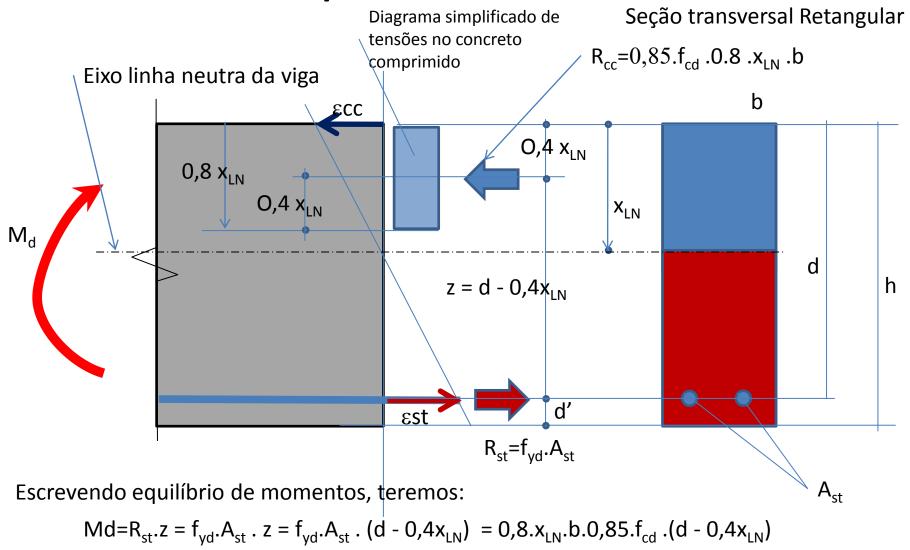

• CA50
$$f_{yk} = 500MPa$$
 $f_{yd} = 434,8 MPa$

• CA60
$$f_{ck} = 600MPa$$
 $f_{yd} = 521,7 MPa$

•
$$f_{yd} = f_{yk} / \gamma_s$$

- γ_s =1,15 Coeficiente de minoração do aço
- E_s = 210 GPa Módulo de elasticidade dos aços

Flexão Simples Concreto Simples


Escrevendo equilíbrio de momentos, teremos:

$$M_d = R_{ct} \cdot 2h/3 = \sigma_{ct} \cdot b \cdot h/4 \cdot 2h/3 = \sigma_{ct} \cdot b \cdot h^2/6$$

 $M_{d,res} = f_{ctd} \cdot b \cdot h^2 / 6$

Momento que leva o concreto a ruptura por tração

Flexão Simples Concreto Armado

Dado M_d obtém-se x_{LN} e então z e A_s necessário.

Flexão Simples Concreto Armado

Seção transversal Retangular

- Simplificação para $f_{ck} <= 35MPa$:
- Aproximação de z = 0.8 d e $0.8 x_{LN} = 0.8 . 0.5 d$
- Assim: $R_{st} = M_d/(0.8d)$ e $A_{st} = R_{st}/f_{yd}$
- Para garantir ductilidade na ruptura, deve-se respeitar a relação:

$$A_{st} <= A_{st,lim}$$

com $A_{st,lim} = 0.4d.b.0.85f_{cd}/f_{yd}$
 $= 0.34.b.d.f_{cd}/f_{vd}$

 Se a relação acima não for cumprida, então deve-se acrescentar um armadura de compressão, de forma que :

$$A_{sc} = A_{st} - A_{st,lim}$$

Flexão Simples Concreto Armado

Seção transversal Retangular

- Simplificação para 35MPa<f_{ck}<=50MPa :
- Aproximação de $z = 0.84 d = 0.8 x_{LN} = 0.8 .0.4 d$
- Assim: $R_{st} = M_d/(0.84d)$ e $A_{st} = R_{st}/f_{vd}$
- Para garantir ductilidade na ruptura, deve-se respeitar a relação:

$$A_{st} \le A_{st.lim}$$
 com

$$A_{st,lim} = 0.32d.b.0.85f_{cd}/f_{yd}$$

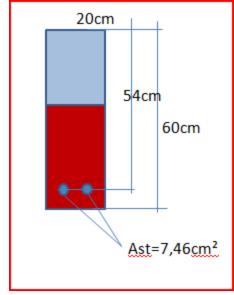
= 0.272.b.d.f_{cd}/f_{yd}

 Se a relação acima não for cumprida, então deve-se acrescentar um armadura de compressão, de forma que :

