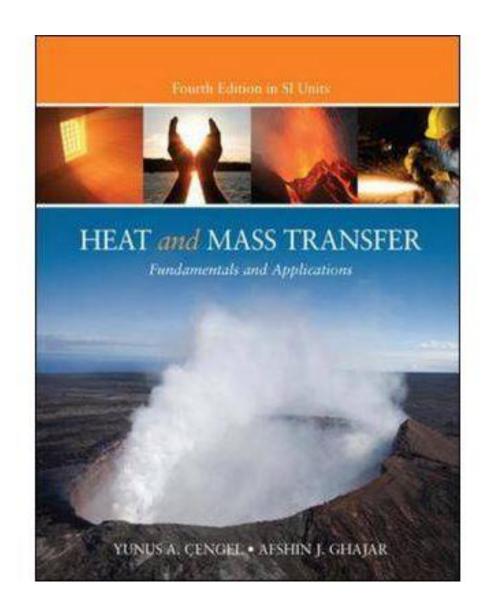
MAP 2320 – MÉTODOS NUMÉRICOS EM EQUAÇÕES DIFERENCIAIS II

2º Semestre - 2019

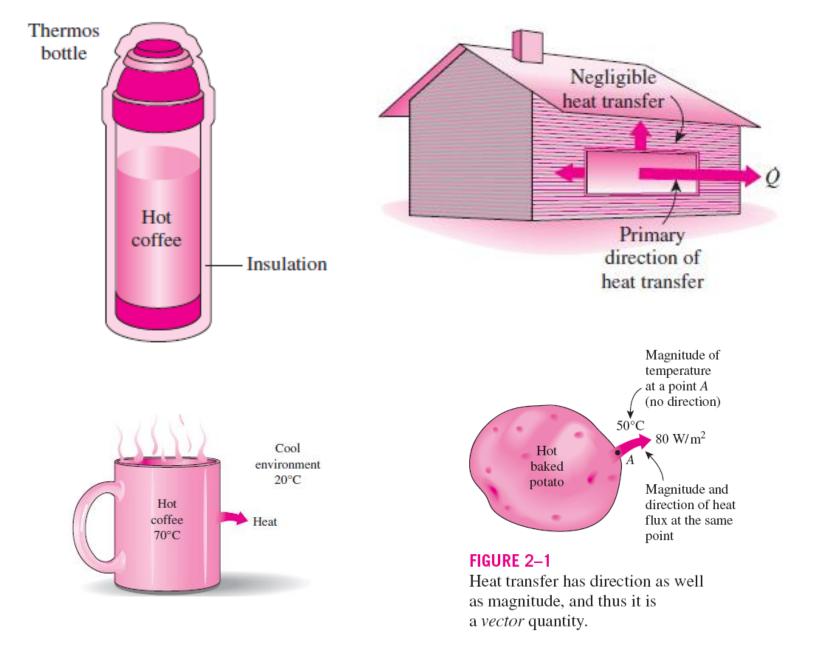
Prof. Dr. Luis Carlos de Castro Santos

Isantos@ime.usp.br



Heat and Mass Transfer (SI Unit)

By (author) Yunus A. Cengel, By (author) Afshin J. Ghajar



 The rate of heat conduction through a medium in a specified direction (say, in the x-direction) is expressed by Fourier's law of heat conduction for onedimensional heat conduction as:

$$\dot{Q}_{\rm cond} = -kA \frac{dT}{dx}$$
 (W)

Heat is conducted in the direction of decreasing temperature, and thus the temperature gradient is negative when heat is conducted in the positive *x*-direction.

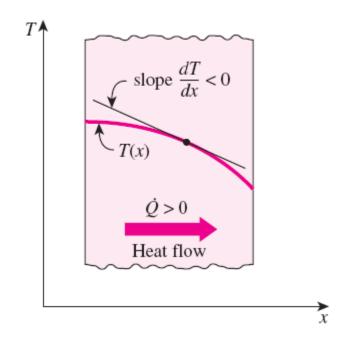


FIGURE 2-7

The temperature gradient dT/dx is simply the slope of the temperature curve on a T-x diagram.

