Data Analysis

More Than Two Variables: Graphical Multivariate Analysis

Prof. Dr. Jose Fernando Rodrigues Junior ICMC-USP

What is it about?

\rightarrow More than two variables determine a tough analytical problem
\rightarrow In particular, graphical methods quickly become impractical
\rightarrow Although there are graphical techniques to display multivariate data, they can not deal with too many variables (typically, less than $15-25$)

What is it about?

\rightarrow Three-variables is a borderline case... there are several alternatives that work pretty well
\rightarrow False-color plots
\rightarrow For a number of variables not much greater than three one may rely on multiple bivariate plots
\Rightarrow Scatter plot matrices and co-plots
\rightarrow For more variables
\Rightarrow multidimensional visualization techniques
\rightarrow interaction

Three variables

\rightarrow For example, consider the data defined by function:

$$
y=f(x, a)=\frac{x^{4}}{2}+a x^{2}-\frac{x}{2}+\frac{a}{4}
$$

that corresponds to the three-variable setting \mathbf{y}, \mathbf{x} and a
y the dependent variable, x and a the independent ones
\rightarrow One way to analyze this is by means of a surface plot

Three variables

\rightarrow For example, consider the data defined by function:

$$
y=f(x, a)=\frac{x^{4}}{2}+a x^{2}-\frac{x}{2}+\frac{a}{4}
$$

\rightarrow One way to analyze this is by means of a surface plot:

Three variables

\rightarrow Surface plots help build intuition for the overall structure of the data
\rightarrow However, it is notoriously difficult to read off quantitative information from them, or develop a good sense for the behavior of the function
\rightarrow Another way is to use a two-dimensional xy plot with multiple curves, one for each value of interest of one of the variables. This allows a more precise reading of quantitative information and a close inspection of the behavior of the function

Three variables

\rightarrow Another way is to use a two-dimensional xy plot with multiple curves, one for each value of interest of one of the variables;
\rightarrow In the previous example, variable a is considered for values 2 , I, 0, -I, -2

Three variables

\rightarrow Surface plots and multiple-curve xy plots can be used in combination, one providing an aesthetically appealing overview, the other providing fine detail for values of interest
\Rightarrow It is interesting to note that surface plots go against the commonsense that 3D plots should be more informative than 2D plots
\Rightarrow Yet another possibility is to project the function into the base plane bellow the surface, using either:
\rightarrow contour plots
\rightarrow false-color plots

Three variables

- Contour plots: familiar from topographic maps
- Good to convey local properties, effective if the data is relatively smooth

Maunga Whau Volcano

col=terrain.colors(100)

Surface plot + contours

 surface-contour-plot/content/html/Surface_Contour_Plot.html

Three variables

\rightarrow The false-color plot is an alternative
\Rightarrow Highly versatile: applicable in many different situations
\Rightarrow Retains quantitative information
\Rightarrow Obtained by mapping all values of the dependent variable following a palette of colors

Three variables

\rightarrow A false-color plot for function $f(x, a)$

Three variables

\rightarrow The fa
\rightarrow The fa False-color plots are very effective for presenting quantitative information

It is important to note, however, that its efficiency depends heavily on the color mapping, which must be intuitive according to the task at hand

For an overview of color-mapping guidelines, see the textbook on page I04

Parenthesis

- Actually, the choice of good color palettes when using color to convey information is a very relevant topic in data visualization
- Usually, novices in the field pay less attention to this topic than they should
* Using whatever default is available in your system typically results in very bad results...
- See http://colorbrewer2.org/
- (a web tool for selecting colors for maps, not meant for general data analysis contexts, but still useful)

Parenthesis

- If color is used to map information, a color legend is obviously required!
- Color does not reproduce well across different media

More than three variables

\rightarrow There are basically two ways to get more information on a plot
\Rightarrow Put similar graphs next to each other and vary the variables in a systematic fashion from one subgraph to the next \rightarrow multiplots
\rightarrow Make the graph elements themselves richer with color, shape, and interaction
\rightarrow Multiplots
\rightarrow The most common forms of multiplots are the scatter-plot matrix, and the co-plot,