$$A_{sc} = A_{st} - A_{st,lim}$$

Exemplo de dimensionamento à flexão simples Seção transversal Retangular

Dados


- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Mk=100 kNm

Exemplo de dimensionamento à flexão simples Seção transversal Retangular

Dados

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Mk=100 kNm

Resolução EX1

•
$$A_{st,lim} = 0.34.b.d.f_{cd}/f_{yd} = 0.34.b.d.f_{cd}/f_{yd}$$

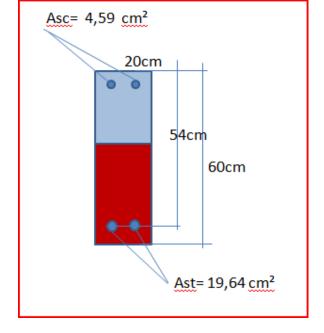
$$= 0.34x20x54x0.041$$

- Com $f_{cd}/f_{vd} = (25/1,4) / (500/1,15) = 0,041$
- $R_{st} = M_d/(0.8d) = 100x1.4/(0.8x0.54) = 324.07kN$
- $A_{st} = R_{st}/f_{vd} = 324,07 / (500/1,15)x10 = 7,46 cm^2$
- Como $A_{st} < A_{st,lim}$ -> não há A_{sc} .

