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Why do we use sliding mode technique

(1) It is robust respect to bounded uncertainty
(2) It is model-free

Sliding-mode
[1] V.I.Utkin, Sliding Modes and Their Application in Variable

Structure Systems, MIR Publishers, Moscow, Soviet Union,
1978.

[2] V.I.Utkin, Sliding Modes in Optimization and Control,
Springer-Verlag, 1992.

There exist discontinuous dynamic

m
··
x + kx + F = 0

where F is friction as

F =

(
α
·
x

·
x ≤ 0

−α ·
x

·
x < 0

Sliding-mode control,

u =

½
u+ s(x) ≥ 0
u− s(x) < 0
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2.
where s(x) = 0 is sliding surface. How to design s(x) is key
problem of sliding-mode control.

Example 1 If the tracking error satisfies

e =
¡
x− xd

¢
+ λ

µ
·
x− ·

x
d
¶

We define sliding surface as s (x) = 0, s (x) = e. If the trajectory
convergence to s(x), e → 0. So the condition s ·s < 0 can make
the trajectory go to s = 0.

Stability of sliding surface s = 0. The dynamic of sliding
surface satisfies

·
s = −Ksign (s) , K ∈ Rn×n

Consider Lyapunov function

V =
1

2
sTPs, P = PT > 0
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The derivative of V is

·
V = sTP

·
s = −sTPKsign (s) = − [s1, s2 · · · sn]L


sign (s1)
sign (s2)

...
sign (sn)


= −

mP
i=1
|si|
Ã
lii +

mP
j=1,j 6=i

lijsign (sisj)

!
where xisign(xi) = |xi| , xisign(xj) = |xi|sign(xixj) , lij are the
elements of the matrix L = PK. If

lii >
mX

j=1,j 6=i
lij (1)

then we conclude that
·
V < 0, s = 0 becomes stable.

We consider a affine nonlinear system
·
x = f(x) + g(x)u (2)

equivalent control ueq
ueq = −g−1f, 0 < |ueq| < F

Sliding mode control u as

u = −F sign (s) =
½

F s ≥ 0
−F s < 0
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We define a dynamic of sliding surface as
·
s = f + gu = −gueq + gu = g (u− ueq) (3)

Consider Lyapunov function

V =
1

2
sTPs, P = PT > 0

·
V = sTPg (u− ueq) = sTPg (F sign (s)− ueq)
= Pg

¡−FsT sign (s)− sTueq
¢

= Pg
³
−F |s|− |s| ueq

sign(s)

´
≤ kPgk |s|

³
−F − ueq

sign(s)

´
Since 0 < |ueq| < F,

·
V < 0.

In the trajectory tracking case, force the system to trajectory
d

dt
x∗t = ϕ(x∗t )

Define e = x− x∗. Let
s = Ke, K = KT > 0
·
s = K

·
e = K

·
x +K

·
x
∗
t = Kf +Kgu− ϕ(x∗t )

= [Kf − ϕ(x∗t )] +Kgu

equivalent control ueq
ueq = − (Kg)−1 [Kf − ϕ(x∗t )] , 0 < |ueq| < F
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u = −Fsign (s) =
½

F s ≥ 0
−F s < 0

lim
t→∞ et = 0

Sliding mode observer
For bounded unknown nonlinear system

·
x = f (x, u)
y = Cx

where C is known, f(x, u) is bounded unknown.

f(x, u)−Ax = −P−1CTh(x, u)

where h (xt, ut) is bounded as

h > kh (x, u)k
Transforms the system into the normal form

·
x = Ax + F (x, u), y = Cx (4)

where F (x, u) = f (x, u) − Ax, A is a special matrix such that
the pair (A,C) is observable. Let us construct the sliding mode
observer as

·bx = Abx + S (bx, e)−Keby = Cbx (5)

where e is output error defined as

e = by − y = C∆ = C (bxt − xt)
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where ∆t is observer error, S (bxt, et) is selected

S (bxt, e) = −ρP−1CTC∆°°C∆
°° = −ρP−1CT sign(e) (6)

where P is a positive defined matrix, ρ is a positive constant, they
will be determined after. Clearly the sliding mode observer is not
depended on the nonlinear plant , only output y is needed. The
derivative of observer error is

·
∆ = A∆ + S (bx, e)−KC∆− F (x, u)
= (A−KC)∆ + S (bx, e)− F (x, u)
= A0∆ + S (bx, e)− F (x, u)

(7)

where A0 = A−KC. Because (A,C) is observable, there exists
K such that A0 is stable. So the following Lyapunov equation has
a positive solution P

AT
0P + PA0 = −Q, Q = QT > 0

for a positive define matrix Q.

Theorem 1 If f is bounded, the observer gain satisfies

ρ > h

then the error between the sliding mode observer and the nonlin-
ear system is asymptotically stable

lim
t→∞∆ = 0 (8)
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Proof. Proof. Let consider the following Lyapunov function
candidate:

Vt = ∆TP∆

Calculate its derivative
·
V t = ∆T

¡
AT
0P + PA0

¢
∆ + 2∆TP [S (bx, e)− F (x, u)] .

Using A1

F (xt, ut) = −P−1CTh(x, u), kh(x, u)k < ρ.

If we select S (xt, et) as (6), we have
·
V t = −∆TQ∆ + 2∆TCTh(x, u)− 2∆TCTC∆t

kC∆k ρ

= −∆TQ∆ + 2∆TCTh(x, u)− 2 kC∆k ρ
≤ −∆TQ∆ + 2 kC∆k (kh(x, u)k− ρ) ≤ 0

Since
·
V t ≤ 0, ∆ ∈ L∞. From the error equation (7) we also

conclude that
·
∆ ∈ L∞. Since

·
V t ≤ −∆TQ∆ and Vt is bounded

process, ∆ is quadratically integrable and bounded ∆ ∈ L2 .
Using Barbalat’s Lemma we obtain that the observer error ∆ is
asymptotically stable, so lim

t→∞∆ = 0.

The design procedure is

Example 2 The dynamics of an n−link robot manipulator may
be expressed in the Lagrange form [?]

M (q)
··
q + C

³
q,

·
q
´ ·
q +G (q) + Fd

³ ·
q
´
= τ (9)
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Solution 
 P > 0?

No

Select Q > 0

Select h(x) bounded

-P-1 CT h = f-Ax

No

Si

Yes

End

 1

Select A

(A,C)
 observable?

No

Select K > 0

A0=A-KC
 stable?

Yes

Yes

No

Start

 1

3.
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One-link robot manipulator
·
x = f (x, τ ), y = Dx (10)

where xt =
h
q,

·
q
i
∈ <2, x1 = q, x2 =

·
q,

f (xt, τ ) =

" ·
q

M−1 (q)
h
τ − C

³
q,

·
q
´ ·
q −G (q)− Fd

³ ·
q
´i #

D = [1, 0]. Transform into the normal form:
·
x = Ax + F (x, u), y = Dx

we can select A =

·
0 1
1 0

¸
to make the pair (A,D) observable;

If we select K =

·
2
2

¸
> 0, so A0 = A − KD =

· −2 1
−1 0

¸
is

stable; if we use Q =
·
3 1
8 3

¸
, the solution of Lyapunov equation

A0P + PAT
0 = −Q

is positive define P =
·
1.5 −0.25
3.25 0

¸
, ρ = 15. Velocity observer,

e = by − y
·bx = Abx− ρP−1DT sign(e)−Keby = Cbx
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