- The heat flux vector at a point P on the surface of the figure must be perpendicular to the surface, and it must point in the direction of decreasing temperature
- If n is the normal of the isothermal surface at point P, the rate of heat conduction at that point can be expressed by Fourier's law as

$$\dot{Q}_n = -kA \frac{\partial T}{\partial n} \tag{W}$$

$$\vec{\dot{Q}}_n = \dot{Q}_x \vec{i} + \dot{Q}_y \vec{j} + \dot{Q}_z \vec{k}$$

$$\dot{Q}_x = -kA_x \frac{\partial T}{\partial x}, \qquad \dot{Q}_y = -kA_y \frac{\partial T}{\partial y},$$

$$\dot{Q}_z = -kA_z \frac{\partial T}{\partial z}$$

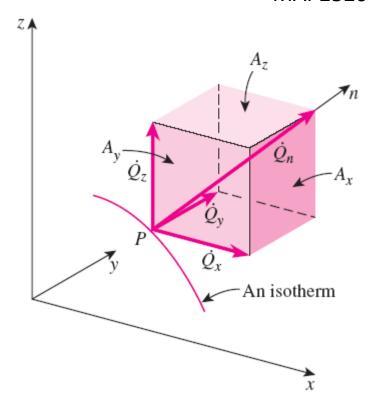


FIGURE 2-8

The heat transfer vector is always normal to an isothermal surface and can be resolved into its components like any other vector.

$$\begin{pmatrix}
\text{Rate of heat} \\
\text{conduction} \\
\text{at } x
\end{pmatrix} - \begin{pmatrix}
\text{Rate of heat} \\
\text{conduction} \\
\text{at } x + \Delta x
\end{pmatrix} + \begin{pmatrix}
\text{Rate of heat} \\
\text{generation} \\
\text{inside the} \\
\text{element}
\end{pmatrix} = \begin{pmatrix}
\text{Rate of change} \\
\text{of the energy} \\
\text{content of the} \\
\text{element}
\end{pmatrix}$$

$$\dot{Q}_x - \dot{Q}_{x + \Delta x} + \dot{E}_{\text{gen, element}} = \frac{\Delta E_{\text{element}}}{\Delta t}$$
 (2-6)

$$\begin{split} \Delta E_{\text{element}} &= E_{t+\Delta t} - E_t = mc(T_{t+\Delta t} - T_t) = \rho c A \Delta x (T_{t+\Delta t} - T_t) \\ \dot{E}_{\text{gen, element}} &= \dot{e}_{\text{gen}} V_{\text{element}} = \dot{e}_{\text{gen}} A \Delta x \end{split}$$

Substituting into Eq. 2-6, we get

$$\dot{Q}_x - \dot{Q}_{x+\Delta x} + \dot{e}_{gen} A \Delta x = \rho c A \Delta x \frac{T_{t+\Delta t} - T_t}{\Delta t}$$

Dividing by $A\Delta x$ gives

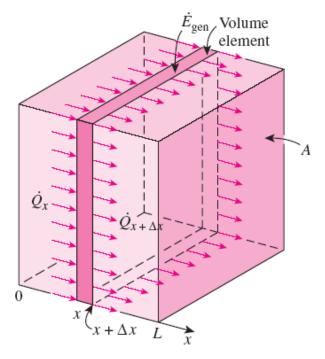
$$-\frac{1}{A}\frac{\dot{Q}_{x+\Delta x} - \dot{Q}_x}{\Delta x} + \dot{e}_{gen} = \rho c \frac{T_{t+\Delta t} - T_t}{\Delta t}$$

Taking the limit as $\Delta x \to 0$ and $\Delta t \to 0$ yields

$$\frac{1}{A}\frac{\partial}{\partial x}\left(kA\frac{\partial T}{\partial x}\right) + \dot{e}_{\rm gen} = \rho c\frac{\partial T}{\partial t}$$

$$\lim_{\Delta x \to 0} \frac{\dot{Q}_{x + \Delta x} - \dot{Q}_{x}}{\Delta x} = \frac{\partial \dot{Q}}{\partial x} = \frac{\partial}{\partial x} \left(-kA \frac{\partial T}{\partial x} \right)$$

Heat Conduction Equation in a Large Plane Wall



$$A_x = A_{x + \Delta x} = A$$

FIGURE 2–12

One-dimensional heat conduction through a volume element in a large plane wall.