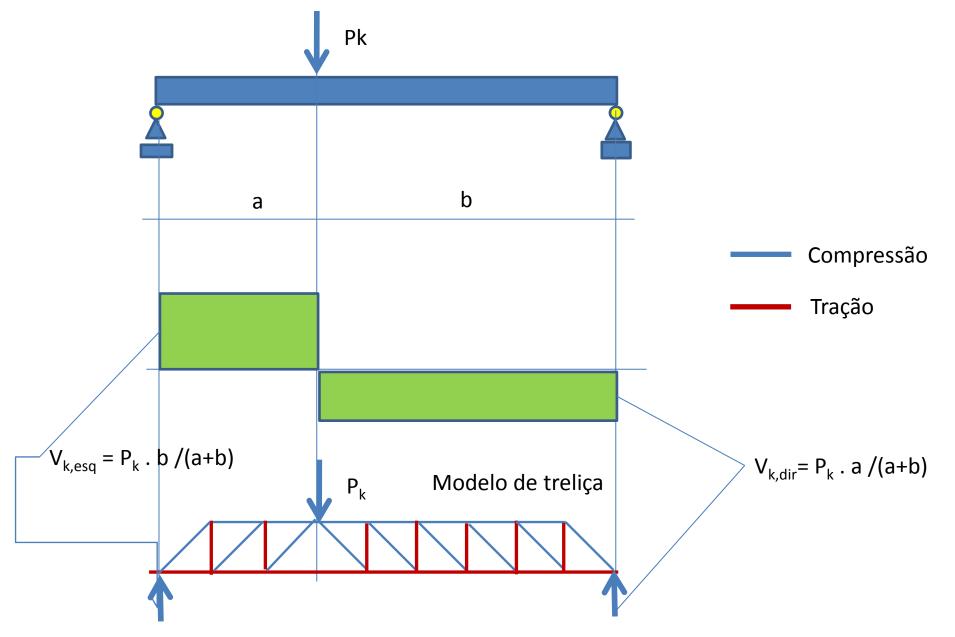
Acerto dimensional

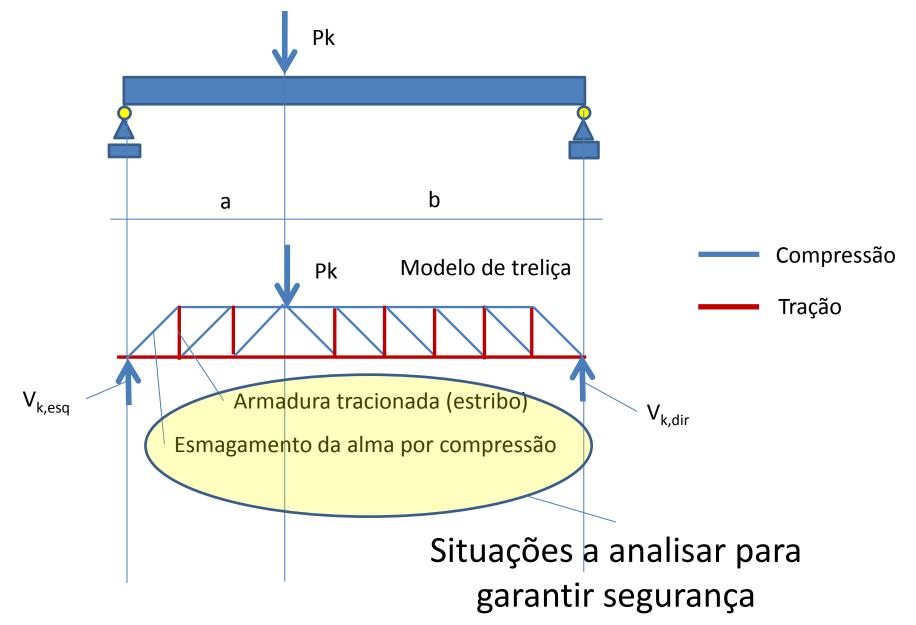
Exemplo de dimensionamento à flexão simples Seção transversal Retangular

Dados

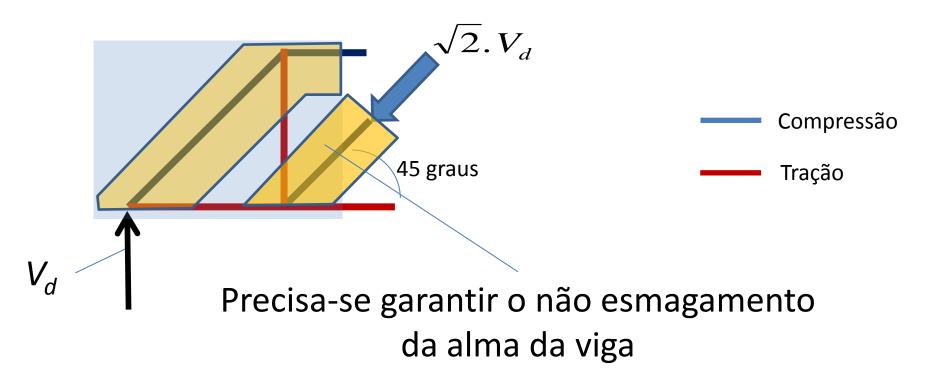

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Mk=250 kNm

Exemplo de dimensionamento à flexão simples seção transversal Retangular


Dados


- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Mk=250 kNm

Resolução EX2


- A_{st,lim} = 15,05 cm² (idem exercício anterior)
- $R_{st} = M_d/(0.8d) = 250x1.4/(0.8x0.54) = 810.19kN$
- $A_{st} = R_{st}/f_{vd} = 810,19 / (500/1,15)x10 = 19,64 cm^2$
- Como A_{st}>A_{st,lim} -> há A_{sc}
- $A_{sc} = A_{st} A_{st,lim} = 19,64 15,05 = 4,59 \text{ cm}^2$

Compressão da alma de concreto

Extremidade esquerda da viga

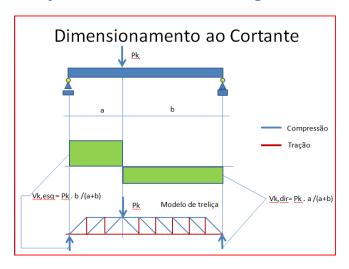
Verificação ao esmagamento do concreto da alma

- V_k Solicitação característica de Força Cortante
- $V_d = \gamma_f . V_k = 1.4 . V_k$ Solic. de Cálculo ...
- V_{Rd2} = 0,27. α_{v2} . fcd .b.d Força Cortante Resistente na alma de concreto (acima deste valor a alma da viga é rompida por esmagamento)
- Portanto: $V_d \le V_{Rd2}$ é necessário

