
USP/EESC/SEL/LSEE-2019

SEL354 Proteção de Sistemas de Energia Elétrica

Universidade de São Paulo - USP Escola de Engenharia de São Carlos — EESC Departamento de Engenharia Elétrica Laboratório de Sistemas de Energia Elétrica - LSEE

- Docente
- ✓ Prof. Titular Denis Vinicius Coury (016 3373-8133, coury@sc.usp.br)
- Colaboradores
- ✓ Thiago Souza Menezes (thiagosm@usp.br)

São Carlos, 2019.

TÓPICOS

A proteção de sistemas elétricos

- 2.1 Introdução.
- 2.2 Filosofias básicas da proteção.
- 2.3 Proteção das linhas de transmissão
- 2.4 Proteção de transformadores
- 2.5 Proteção de reatores e geradores
- 2.6 Proteção de barramentos.
- 2.7 Transformadores de potencial e de corrente.

2.1 Introdução aos sistemas de proteção

✓ Apanhado geral dos princípios operacionais dos relés em funcionamento atualmente.

Entrada {V e I fasoriais} → Saída {on-off - mudança de status}

- ✓ Razão principal desta revisão: ponto de referência para a proteção microprocessada.
- ✓ Muitas técnicas digitais utilizam dos mesmos princípios de maneira mais sofisticada.

Histórico:

- ✓ Os primeiros relés eletromecânicos: robustos mecanicamente, imunes a EMI e lentos.
- ✓ Relés de estado sólido (final dos anos 50): componentes eletrônicos, não necessitavam de manutenção, mais flexíveis e com maior velocidade de atuação.
- ✓ Relés digitais
- ✓ Atualmente há uma combinação de eletromecânico + estado sólido + digital nos SEPs.

2.2 Função da proteção

- ✓ Proteger os SEPs dos efeitos danosos de uma falta.
- ✓ Atributos cada vez mais exigidos → crescimento, complexidade e interligamentos dos SEPs

Os relés de proteção devem provocar, sem delongas, o desligamento total do elemento defeituoso.

Prováveis causas dos defeitos:

- ✓ Ar: CC por aves, roedores, galhos de arvores, TCs, rigidez dielétrica afetada por frio ou calor.
- ✓ Isoladores de porcelana curto-circuitados ou rachados.
- ✓ Isolação de transformadores e geradores afetados pela umidade.
- ✓ Descargas atmosféricas.
- ✓ Surtos de chaveamento.

<u>Efeitos indesejáveis dos CC:</u>

- ✓ Redução da margem de estabilidade do sistema.
- ✓ Danos aos equipamentos próximos a falta.
- ✓ Explosões.
- ✓ Efeito cascata.

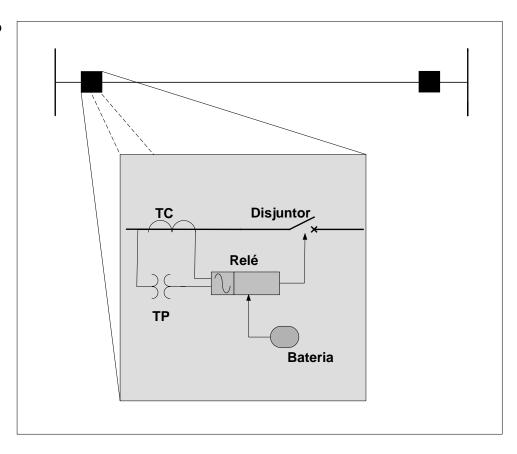
Quadros Estatísticos dos defeitos

Quadro I - Levantamento estatístico ocorrido na Central

Electricity Generating Board - Inglaterra

EQUIPAMENTO	DEFEITO (%)
Linhas aéreas	31,3
Proteção	18,7
Transformadores	13,0
Cabos	12,0
Seccionadores	11,7
Geradores	8,0
Diversos	2,1
TC's e TP's	1,8
Equipamento de controle	1,4

Quadros Estatísticos dos defeitos

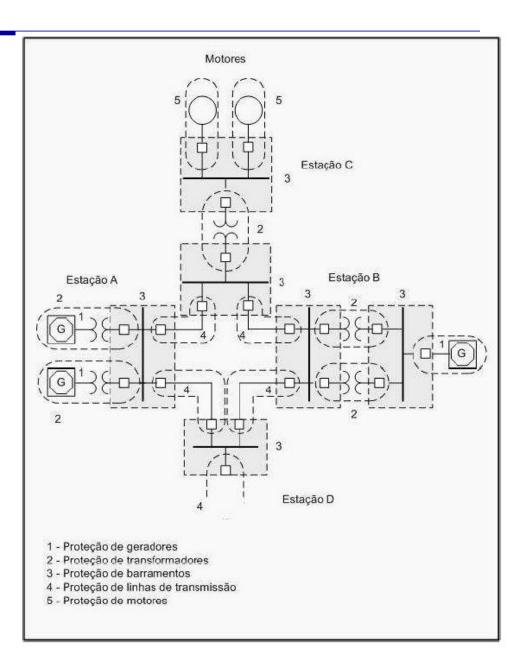

Quadro II – Levantamento dos tipos de faltas sobre linhas de transmissão fornecido pela *Boneville Power Association* (BPA) e *Swedish State Power Boord* (1951 – 1975)

