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It is possible that an eigenvectorv of the delay equation(�) x0(t)+
Bx0(t � h) = A0x(t) + A1x(t � h) simultaneously satisfies(sI �
A0)v = 0 = (sB � A1)v for its associated eigenvalues. In this case
we use the generalized eigenvalue approach demonstrated in Examples
4.1 and 4.2 to find the value ofz = e�sh.

V. CONCLUSION

In this note, we have given a technique for determining the imag-
inary axis eigenvalues of a neutral or retarded matrix delay system.
These eigenvalues were proven to be contained in the set of imaginary
axis generalized eigenvalues of a matrix pair which is formed from the
system coefficient matrices. In the case of a retarded system, the gen-
eralized eigenvalue problem is just an eigenvalue problem. After an in-
version of a constant matrix, this is also true for neutral systems which
are nonsingular.

Via an equivalence involving the theory of matrix polynomials, delay
system imaginary axis eigenvalues were also shown to be limited to the
set ofs-values for which a certain second degree matrix polynomial be-
comes singular ats. When the above matrix polynomial is converted to
an operator polynomial ins, and then evaluated ats, the Kernel con-
tains a rank one product matrix formed from the system eigenvector
associated with the pure imaginary eigenvalue. This is conveniently
expressed in terms of Kronecker products, and a means of recovering
the eigenvector from the Kernel which works in most practical cases
was demonstrated.

The motivation for the construction of the matrix pair for the method
comes from the theory of quadratic functionals for delay differential
equations. It is possible that the ideas in this note can be carried over to
many other types of delay and Volterra equations of interest in control,
and any investigations demonstrating this would certainly be worth-
while.

ACKNOWLEDGMENT

The author is grateful to an anonymous referee for an astute, com-
plete, and thoughtful critique which motivated the author to explore
new, simpler approaches to the main ideas in this note.

REFERENCES

[1] J. W. Brewer, “Kronecker products and matrix calculus in system
theory,” IEEE Trans. Circuits Syst., vol. CAS-25, pp. 772–781, Sept.
1978.

[2] W. B. Castelan and E. F. Infante, “A Liapunov functional for a matrix
neutral difference–differential equation with one delay,”J. Math. Anal.
Appl., vol. 71, pp. 105–130, 1979.

[3] J. Chen, G. Gu, and C. N. Nett, “A new method for computing delay
margins for stability of linear delay systems,”Syst. Control Lett., vol.
26, pp. 107–117, 1995.

[4] K. L. Cooke and Z. Grossman, “Discrete delay, distributed delay and
stability switches,”J. Math. Anal. Appl., vol. 86, pp. 592–627, 1982.

[5] R. Datko, “Lyapunov functionals for certain linear delay differential
equations in a Hilbert space,”J. Math. Anal. Appl., vol. 76, pp. 37–57,
1980.

[6] , “The Laplace transform and the integral stability of certain linear
processes,”J. Differential Equations, vol. 48, pp. 386–403, 1983.

[7] H. I. Freedman and Y. Kuang, “Stability switches in linear scalar neutral
delay equations,”Funkcialaj Ekvacioj, vol. 34, pp. 187–209, 1991.

[8] I. Gohberg, P. Lancaster, and L. Rodman,Matrix Polynomials. New
York: Academic, 1982.

[9] D. Henrion and M. Sebek, “Reliable numerical methods for polyno-
mial matrix triangularization,”IEEE Trans. Automat. Contr., vol. 44, pp.
497–508, Mar. 1999.

[10] E. F. Infante and W. B. Castelan, “A Liapunov functional for a matrix
difference–differential equation,”J. Differential Equations, vol. 29, pp.
439–451, 1978.

[11] A. Kojima, K. Uchida, and E. Shimemura, “Robust stabilization of un-
certain time delay systems via combined internal–external approach,”
IEEE Trans. Automat. Contr., vol. 38, pp. 373–378, Feb. 1993.

[12] H. Kwakernaak and M. Sebek. (1997) The polynomial
toolbox for MATLAB," version 1.5. [Online]. Available:
http://www.math.utwente.nl/polbox.

[13] J. Louisell, “New examples of quenching in delay differential equations
having time-varying delay,” inProceedings of the 5th European Control
Conference, Karlsruhe, Germany, 1999, F 1023 - 1.

[14] , “Numerics of the stability exponent and eigenvalue abscissas of
a matrix delay system,” inStability and Control of Time-Delay Sys-
tems. ser. Lecture Notes in Control and Information Sciences no. 228,
L. Dugard and E. I. Verriest, Eds. New York: Springer-Verlag, 1997,
pp. 140–157.

