SMM0562 – Termodinâmica dos Materiais

Tópico 6 – Sistemas Unários Heterogêneos

Prof. Eduardo Bellini Ferreira

Departamento de Engenharia de Materiais –

EESC/USP

Potencial químico e a energia livre de Gibbs

 O conceito de potencial químico foi introduzido para descrever sistemas capazes de trocar matéria com sua vizinhança durante o processo, isto é, para lidarmos com sistemas abertos:

$$dU' = TdS' - PdV' + \mu dn$$

Onde se introduz o potencial químico, μ:

$$\mu = \left(\frac{\partial U'}{\partial n}\right)_{S',V'}$$

Relembrando a função da energia livre de Gibbs:

$$G' = U' + PV' - TS'$$

Diferenciando:

$$dG' = dU' + PdV' + V'dP - TdS' - S'dT$$

• Para um sistema unário e aberto, substituindo ${f d} {m U}'$ e simplificando:

$$dG' = (TdS' - PdV' + \mu dn) + PdV' + V'dP - TdS' - S'dT$$
$$dG' = V'dP - S'dT + \mu dn$$

• Aplicando a relação de coeficiente para o terceiro termos:

$$\mu = \left(\frac{\partial G'}{\partial n}\right)_{T,P}$$

• Utilizando o valor da energia livre de Gibbs por mol, G'=nG:

$$\mu = \left(\frac{\partial G'}{\partial n}\right)_{T,P} = \left[\frac{\partial (nG)}{\partial n}\right]_{T,P} = G\left(\frac{\partial n}{\partial n}\right)_{T,P} = G$$

Em um sistema unário, o potencial químico do componente em qualquer estado é idêntido à energia livre de Gibbs molar daquele estado.

• Como $\mu=G$ em sistemas unários: $d\mu=dG=-SdT+VdP$ Não esquecer que agoras são quantidades molares, sem apóstrofo!

• Se a fase α passa por uma transformação de fase arbitrária:

$$d\mu^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dP^{\alpha}$$

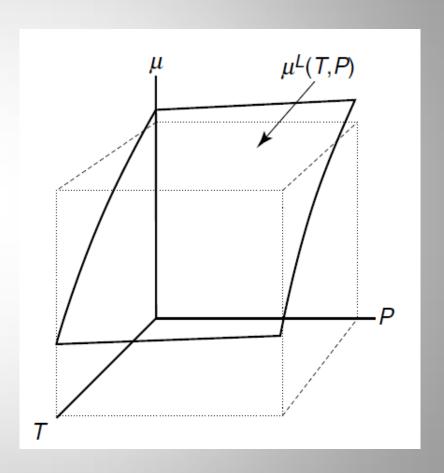
 S e V podem ser obtidos como funções da temperatura e pressão, e então calculados a partir de dados de capacidade térmica, expansão térmica e compressibilidade. Assim, a expressão acima pode ser integrada resultando em:

$$\mu^{\alpha} = \mu^{\alpha}(\mathbf{T}^{\alpha}, \mathbf{P}^{\alpha})$$

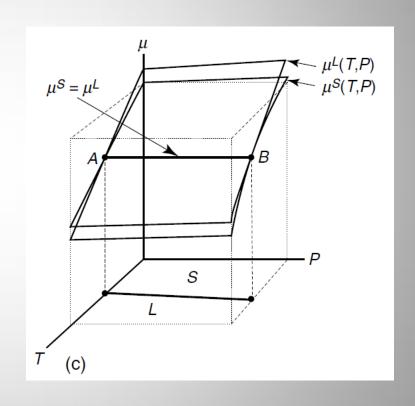
• A função $\mu^{\alpha} = \mu^{\alpha}(\textbf{\textit{T}}^{\alpha}, \textbf{\textit{P}}^{\alpha})$ pode ser visualizada graficamente como uma superfície:

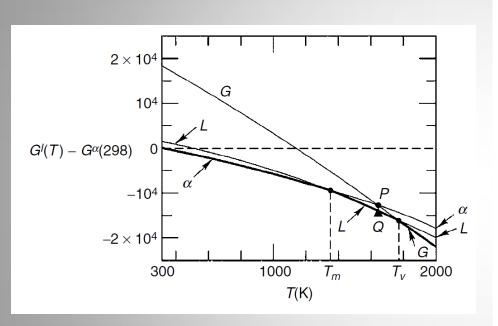
- O argumento do slide anterior pode ser estendido para qualquer fase que possa existir no sistema.
- Por exemplo, existe uma superfície de potencial químico para a fase líquida:

$$\mu^{\mathsf{L}} = \mu^{\mathsf{L}} \left(\mathbf{T}^{\mathsf{L}}, \mathbf{P}^{\mathsf{L}} \right)$$



 Essas duas superfícies (da fase α e da fase líquida) podem ser comparadas em qualquer condição (T, P) somente se o estado de referência utilizado em seus cálculos for o mesmo: mesmo (T_0, P_0) e mesma fase (α ou líquido).





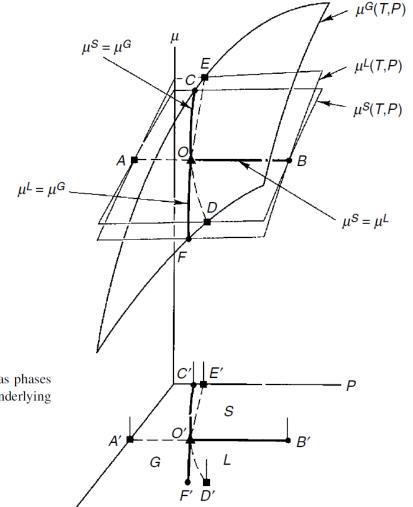


FIGURE 7.4 Superposition of chemical potential surfaces for solid, liquid and gas phases demonstrates the relationship between the structure of the phase diagram and the underlying thermodynamics.

- As curvas onde há duas fases em equilíbrio no plano (P,T) em sistemas unários podem ser descritas matematicamente por uma função P = P(T).
- A equação de Clausius-Clapeyron é uma forma diferencial dessa equação, cuja integração fornece a expressão matemática do contorno entre duas fases no diagrama de equilíbrio.
- As intersecções entre duas curvas (para quaisquer duas fases) fornecem os pontos triplos.
- Portanto, a equação de Clausius-Clapeyron é a única relação matemática necessária para calcular e construir diagramas de fase unários!

- Considere qualquer par de fases que se saiba ou desconfie existirem no sistema: α e β
- Se a fase α passa por uma mudança de estado qualquer (arbitrária), sua mudança de potencial químico é dada pela equação 7.5 (DeHoff):

$$d\mu^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dP^{\alpha}$$

• O mesmo acontece para a fase β

$$d\mu^{\beta} = -S^{\beta}dT^{\beta} + V^{\beta}dP^{\beta}$$

• \mathbf{S}^{α} e \mathbf{V}^{α} são propriedades molares da fase α e \mathbf{S}^{β} e \mathbf{V}^{β} são da fase β .

• Se durante esse processo (mudança de fase) infinitesimal, α e β são mantidos em equilíbrio, mudanças de $\textbf{\textit{P}}$, $\textbf{\textit{T}}$ e μ de uma fase é restrita às condições para o equilíbrio derivadas no capítulo 5 (DeHoff):

$$T^{\alpha} = T^{\beta} \rightarrow dT^{\alpha} = dT^{\beta} = dT$$

$$P^{\alpha} = P^{\beta} \rightarrow dP^{\alpha} = dP^{\beta} = dP$$

$$\mu^{\alpha} = \mu^{\beta} \rightarrow d\mu^{\alpha} = d\mu^{\beta} = d\mu$$

• Se as duas fases mantiveram-se em equilíbrio, elas têm que, por exemplo, obedecer a relação $T^{\alpha}=T^{\beta}$, que implica que a temperatura das duas fases sejam iguais ao longo da mudança.

