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Fenotipo

Genotipos Quanto?
+

Ambiente Quanto?
+

Interagao Genotipo-Ambiente Quanto?
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Penetrancia = Tamanho do efeito

> 200 loci

g o Tt gt Thr g rfan Foundamcm -

<3% short stature Normal range >97% overgrowth
Height
Rare variants Common variants Rare variants
High penetrance Low effect size High penetrance

Durand & Rappold, Height matters-from monogenic disorders to normal variations. Nature
Reviews Endocrinology, 2013



Penetrance

Hard to identify
genetically

e o 0.001 E

0.01 | Uncommon

* Most variants
identified by
. GWA studies

0.l

Allele
frequency

McCarthy, M. I. et al. Genome-wide association studies for complex traits: Consensus, uncertainty and

challenges. Nature Reviews Genetics 9, 367 (2009)



Effect Size (Odds Ratio)
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Limite para a

expressao da doenca

[

/

Doenca Monogénica que
expressou fendtipo

Doenca Poligénica que ndo
expressou fendtipo

Por Fred Monfardini
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e Variante 1
e Variante 2
e Variante 3

e Variante 1
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GWAS como ferramenta

* Principio 1: individuos nao aparentados (ou “pouco
aparentados”) com variancia no fenétipo estudado

» Caso-controle: fendtipos discretos/qualitativos

» Curva de distribuicao continua: fenétipos
continuos/quantitativos

*Fenotipagem precisa e padronizada é essencial
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Mumber of individuals

Phenatypic score or polygenic risk score

b Extreme selection

Cases Super controls

Mumber of individuals

Phenotypic score or polygenic risk score

€ Quantitative measurement

Each participant
assigned an
individual score

Mumber of individuals

Phenotypic score or polygenic risk score



GWAS como ferramenta

* Principio 2: uso de variantes comuns

(g >0.5%/q > 1%) = vantagem de um m (niUmero de
marcadores) elevado (>100k)

* Dependéncia de um efeito moderado para a variante
individual, parcialmente compensado com o N



Effect Size (Odds Ratio)

() CFTR AF 508 {Cystic Fitross)
Highly Penetrant

Mendelian Common \ariants

Large with Large Effects

Mutations

() APOIES [Aleheempn]

CFH {asny il

5.0
Less Common

Moderate Variants with
Moderate Effects

(T3 NODZ {Crohn's Deease)

L THFRSFEA {Riultiple Sclerosis]

1 SR ek 2 Dt Common Variants
small Rare Variants with with Small Effects

1.2 Small Effects |dentified by
GWAS :
LMTEZ {Prostate Cancer) (1)

1.0

0.001 0.005 0.05
"Mutations” Rare Low Frequency Comman

Allele Frequency

Bush WS, Moore JH (2012) Chapter 11: Genome-Wide Association Studies. PLOS Computational Biology 8(12): e1002822.
https://doi.org/10.1371/journal.pcbi.1002822
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822
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GWAS como ferramenta

* Principio 3: estrutura de desequilibrio de ligacao
entre um polimorfismo (ou alguns) com um grande
sinal de associacao e a variacao causal (caso nao seja
O proprio);

e Este principio também baseia os estudos de familias,
mas ha uma mudanca de escala (geracional e, por
consequéncia, fisica).



Linkage Within A Family Linkage Disequilibrium Within A Population
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Indirect Association

I NI TOT Chromosome

Region of High Linkage
Disequilibrium

A &
Disease Risk Genotyped SNP

SNP

Bush WS, Moore JH (2012) Chapter 11: Genome-Wide Association Studies. PLOS Computational Biology 8(12): e1002822.
https://doi.org/10.1371/journal.pcbi.1002822
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822







Odds ratio e tabela de contingéncia

Table of error types

Fail to
reject
Decision
about null
hypothesis
(Ho)
Reject

Null hypothesis (H,) is

True False

Type Il error
(false negative)
(probability = 6)

Correct inference
(true negative)(probability =1 - a)

Correct inference
(true positive)
(probability = 1 - 6)