Variable conductivity:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \dot{e}_{gen} = \rho c \frac{\partial T}{\partial t}$$

Constant conductivity:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\dot{e}_{gen}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

(1) Steady-state:
$$(\partial/\partial t = 0)$$

$$\frac{d^2T}{dx^2} + \frac{\dot{e}_{\text{gen}}}{k} = 0$$

(2) Transient, no heat generation: $(\dot{e}_{gen} = 0)$

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

(3) Steady-state, no heat generation: $(\partial/\partial t = 0 \text{ and } \dot{e}_{gen} = 0)$

$$\frac{d^2T}{dx^2} = 0$$

General, one-dimensional:

No Steady-
generation state
$$\frac{\partial^2 T}{\partial x^2} + \frac{e_{gen}}{k} = \frac{1}{\omega} \frac{\partial T}{\partial t}$$

Steady, one-dimensional:

$$\frac{d^2T}{dx^2} = 0$$

The simplification of the onedimensional heat conduction equation in a plane wall for the case of constant conductivity for steady conduction with no heat generation.

$$\begin{pmatrix}
\text{Rate of heat} \\
\text{conduction} \\
\text{at } r
\end{pmatrix} - \begin{pmatrix}
\text{Rate of heat} \\
\text{conduction} \\
\text{at } r + \Delta r
\end{pmatrix} + \begin{pmatrix}
\text{Rate of heat} \\
\text{generation} \\
\text{inside the} \\
\text{element}
\end{pmatrix} = \begin{pmatrix}
\text{Rate of change} \\
\text{of the energy} \\
\text{content of the} \\
\text{element}
\end{pmatrix}$$

MAP2320 **Heat** Conduction **Equation** in a Long Cylinder

$$\dot{Q}_r - \dot{Q}_{r+\Delta r} + \dot{E}_{\text{gen, element}} = \frac{\Delta E_{\text{element}}}{\Delta t}$$

$$\Delta E_{\text{element}} = E_{t+\Delta t} - E_t = mc(T_{t+\Delta t} - T_t) = \rho c A \Delta r (T_{t+\Delta t} - T_t)$$

 $\dot{E}_{\text{gen, element}} = \dot{e}_{\text{gen}} V_{\text{element}} = \dot{e}_{\text{gen}} A \Delta r$

$$\dot{Q}_r - \dot{Q}_{r+\Delta r} + \dot{e}_{\text{gen}} A \Delta r = \rho c A \Delta r \frac{T_{t+\Delta t} - T_t}{\Delta t}$$

$$-\frac{1}{A}\frac{\dot{Q}_{r+\Delta r} - \dot{Q}_{r}}{\Delta r} + \dot{e}_{gen} = \rho c \frac{T_{t+\Delta t} - T_{t}}{\Delta t}$$

Taking the limit as $\Delta r \to 0$ and $\Delta t \to 0$ yields

$$\frac{1}{A}\frac{\partial}{\partial r}\bigg(kA\,\frac{\partial T}{\partial r}\bigg) + \dot{e}_{\rm gen} = \rho c\,\frac{\partial T}{\partial t}$$

$$\lim_{\Delta r \to 0} \frac{\dot{Q}_{r+\Delta r} - \dot{Q}_r}{\Delta r} = \frac{\partial \dot{Q}}{\partial r} = \frac{\partial}{\partial r} \left(-kA \frac{\partial T}{\partial r} \right)$$

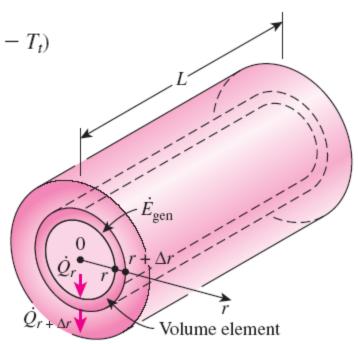


FIGURE 2-14

One-dimensional heat conduction through a volume element in a long cylinder.

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rk\frac{\partial T}{\partial r}\right) + \dot{e}_{\rm gen} = \rho c \frac{\partial T}{\partial t}$$

Constant conductivity:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{\dot{e}_{\rm gen}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

(1) Steady-state: $(\partial/\partial t = 0)$

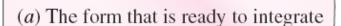
$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{\dot{e}_{\rm gen}}{k} = 0$$

(2) Transient, no heat generation: $(\dot{e}_{gen} = 0)$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

(3) Steady-state, no heat generation: $(\partial/\partial t = 0 \text{ and } \dot{e}_{gen} = 0)$

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$



$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

(b) The equivalent alternative form

$$r\frac{d^2T}{dr^2} + \frac{dT}{dr} = 0$$

Two equivalent forms of the differential equation for the one-dimensional steady heat conduction in a cylinder with no heat generation.

