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comes from the theory of quadratic functionals for delay differential Abstract—A new sliding mode observer for a class of nonlinear uncer-

equations. It is possible that the ideas in this note can be carried ovelf}fSYStems is proposed in this article. The proposed sliding mode observer

. . . works under much less conservative conditions than previous nonlinear un-
many other types of delay and Volterra equations of interest in contrphown input observers. Also, a functional version of the observer is pro-
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while. capable of estimating the entire state of the system.
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This extension was also applied to nonlinear systems in triangular infifug = ¢1 + - - - + ¢., is strictly less tham, it is always possible to find

form in [1], output and output derivative injection formin [5]. In papers: — ¢ more functions,+(x), ..., ¢»(x) such that the mapping
[17] and [21], a framework similar to a Luenberger observer were used . ‘
by appending a switching function with constant or time-varying gain®() = col(91(2), .., Og, (), ..., O, (2), Dyt (),

The main contribution of this article is to develop a systematic sliding ceey On(T))

mode observer (SMO) design approach for nonlinear systems subject
to unknown inputs. Previous SMO designs using equivalent contis a Jacobian matrix which is nonlinear at eacle M and therefore
method did not consider the system uncertainties. As we pointed ougli@lifies as a local coordinate transformationlih Moreover, based
[22], estimation error is generally unavoidable if these SMO are appli€8 Assumption 2, itis always possible to chogge: (), ..., ¢u(z)
directly for systems with unknown input. A class of SMO proposet such a way that
by [20] and [22] can provide unknown input insensitive estimation for Lao(e) =0 3
linear systems with unknown input. Reference [24] considered the non- 95 ¢ile) = )
linear unknown input observer (NUIO) design for nonlinear systemg, g1 i — ¢+1,...,n,5=1,...,m, andallz in M.

which can be transformed into output injection form. This article also gg¢
sheds extra light on the NUIO design problem.

& 9i(x)
Il. MAIN RESULTS =1 = ¢2(x)
We consider multivariable nonlinear systems described in state space 2 oL (x)
form by equations of the following form: ‘ o
fori=1,...,m,andes = ()T, ..., (™))
@ =f(&)+ B, u)+ Y gi(a)di(x, u, t) w, dq1 ()
=1 ok ] | dare(®)
y =) e = ="
«l'giq (,bn (l')
yp =hyp() @) the equations under new coordinates can be written as
in which = € M, a C™ connected manifold of dimension, iy =ah 4 by (za, o, u)
f(z), B(z, u), G(z) = [gi(x), ..., gm(x)] are smooth vector
fields on3, andh;(x), ¢ = 1, ..., p are smooth functions from{ i

to R. The termd(x, u, t) represents the uncertainty due to modeling Fgm1 =g, + bq —1(wa, w0, u)

error or component/actuator faults, namely the unknown input. In what i

ai(was @0) + by (was Tor w) + Y cij(wa, wo)d;

follows, local coordinates are generally used. When global properties 4 =
are considered, notions are simplified by assuming iaaccepts a o 4
global coordinate system. Yyi =" @
Assumption 1: We assume that > rn, and the first. outputs have ¢, ; — 1. m. and
a vector relative degrefy, ..., ¢ } corresponding t@+() at each T
pointzo € M. Stated differently, this means o =q(zd, o) + p(wa, To, u)
I Lkh (I) -0 Ym41 = h777,+1 (xda Io)
forallj =1,...,m,forallk < ¢ — 1,foralli =1, ..., m, and Yp = hp(2a, o) (5)
for all z in M. Further, then x m matrix
where
Ly LY 'hy(w)  --- Lo LY 'Ry(x) _ _
LD o) oo Ly L (o) il 20) = LY@ (r 2.)
Alr) = e cij :ngL“fJ*lhi(@_l(wd, Zo))
Lo, L4 'hy(x) <o+ Ly, L4y, (2) and
is nonsingular at each point € M. . 0(]] 1)
Assumption 2:The distribution spanned by the vector fields bi(@da, o, u) = TB(‘I’ N, o), ),
g1(x), ..., gm(z) is involutive.

