PSI3211 – CIRCUITOS ELÉTRICOS I

Exercícios Complementares correspondentes à Matéria da 3ª Prova

1 - No circuito da Figura 1, a chave encontra-se aberta há muito tempo, e fecha quando t = 0.

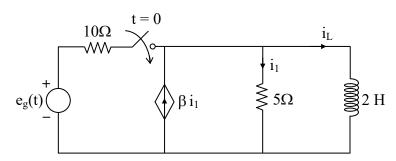


Figura 1

Responda:

- a) Qual é o valor de $i_L(0_-)$?
- b) Determine o gerador equivalente de Thévenin ($e_0 e R_0$) visto pelo indutor para t > 0 em função de β .
- c) Qual é (em função de β) a constante de tempo do circuito para t > 0 ?
- d) Supondo $\beta = 0$ e $e_g(t) = 20\sqrt{2} \cos\left(\frac{5}{3}t + 90^{\circ}\right)$, determine $i_L(t)$ para $t \ge 0$.
- 2 Considere o circuito da Figura 2.

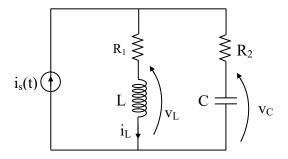


Figura 2

Pede-se:

- a) Forneça as expressões de α e ω_0 em função de L , C , R_1 e R_2 .
- b) Usando as leis de Kirchhoff, exprima $v_L(0)$ em função de $i_s(0)$, $v_C(0)$, $i_L(0)$, R_1 e R_2 .
- c) Com $i_s(t)=1$ H(t) (mA, s) e condições iniciais nulas em $t=0_-$, calcule $v_C(t)$ para $t\geq 0$. Adote: $\omega_0=100$ rad/s , $\alpha=75$ s $^{-1}$, $R_1=4$ k Ω , C=2.5 μF .

3 – Considere o circuito da Figura 3 cuja chave muda instantaneamente da posição 1 para a posição 2 em t=0.5 s.



Figura 3

Pede-se:

- a) Determine E (em V) sabendo que $\left. \frac{dv(t)}{dt} \right|_{t=0_+} = -18 \text{ V/s}$.
- b) Sabendo-se que v(t) em regime permanente senoidal vale

$$v_{p}(t) = 9\cos(6t + 60^{\circ}), (V,s)$$

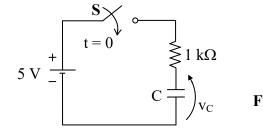
determine a expressão da resposta completa v(t) entre t=0 e t=0,5 s , isto é, antes da mudança de posição da chave.

Obs.: Considere novamente que $\frac{dv(t)}{dt}\Big|_{t=0} = -18 \text{ V/s}$.

c) Determine o valor da corrente do indutor em t = 1 s, sabendo-se que em t = 1,5 s essa corrente vale $i_L(1,5) = 8 \text{ A}$.

Testes

- 1 No circuito da Figura 4, o capacitor está inicialmente descarregado. A chave S fecha em t = 0. Qual deve ser o valor de C para que $v_C(t)$ atinja 4 V em exatamente 1 ms?
 - a) $1/\ln(1.25)$ F
 - b) $1/\ell n \, 5 \, \mu F$
 - c) $\ell n 5 F$
 - d) $1/\ell n(1,25) \mu F$
 - e) n.d.a.



- 2 Para o circuito da Figura 5, sabe-se que $i_L(t) = \cos\left(\frac{3}{2}t\right) e^{-3/2t}$, $t \ge 0$. A tensão $e_g(t)$ do gerador deve ser :
 - a) 0
 - b) $2e^{-3/2t}$
 - c) $3\sqrt{2} \cos \left(\frac{3t}{2} + 45^{\circ} \right)$
 - d) $\frac{3\sqrt{2}}{2}\cos\left(\frac{3}{2}t\right)$

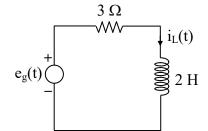
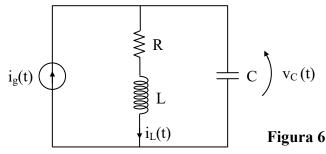


Figura 5

- 3 Para o circuito da Figura 6, se $i_g(t)=0.2~\delta(~t~)~(~A,s~)~,~v_C~(~0_-~)=-1~V,$ $i_L~(~0_-~)=0.5~A~,~R=1~\Omega,~L=0.2~H,~C=0.05~F,~então~v_C~(~0_+~)~e~i_L~(~0_+~)~valem,$ respectivamente:
 - a) -1 V e 0.7 A
 - b) 4 V e 0,5 A
 - c) 3 V e 0,5 A
 - d) -1 V e 1,5 A
 - e) n.d.a.