Scatter-plot matrix

\rightarrow The scatter-plot matrix is constructed considering all the possible two-variable combinations achieved from the set of variables
\rightarrow For each combination, a sub-region of the space is reserved and all the combinations are put together according to a straight layout
\rightarrow The more variables, the bigger must be the screen, limits start to manifest around 10 variables, the same for the number of data points, limited around 100

Scatter-plot matrix

\rightarrow For example, consider a 250 wines data set consisting of seven different properties: acidity, sugar, chlorides, sulfur dioxide, density, alcohol, and quality

The data can be found in the "Wine Quality" data set, available at the UCI Machine Learning repository - http://archive.ics.uci.edu/ml/.

- sugar content and density are positively correlated
- as the alcohol content goes up, density goes down, inverse correlation
- wine quality seems to increase with increasing alcohol content: apparently, more potent wines are considered to be better

Iris Scatterplot Matrix

Co-plots

\rightarrow Short for conditional plots or conditioning plots
\rightarrow A way of showing how a response (or 'control' variable) depends on (two or more) other variables
\rightarrow Co-plots work by partitioning the data according to one of the variables (data slices) and plotting each partition in a different plot

Co-plots

\rightarrow In this example, consider the function $y=f(x, a)$
\rightarrow the upper figure shows how one of the variables (a) was used to partition (slice) the data
\rightarrow then x, y plots are shown for each interval

\rightarrow Notice that the intervals overlap and have different sizes so that each plot has the same number of points

Co-plots

$P=$ inflation rate, $\mathrm{VP}=$ voting percentage $\mathrm{G}=$ rate of growth

Coplot of an election data set. This is assessing the effect of P on VP conditional on varying values of G .

Co-plots

Composition

\rightarrow Another way to visualize more than two variables is to compose multiple plots according to some of the variables
\rightarrow Suitable when the data describes how some overall quantity is composed out of parts
\rightarrow For example: imagine a company that makes five products labeled A, B, C, D, and E, and two questions:
\rightarrow how many items of each kind are produced overall
\rightarrow how the item mix is changing over time

Composition

\rightarrow For example: imagine a company that makes five products labeled A, B, C, D, and E, and two questions:
\rightarrow how many items of each kind are produced overall
\rightarrow how the item mix is changing over time
\rightarrow A simple solution, but not quite effective is to plot (days x quantity) the different curves all together

Composition

\rightarrow Another solution is to use the same plot but stacking the information, so as to have a notion of total
\Rightarrow In absolute numbers (left), or
\Rightarrow In relative contributions (percentage)

Composition

\rightarrow Another solution is to use the same plot but stacking the information, so as to have a notion of total
\Rightarrow In absolute numbers (left), or
\rightarrow In relative contributions (percentage)

Composition

Parallel Coordinates

\rightarrow In a parallel coordinate plot, the coordinate axes are parallel to each other
\rightarrow For every data point, its value for each of the variables is marked on the corresponding axis, and then all these points are connected with lines

Parallel Coordinates

- See https://syntagmatic.github.io/parallel-coordinates/
- Brushing
- Linking and brushing

Information Visualization

\rightarrow Many other techniques are presented according the findings of the field known as Information Visualization:
\rightarrow Glyphs
\rightarrow Chernoff Faces
\rightarrow Tree-maps
\rightarrow Star coordinates
\rightarrow Table Lens
\rightarrow Multidimensional Projection
\rightarrow And many others, all improved by means of interaction techniques:
\rightarrow Querying and zooming
\rightarrow Linking and Brushing
\rightarrow Combined projections, and so forth

References

- Philipp K. Janert, Data Analysis with Open Source Tools, O'Reilly, 2010.
- Wikipedia, http://en.wikipedia.org
- Wolfram MathWorld, http://mathworld.wolfram.com/