Lemma 1: Given the system (2), if assumptions 12 are valid, then The above lemmais a trivial extension of [12, Prop. 5.1.2]. The non-
linear transformatior®(») decomposes the system (2) into two sub-

systems. Of the two subsystems, onlysubsystem is effected by un-
known inputs. Of course, this is not a complete decomposition because
it is relies on Assumption 1 and 2.

Next, we shall discuss the observer design for system (4)—(5).

G+ +gm <.
Fori =1,..., m set

(z')i =h;(z)

. A. Observability of Subsystems
052 = th,‘ (I)

It is well known that the observability of nonlinear systems is asso-
ciated with inputs. The observability of nonlinear subsystem (4)—(5) is

bg, =LFT Yhi(e) of interest here.
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Inputs which make a nonlinear system unobservable are called “bad Proof: From (4), (7) and (8), we obtain the following observation
inputs” or “not universal inputs.” For known input signals, one caerror dynamics ofe} = r] — l] ji=1 ..., q,
avoid applying those “bad inputs.” However, the unknown inputs which
may be the result of a fault or certain other disturbances are beyond ¢} =eh — A} sign(e})

ones control.Therefore,obser_vablhty for_ all unknown mputs isin gen- &b = e + b (2, v, w) — bL(sh, y u) — AL sign(%‘)
eral necessary in order to design a nonlinear unknown input observer,
unless it can be guaranteedpriori that the unknown inputs do not ) . o .
belong to the class of bad inputs. Based on the work in [10], we have €y, 1 = ¢, + by, 1 (2, .., x4, 1.y, u)
following lemma that shows the conditions such that the observability —_pt 1(v§ iy )
.. . '77— ? 7 rgi— 1 I

of z4 subsystem is independent of unknown inputs. Y Swn(—)

Lemma 2:Letz) = {wg, ...,y " ayt, ..., 27"}, Assume 71 a1
eachz; subsystem in (4) has its input term in the following form 6; = ai(@a, : )+b 2as 2o, w) + Z cij(d, o

bi (2, @0, w) =bi(i, 23, @5, 20, ) iy £0) = b (s £or w) = N sign(eT). (10)

b5 (xa, xo, w) =by(al, 2, xs, zd, Loy W)
As the known and unknown inputs are bounded, the state does not go
to infinity in finite time. Consequently, the observation error is also

bf._ Td, To, U _b(_ Td, To, U N ’ . P
=1 (@a w) =g, (@a; ) bounded. By choosind; > sup|e5(t)], i goes to zero in finite time

by, (2, 2o, u) :qu- (wds o, u) (6) t1. Moreover, aftet;, we have
and the functions el = (Al sign(e1))eq = €h.
14+ 5 0, j=1,...,q—1 Therefore, aftet;, the second error equation becomes
k'l,ti - ’ ’
J+1

o v ' éh = el +bh (’L‘Z Y, u) — (IZ Y, u)—)\251gn(ez)
and stater,, «, is considered as inputs far; subsystem. Thenr;
subsystem is uniformly observable for all inputsd, =%, andz,,. If A5 > |eb +b5(ah, y, u) —b5(25, y, u)|, ¢4 goes to zero in finite
An open problem which does not effect the development heretimet, > t,. Therefore, aftet > t.
whetherz, subsystem is observable if and only if the original system
(2) is observable. e = (A, sign(es))eq = €5
B. Sliding Mode Observer for Subsystem With Unknown Inputs €s =ci+ by, w5y, ) = bs(, 75, y, w) = s sign(es).
We shall first build an unknown input independent observerfor We run the procedure up to step thus aftert,, 1, we have
subsystem.
Theorem 1: If each«’; subsystem in (4) has its input term in the , i

following form: €4 = aila, o) + 0y, (xa, w0, w) + D cij(wa, 20)d,
=1
b (Zd, Ty 1) :;,71(?/, ) —ai(£a, #0) = by, (Ea, Fo, u) — Ay, sign(eg, ).
bz(md-, To, “) bé(Té, Y, “’)

