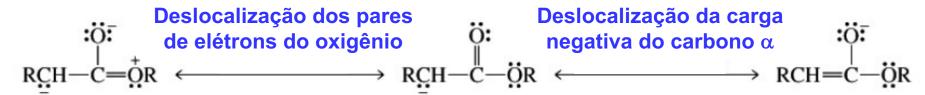
Compostos β-Dicarbonílicos

- Acidez de compostos carbonílicos: enol e enolato.
- •Obtenção de compostos 1,3-dicarbonílicos: Condensação de Claissen.
- •Alquilação de compostos carbonílicos e 1,3-dicarbonílicos: enaminas, síntese de Éster Aceto-Acético e Malônico.
- •Equivalentes de ânions alcanoílicos: reações de "Umpolung" (inversão de polarização); síntese de α-hidróxicetonas
- Ditioacetais: reação com compostos carbonílicos e alquilação;
- •Reação de Wittig: Formação estereo-seletiva de alcenos.

Bruice: Paula Y. Bruice "Organic Chemistry" 5th edition, Pearson Education Inc., 2007.

Clayden: Clayden, J., Greevers, N., Warren, S., Wothers, P. "Organic Chemistry", Oxford University Press. 2006.


Vollhardt: Vollhardt, K.P.C., Schore, N.E. "Organic Chemistry: Structure and Function", 3rd edition, W.H. Freeman & Co, 1998.

Valores de pK_a para alguns ácidos de carbono

	pK _a		pK _a
O CH ₂ CN(CH ₃) ₂	30	N≡CCHC≡N H	11.8
O CH ₂ COCH ₂ CH ₃	25	O O CH ₃ CCHCOCH ₂ CH ₃ H	10.7
H CH ₂ C≡N H	25	O O O CCHCCH ₃	9.4
O ∥ CH₂CCH₃ H	20	O O 	8.9
O ∥ CH₂CH <mark>H</mark>	17	O O CH₃CCHCH H	5.9
CH ₃ CHNO ₂ H	8.6	O ₂ NCHNO ₂ H	3.6

Acidez C-H de Diferentes Derivados

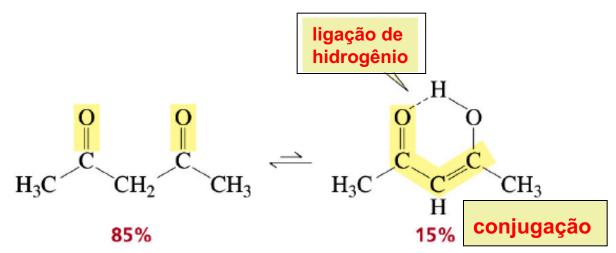
Ésteres versus Aldeídos/Cetonas:

Os elétrons no carbono α não são deslocalizados com facilidade devido à existência da estrutura de ressonância na esquerda: Ésteres menos ácidos

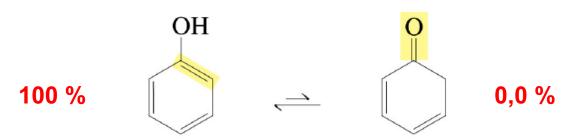
C-H Ácidos não Compostos Carbonílicos

CH₃CH₂NO₂ CH₃CH₂C
$$\equiv$$
N CH₃CN(CH₃)₂

nitroetano propanonitrila N,N-dimetilacetamida pK_a = 8,6 pK_a = 26 pK_a = 30


Compostos Dicarbonílicos

Tautomerismo Ceto-Enôlico

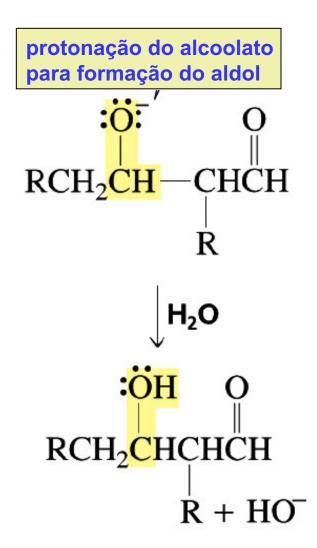

Compostos Carbonílicos Simples: Predomina o Tautômero CETO

$$CH_3$$
— C — CH_3 $\stackrel{\longrightarrow}{\rightleftharpoons}$ CH_2 = C — CH_3 $> 99.9%$ $< 0.1%$

Compostos Dicarbonílicos: Aumento do Tautômero ENOL

Fenóis: Somente 'Enol' - Sistema Aromático

Reações de Carbânions: Condensação de Claisen: Síntese de β-ceto ésteres


Mecanismo da Condensação de Claisen:

Comparação: Condensação de Claisen e Adição Aldólica

Condensação de Claisen

expulsão do GP RO-; formação de ligação π RCH₂C

Adição Aldólica

A Força Motriz da Reação é a Desprotonação do β-Ceto Éster

A condensação de Claisen requer um éster com dois hidrogênios α e quantidades equimolares de base.