Assim:

$$d\mu^{\alpha} = -S^{\alpha}dT + V^{\alpha}dP = d\mu^{\beta} = -S^{\beta}dT + V^{\beta}dP$$

Combinando termos semelhantes:

$$\left(S^{\beta} - S^{\alpha}\right) dT = \left(V^{\beta} - V^{\alpha}\right) dP$$

• O coeficiente de dT é a mudança de entropia que acompanha a transformação de um mol da fase α na fase β na temperatura e pressão consideradas:

$$\Delta \mathbf{S}^{\alpha \to \beta} \equiv \mathbf{S}^{\beta} - \mathbf{S}^{\alpha}$$

 Da mesma forma, a mudança de volume molar que acompanha a transformação é definida:

$$\Delta V^{\alpha \to \beta} \equiv V^{\beta} - V^{\alpha}$$

• Substituindo $\Delta S^{\alpha \to \beta}$ e $\Delta V^{\alpha \to \beta}$ na expressão:

$$\left(S^{\beta} - S^{\alpha}\right) dT = \left(V^{\beta} - V^{\alpha}\right) dP$$

Obtém-se

$$\Delta S^{\alpha \to \beta} dT = \Delta V^{\alpha \to \beta} dP$$

• Ou, rearranjando:

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S^{\alpha \to \beta}}{\Delta V^{\alpha \to \beta}}$$

- que é uma das formas da Equação de Clausius-Clapeyron (é a inclinação da curva P = P(T)!).
- Vale para qualquer contorno de duas fases, em geral!

- Para integrar a equação de Clausius-Clapeyron, precisamos de informação sobre a variação de ΔS e ΔV com a temperatura em pressão.
- A variação de entropia não é medida diretamente. Medidas de calorimetria fornecem o calor da transformação, por exemplo, o calor de fusão ou vaporização.
- Como o processo acontece isobaricamente, e reversivelmente, o calor da reação é a mudança de entalpia para o processo:

$$\mathbf{Q}^{\alpha \to \beta} = \Delta \mathbf{H}^{\alpha \to \beta} = \mathbf{H}^{\alpha} - \mathbf{H}^{\beta}$$

Essa medida pode ser conectada com a entropia da transformação:

$$G^{\alpha} = H^{\alpha} - T^{\alpha}S^{\alpha}$$

$$G^{\beta} = H^{\beta} - T^{\beta}S^{\beta}$$

• Como α e β estão em equilíbrio, $\mu^{\alpha} = \mu^{\beta}$, ou $G^{\alpha} = G^{\beta}$: $G^{\alpha} = H^{\alpha} - T^{\alpha}S^{\alpha} = G^{\beta} = H^{\beta} - T^{\beta}S^{\beta}$

• O equilíbrio térmico requer que $m{T}^{lpha}=m{T}^{eta}=m{T}$, portanto:

$$H^{\beta} - H^{\alpha} = T(S^{\beta} - S^{\alpha})$$

Rearranjando:

$$\Delta \mathbf{S}^{\alpha \to \beta} = \frac{\Delta \mathbf{H}^{\alpha \to \beta}}{\mathbf{T}}$$

Substituindo em:

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S^{\alpha \to \beta}}{\Delta V^{\alpha \to \beta}}$$

O resultado é:

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta H^{\alpha \to \beta}}{T \Delta V^{\alpha \to \beta}}$$

 Essa é a forma mais frequentemente utilizada no cálculo de diagramas de equilíbrio unários.