$$\alpha_{v2} = 1 - f_{ck}/250$$

fck (MPa) 20	25	30	35	40	45	50
α_{v2}	0,92	0,90	0,88	0,86	0,84	0,82	0,80

Exemplo de dimensionamento ao


cortante

Seção transversal Retangular

Dados

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50

Verificar a segurança da alma de concreto

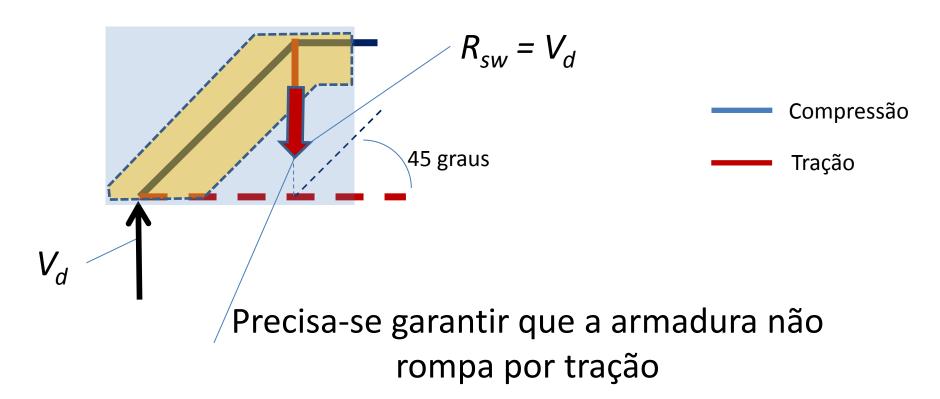
Exemplo de dimensionamento ao cortante Seção transversal Retangular

Dados

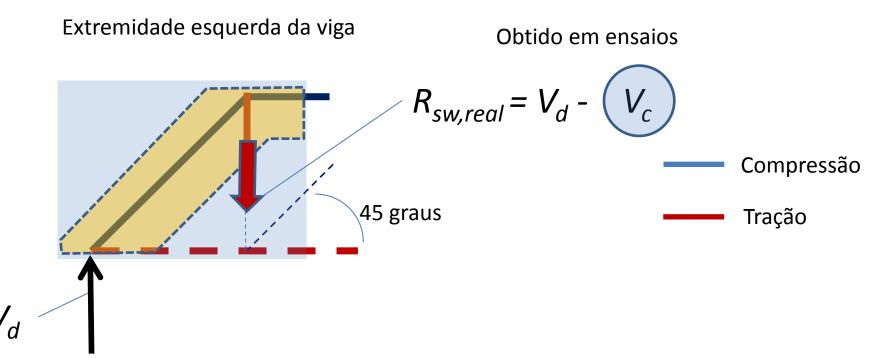
- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Vk=300 kNi

Verificar a Segurança da alma de concreto

Resolução EX3

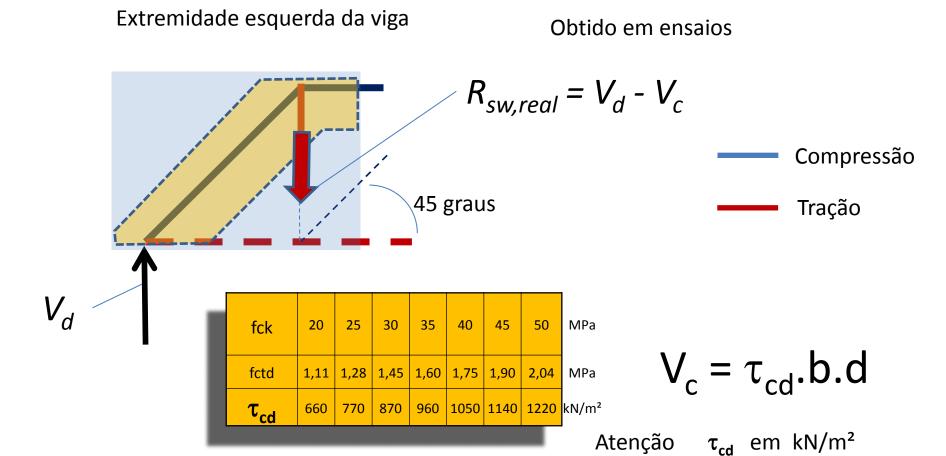

fck (MPa)	20	25	30	35	40	45	50
α_{v2}	0,92	0,90	0,88	0,86	0,84	0,82	0,80

•
$$\alpha_{v2} = 0.9$$


- $V_{Rd2} = 0.27 \times 0.9 \times 25000/1.4 \times 0.2 \times 0.54$ = 468,64 kN
- $V_{Sd} = 300 \times 1.4 = 420 \text{ kN}$
- $V_{Sd} < V_{Rd2}$
- Ok! Segurança da alma de concreto verificada