Type | error
(false positive)(probability = a)



Type I error
(false positive)

You're
pregnant




Type I error Type II error
(false positive) (false negative)

You're not
_ pregnant

You're
pregnant




Predictor

Yes

No

Outcome
Yes No

_(A* D)
"~ (B+C)




_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
N3o tabagistas
Total



Caso controle

_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
N3o tabagistas
Total 100 100 200



Caso controle

_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
N3o tabagistas 20
Total 100 100 200



Caso controle

_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
N3o tabagistas 20 70
Total 100 100 200



Caso controle

_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
N3o tabagistas 20 70 90
Total 100 100 200



Caso controle

_ Cancer de pulmao Sem cancer de pulmao Total

Tabagistas
Nao tabagistas 20 70 90
Total 100 100 200
Quantas vezes mais fumantes tiveram cancer de pulmao em relagao aos que nao
tiveram:
80/30
= 2,67

Quantas vezes menos nao fumantes desenvolveram cancer de pulmao em relacao
aos que nao desenvolveram:
20/70
=0.29

Quantas vezes € mais provavel ter cancer de pulmao sendo tabagista em relacao a
ser tabagista mas nao ter o cancer?
Odds Ratio (OR) = (80*70)/(20*30) = 9,33



Exemplo: fator de risco individual vs.
doenca

OR =1 - a exposicao ao preditor/fator de risco ndo interfere
na chance de ocorréncia da doenca

OR < 1 - a exposicao ao preditor/fator de risco interfere
diminuindo a chance de ocorréncia da doenca

OR > 1 - a exposicao ao preditor/fator de risco interfere
aumentando a chance de ocorréncia da doenca



Effect size at SNPi 0 -

o

. = cor (Genotypesyp, Phenotype)

1
| @
A :
% _________________ ® "
Q 3¢ e e o
) ® el
=, S .
;- . :
0 | '
0 1 .
Genotype
Z-scores B, B Pu ~ MVN (0, V)
s.e(f3,) s.e(P) s.e(Py)



Efeitos de estrutura populacional
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Frequency of susceptibility allele in controls

v (allelic odds ratio) 1% 5% 10% 20% 30% 40%

11 221927 46 434 24626 13987 10759 9505
1.2 58177 12217 6509 3730 2896 2581
13 27 055 5702 3051 1763 1380 1240
1.5 10 604 2249 1213 712 566 516
20 3193 687 377 229 188 177
40 598 134 78 . 46 47

Calculations assume multiplicative effect on disease risk (ie, homozygous susceptibility genotype has penetrance that exceeds
that of heterozygote by factor vy, the genotype relative risk, and that of wild-type homozygote by v?). Under such model, each
allele has independent effects on disease risk, and allelic odds ratio is also equal to y. Sample sizes presented are total number of
cases needed in case control study where controls are present in equal numbers. These sample size derivations assume best-
case scenario in which susceptibility variant itself (or a perfect proxy) has been typed.

Table 3: Approximate sample sizes necessary to detect significant association (power=90%, two-sided
a=0-001) by effect size and allele frequency for predisposing allele
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Fine-mapping type 2 diabetes loci to single-variant
resolution using high-density imputation and
islet-specific epigenome maps
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Polygenic risk scores

Polygenic score

s CoOntrols
s Cases
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LETTERS

natmre
genetlcs https://doi.org/10.1038/541588-018-0183-z

Genome-wide polygenic scores for common
diseases identify individuals with risk equivalent
to monogenic mutations

Amit V. Khera'>**>, Mark Chaffin 4>, Krishna G. Aragam"?*#, Mary E. Haas*, Carolina Roselli ™4,
Seung Hoan Choi*, Pradeep Natarajan™ 234, Eric S. Lander?, Steven A. Lubitz 234,
Patrick T. Ellinor ©234 and Sekar Kathiresan (1234*



Derivation

Association statistics from previously
published genome-wide association study

Linkage disequilibrium reference panel from
1000 Genomes Europeans (n = 503)