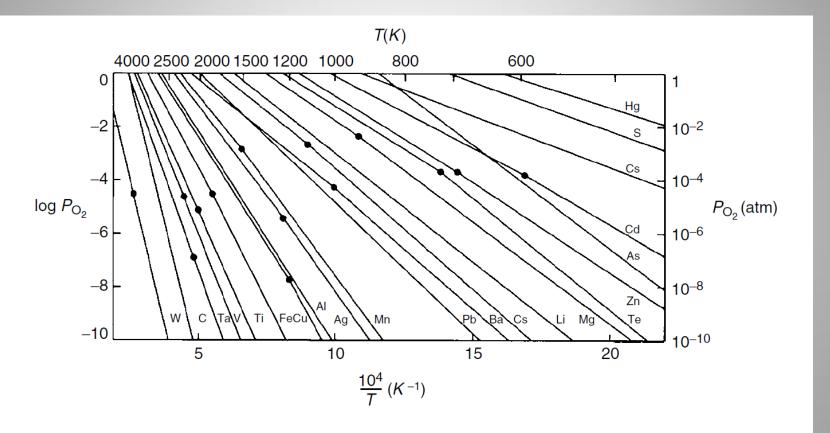
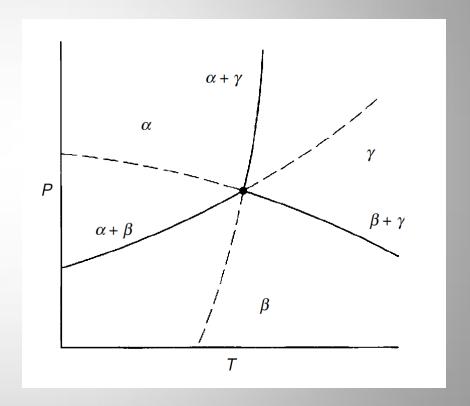


FIGURE 7.6 Compilation of vapor pressure curves for common elements, plotting logarithm of the vapor pressure vs. 1/T. A change in slope corresponds to the melting point.

- Um ponto triplo (P_t, T_t) é a intersecção de três curvas de equilíbrio entre duas fases.
- Portanto, o ponto (P_t, T_t) satisfaz Clausius-Clapeyron para os três equilíbrios de duas fases do sistema.
- O ponto triplo pode então ser calculado algebricamente pela solução simultânea de qualquer par dessas equações.



- Outra característica do ponto triplo é que as propriedades, ΔS , ΔH e ΔV , dos três pares de mudanças de fases, $\alpha \leftrightarrow G$, $\alpha \leftrightarrow L$ e $L \leftrightarrow G$, são necessariamente relacionadas.
- Por exemplo:

$$\Delta V^{\alpha \to G} = V^G - V^{\alpha} = V^G - V^L + V^L - V^{\alpha}$$
$$\Delta V^{\alpha \to G} = (V^G - V^L) + (V^L - V^{\alpha})$$
$$\therefore \Delta V^{\alpha \to G} = \Delta V^{L \to G} + \Delta V^{\alpha \to L}$$

 Ou seja, a variação da propriedade na transformação de sólido para gás é a soma da variação da propriedade na transformação de sólido para líquido e da variação de líquido para gás (funções de estado não dependem do caminho).

- Como calcular pontos triplos.
- Considerando equilíbrios envolvendo a fase vapor, para o equilíbrio sólidovapor:

$$\ln\left(\frac{P}{P_0}\right) = -\frac{\Delta H}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)$$

$$\ln P - \ln P_0 = -\frac{\Delta H}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)$$

$$\ln P = -\frac{\Delta H}{RT} + \frac{\Delta H}{RT_0} + \ln P_0$$

$$P = e^{-\frac{\Delta H}{RT} + \frac{\Delta H}{RT_0} + \ln P_0} = e^{\frac{\Delta H}{RT_0} + \ln P_0} e^{-\frac{\Delta H}{RT}}$$

$$\therefore P^S = A^S e^{-\frac{\Delta H^S}{RT}}$$

Onde $A^S=e^{\left(\frac{\Delta H^S}{RT_0}+\ln P_0\right)}$ é uma constante, e o sobrescrito $\binom{S}{T}$ representa propriedades da curva de sublimação.

- Como calcular pontos triplos.
- Considerando equilíbrios envolvendo a fase vapor, para o equilíbrio sólido-vapor:

$$P^{S} = A^{S} e^{-\frac{\Delta H^{S}}{RT}}$$

 O mesmo pode ser escrito para o equilíbrio líquidovapor:

$$P^V = A^V e^{-\frac{\Delta H^V}{RT}}$$

Onde $A^V = e^{\left(\frac{\Delta H^V}{RT_0} + \ln P_0\right)}$ é uma constante e o sobrescrito $\binom{V}{V}$ representa as propriedades da curva de vaporização.