[15] J. E. Marshall, H. Gorecki, K. Walton, and A. Korytowski,Time-Delay
Systems: Stability and Performance Criteria With Applications. New
York: Ellis Horwood, 1992.

[16] S. I. Niculescu, “Stability and hyperbolicity of linear systems with de-
layed state: A matrix–pencil approach,”IMA J. Math. Control Inform.,
vol. 15, pp. 331–347, 1998.

[17] I. M. Repin, “Quadratic Liapunov functionals for systems with delays,”
Prikl. Math. Mech., vol. 29, pp. 564–566, 1965.

Sliding Mode Observer for Nonlinear Uncertain Systems

Yi Xiong and Mehrdad Saif

Abstract—A new sliding mode observer for a class of nonlinear uncer-
tain systems is proposed in this article. The proposed sliding mode observer
works under much less conservative conditions than previous nonlinear un-
known input observers. Also, a functional version of the observer is pro-
posed in certain cases where it may not be possible to design an observer
capable of estimating the entire state of the system.

Index Terms—Nonlinear observer, sliding mode observer, unknown
input observer.

I. INTRODUCTION

State observation is an important problem for both linear and non-
linear systems. One nonlinear observer design approach deals with
nonlinear systems for which observers with linearizable error dynamics
can be designed (see, e.g., [2], [13], [14], [16], [25]). In several works
(e.g., [4], [7], [9], [15]) systems which are composed of a linear un-
forced part and a nonlinear state dependent controlled part are con-
sidered. In [10], an observer is given for a class of nonlinear systems
which are not necessarily control affine. However, the gain of the pro-
posed observer is not easily computable. Recently [6], [11] proposed
observers based on some ideas from the high gain approach whose gain
could easily be designed.

In [8], the approach of designing an extended the sliding mode ob-
server using equivalent control for linear systems [19] was extended to
nonlinear systems of the form

_x = f(x) +B(x)u

y =h(x): (1)
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This extension was also applied to nonlinear systems in triangular input
form in [1], output and output derivative injection form in [5]. In papers
[17] and [21], a framework similar to a Luenberger observer were used
by appending a switching function with constant or time-varying gains.

The main contribution of this article is to develop a systematic sliding
mode observer (SMO) design approach for nonlinear systems subject
to unknown inputs. Previous SMO designs using equivalent control
method did not consider the system uncertainties. As we pointed out in
[22], estimation error is generally unavoidable if these SMO are applied
directly for systems with unknown input. A class of SMO proposed
by [20] and [22] can provide unknown input insensitive estimation for
linear systems with unknown input. Reference [24] considered the non-
linear unknown input observer (NUIO) design for nonlinear systems
which can be transformed into output injection form. This article also
sheds extra light on the NUIO design problem.

II. M AIN RESULTS

We consider multivariable nonlinear systems described in state space
form by equations of the following form:

_x = f(x) +B(x; u) +

m

i=1

gi(x)di(x; u; t)

y1 =h1(x)

� � � � � �

yp =hp(x) (2)

in which x 2 M , a C1 connected manifold of dimensionn,
f(x); B(x; u); G(x) = [g1(x); . . . ; gm(x)] are smooth vector
fields onM , andhi(x); i = 1; . . . ; p are smooth functions fromM
to R. The termd(x; u; t) represents the uncertainty due to modeling
error or component/actuator faults, namely the unknown input. In what
follows, local coordinates are generally used. When global properties
are considered, notions are simplified by assuming thatM accepts a
global coordinate system.

Assumption 1:We assume thatp � m, and the firstm outputs have
a vector relative degreefq1; . . . ; qmg corresponding toG(x) at each
pointx0 2 M . Stated differently, this means

Lg L
k
fhi(x) = 0

for all j = 1; . . . ; m, for all k < qi � 1, for all i = 1; . . . ; m, and
for all x in M . Further, them �m matrix

A(x) =

Lg L
q �1

f h1(x) � � � Lg L
q �1

f h1(x)

Lg L
q �1

f h2(x) � � � Lg L
q �1

f h2(x)

� � � � � � � � �

Lg L
q �1

f hm(x) � � � Lg L
q �1

f hm(x)

is nonsingular at each pointx0 2 M .
Assumption 2:The distribution spanned by the vector fields

g1(x); . . . ; gm(x) is involutive.
Lemma 1: Given the system (2), if assumptions 1–2 are valid, then

q1 + � � �+ qm � n:

For i = 1; . . . ; m set

�
i
1 =hi(x)

�
i
2 =Lfhi(x)

� � � � � �

�
i
q =L

q �1

f hi(x)

if q = q1+ � � �+ qm is strictly less thann, it is always possible to find
n� q more functions�q+1(x); . . . ; �n(x) such that the mapping

�(x) = col(�11(x); . . . ; �
1

q (x); . . . ; �mq (x); �q+1(x);

. . . ; �n(x))

has a Jacobian matrix which is nonlinear at eachx0 2M and therefore
qualifies as a local coordinate transformation inM . Moreover, based
on Assumption 2, it is always possible to choose�q+1(x); . . . ; �n(x)
in such a way that

Lgj�i(x) = 0 (3)

for all i = q + 1; . . . ; n; j = 1; . . . ; m, and allx in M .
Set

x
i
d =

xi1

xi2

� � �

xiq

=

�i1(x)

�i2(x)

� � �

�iq (x)

for i = 1; . . . ; m, andxd = ((x1d)
T ; . . . ; (xmd )T )

xo =

x1o

x2o

� � �

xn�qo

=

�q+1(x)

�q+2(x)

� � �

�n(x)

the equations under new coordinates can be written as

_xi1 = x
i
2 + b

i
1(xd; xo; u)

� � � � � �

_xiq �1 = x
i
q + b

i
q �1(xd; xo; u)

_xiq = ai(xd; xo) + b
i
q (xd; xo; u) +

m

j=1

cij(xd; xo)dj

yi = x
i
1 (4)

for i = 1; . . . ; m, and

_xo = q(xd; xo) + p(xd; xo; u)

ym+1 =hm+1(xd; xo)

� � � � � �

yp =hp(xd; xo) (5)

where

ai(xd; xo) =L
q

f hi(�
�1(xd; xo))

cij =Lg L
q �1

f hi(�
�1(xd; xo))

and

b
i
k(xd; xo; u) =

@(Lk�2
f hi)

@x
B(��1(xd; xo); u):

The above lemma is a trivial extension of [12, Prop. 5.1.2]. The non-
linear transformation�(x) decomposes the system (2) into two sub-
systems. Of the two subsystems, onlyxd subsystem is effected by un-
known inputs. Of course, this is not a complete decomposition because
it is relies on Assumption 1 and 2.

Next, we shall discuss the observer design for system (4)–(5).

A. Observability of Subsystems

It is well known that the observability of nonlinear systems is asso-
ciated with inputs. The observability of nonlinear subsystem (4)–(5) is
of interest here.
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Inputs which make a nonlinear system unobservable are called “bad
inputs” or “not universal inputs.” For known input signals, one can
avoid applying those “bad inputs.” However, the unknown inputs which
may be the result of a fault or certain other disturbances are beyond
ones control. Therefore, observability for all unknown inputs is in gen-
eral necessary in order to design a nonlinear unknown input observer,
unless it can be guaranteeda priori that the unknown inputs do not
belong to the class of bad inputs. Based on the work in [10], we have
following lemma that shows the conditions such that the observability
of xd subsystem is independent of unknown inputs.

Lemma 2: Let xid = fx1d; . . . ; x
i�1
d ; xi+1d ; . . . ; xmd g. Assume

eachxid subsystem in (4) has its input term in the following form

b
i
1(xd; xo; u) = b

i
1(x

i
1; x

i
2; x

i
d; xo; u)

b
i
2(xd; xo; u) = b

i
2(x

i
1; x

i
2; x

i
3; x

i
d; xo; u)

� � � � � �

b
i
q �1(xd; xo; u) = b

i
q �1(xd; xo; u)

b
i
q (xd; xo; u) = b

i
q (xd; xo; u) (6)

and the functions

1 +
@bij

@xij+1
6= 0; j = 1; . . . ; qi � 1

and statexo; xid is considered as inputs forxid subsystem. Thenxid
subsystem is uniformly observable for all inputsu; d; xid andxo.

An open problem which does not effect the development here is
whetherxo subsystem is observable if and only if the original system
(2) is observable.

B. Sliding Mode Observer for Subsystem With Unknown Inputs

We shall first build an unknown input independent observer forxd
subsystem.