Condensação de Claisen Intramolecular: Condensação de Dieckmann

Só para Lembrar Condensação Aldólica Intramolecular

Condensação Aldólica Intramolecular: Tamanho do Anel formado

Importância de fatores entrópicos

Formação de Anéis: 3 e 4 desfavorável pelos fatores entálpicos (tensão de anel);

5 e 6 favorável pelos fatores entálpicos e entrópicos;

> 7 desfavorável pelos fatores entrópicos.

Descarboxilação de β-Ceto Ácidos

Catálise Básica

Catálise Ácida

estado de transição cíclico envolvendo 6 elétrons - aromático

Alquilação de Compostos Carbonílicos

Controle da reação dificultada: ocorrência de poli-alquilação.

Enaminas como Equivalentes de Compostos Carbonílicos: Reação com Eletrófilos (Alquilação)

Alquilação de Enaminas como Equivalentes de Compostos Carbonílico

- 1. Formação da Enamina (Carbonila + Amina secundária);
- 2. Alquilação da Enamina com Haleto de alquila (S_N2, condições neutras !)
- 3. Hidrólise da Enamina (Formação do composto carbonílico monoalquilado

Acilação de Compostos Carbonílicos via Enamina

Alquilação de Compostos 1,3-Dicarbonílicos: Síntese do Éster Malónico

Sequência de Reação:

$$C_2H_5OC-CH_2-COC_2H_5 \xrightarrow{ \textbf{CH}_3\textbf{CH}_2\textbf{O}^- } C_2H_5OC-\overset{\textbf{O}}{C}H-\overset{\textbf{O}}{C}OC_2H_5 \xrightarrow{\textbf{R}-\textbf{Br}} C_2H_5OC-\overset{\textbf{O}}{C}H-\overset{\textbf{O}}{C}OC_2H_5 + Br^-$$

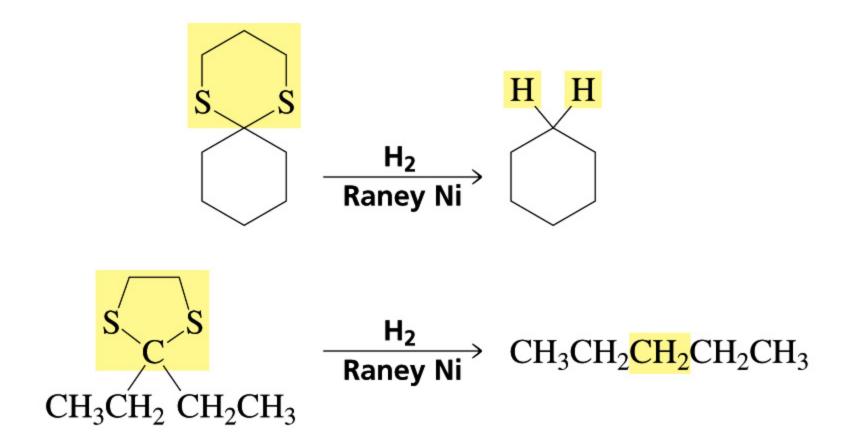
$$H^+$$
, H_2O \triangle

$$R-CH_2-COH + CO_2 \stackrel{\triangle}{\longleftarrow} HOC-CH-COH + 2 CH_3CH_2OH$$

ácido carboxílico monosubstituído em α

ácido malônico substituído em α

éster malônico substituído em α


Síntese do Éster Malónico: Preparação de ácidos carboxílicos dissubstituidos.

Síntese do Éster Aceto-Acético: Preparação de metil cetonas substituídas.

Sequência da Reação.

Formação de Ligação C-C com 'Umpolung' Adição Nucleofílica de Tióis à Carbonila

Redução de Tiocetais: Formação de Alcanos

Método de transformar compostos carbonílicos nos alcanos correspondentes; Outros métodos???

18

Reação de ânions ditianos com compostos carbonílicos: Síntese de α-Hidroxicetonas

Estabilidade do ânion alcanoílico???