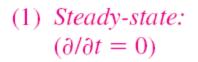
Heat Conduction Equation in a Sphere

Variable conductivity:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 k \frac{\partial T}{\partial r} \right) + \dot{e}_{gen} = \rho c \frac{\partial T}{\partial t}$$

Constant conductivity:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{\dot{e}_{gen}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$



(2) Transient,
no heat generation:
$$(\dot{e}_{gen} = 0)$$

(3) Steady-state,
no heat generation:
$$(\partial/\partial t = 0 \text{ and } \dot{e}_{gen} = 0)$$

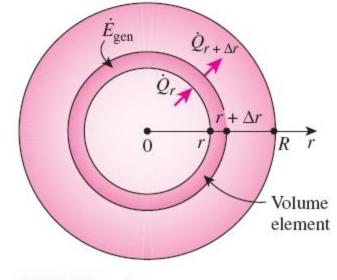


FIGURE 2-16

One-dimensional heat conduction through a volume element in a sphere.

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) + \frac{\dot{e}_{gen}}{k} = 0$$

no heat generation:
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Steady-state,
no heat generation:
$$\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$$
 or $r\frac{d^2T}{dr^2} + 2\frac{dT}{dr} = 0$

Combined One-Dimensional Heat Conduction Equation

An examination of the one-dimensional transient heat conduction equations for the plane wall, cylinder, and sphere reveals that all three equations can be expressed in a compact form as

$$\frac{1}{r^n} \frac{\partial}{\partial r} \left(r^n k \frac{\partial T}{\partial r} \right) + \dot{e}_{gen} = \rho c \frac{\partial T}{\partial t}$$

n = 0 for a plane wall

n = 1 for a cylinder

n = 2 for a sphere

In the case of a plane wall, it is customary to replace the variable r by x.

This equation can be simplified for steady-state or no heat generation cases as described before.

BOUNDARY AND INITIAL CONDITIONS

The description of a heat transfer problem in a medium is not complete without a full description of the thermal conditions at the bounding surfaces of the medium.

Boundary conditions: The *mathematical expressions* of the thermal conditions at the

boundaries.

The temperature at any point on the wall at a specified time depends on the condition of the geometry at the beginning of the heat conduction process.

Such a condition, which is usually specified at time t = 0, is called the initial condition, which is a mathematical expression for the temperature distribution of the medium initially.

$$T(x, y, z, 0) = f(x, y, z)$$

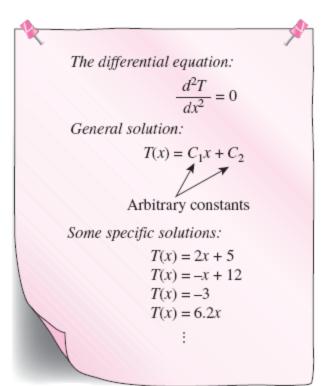


FIGURE 2-25

The general solution of a typical differential equation involves arbitrary constants, and thus an infinite number of solutions.

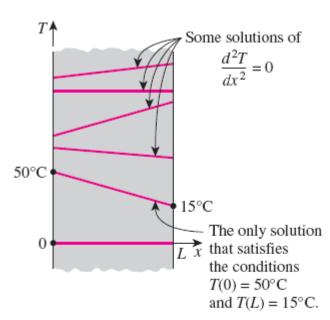


FIGURE 2-26

To describe a heat transfer problem completely, two boundary conditions must be given for each direction along which heat transfer is significant.

Boundary Conditions

- Specified Temperature Boundary Condition
- Specified Heat Flux Boundary Condition
- Convection Boundary Condition
- Radiation Boundary Condition
- Interface Boundary Conditions
- Generalized Boundary Conditions

1 Specified Temperature Boundary Condition

The *temperature* of an exposed surface can usually be measured directly and easily.

Therefore, one of the easiest ways to specify the thermal conditions on a surface is to specify the temperature.