Theorem 1: If eachxid subsystem in (4) has its input term in the
following form:

b
i
1(xd; xo; u) = b

i
1(y; u)

b
i
2(xd; xo; u) = b

i
2(x

i
2; y; u)

� � � � � �

b
i
q �1(xd; xo; u) = b

i
q �1(x

i
2; . . . ; x

i
q �1; y; u)

b
i
q (xd; xo; u) = b

i
q (xd; xo; u) (7)

there exists a choice of�ij ; i = 1; . . . ; m; j = 1; . . . ; qi such that
following sliding mode observer can be built to estimate states

_̂x
i

1 = x̂
i
2 + b

i
1(y; u) + �

i
1 sign(yi � x̂

i
1)

_̂x
i

2 = x̂
i
3 + b

i
2(x̂

i
2; y; u) + �

i
2 sign(e

i
2)

� � � � � �

_̂x
i

q �1 = x̂
i
q + b

i
q �1(x̂

i
2; . . . ; x̂

i
q �1; y; u)

+ �
i
q �1 sign(e

i
q �1)

_̂x
i

q = ai(x̂d; x̂o) + b
i
q (x̂d; x̂o; u) + �

i
q sign(eiq ) (8)

whereeij ; j = 1; . . . ; qi are given by

eij = (�ij�1 sign(e
i
j�1))eq (9)

for j = 2; . . . ; qi, andei1 = ei1 = yi � x̂i1 can be obtained directly.

Proof: From (4), (7) and (8), we obtain the following observation
error dynamics ofeij = xij � x̂ij ; j = 1; . . . ; qi,

_ei1 = e
i
2 � �

i
1 sign(e

i
1)

_ei2 = e
i
3 + b

i
2(x

i
2; y; u)� b

i
2(x̂

i
2; y; u)� �

i
2 sign(e

i
2)

� � � � � �

_eiq �1 = e
i
q + b

i
q �1(x

i
2; . . . ; x

i
q �1; y; u)

� b
i
q �1(x̂

i
2; . . . ; x̂

i
q �1; y; u)

� �
i
q �1 sign(e

i
q �1)

_eiq = ai(xd; xo) + b
i
q (xd; xo; u) +

m

j=1

cij(xd; xo)dj

� ai(x̂d; x̂o)� b
i
q (x̂d; x̂o; u)� �

i
q sign(eiq ): (10)

As the known and unknown inputs are bounded, the state does not go
to infinity in finite time. Consequently, the observation error is also
bounded. By choosing�i1 > sup jei2(t)j, e

i
1 goes to zero in finite time

t1. Moreover, aftert1, we have

ei2 = (�i1 sign(e1))eq = e
i
2:

Therefore, aftert1, the second error equation becomes

_ei2 = e
i
3 + b

i
2(x

i
2; y; u)� b

i
2(x̂

i
2; y; u)� �

i
2 sign(e

i
2):

If �i2 > jei3+ bi2(x
i
2; y; u)� bi2(x̂

i
2; y; u)j, e

i
2 goes to zero in finite

time t2 > t1. Therefore, aftert > t2

ei3 =(�i2 sign(e2))eq = e
i
3

_ei3 = e
i
4 + b

i
3(x

i
2; x

i
3; y; u)� b

i
3(x̂

i
2; x̂

i
3; y; u)� �

i
3 sign(e

i
3):

We run the procedure up to stepqi, thus aftertq �1, we have

_eiq = ai(xd; xo) + b
i
q (xd; xo; u) +

m

j=1

cij(xd; xo)dj

�ai(x̂d; x̂o)� b
i
q (x̂d; x̂o; u)� �

i
q sign(eiq ):

Let �iq > jai(xd; xo) + biq (xd; xo; u) +
m

j=1
cij(xd; xo)dj �

ai(x̂d; x̂o)�biq (x̂d; x̂o; u)j, eq converges to zero in finite timetq >

tq �1.
The equivalent control signal(v)eq for signal v is calculated by

low pass filtering the signalv with anti-peaking structure[8]. This an-
tipeaking structure is based on the principle that the observation error
information is not used before reaching the sliding manifold linked with
this information. Moreover, we reach the manifold one by one in a sort
of a recursive fashion. As a result of this, obtain a subdynamics of di-
mension one is encountered and consequently the peaking phenomena
is avoided. More precisely

eij = (�ij�1 sign(e
i
j�1))eq = 0

beforeeij�1 reaching its sliding manifold.
At this point, several important remarks are in order:
Remark 1: Note that the transformation in Lemma 3 decomposed

the nonlinear system (2) into two interconnected subsystem with states
xd andxo. Of these two subsystems, the unknown inputs only appear
in one, namely thexd. The observer proposed in the above discussion
will provide state estimates for this subsystem. On the other hand, the
xo subsystem is free of the unknown inputs, and any applicable existing
observer can be used to estimate its statex̂o. This estimate is needed
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in observer (8), for estimating the state ofxd. On the other hand, ifxo
subsystem is unobservable, or if it is too complex to build an observer
for it, x̂o will not approximate real value ofxo. However, as long as
bothx̂o andxo are bounded, observer (8) will always converge as long
as gain�iq is selected large enough.