Qual seria o composto usado para este sinton (equivalente do ânion acila)

Reação de ânions ditianos com compostos carbonílicos:

Estabilização de ânions ditianos:

Estabilização da carga negativa pelos átomos de enxofre? Estrutura de ressonância com a carga negativa no enxofre!

Alqilação de Ditianas

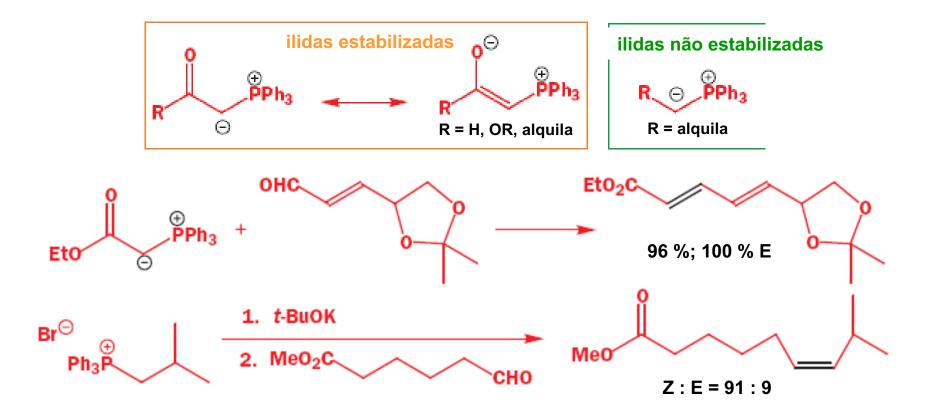
Aplicação Sintética: Obtenção de uma Metaciclofana

uma metaciclofana

A Reação de Wittig: Formação de Alcenos

O Mecanismo da Reação de Wittig

$$\ddot{\ddot{O}} : \ddot{\ddot{C}} + \ddot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{P}} (C_6 H_5)_3 \longrightarrow \begin{matrix} \ddot{\ddot{O}} - \dot{\ddot{P}} (C_6 H_5)_3 \\ \ddot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} \\ \ddot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} \\ \ddot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} \dot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} \dot{\ddot{C}} \\ \ddot{\ddot{C}} - \dot{\ddot{C}} \dot{\ddot{C}} \dot{\ddot{C}} + \ddot{\ddot{C}} \dot{\ddot{C}} \ddot{\ddot{C}} {\ddot{C}} \ddot{\ddot{C}} \ddot{\ddot{C}} \ddot{\ddot{C}} \ddot{\ddot{C}} {\ddot{C} {\ddot{C}} {\ddot{C}} \ddot{\ddot{C}} {\ddot{C}} {\ddot{C}} {\ddot{C}} {\ddot{$$

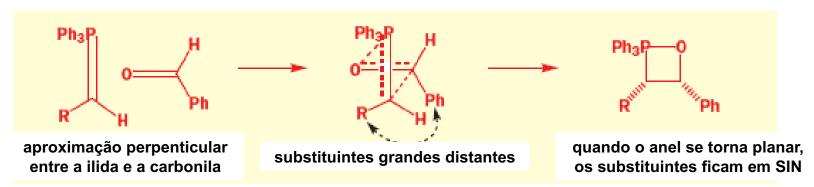

Formação da Ilida (fosforana)

$$(C_6H_5)_3P$$
: + CH_3CH_2 — Br $\xrightarrow{S_N2}$ $(C_6H_5)_3P$ — CH_2CH_3 trifenilfosfina Br — $CH_2CH_2CH_2$ \xrightarrow{t} $(C_6H_5)_3P$ — CH_2CH_3 uma ilida de fosfônio

$$\begin{matrix} \text{CH}_2 \\ \text{C} \\ \text{R} \end{matrix} + \vdots \\ \ddot{\text{O}} = P(C_6H_5)_3 \\ \text{trifenilfosfinóxido} \end{matrix}$$

A Reação de Wittig: Estereoseletividade

Ilidas Estabilizadas e Não-Estabilizadas

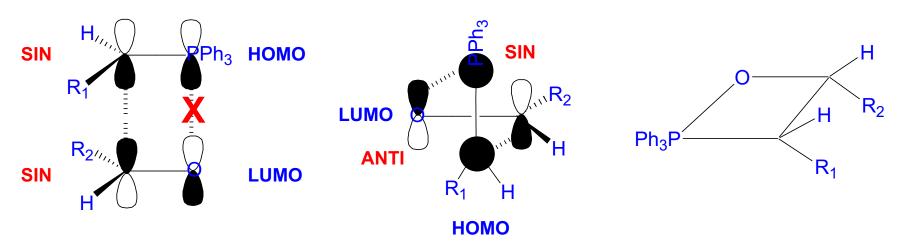

Ilida estabilizada: estereo-seletividade E; Ilida não-estabilizada: estereo-seletividade Z.