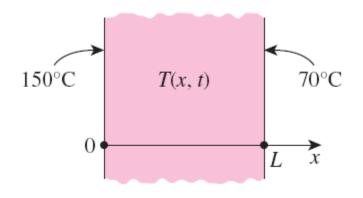
For one-dimensional heat transfer through a plane wall of thickness *L*, for example, the specified temperature boundary conditions can be expressed as

$$T(0, t) = T_1$$

$$T(L, t) = T_2$$

where T_1 and T_2 are the specified temperatures at surfaces at x = 0 and x = L, respectively.

The specified temperatures can be constant, which is the case for steady heat conduction, or may vary with time.



$$T(0, t) = 150$$
°C
 $T(L, t) = 70$ °C

FIGURE 2-27

Specified temperature boundary conditions on both surfaces of a plane wall.

2 Specified Heat Flux Boundary Condition

The heat flux in the positive *x*-direction anywhere in the medium, including the boundaries, can be expressed by

$$\dot{q} = -k \frac{\partial T}{\partial x} = \begin{pmatrix} \text{Heat flux in the} \\ \text{positive } x - \text{direction} \end{pmatrix}$$
 (W/

For a plate of thickness *L* subjected to heat flux of 50 W/m² into the medium from both sides, for example, the specified heat flux boundary conditions can be expressed as

$$-k\frac{\partial T(0,t)}{\partial x} = 50$$
 and $-k\frac{\partial T(L,t)}{\partial x} = -50$

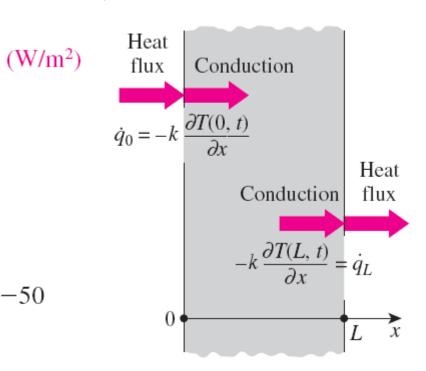


FIGURE 2-28

Specified heat flux boundary conditions on both surfaces of a plane wall.

Special Case: Insulated Boundary

A well-insulated surface can be modeled as a surface with a specified heat flux of zero. Then the boundary condition on a perfectly insulated surface (at x = 0, for example) can be expressed as

$$k \frac{\partial T(0, t)}{\partial x} = 0$$
 or $\frac{\partial T(0, t)}{\partial x} = 0$

On an insulated surface, the first derivative of temperature with respect to the space variable (the temperature gradient) in the direction normal to the insulated surface is zero.

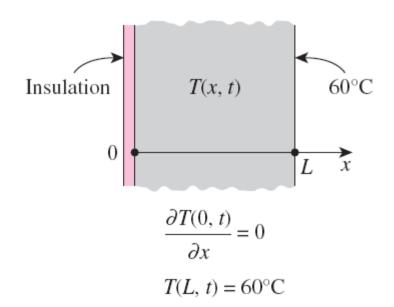


FIGURE 2-29

A plane wall with insulation and specified temperature boundary conditions.

Equações Diferenciais Parciais: Uma Introdução (Versão Preliminar)

Reginaldo J. Santos

Departamento de Matemática-ICEx

Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

Julho 2011

3		ıação do Calor em uma Barra	276
	3.1	Extremidades a Temperaturas Fixas	277
		3.1.1 Condições de Fronteira Homogêneas	277
		3.1.2 Condições de Fronteira Não Homogêneas	285
		Exercícios	291
	3.2	Barra Isolada nas Extremidades	
		Exercícios	301
	3.3	Condições de Fronteira Mistas e Equação não Homogênea	302
		3.3.1 Condições de Fronteira Mistas	302
		3.3.2 Equação do Calor não Homogênea	
		Exercícios	314
	3.4	Respostas dos Exercícios	316

Equação do Calor em uma Barra

Neste capítulo estudaremos a equação do calor unidimensional usando o método de separação de variáveis e as séries de Fourier.

Pode-se mostrar que a temperatura em uma barra homogênea, isolada dos lados, em função da posição e do tempo, u(x,t), satisfaz a equação diferencial parcial

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

chamada equação do calor em uma barra. Aqui $\alpha > 0$ é uma constante que depende do material que compõe a barra é chamada de difusividade térmica.