Tipo dos	ВРА	SSPB	
defeitos	500KV	400 KV	200 KV
Fase - Terra	93%	70%	56%
Fase - Fase	4%	23%	27%
Fase – Fase - Terra	2%	} 70/	} 17%
Trifásico	1%	} 7%	J 17%

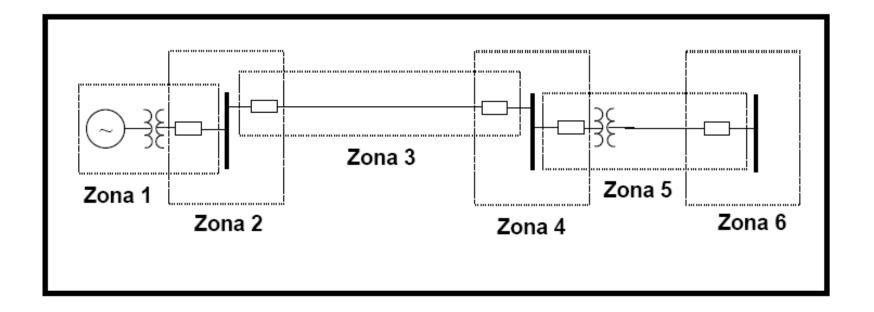
Subsistemas do sistema de proteção

- ✓ Circuito Disjuntor: isola o circuito faltoso interrompendo uma corrente quando esta esta próxima de zero. É operado por um disparador energizado pela bateria, que por sua vez, é comandada pelo relé.
- ✓ Transdutores: TPs e TCs reduzem a magnitude da V e I (dentro de certos limites, reproduzem fielmente os valores observados).
- ✓ Relés: são os elementos lógicos do sistema de proteção. Normalmente respondem a V e I acusando a abertura ou não dos disjuntores.

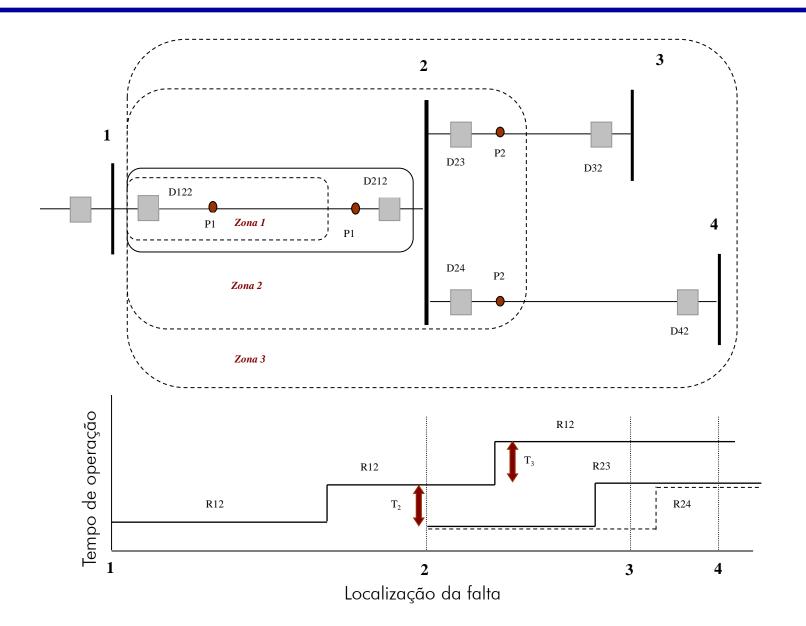
✓ Bateria: fonte reserva do sistema (tem que ser independente do sistema a ser protegido).