Let AG, > lai(wa, #0) + by, (2d, @0, w) + 3070, cij(2a, ¥0)d; —
v _ v ' ai(&q, #,)—by. (&4, &o, u)|, eq; CONVerges to zero in finite timg, >
bo,—1(xa, o, u) =bg, 1 (@b, .oy gy, 1, Y, ©) tg,—1. O

be (s oy 1) =bL (24s o, 1) @) The equivalent control signdl)., for signal» is calculated by
low pass filtering the signal with anti-peaking structure[8]. This an-
tipeaking structure is based on the principle that the observation error
information is not used before reaching the sliding manifold linked with
this information. Moreover, we reach the manifold one by one in a sort

there exists a choice dfj i=1,....,m,j =1,..., ¢; such that
following sliding mode observer can be built to estimate states

) of a recursive fashion. As a result of this, obtain a subdynamics of di-

“ =&+ bi (y, ) + Xi sign(y; — &) mension one is encountered and consequently the peaking phenomena
By =2 4 bh (&5, v, u) + Ay sign(ed) is avoided. More precisely
; : : : et = (Ni_; sign(et_;))eqg =0
By, g =dg, F by, (&, oo, g1, Y, u) 5 = (N signle)_1))eq
‘ + Agi—1sign(eg, ) beforee’ , reaching its sliding manifold.
= ai(da, #0) + b (Fa, #or u) + N sign(el)  (8) At this point, several important remarks are in order:
Remark 1: Note that the transformation in Lemma 3 decomposed
whereel, j = 1, ..., ¢ are given by the nonlinear system (2) into two interconnected su_bsystem with states
J x4 andx,. Of these two subsystems, the unknown inputs only appear
_ ; [ in one, namely the:;. The observer proposed in the above discussion
5 = (A sign(ef_))eq ©)  will provide state estimates for this subsystem. On the other hand, the
o ‘ ‘ x, subsystem s free of the unknown inputs, and any applicable existing
forj =2, ..., ¢i,andel = ¢} = y; — 2} can be obtained directly. observer can be used to estimate its stateThis estimate is needed
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in observer (8), for estimating the statewf. On the other hand, if, mationy™ = S(y). It stated that the inverse function= &(z, y*)
subsystem is unobservable, or if it is too complex to build an obsenexists, if and only if
for it, &, will not approximate real value of,. However, as long as

both#, andx, are bounded, observer (8) will always converge as long 0T (x)

as gain\;, is selected large enough. rank | O =n; lim |(T(z) S)'|=o0c. (12)
It is, therefore, possible to lgt, = 0 and still estimate part of the 95(y) llell—oo

state. The reason for this desirable property isithas only confined to Ox

the last equation. In such a case, we are essentially building a functiong|yever, the question as to under what conditions there exists
slldlng_ mode observer. _It is well k_nown, at_least in the linear realng(y) that satisfy conditions (12) is still unresolved. In [18] it is
that it is generally possible to design functional observers under leggted thap > 1 is a necessary condition. Here we show that this
restrictive conditions than full state observers. Such observers cand@t true at least in theory by analyzing the existence of NUIO
useful for control purposes and more so for fault diagnosis applicatiogging the transformation given in Lemma 1. Note that the relative
In fault diagnosis applications observers are essentially used as residig@lreq;, = 1(i = 1, ..., m) means all states of, subsystem are
generators. The estimation error of the observer is used as a resigi@hsurable. Therefore, the following conditions are sufficient for the
that is used to draw conclusions about the health of the system. In su¢htence of a NUIO:
applications, a full estimate of the actual state may not be necessary an
afunctional observer may accomplish the fault detection task under Ies§
restrictive existence conditions, [23].

Remark 2: Note also that ity + - -- + ¢ = n, then thex, sub-
system will actually disappear, and all states can be estimated.

Ypi=1,1=1,....m;

) x, subsystem is detectable.