3.1 Extremidades a Temperaturas Fixas

Vamos determinar a temperatura em função da posição e do tempo, u(x,t) em uma barra isolada dos lados, de comprimento L, sendo conhecidos a distribuição de temperatura inicial, f(x), e as temperaturas nas extremidades, T_1 e T_2 , que são mantidas constantes com o tempo, ou seja, vamos resolver o problema de valor inicial e de fronteira (PVIF)

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \\ u(x,0) = f(x), \ 0 < x < L \\ u(0,t) = T_1, \ u(L,t) = T_2 \end{cases}$$

Vamos inicialmente resolver o problema com $T_1 = T_2 = 0$, que chamamos de condições de fronteira homogêneas.

3.1.1 Condições de Fronteira Homogêneas

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \\ u(x,0) = f(x), \ 0 < x < L \\ u(0,t) = 0, \ u(L,t) = 0 \end{cases}$$

Vamos usar um método chamado separação de variáveis. Vamos procurar uma solução na forma de um produto de uma função de x por uma função de t, ou seja,

$$u(x,t) = X(x)T(t).$$

Calculando-se as derivadas parciais temos que

$$\frac{\partial u}{\partial t} = X(x)T'(t)$$
 e $\frac{\partial^2 u}{\partial x^2} = X''(x)T(t)$.

Substituindo-se na equação diferencial obtemos

$$X(x)T'(t) = \alpha^2 X''(x)T(t).$$

Dividindo-se por $\alpha^2 X(x)T(t)$ obtemos

$$\frac{X''(x)}{X(x)} = \frac{1}{\alpha^2} \frac{T'(t)}{T(t)}$$

O primeiro membro depende apenas de x, enquanto o segundo depende apenas de t. Isto só é possível se eles forem iguais a uma constante, ou seja,

$$\frac{X''(x)}{X(x)} = \frac{1}{\alpha^2} \frac{T'(t)}{T(t)} = \lambda.$$

Obtemos então duas equações diferenciais ordinárias com condições de fronteira:

$$\begin{cases} X''(x) - \lambda X(x) = 0, & X(0) = 0, X(L) = 0 \\ T'(t) - \alpha^2 \lambda T(t) = 0 \end{cases}$$
(3.1)

As condições X(0) = X(L) = 0 decorrem do fato de que a temperatura nas extremidades da barra é mantida igual a zero, ou seja,

$$0 = u(0,t) = X(0)T(t)$$
 e $0 = u(L,t) = X(L)T(t)$.

A equação $X''(x) - \lambda X(x) = 0$ (a sua equação característica é $r^2 - \lambda = 0$) pode ter como soluções,

Se
$$\lambda > 0$$
: $X(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x}$.

Se
$$\lambda = 0$$
: $X(x) = c_1 + c_2 x$.

Se
$$\lambda < 0$$
: $X(x) = c_1 \operatorname{sen}(\sqrt{-\lambda} x) + c_2 \cos(\sqrt{-\lambda} x)$.

As condições de fronteira X(0) = 0 e X(L) = 0 implicam que

Se $\lambda > 0$:

Substituindo-se x = 0 e X = 0 na solução geral de $X'' - \lambda X = 0$,

$$X(x) = c_1 e^{\sqrt{\lambda} x} + c_2 e^{-\sqrt{\lambda} x},$$

obtemos que $0 = c_1 + c_2$, ou seja, $c_2 = -c_1$. Logo

$$X(x) = c_1(e^{\sqrt{\lambda}x} - e^{-\sqrt{\lambda}x}).$$

Agora substituindo-se x=L e X=0 obtemos que $c_1(e^{\sqrt{\lambda}\,L}-e^{-\sqrt{\lambda}\,L})=0$. Logo, se $c_1\neq 0$, então

$$e^{\sqrt{\lambda}L} = e^{-\sqrt{\lambda}L}$$

o que só é possível se $\lambda=0$, que não é o caso.

Se $\lambda = 0$:

Substituindo-se x = 0 e X = 0 na solução geral de $X'' - \lambda X = 0$,

$$X(x) = c_1 + c_2 x,$$

obtemos que $c_1 = 0$. Logo

$$X(x) = c_2 x$$
.

Agora substituindo-se x = L e X = 0 obtemos $c_2L = 0$. Logo, também $c_2 = 0$.