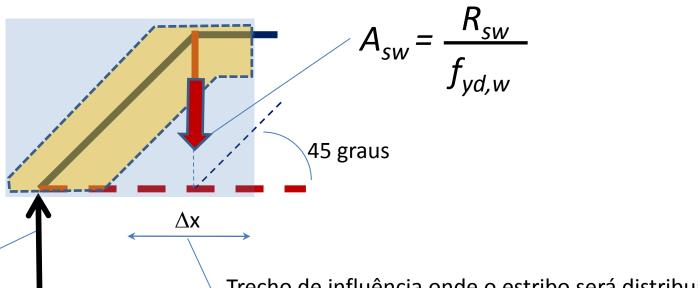
Tração na armadura do estribo

Extremidade esquerda da viga



Tração na armadura do estribo

A força real no estribo é menor do que a determinada pelo modelo matemático


Tração na armadura do estribo

Tração na armadura do estribo

Extremidade esquerda da viga

Área de aço dos estribos

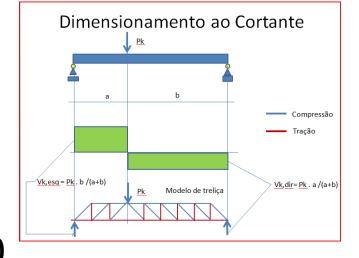
Trecho de influência onde o estribo será distribuído = z = 0,9 d (adotado)

$$A_{sw/s} = \frac{Vsd - Vc}{f_{yd,w}.0,9d}$$

$$c/f_{yd,w} = f_{yd} <= 435MPa$$

Área de aço dos estribos por unidade de comprimento de viga

Exemplo de dimensionamento ao


cortante

Seção transversal Retangular

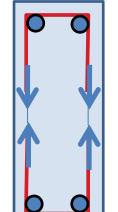
Dados

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50

Determinar a armadura dos estribos

Exemplo de dimensionamento ao cortante Seção transversal Retangular

- Dados
- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Vk=300 kN


Determinar a armadura dos estribos

R	le	SC	olu	uς	çã	0		EX
fck	20	25	30	35	40	45	50	MPa
fctd	1,11	1,28	1,45	1,60	1,75	1,90	2,04	MPa
$ au_{cd}$	660	770	870	960	1050	1140	1220	kN/m²
	fck fctd	fck 20 fctd 1,11	fck 20 25 fctd 1,11 1,28	fck 20 25 30 fctd 1,11 1,28 1,45	fck 20 25 30 35 fctd 1,11 1,28 1,45 1,60	fck 20 25 30 35 40 fctd 1,11 1,28 1,45 1,60 1,75	fctd 1,11 1,28 1,45 1,60 1,75 1,90	fck 20 25 30 35 40 45 50 fctd 1,11 1,28 1,45 1,60 1,75 1,90 2,04

f_{vwd} em kN/cm²

•
$$V_c = \tau_{cd}$$
.b.d = (770) x 0,2 x 0,54 = 83,16 kN

• Asw/s =
$$(300x1,4 - 83,16) / (43,5) x 0,9 x 0,54) =$$

= 15,94 cm²/m

1 estribo tem duas pernas, pelo menos, assim, deve-se dividir a área de aço pelo número de pernas.

No nosso caso adotaremos 1 estribo de 2 pernas, portanto:

Asw/s, 1 perna = $7.97 \text{ cm}^2/\text{m}$

Exemplo de dimensionamento ao cortante Seção transversal Retangular

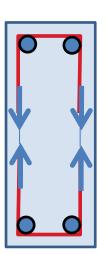
Dados

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Vk=300 kN

Determinar a armadura dos estribos

Resolução

EX4


CONTINUAÇÃO

$$A_{sw/s, 1 perna} = 7,97 cm2/m$$

Vamos determinar o número de barras por comprimento longitudinal de viga (o esforço cortante se desenvolve ao longo do comprimento da viga).

Para isto se faz necessário conhecer o que os fornecedores de aço oferecem ao mercado. Vejamos a tabela abaixo, onde relacionamos o diâmetro da barra em mm e a área

correspondente em cm².

Diam	As(cm²)
5.0	0,2
6.3	0,315
8.0	0,5
10.0	0,8
12.5 —	→ 1,25
16←	2,0
20	3,15
25	5,0

O espaçamento entre estribos mínimo deve ser 10 cm e de no máximo uma distância igual à metade altura da viga .