Above conditions may be satisfied evem i= .. On the other hand, if
any relative degreg, > 1(1 < k < m), itis expected that no NUIO

Remark 3: The system form (7) is more general than the outp xists. Under this case, the statés . . ., xg, Willnot be able to derive

L . . . rough a nonlinear transform gnandz, the states of unknown input
injection or triangular input form, but more conservative than the for e subsvstem. Therefore. the proposed SMO works under much less
(6), which assures uniform observability. Y ’ ' prop

conservative conditions than NUIO.

Remark 4: It shoul n hatif; = 1,7 =1,..., m, th L N .
ema t should be noted that kf. = - the Remark 7: The basic ideas presented in this article, can be used to
above theorem does not put any special constraint on the input teﬁé‘si n robust (functional) sliding mode observers for linear systems
¢ = 1,7 =1, ..., m means all states of subsystem are measur- 9 9 y .

hat case, a transformation based on the special coordinate basis
B) theory can be used to decompose the systems into parts with
and without the unknown inputs. From there, similar equivalent con-
trol bases sliding mode observers can be designed, [22].

able. An observer for such a system may be unnecessary for controlnlé,a
synthesis, but will be useful in fault detection and isolation (FDI) a;g
plications.

Remark 5: Them observers for!,(i = 1, ..., m) subsystems can
run in parallel, although in each observeg-rponverges to zeroif all the
el with k < j have already converged to zero. If we allow stateso
be estimated after® with & < ¢ have been estimated correctly, then Example 1: A three-phase current motor model [3] is described by

lll. 1 LLUSTRATIVE EXAMPLE

the input term can be in a more general form following nonlinear equations:
T2
B (e e ) =B e ) b= | —Aiws = Aows sin @1 = Ao sin 21 | @
b;(;vd, Loy U) :bé(wé, Y, kL ;z:ffl, w) —Dixs + D> cos a1
0 0 0 0 .
e . u ¢

i i i i i1 i—1 L0 {1}4' 10 {dl}
by, —1(@d, To, u) =bg, (29, ..oy g1y Yoo Tgy -vny Ty L W) 0 1 U2 0 1 b2

b;(,rd., To, U) :bf“(md, Xoy W)
wherez = [z, 22, 23]", andzi, z» andzs denote the motor’s rotor
angle, speed deviation and field flux linkage, respectively. The known
wherey, = i, Yit1. - --» ym]. Further, ifz, subsystem is indepen- inputs arex; (nominal mechanical power input) and (field voltage)
dent ofz; and can be estimated correctly by certain observer, then it88d unknown inputs are
not a problem for:, to appear in all input terms of; subsystem.
Remark 6: The NUIO design method reported in [18], transforms di = AA,xy + Adpxs sin 71 + Ads sin 2m,
the system (2) by = T'(«), where
which represents uncertainties of parameters A, andAs, and
AT( ) ds = ADx: ADs cos x
01(;(:) Gla) = 0 (11) r Al cos

which represents uncertainties of paramefersandD-. All changes

are induced by the operating temperature, or component incipient
such that: is actually an unknown input free subsystem. Then an ofaults. The unknown inputg; or d, may be small enough to be
server for the reduced ordersubsystem is built. Equation (11) is theneglected in different operation conditions.
same as condition (3) of Lemma 1. According to the Frobenius the-Remark 8: Itis not always necessary to design the proposed sliding
orem [12], (11) is solvable if and only @ () is involutive. Therefore, mode observer based on the transformed system model as it is not al-
although involutivity of G(x) is a very strong assumption, we cannotvays easy to find the suitable transformation. For nonlinear systems

avoid it if total unknown input decoupling is required. with linear output equation, we suggest to check the possibility of de-
In NUIO design, the original state is obtained througlsigning an observer based on the original system equation. In this ex-
x = ®(z,y"), wherey™ is obtained from a nonlinear transfor-ample we shall illustrate this intuitive design procedure.
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3
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Fig. 1. Simulation results showing actual versus estimated states.