Derive 31 candidale polygenic scores for each disease:
(1) Pruning and thresholding (24 scores)
(2) LDPred algorithm (7 scores)

Validation

Choose best polygenic score based on
maximal AUC in UK Biobank

phase 1 validation dataset (n = 120,280)

Testing

-

Assess association of bes! polygenic score
with disease in UK Biobank phase 2 testing
dataset (n= 288,978)




Table 1| GPS derivation and testing for five common, complex diseases

Disease Discovery Prevalence in validation  Prevalence in testing Polymorphisms  Tuning AUC (95% AUC

GWAS (n) dataset dataset in GPS parameter Chin (95% Cl)
validation in testing
dataset dataset

CAD 60,801 3.963/120,280 (3.4%) 8,676/288,978 (3.0%) 6,630,150 LDPred 0.81(0.80- 0.81
cases; (p=0.001) 0.81) (0.81-
123,504 0.81)
controls™

Atrial fibrillation 17,931 cases; 2,024/120,280 (1.7%) 4,576,/288,978 (1.6%) 6,730,541 LDPred 0.77 (0.76- 077
115,142 (p=0.003) 0.78) (0.76-
controls® 0.77)

Type 2 diabetes 26,676 2,785/120,280 (2.4%) 5.853/288,978 (2.0%) 6,917436 LDPred 072(0.72- 073
cases; (p=0.01) 0.73) (0.72-
132,532 0.73)
controls™

Inflammatory 12,882 1,360/120,280 (1.1%) 3,102/288,978 (1.19%) 6,907,112 LDPred 0.63 (0.62- 0.63

bowel disease cases; (p=01) 0.65) (0.62-
21,770 0.64)
controls®

Breast cancer 122,977 2,576/63,347 (4.1%) 6,586,/157,.895 (4.2%) 5,218 Pruning and 0.68 (0.67- 0.69
cases; thresholding 0.69) (0.68-
105,974 (<02 0.69)
controls™ P<5x10-")

AUC was determined using a logistic regression model adjusted for age, sex, genolyping array, and the first four principal components of ancestry. The breast cancer analysis was restricted to female
participants. For the LDFPred algorithm, the tuning parameter o reflects the praportion of polymorphisms assumed to be causal for the disease. For the pruning and thresholding strategy, r* reflects the

degres of independence fram other variants in the linkage disequilibrivim reference panel, and P reflects the P value noted for a given variant in the discovery GWAS. Cl, confidence interval.
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Prevalence of atrial fibrillation (%)

Prevalence of inflammatory bowel disease (%) ™

» & - L
.
— L ]
£ 54
B
2 4
L E J.
A o >
E 3 .® ..|
"'& E . -'-"'.'
%o’ L™
™ "-' E 2- LA - hs'
e S, e 3 g o - *
o oa N 3 R TR
" . "A ' 1 ] f".'l L
"% . . o @
o " Spe ey - a *
. %
L L]

T ] ] I I T T I I T T T I I I T I I T T ] I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentile of polygenic score Percentile of polygenic score
d

- .
12 +
% 10 +
. g
. 3 ¥
® 87 o*
[ ] g ™
* h & bt |
[ ] —-——
- A '. E 6 — e, .-I.:.-
e § $ oy
. —
& I-"I .-’:' & g 4_ [ ] .'wi
L™ - . & @ = L ‘ - ®
b I Y S o o oa R o .
L L F a® - .|-' L 1]
T s " e Y
!.-.ﬂ;' “s : 29 '.." - "
o o '
I T T I I I T I I T T I ] I ] I ] T I I I T
0 10 20 30 40 50 &0 70 80 90 100 0 10 20 30 40 50 &0 70 80 90 100

Percentile of polygenic score Percentile of polygenic score



>
i

(]
w
i

5 35 B
| T |

Mean body mass index

PJ
(%3]
i

BMI — “age-penetrance”