Se $\lambda < 0$:

Substituindo-se x = 0 e X = 0 na solução geral de $X'' - \lambda X = 0$,

$$X(x) = c_1 \operatorname{sen}(\sqrt{-\lambda}x) + c_2 \cos(\sqrt{-\lambda}x),$$

obtemos que $c_2 = 0$. Logo

$$X(x) = c_1 \operatorname{sen}(\sqrt{-\lambda}x). \tag{3.3}$$

Agora substituindo-se x = L e X = 0 em $X(x) = c_1 \operatorname{sen}(\sqrt{-\lambda}x)$, obtemos $c_1 \operatorname{sen}(\sqrt{-\lambda}L) = 0$.

Logo se $c_1 \neq 0$, então $\sqrt{-\lambda}L = n\pi$, para n = 1, 2, 3, ...

Portanto as condições de fronteira X(0) = 0 e X(L) = 0 implicam que (3.1) tem solução não identicamente nula somente se $\lambda < 0$ e mais que isso λ tem que ter valores dados por

$$\lambda = -\frac{n^2 \pi^2}{L^2}, \ n = 1, 2, 3, \dots$$

Substituindo-se estes valores de λ em (3.3) concluímos que o problema de valores de fronteira (3.1) tem soluções fundamentais

$$X_n(x) = \text{sen } \frac{n\pi x}{L}, \text{ para } n = 1, 2, 3, \dots$$

Substituindo-se $\lambda = -\frac{n^2\pi^2}{L^2}$ na equação diferencial (3.2) obtemos

$$T'(t) + \frac{\alpha^2 n^2 \pi^2}{L^2} T(t) = 0,$$

que tem solução fundamental

$$T_n(t) = e^{-\frac{\alpha^2 n^2 \pi^2}{L^2}t}$$
, para $n = 1, 2, 3, ...$

Logo o problema

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \\ u(0,t) = 0, \ u(L,t) = 0. \end{cases}$$

tem soluções soluções fundamentais

$$u_n(x,t) = X_n(x)T_n(t) = \operatorname{sen} \frac{n\pi x}{L} e^{-\frac{\alpha^2 n^2 \pi^2}{L^2}t}$$
 para $n = 1, 2, 3, ...$

Combinações lineares das soluções fundamentais são também solução (verifique!),

$$u(x,t) = \sum_{n=1}^{N} c_n u_n(x,t) = \sum_{n=1}^{N} c_n \operatorname{sen} \frac{n\pi x}{L} e^{-\frac{\alpha^2 n^2 \pi^2}{L^2} t}.$$

Mas uma solução deste tipo não necessariamente satisfaz a condição inicial

$$u(x,0) = f(x),$$

para uma função f(x) mais geral.

Vamos supor que a solução do problema de valor inicial e de fronteira possa ser escrita como uma série da forma

$$u(x,t) = \sum_{n=1}^{\infty} c_n u_n(x,t) = \sum_{n=1}^{\infty} c_n \operatorname{sen} \frac{n\pi x}{L} e^{-\frac{\alpha^2 n^2 \pi^2}{L^2} t}.$$
 (3.4)

Para satisfazer a condição inicial u(x,0) = f(x), temos que impor a condição

$$f(x) = u(x,0) = \sum_{n=1}^{\infty} c_n \operatorname{sen} \frac{n\pi x}{L}.$$

Esta é a série de Fourier de senos de f(x). Assim, pelo Corolário 2.5 na página 184, se a função $f:[0,L] \to \mathbb{R}$ é contínua por partes tal que a sua derivada f' também seja contínua por partes, então os coeficientes da série são dados por

$$c_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx, \ n = 1, 2, 3 \dots$$
 (3.5)

Exemplo 3.1. Vamos considerar uma barra de 40 cm de comprimento, isolada nos lados, com coeficiente $\alpha = 1$, com as extremidades mantidas a temperatura de 0° C e tal que a temperatura inicial é dada por

$$f(x) = \begin{cases} x, & \text{se } 0 \le x < 20\\ 40 - x, & \text{se } 20 \le x \le 40 \end{cases}$$

Temos que resolver o problema de valor inicial e de fronteira

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \\ u(x,0) = f(x), \ 0 < x < 40 \\ u(0,t) = 0, \ u(40,t) = 0 \end{cases}$$