O ponto triplo fica sobre ambas as curvas.
 Então:

$$P_t = A^S e^{-\frac{\Delta H^S}{RT_t}}$$
 e $P_t = A^V e^{-\frac{\Delta H^V}{RT_t}}$

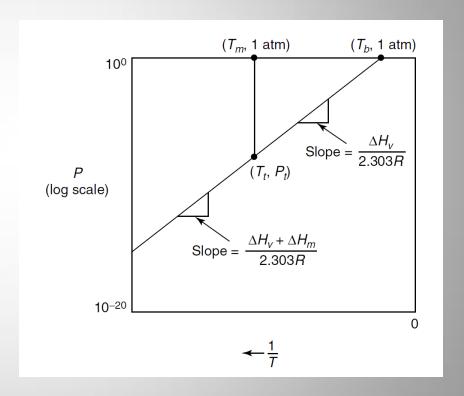
• Resolvendo para P_t e T_t :

$$T_{t} = \frac{\Delta H^{S} - \Delta H^{V}}{R \ln\left(\frac{A^{S}}{A^{V}}\right)}$$

$$P_{t} = (A^{S})^{\frac{\Delta H^{V} - \Delta H^{S}}{(\Delta H^{V} - \Delta H^{S})} \cdot (A^{V})^{\frac{\Delta H^{S} - \Delta H^{V}}{(\Delta H^{S} - \Delta H^{V})}}$$

 Um jeito mais prático, observe que as curvas de vaporização e sublimação são lineares em um gráfico de $\log P$ versus $\frac{1}{T}$ no limite de baixas pressões (próximo da pressão atmosférica):

$$\log P = \log A - \frac{1}{2,303} \frac{\Delta H}{RT}$$



Exemplo 7.1

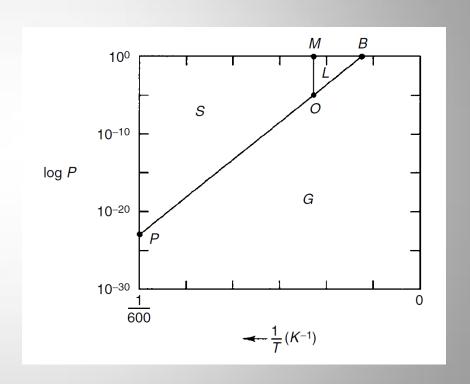
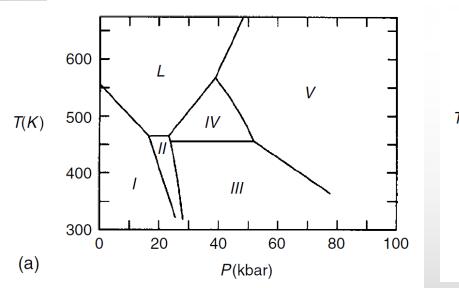


Figure 7.10 shows the experimentally determined P-T phase diagram for pure bismuth. On the pressure scale plotted, the vapor phase region is flattened against the temperature axis. A systematic computation of this complicated diagram requires:

- a. A list of all of the possible phase forms that may appear: I, II, III,..., L, G
- b. Heat capacity, coefficients of expansion and compressibility for each of the phases so that its chemical potential surface, $\mu^{I}(T, P)$, may be computed
- c. Transition temperatures, heat and volume changes for transitions at 1 atm or at other specific conditions so that the relative positions of the chemical potential surfaces may be fixed



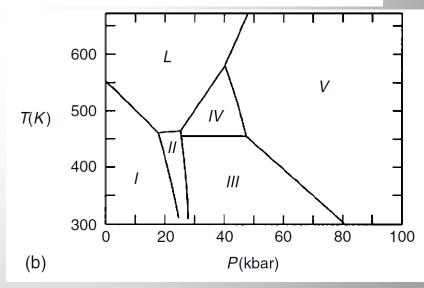


FIGURE 7.10 Experimentally determined P-T phase diagram for pure bismuth (a) is compared with the computed diagram in which the temperature and pressure dependence on the parameters is neglected (b).²