50

12345678910
Polygenic score decile

51.6

A2 04 02

Mean weight, kilograms 0

o
h
A

2=}
(=}
L

=
h
A

12345678810
Polygenic score decile

C

Sewvere obesity, %

12345678910
Polygenic score decile

Polygenic score
Botlom Decile
Deciles 2-9
Top Decile

9.6
1.5

0.2

Nor'mai Ob;ass Sevarafy obesa

Khera et al., 2019, Cell 177, 587-596

u nder:.uaight Elven::aight

Clinical Weight Calegory



Table 1. Genome-wide Polygenic Score for Obesity, Assessed in Four Independent Testing Datasets

Partners Framingham Avon Longitudinal Study of
UK Biobank HealthCare Offspring/CARDIA Parents and Children

n participants 288,016 6,536 3,722 7,861

Study design cross-sectional case-control longitudinal longitudinal

Age range 40-69 years =18 years 18-40 years birth

Female sex 55% 61% 48% 49%

Outcomes weight, severe obesity, bariatric surgery incident severe obesity weight at birth and subsequent
bariatric surgery, (27 years median follow-up) visits (0—18 years)
cardiometabolic diseases,
mortality

CARDIA, Coronary Artery Risk Development in Young Adults.

K. B

o Odds Ratio for High GPS 'Carriers’ 95% ClI P=value

. Extreme obesity
0.4 EMI = 40 kg/im® 4.22 [3.98; 4.49] <1x1073@
BMI = 50 kg/m® - 6.63 [5.33; 8.29] 1.3x10™

%* BMI = 60 kg/m? ——8—— 14.42 [6.54, 31.77] 3.6x10-"
0.2+
a

High GPS
‘carriers’

A D 0

Ganome=wide nnlvoenic soore

Bariatric surgery

LK Biobank

FPartners HealthCare

Combined

= 576 [4.36; 7.61] 9.2x107%
B 4,49 [3.76; 5.37] 9.1x107%
-

|4.9'E [3.91; 6.30] 1.1x109%

I
4 8 16 32

Odds Ratio



2 3 4 56 7 8 910

#
&
&
i
m.., T3
L |
b -
P
1] -
= Fy
= °
(18]
- -
= 3 = )
iy & T )
g o3 g o

L (10%56 —/+ veal) swesboy yBism

1

Polygenic Score Decile



5,011)

8 Months (N

-

8 9

2 3 4 5 6 7

-
®» & ;. & W@ W

(ID%G6 —/+ ves) swesboiy Bz

10

1

Polygenic Score Decile



Weight, Kilograms (Mean +/— 95%C1) €)
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Waight, Kilograms (Mean +/— 33%Cl) 3
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Podemos testar em populacdes diferentes
daquelas do GWAS original?
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A Raw Polygenic Score

Race
O White
OBlack
O Hispanic
O Asian

0.4-

Density

0.2 1

0.0+

T T T T T

-3 -2 -1 0 1 2 3
Polygenic Score

B Ancestry Adjusted Polygenic Score

0.4+

0.3

0.2~

Density

0.1~

0.0~

Race
White
OBlack
O Hispanic
O Asian

C High Polygenic Score and Risk of Early-onset Myocardial Infarction

Race N (%) Ml Patients N (%) Controls

White  (285/1537)19% (67 / 1544) 4%
Black  (35/336)10%  (54/962)6%
Hispanic (32/168)19%  (50/751) 7%

Asian (7 1 40) 18% (17 1 504) 3%

I
0.8 1

Khera et al, Circulation. March 26, 2019 Vol 139, Issue 13

-2 0 2
Polygenic Score
OR 95% Cl  P-Value
—— 5.09 [3.82; 6.78] <0.0001
L 2.02 [1.29; 3.16] 0.002
= 3.38 [2.03; 5.64] <0.0001
. > 3.33 [0.82;13.51] 0.092
[ | 1
2 4 6 8
Odds Ratio
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Clinical risk

Cholesterol: per 40 mg/dl| increase

Systolic blood pressure:
per 20 mmHg increase
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Torkamani et al, Nature Reviews Genetics, 2018
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Frequency