- 4 No circuito da Figura 7, e_s(t) é uma onda quadrada com patamares 0 V e 1 V, e período 2 s. A forma de onda de v(t) está representada na Figura 8. Se este circuito está ligado há muito tempo, qual é o valor mínimo aproximado de v(t), ou seja, v_m?
 - a) 0,314 V
 - b) 1 V
 - c) 0,54 V
 - d) 0,27 V
 - e) n.d.a.

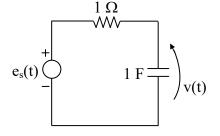


Figura 7

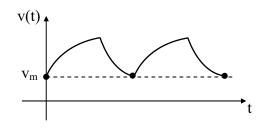
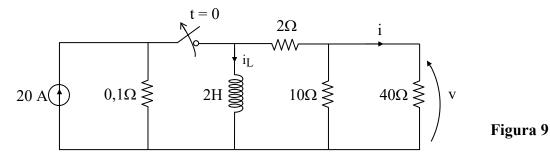


Figura 8

- 5 Ainda no circuito da Figura 7, considere $e_s(t) = 0$ (o gerador foi trocado por um curto) e sendo v(0) = 0.6 V, determine o intervalo de tempo (aproximado) para que metade da energia armazenada no capacitor seja dissipada:
 - a) 1 s
 - b) 0,54 s
 - c) 0.35 s
 - d) 0,21 s
 - e) n.d.a.

Para os **testes 6 e 7**, considere o circuito da Figura 9, em que a chave está fechada há muito tempo e abre em t = 0.



6-A expressão de i_L para $t \ge 0$ é:

- a) $12 e^{-3t}$
- b) $20 e^{-5 t}$
- $c) 10 e^{-12 t}$
- d) $16 e^{-8t}$
- e) n.d.a.

7 – O valor de v logo após a abertura da chave (em V) é:

- a) -160
- b) -120
- c) -140
- d) -100
- e) n.d.a

8 – Considere o circuito da Figura 10 com condição inicial $v(0_{-}) = 1 \text{ V}$ e excitação $e_s(t) = 2\delta(t)$ (V,s). A condição inicial $v(0_{+})$, em V, vale:

- a) 9/5
- b) 6/5
- c) 1
- d) 4/5
- e) n.d.a.

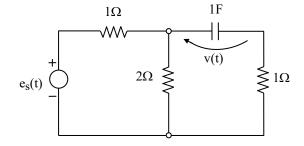
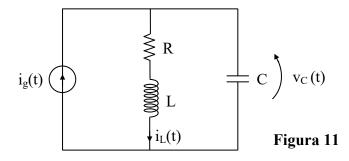


Figura 10

9 – Para o circuito da Figura 11, o coeficiente de amortecimento α vale :

- a) R/2L
- b) 1/2 RC
- c) R/L
- d) 1/LC
- e) n.d.a.



Para os testes 10, 11 e 12, considere os circuitos das Figuras 12 e 13.

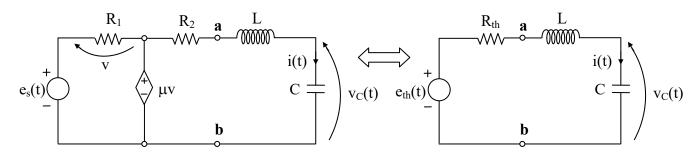


Figura 12 Figura 13

O circuito "visto" pelos elementos reativos (L e C) da Figura 12 é simbolicamente mostrado na Figura 13.

10- Os valores de $\,\alpha\,$ e $\,\omega_0^{\,2}$ são expressos em termos dos parâmetros do circuito da Figura 12, respectivamente, como:

a)
$$\frac{R_1 + R_2}{2L}$$
, $\frac{1}{LC}$

b)
$$\frac{R_2}{2L}$$
, $\frac{1}{LC} \frac{\mu}{\mu + 1}$

c)
$$\frac{R_1 + R_2}{2L}$$
, $\frac{1}{LC} \frac{\mu}{\mu + 1}$

d)
$$\frac{R_2}{2L}$$
, $\frac{1}{LC}$

e) n.d.a.

11 – Considerando o circuito da Figura 13 com $i(0_{-}) = 2A$, $v_c(0_{-}) = 10V$, L = 0.5H, C = 20 mF, e uma excitação $e_{th}(t) = 5$ $\delta(t)$ (V,s), os valores de $i(0_{+})$ e de $v_C(0_{+})$ são, respectivamente:

- a) 12 A e 10 V
- b) 2 A e 10 V
- c) 2 A e 260 V
- d) 12 A e 260 V
- e) n.d.a.

12 – Supondo agora R_{th} = $10~\Omega$ e as demais condições do teste 11, o valor de $\frac{di}{dt}$ ($t=0_{-}$) em (A/s) é igual a:

- a) -10
- b) -20
- c) -40
- d) -60
- e) n.d.a.