No nosso caso, 10 cm<= s <= 30cm Vamos admitir inicialmente s=20cm e teremos que o As,nec para 1 perna a cada 20 cm será de 0,2*7,97=1,54 cm² daria ferro de 16mm muito alto!

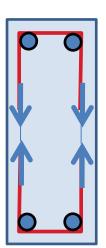
Vamos impor ferro de 12.5mm -> As=1,25cm² e determinar o espaçamento: s=1,25/7,97=0,156m assim adotamos s=15cm...

Exemplo de dimensionamento ao cortante Seção transversal Retangular

Dados

- b=0,20m
- h=0,60m
- concreto C25 e aço CA-50
- d'=0,1 h= 0,06m (valor assumido inicial)
- Vk=300 kN

Determinar a armadura dos estribos


Resolução

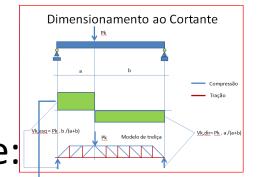
CONTINUAÇÃO

Asw/s, 1 perna = $7.97 \text{ cm}^2/\text{m}$ ϕ 12.5 c/ 15cm (como obtido)

Vejamos que estes estribos são suficiente, refazendo o cálculo ao contrário:

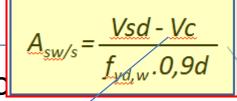
As, escolhido = $2x 1,25 / 0,15 = 16,66 \text{ cm}^2/\text{m}$ superior ao necessário calculado de $15,94 \text{ cm}^2/\text{m}$

Diam	As(cm
5.0	0,2
6.3	0,315
8.0	0,5
10.0	→ 0,8
12.5	1,25
16	2,0
20	3,15
25	5,0


Se agora quisessemos impor um ϕ 10mm na tabela obteríamos a área correspondente de 0,8cm² e verificaríamos que o espaçamento necessário seria:

s = 0,8 / 7,97 = 0,10m ou seja 10 cm Também possível de ser utilizado!

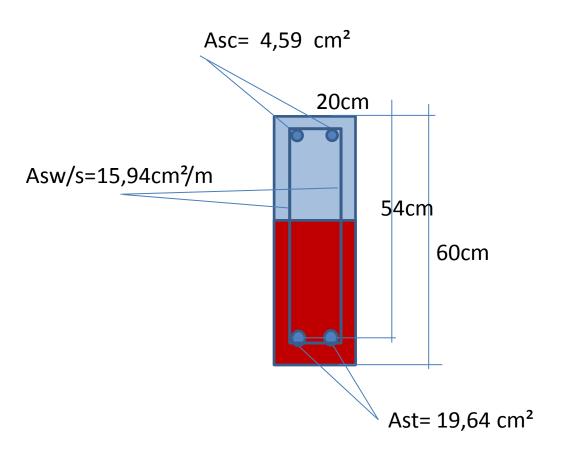
As,escolhido = 2x 0,8 / 0,10 = 16,0 cm²/m superior ao necessário calculado de 15,94 cm²/m Mas mais econômico que a escolha anterior


Resumindo

 Quando se faz o dimensionamento ao cortante a sequência é a seguinte:

- Escolhe o cortante da seção mais solicitada
- 2. Verificar o esmagamento da diagonal comprimida $(V_{sd} \le V_{Rd2}) \leftarrow V_{Rd2} = 0,27. \ \alpha_{v2}. \ fcd.b.d$
- Determinar a área de aço necessária ao estribo

4. Escolher a bitola (φ) e o espaçamento(s) dos estribos


f	ck	20	25	30	35	40	45	50	MPa /
f	ctd	1,11	1,28	1,45	1,60	1,75	1,90	2,04	$\underline{Vc} = \underline{\tau}_{cd}.b.d$
τ	cd	660	770	870	960	1050	1140	1220	kN/m²
									Atenção τ _{cd} em <u>kN/m²</u>

Armadura mínima de estribo

 Para fins desta disciplina adotaremos a armadura mínima como:

- $(A_{sw}/s)_{MIN}=0.14 \times b_{w}$
- Com A_{sw}/s em cm²/m
- b_w em cm
- Por exemplo, para bw=20cm, $(A_{sw}/s)_{MIN}=2.8$ cm²/m

Corte da nossa viga exemplo na pior condição