Possible clinical decisions

= General advice on having a
healthy lifestyle

* Mammography screening
frequency tailored to risk

-

= Lifestyle changes

* Frequent
mammography
screening

* Discuss preventive

T
[
i
i
i
1
1
i
I
i
(
[y

* Individual counselling in primary care and referral to

secondary or tertiary care

* Enhanced screening and surveillance
+ Chemoprevention and/or endocrine therapy

* Risk-reducing surgery (mastectomy, salpingo-oophorectomy)
"

|

Absolute risk
E E [[] Near or lower than average risk (<15%)
: : ] Moderately increased risk (15-25%)
; i B High risk (>25%)
i i
I :
| :
I I
) I
i
l
| I
10 20 30 40 50 60
Lifetime absolute risk of breast cancer (%)
Possible risk factor profile
“» No family history of breast cancer, + * No family history of 1 + Moderate to high polygenic risk with family history of breast cancer and many
low te moderate polygenic risk, breast cancer, environmental risk factors, or known BRCA1 and BRCAZ or TP53 mutation carriers

and none or few environmental
risk factors

moderate polygenic
risk and several
environmental risk
factors

for very high risk




REVIEWS

Cenome-wide association
(GWA) studies

Studies in which a dense array
of genetic markers, which
captures a substantial
proportien of common
variation in genome sequence,
is typed in a set of DNA
samples that are informative
far a trait of interest. The aim is
to map susceptibility effects
through the detection of
associations between genotype
frequency and trait status,
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Genome-wide association studies

for complex traits:

consensus,

uncertainty and challenges

Mark I. McCarthy**, Gon¢alo R. Abecasiss, Lon R. Cardon*!, David B. Goldstein®,
Julian Little?, John P A. loannidis **** and Joel N. Hirschhorns8!I1%

Abstract | The past year has witnessed substantial advances in understanding the
genetic basis of many common phenotypes of biomedical importance. These advances
have been the result of systematic, well-powered, genome-wide surveys exploring the
relationships between common sequence variation and disease predisposition. This
approach has revealed over 50 disease-susceptibility loci and has provided insights into
the allelic architecture of multifactorial traits. At the same time, much has been learned
about the successful prosecution of association studies on such a scale. This Review
highlights the knowledge gained, defines areas of emerging consensus, and describes
the challenges that remain as researchers seek to obtain more complete descriptions
of the susceptibility architecture of biomedical traits of interest and to translate the

information gathered into improvements in clinical management.

The first wave of large-scale, high-density genome-wide
assocation (GWA) studies has improved our understanding
of the genetic basis of many complex traits'. For several
diseases, including type 1 (REFS 2 3) and type 2 diabetes*™,
inflammatory bowel disease!*", prostate cancer'”* and
breast cancer®'*, there has been rapid expansion in the
numbers of loci implicated in predisposition. For others,
such as asthma®™, coronary heart disease* and atrial
fibrillation®, fewer novel loci have been found, although
opportunities for mechanistic insights are equally prom-
ising. Several common variants influencing important
continuous traits, such as lipids”**!, height™* and
fat mass™®*, have also been found. An updated list of
published GWA studies can be found at the National
Cancer Institute (NCI)-National Human Genome
Research Institute (NHGRI)'’s catalog of published
genome-wide association studies.

These findings are providing valuable clues to the
allelic architecture of complex traits in general. At the
same time, many methodological and technical issues
that are relevant to the successful prosecution of large-
scale association studies have been addressed. However,
despite understandable celebration of these achieve-
ments, sober reflection reveals many challenges ahead.
Compelling signals have been found, often highlighting
previously unsuspected biology, but, for most of the

© 2008 Nature Publishing Group

traits studied, known variants explain only a fraction of
observed familial aggregation™, limiting the potential
for early application to determine individual disease
risk. Because current technology surveys only a lim-
ited subset of potentially relevant sequence variation,
this should come as no surprise. Much work remains
to obtain a complete inventory of the variants at each
locus that contribute to disease risk and to define the
molecular mechanisms through which these variants
operate. The ultimate objectives — full descriptions of
the susceptibility architecture of major biomedical traits
and translation of the findings into clinical practice —
remain distant.