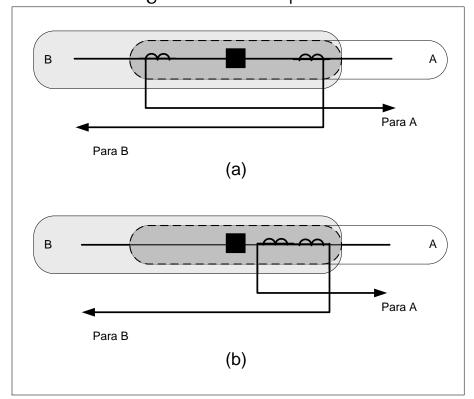

USP · SÃO CARLOS

Características funcionais dos relés

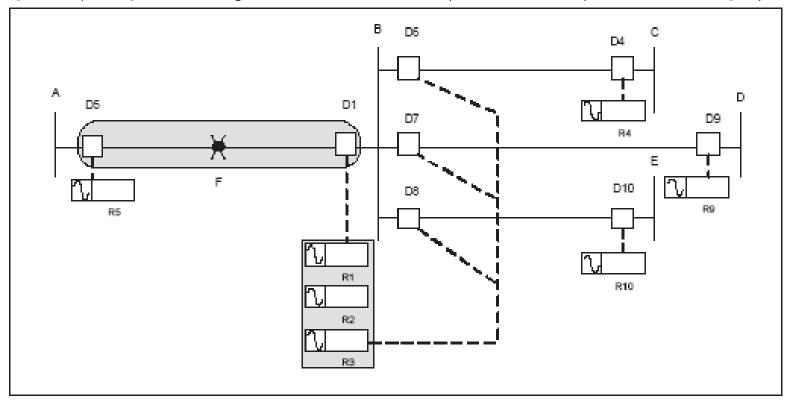

Os relés devem possuir as seguintes características funcionais:

- ✓ Sensibilidade: capacidade da proteção em responder às anormalidades nas condições de operação e CC a qual foi projetada, retirando de operação apenas a parte do sistema que se encontra sob falta, deixando o resto do sistema operando normalmente.
- ✓ **Seletividade:** isolar completamente o elemento defeituoso e desligar a menor porção possível do sistema, operando os disjuntores adequados a ele associados.
- ✓ Velocidade de atuação: minimiza o vulto dos defeitos e risco de instabilidade. É o tempo entre a incidência da falta e o comando de abertura do disjuntor dado pelo relé.
- ✓ Confiabilidade: probabilidade de um componente, um equipamento ou um sistema satisfazer uma função prevista, sob dadas circunstancias e evitar operação desnecessária durante a operação normal do sistema ou na presença de faltas fora de sua zona de proteção.


A responsabilidade de proteção de uma porção dos SEPs é definida por uma linha pontilhada limite chamada zona de proteção.



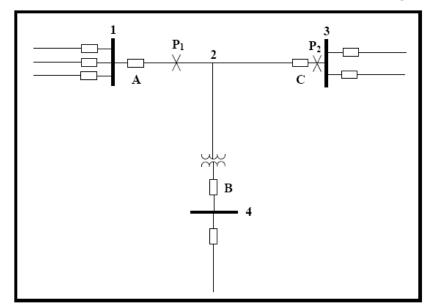
- √ O sistema de proteção: responsável pelas faltas ocorrendo dentro das zonas.
- ✓ Os disjuntores isolarão o defeito respeitando a zona que a falta incide.
- ✓ As zonas primárias são definidas pelos disjuntores.
- ✓ Importante: as zonas de proteção se interpõem para garantir que nenhuma porção do sistema seja deixada sem proteção primária de alta velocidade (eliminação de pontos cegos). É desejável manter esta região a menor possível.



Deve ser ressaltada a exigência da proteção de retaguarda caso a principal não funcione:

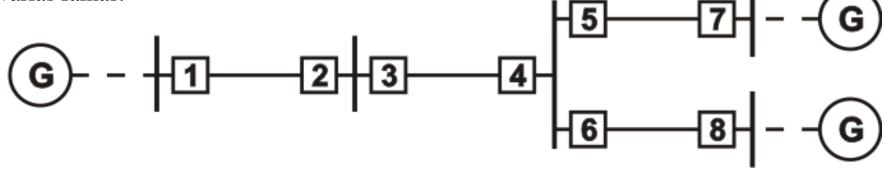
Opções:

- ✓ Duplicação de alguns elementos do sistema como secundário do TC, disparador do circuito disjuntor, etc.
- ✓ Função de proteção de Retaguarda Remota e Local (retardo de tempo de coordenação).



Circuito primário duplicado, proteção local e proteção de retaguarda.

Exemplo:


- a) Consideremos o sistema de potência mostrado na figura abaixo com fontes geradoras além das barras 1, 3 e 4. Quais são as zonas de proteção nas quais este sistema poderia ser dividido? Que disjuntores operariam para falhas em P₁ e em P₂?
- b) Se forem adicionados três disjuntores no ponto 2, como seriam modificadas as zonas de proteção?

Exercício

SEP mostrado abaixo contém esquemas de proteção principal e de retaguarda. Em cada um dos casos indicados, ocorreu um curto-circuito e certos disjuntores foram abertos conforme o esperado. Suponhamos que a abertura desses disjuntores foi correta de acordo com as circunstâncias. Onde ocorreu o curto-circuito? Houve alguma falha da proteção, incluindo os disjuntores e, em caso afirmativo, o que falhou? Assumir que só uma falha ocorreu por vez. Traçar um esboço mostrando a sobreposição de zonas de proteção primária e as localizações exatas das várias falhas.

Caso	Disjuntores Abertos
a	4,5,8
b	3,7,8
c	3,4,5,6
d	1,4,5,6
e	4,5,7,8
f	4,5,6