A solução é então

$$u(x,t) = \sum_{n=1}^{\infty} c_n \operatorname{sen} \frac{n\pi x}{40} e^{-\frac{n^2 \pi^2}{1600} t}$$

em que c_n são os coeficientes da série de senos de f(x), ou seja, usando a tabela na página 202, multiplicando por 2 os valores obtemos:

$$c_{n} = \frac{1}{20} \int_{0}^{40} f(x) \sin \frac{n\pi x}{40} dx$$

$$= 2 \left(b_{n} (f_{0,1/2}^{(1)}, 40) + 40 b_{n} (f_{1/2,1}^{(0)}, 40) - b_{n} (f_{1/2,1}^{(1)}, 40) \right)$$

$$= \frac{80}{n^{2} \pi^{2}} \left(-s \cos s + \sin s \right) \Big|_{0}^{n\pi/2} - \frac{80}{n\pi} \cos s \Big|_{n\pi/2}^{n\pi} - \frac{80}{n^{2} \pi^{2}} \left(-s \cos s + \sin s \right) \Big|_{n\pi/2}^{n\pi}$$

$$= \frac{160}{n^{2} \pi^{2}} \left(-\frac{n\pi}{2} \cos \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right) + \frac{80}{n\pi} \cos \frac{n\pi}{2}$$

$$= \frac{160 \sin \frac{n\pi}{2}}{n^{2} \pi^{2}}, \quad n = 1, 2, 3 \dots$$

Entretanto coeficientes de índice par são nulos:

$$c_{2k} = 0$$

$$c_{2k+1} = \frac{160(-1)^k}{(2k+1)^2\pi^2}.$$

Portanto a solução do problema é

$$u(x,t) = \frac{160}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n^2} \sin \frac{n\pi x}{40} e^{-\frac{n^2\pi^2}{1600}t}$$
$$= \frac{160}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} \sin \frac{(2n+1)\pi x}{40} e^{-\frac{(2n+1)^2\pi^2}{1600}t}$$

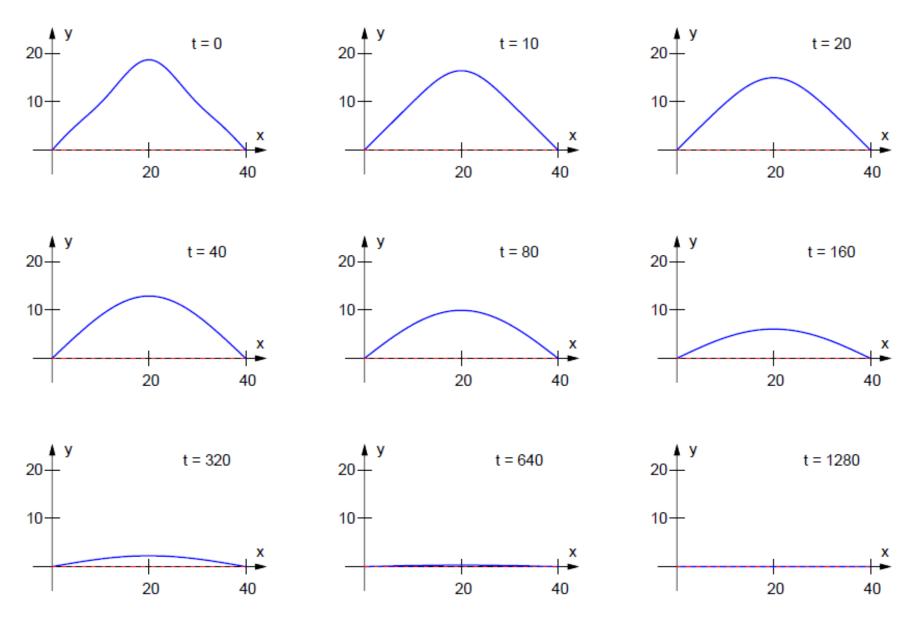


Figura 3.1 – Solução, u(x,t), do PVIF do Exemplo 3.1 tomando apenas 3 termos não nulos da série.

MAP 2320 – MÉTODOS NUMÉRICOS EM EQUAÇÕES DIFERENCIAIS II

2º Semestre - 2019

Roteiro do curso

- Introdução
- Séries de Fourier
- Método de Diferenças Finitas
- Equação do calor transiente (parabólica)
- Equação de Poisson (elíptica)
- Equação da onda (hiperbólica)