‘With completion of the initial wave of GWA scans, it
is timely to consider the status of the field. This Review
considers each major step in the implementation of a
GWA scan, highlighting areas where there is an emerg-
ing consensus over the ingredients for success, and those
aspects for which considerable challenges remain.

Subject ascertainment and design

Although there is a growing focus on the application
of GWA methodologies to population-based cohorts,
most published GWA studies have featured case—
control designs, which raise issues related to the optimal
selection of both case and control samples.

www.nature.com/reviews/genetics



Individual-level data
Gename-wide single nucleotide
polymorphism genotypes and
trait values for each individual
ncluded in a genome-wide
association study.

Summary association
statistics

Estim effect sizes and their
standard errors for each single
nucleotide polymorphism
analysed n a genome-wide
association study.
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REVIEWS

Dissecting the genetics of complex
traits using summary association

Bogdan Pasaniuc’ and Alkes L. Price**

Genome-wide association studies (GWAS) have been
broadly successful in identifying genetic variants
associated with complex traits and diseases, explaining
a significant fraction of narrow-sense heritability and
occasionally pinpointing biological mechanisms'. These
studies have produced extensive databases of genetic
variation (typically at the level of common single nucleo-
tide polymorphisms (SNPs) included on genotyping
arrays) in large numbers of individuals across hundreds
of complex traits. Further analyses of these data can yield
important insights into the genetics of complex traits,
but privacy concerns and other logistical considerations
often restrict access to individual-level data. Nevertheless,
summary association statistics are often readily available
and can be used to compute 7 scores (FIG. 1). Here, we
define summary association statistics as per-allele SNP
effect sizes (log odds ratios for case-control traits)
together with their standard errors, although we note
that some applications may also require allele frequen-
cies. A list of selected publicly available summary associ-
ation statistics from large GWAS is provided in TABLE 1.
Analyses of summary statistics also offer advantages
in computational cost, which does not scale with the
number of individuals in the study. These advantages
have motivated the recent development of many new
methods for analysing summary association data,
often in conjunction with linkage disequilibrium (LD)
information from a population reference panel such as
1000 Genomes’.

Here, we review these summary statistic-based
methods. First, we review methods for performing
single-variant association tests, including meta-analysis,

NATURE REVIEWS | GENETICS

Abstract | During the past decade, genome-wide association studies (GWAS) have been used to
successfully identify tens of thousands of genetic variants associated with complex traits and
diseases. These studies have produced extensive repositories of genetic variation and trait
measurements across large numbers of individuals, providing tremendous opportunities for
further analyses. However, privacy concerns and other logistical considerations often limit access
to individual-level genetic data, motivating the development of methods that analyse summary
association statistics. Here, we review recent progress on statistical methods that leverage
summary association data to gain insights into the genetic basis of complex traits and diseases.

conditional association and imputation using summary
statistics. Second, we review methods for performing
gene-based association tests by incorporating tran-
scriptome reference data or aggregating signals across
multiple rare variants. Third, we review methods for
fine-mapping causal variants, including the integra-
tion of functional annotation and/or trans-ethnic data.
Fourth, we review methods for constructing polygenic
predictions of disease risk and inferring polygenic
architectures. Finally, we review methods for jointly
analysing multiple traits. We conclude with a discussion
of research areas for which further work on summary
statistic-based methods is needed.

Single-variant association tests

Meta-analysis using fixed-effects or random-effects
models. Large consortia often combine multiple GWAS
into a single aggregate analysis to boost power for dis-
covering SNP associations with small effects. Studies
are combined either by jointly analysing summary
association results from each study (meta-analysis) or
by re-analysing individual-level data across all studies
(mega-analysis)®. It has been shown that a meta-analysis
attains similar power for association as a mega-analysis,
with fewer privacy constraints and logistical challenges
(because only summary association data are shared
across studies)’. A meta-analysis is usually performed
using fixed-effects approaches, which assume that
true effect sizes are the same across studies. Under the
assumption that causal effect sizes may differ across
studies, this heterogeneity can be explicitly modelled
using random-effects methods. These methods include

VOLUME 18 | FEBRUARY 2017 | 117

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Polygenic risk scores

(PRSs). A weighted sum of the
number of risk alleles carried
by an individual, where the risk
alleles and their weights are
defined by the loci and their
measured effects as detected
by genome wide association
studies.