A Reação de Wittig: Estereoseletividade

Ilidas Não-Estabilizadas:

1º passo estereo-seletivo com controle cinético, 2º passo estereospecífico – eliminação SIN.

Porque a oxafosfetana formada possui a configuração Z?



Explicação possível com simetria dos orbitais: ciclo-adição com quatro elétron deve ocorrer de maneira SIN/ANTI: aproximação dos reagentes com anglo de 90° (perpenticular) e substituintes grandes em lados opostos.

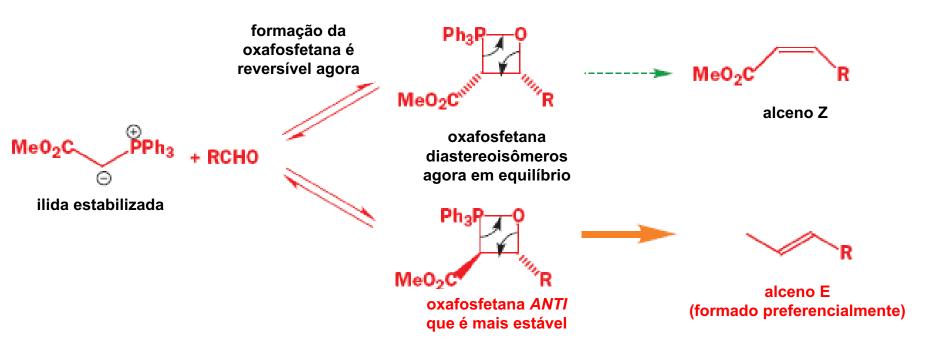
A Reação de Wittig: Estereoseletividade

Ilidas Não-Estabilizadas:

Simetria dos Orbitais

Na aproximação SIN / SIN entre HOMO e LUMO ocorre uma interação não-ligante: reação proibida

Observe que este seria a aproximação com menor impedimento estérico


Na aproximação SIN / ANTI entre HOMO e LUMO ocorre somente interações ligante: reação permitida

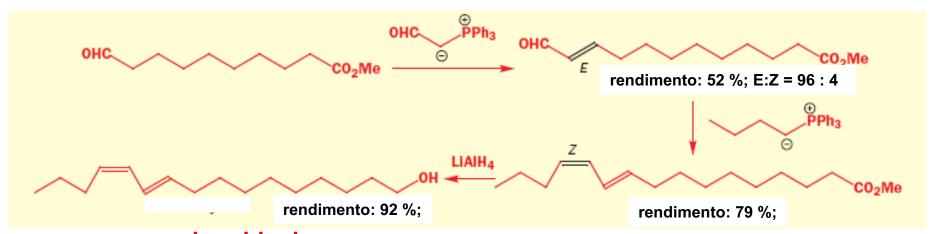
A aproximação feita deixa os dois substituintes R_1 e R_2 longes um do outro.

Quando se coloca o anel no plano, os dois substituintes R_1 e R_2 acabam no mesmo lado (sin, Z, cis).

A Reação de Wittig: Estereoseletividade Ilidas Estabilizadas

Formação da oxafosfetana é reversível agora devida à maior estabilidade da ilida; O derivado anti (E, *trans*) é formado preferencialmente (controle termodinâmico); A eliminação estereospecífica SIN do fosfinóxido leva a formação preferencial do alceno E; Esta suposição é válida quando a formação da oxafosfetana é mais rápida que a sua decomposição.

A Reação de Wittig com Ilidas Estabilizadas Exemplos


Porém: estas ilidas são muito estáveis e com isso pouco reativos reagem bem com aldeídos mas não cetonas.

Uso de fosfonato ésteres: Reação de Horner-Wadsworth-Emmons (HWE)

fosfonato éster

Aplicação Sintética

Obtenção de "bombycol", um ferormônio da fêmea do bicho-da-seda

bombicol

A síntese foi feita em 1977 e contém dois passos utilizando-se a reação de Wittig de maneira estereo-seletiva.