In the following discussion to illustrate the robust SMO design, we + Ao sign( (A sign(yr — 21 )eq)
shall consider several scenarios and the corresponding observer design iy = —Dids + Dy cos y1.
for each case. However, for the sake of brevity, simulation results based ’
on only one case are illustrated. Case 3:d; is Zero,d, is Nonzero: In this case, with only one mea-

Case 1: Bothi; andd, are Nonzero: In this case, it is noted that g, .ement for, , the system can be transformed into triangular form
x1, wz IS a sub-system in the triangular form of (4)if is measured, and all states can be estimated. Note) = [0 0 1]*, itis easy to

namelyy: = 1, which will m"?‘kem to be obse_rved. Ifwe hfa\‘-@ = show that the relative degree of outgut= 2.(x) = =, corresponding
x3, then all states can be estimated by following observer: t0g(z)isr = 3 at pointz: # k. The transformation is given by
= sign(yn — ) i =01(x) = hi(x) =z
Lo = —A1d2 — Asys sin y1 — Az sin 2y €2 = 6o(2) = Ll (2) = 22
+ Ao sign((Ay sign(y1 — #1)eq) € = 03(2) = 2D () = fula).

3

—D7 @3 + Ds cos y1 + A1 sign(yz — 3).

The above transformation is valid at any point other thagt k=, and
Case 2:dy is Nonzerogls is Zero: In this caseys is an unknown its inverse transformation is
input free subsystem. Fortunately, itis also detectable bedause 0.
We can build the following observer: r =&

Ty =&

x3 =2(8) =

.75’1 :i’z —+ /\1 sign(y1 — .f‘])

&3+ A& + Az sin 28
— Ay sin & ’

i’z = —A1 i’z bl Azi’g SiIl Y1 — 443 sin 2y1
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The nonlinear system under the new coordinates is now described by[4] G. Bornard and H. Hammouri, “A high gain observer for a class of

&1 =6

& =§
5.3 =—A1&3 — & (A22(8) cos & + 2A3 cos 2&7)
— Ay sin & (—D1z(€) + D2 cos &)

y1 =&

(5]

(6]
(71

Then a SMO in the form of (8) can be designed. In fact a SMO can bel®!
designed in this case without using the above complicated transforma-

tion, in which case the observer is given by

I =29 4 A sign(yr — #1)

f“g =—A139 — Aai3 sin y1 — As sin 2y,
+ Az sign((Aq sign(ys — #1)eq)

@3 = =Dy + Dy cos y1 + A3 sign(es)

note the equivalent control signal based on the second equation is

(A2 sign(ez))eq = —Azes sin y;

thus

__ (sign(@)e

C3 S = €3.
—As sin y1

Obviously, it is true only ifsin y; # 0.

9]

(10]

(11]

(12]
(13]

(14]

(15]
[16]

(17]

For simulation purposes, the parameters in the model have

the following values:A; = 0.2703, 4, = 12.01, A3 =
—48.04, D; = 0.3222, D, = 1.9, andAD,; = 0.6. The con-
trol inputu, = 36.19, uo = 1.9333. The gain\; = A2 = A3 = 200.
The initial state is assumed to be = {0.88, 0.0, 6.5}, and initial

value of observer i, = {0.0, 20} andne = 0.8. The simulation
results for case 3 are shown in Fig. 1. Based on the figures, it is cle

(18]

[19]

4O

that the observer’s estimate quickly converge to the true state of the

system in spite of the considered modeling uncertainties.

IV. CONCLUSION

[21]

(22]

A robust sliding mode observer for a class of uncertain nonlinear

systems was proposed in this article. The uncertainties in the nonlinegs,

systems are assumed to be structured and representable through un-
known input terms to the system. The sliding mode observer design
which uses equivalent control concepts is based on a coordinate trarlg4l
formation on the nonlinear system which renders a decomposition of
the system into two subsystems. The main advantage of the proposgg;)
observer over previously proposed ones is that it can be designed under
less restrictive existence conditions. Applications of the proposed ob-

server to model based fault detection is a subject of future research.
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