Genetic architecture

The underlying genetic basis of
atrait or disease. The
combination of the number,
type, frequency, relationship
between and magnitude of
effect of genetic variants
contributing to a trait.
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The personal and clinical utility of
polygenic risk scores

212*, Nathan E. Wineinger'< and Eric J. Topol'3

Abstract | Initial expectations for genome-wide association studies were high, as such studies
promised to rapidly transform personalized medicine with individualized disease risk predictions,
prevention strategies and treatments. Early findings, however, revealed a more complex genetic
architecture than was anticipated for most common diseases— complexity that seemed to limit

clinical utility of polygenic risk profiling.

Estimating the probabilistic susceptibility of an individ-
ual to disease — risk prediction — is central to clinical
decision-making, especially in the context of early
disease detection and prevention of common adult-onset
conditions. Moreover, it can be a powerful tool for
personal health management when communicated and
understood effectively. Today, clinical risk prediction
for common adult-onset diseases often relies on basic
demographic characteristics, such as age, gender and
ethnicity; basic health parameters and lifestyle fac-
tors, such as body mass index, smoking status, alcohol
consumption and physical exercise habits; measure-
ment of clinical risk factors proximal to overt disease
onset, such as blood pressure levels, blood chemistries
or biomarkers indicative of ongoing disease processes;
ascertainment of environmental exposures, such as air
pollution, heavy metals and other environmental toxins;
and family history. Routine genetic profiling is conspic-
uously absent from this list, often relegated to use only
when testing clarifies individual-level risks in the context
of a known family history for some common adult-onset
diseases.

Early disease detection, prevention and intervention
are fundamental goals for advancing human health.
Meanwhile, genetic risk estimation is, for all intents and
purposes, the earliest measurable contributor to common
heritable disease risk. Thus, in theory, genetic profiling
could be considered a useful component of health man-
agement. Indeed, recent studies suggest that, for a subset of
diseases, our knowledge of the genetic factors underlying
these conditions has improved to a point where polygenic
risk profiling on the basis of calculated polygenic risk scores
(PRSs) provides personal and clinical utility.

the immediate utility of these findings. As a result, the practice of utilizing the DNA of an
individual to predict disease has been judged to provide little to no useful information.
Nevertheless, recent efforts have begun to demonstrate the utility of polygenic risk profiling to
identify groups of individuals who could benefit from the knowledge of their probabilistic
susceptibility to disease. In this context, we review the evidence supporting the personal and

Here, we review the utility of genetic risk profiling
for common adult-onset polygenic conditions, focusing
on the leading heritable causes of death in the developed
world: Alzheimer disease, cancer (breast and prostate),
coronary artery disease and type 2 diabetes mellitus. For
these conditions, recent studies have linked polygenic
risk prediction to actionable outcomes, including the pri-
oritization of preventive interventions and screening'~,
prediction of age of disease onset’, benefit from lifestyle
modifications** and modification of familial disease
risk leading to changes in clinical decision-making*.
‘We begin with an overview of the genetic architecture of
common adult-onset diseases. We then describe how
genetic risk factors can be combined to produce PRSs
and review recent studies that have demonstrated the
utility of PRSs for disease risk stratification as well as
their implications for early disease detection, preven-
tion, therapeutic intervention and/or life planning. We
describe some of the limitations of PRSs and the remain-
ing barriers to clinical and personal utility and lay out
potential future directions for the enhancement of the
predictive capacity, generalizability and utility of PRSs.

Genetic inheritance of common diseases

The basic components of disease risk are usually broken
down into genetic susceptibility, environmental expo-
sures and lifestyle factors. The relative contribution of
genetic susceptibility to the predisposition to disease in a
population can be quantified by the heritability of the dis-
ease in that population. Heritability itself can be defined
in several ways’; from a quantitative genetics perspec-
tive — especially as it relates to missing heritability in
genome-wide association studies (GWAS)" — it is usually

NATURE REVIEWS | GENETICS

VOLUME 19 | SEPTEMBER 2015 | 581
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Penetrance

The proportion of individuals
in a population with a genetic
variant who develop the
disease associated with

that variant. Common
single-nuclectide
polymorphisms [SNPs) are
referred to as low-penetrant,
as risk alleles typically confer
modest risk,
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disease prevention

Developing and evaluating polygenic
risk prediction models for stratified

Common chronic diseases have complex, multifactor-
ial aetiologies that involve the interplay of both genetic
susceptibility and environmental risk factors, which are
broadly defined as lifestyle, behavioural, occupational or
environmental exposures, and other health conditions.
Historically, family-based linkage studies have led to the
identification of rare high-penetrant mutations under-
lying some of these diseases, such as those in the breast
cancer 1 (BRCAT) and BRCA2 genes for breast and ovar-
ian cancers, and in multiple genes involved in Lynch
syndrome, which predisposes individuals to colorectal
and other cancers. With these discoveries, genetic testing
became part of the clinical management of individuals
in high-risk families in whom there is a high disease
burden caused by the variants. The cost of genetic test-
ing has declined following technological advances and
the recent ruling by the US Supreme Court stating that
genes cannot be patented; consequently, debate has now
shifted towards the implications of performing genetic
testing in the general population (for example, BRCA1
and BRCA2 mutation testing)'. Debate has also begun
on standards for the regulation and clinical utility of
increasingly available commercial gene-panel tests,
which may screen for high- to moderate-penetrance
susceptibility variants for various diseases™.

As the majority of cases of common diseases do not
occur in highly affected families, the development of
broad public health strategies for disease prevention
requires the identification of risk factors that contribute
to the substantial burden of disease in the general popu-
lation. Recent genome-wide association studies (GWAS)

Nilanjan Chatterjee’=3, Jianxin Shi® and Montserrat Garcia-Closas®

Abstract | Knowledge of genetics and its implications for human health is rapidly evolving in
accordance with recent events, such as discoveries of large numbers of disease susceptibility loci
from genome-wide association studies, the US Supreme Court ruling of the non-patentability of
human genes, and the development of a regulatory framework for commercial genetic tests. In
anticipation of the increasing relevance of genetic testing for the assessment of disease risks, this
Review provides a summary of the methodologies used for building, evaluating and applying risk
prediction models that include information from genetic testing and environmental risk factors.
Potential applications of models for primary and secondary disease prevention are illustrated
through several case studies, and future challenges and opportunities are discussed.

have clearly shown that common single-nucleotide
polymorphisms (SNPs) have important roles in defin-
ing susceptibility to common diseases. For any given
disease, there could be a large number of underlying
susceptibility SNPs, each exhibiting only modest disease
association, but in combination they could explain a sig-
nificant portion of the variation in disease incidence in
the general population. The success of GWAS indicates
that gene-panel and whole-genome tests will continue
to emerge in the future for the assessment of polygenic
disease risks. This will require critical evaluation of
both the statistical validity of the estimated risk and its
potential clinical or public health utility.

The utility of genetic testing for disease prevention
cannot be fully evaluated unless it is assessed along with
environmental factors, which may not only be impor-
tant determinants of risk but could also be potentially
modifiable through changes in lifestyle or appropriate
interventions. Thus, there is a need for continuous
development and evaluation of risk models that incor-
porate our expanding knowledge of the risk factors for
diseases. Critical to this research are epidemiological
prospective cohort studies that can take advantage of the
increasingly available electronic medical records, tech-
nological advances in the collection and analyses of bio-
logical specimens, and big data management platforms
and analytics. Steps are being taken towards attaining
these goals, as demonstrated by the establishment of
new cohorts and biobanks, including UK Biobank,
China Kadoorie Biobank, the German National
Cohort’, the American Cancer Society’s Cancer

392|JULY 2016 | VOLUME 17
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