It is, therefore, possible to let̂xo = 0 and still estimate part of the
state. The reason for this desirable property is thatxo is only confined to
the last equation. In such a case, we are essentially building a functional
sliding mode observer. It is well known, at least in the linear realm,
that it is generally possible to design functional observers under less
restrictive conditions than full state observers. Such observers can be
useful for control purposes and more so for fault diagnosis applications.
In fault diagnosis applications observers are essentially used as residual
generators. The estimation error of the observer is used as a residual
that is used to draw conclusions about the health of the system. In such
applications, a full estimate of the actual state may not be necessary and
a functional observer may accomplish the fault detection task under less
restrictive existence conditions, [23].

Remark 2: Note also that ifq1 + � � � + qm = n, then thexo sub-
system will actually disappear, and all states can be estimated.

Remark 3: The system form (7) is more general than the output
injection or triangular input form, but more conservative than the form
(6), which assures uniform observability.

Remark 4: It should be noted that ifqi = 1; i = 1; . . . ; m, the
above theorem does not put any special constraint on the input term.
qi = 1; i = 1; . . . ; m means all states of subsystemxd are measur-
able. An observer for such a system may be unnecessary for controller
synthesis, but will be useful in fault detection and isolation (FDI) ap-
plications.

Remark 5: Them observers forxid(i = 1; . . . ; m) subsystems can
run in parallel, although in each observer,eij converges to zero if all the
eik with k < j have already converged to zero. If we allow statesxid to
be estimated afterxkd with k < i have been estimated correctly, then
the input term can be in a more general form

b
i
1(xd; xo; u) = b

i
1(y

i
d; x

1

d; . . . ; x
i�1
d ; u)

b
i
2(xd; xo; u) = b

i
2(x

i
2; y

i
d; x

1

d; . . . ; x
i�1
d ; u)

� � � � � �

b
i
q �1(xd; xo; u) = b

i
q �1(x

i
2; . . . ; x

i
q �1; y

i
d; x

1

d; . . . ; x
i�1
d ; u)

b
i
q (xd; xo; u) = b

i
q (xd; xo; u)

whereyid = [yi; yi+1; . . . ; ym]. Further, ifxo subsystem is indepen-
dent ofxd and can be estimated correctly by certain observer, then it is
not a problem forxo to appear in all input terms ofxd subsystem.

Remark 6: The NUIO design method reported in [18], transforms
the system (2) byz = T (x), where

@T (x)

@x
G(x) = 0 (11)

such thatz is actually an unknown input free subsystem. Then an ob-
server for the reduced orderz subsystem is built. Equation (11) is the
same as condition (3) of Lemma 1. According to the Frobenius the-
orem [12], (11) is solvable if and only ifG(x) is involutive. Therefore,
although involutivity ofG(x) is a very strong assumption, we cannot
avoid it if total unknown input decoupling is required.

In NUIO design, the original state is obtained through
x = �(z; y�), where y� is obtained from a nonlinear transfor-

mationy� = S(y). It stated that the inverse functionx = �(z; y�)
exists, if and only if

rank

@T (x)

@x

@S(y)

@x

= n; lim
kxk!1

k(T (x) S(y))T k =1: (12)

However, the question as to under what conditions there exists
S(y) that satisfy conditions (12) is still unresolved. In [18] it is
stated thatp > m is a necessary condition. Here we show that this
is not true at least in theory by analyzing the existence of NUIO
using the transformation given in Lemma 1. Note that the relative
degreeqi = 1(i = 1; . . . ; m) means all states ofxd subsystem are
measurable. Therefore, the following conditions are sufficient for the
existence of a NUIO:

1) pi = 1; i = 1; . . . ; m;
2) xo subsystem is detectable.

Above conditions may be satisfied even ifp = m. On the other hand, if
any relative degreeqk > 1(1 � k � m), it is expected that no NUIO
exists. Under this case, the statesxk2 ; . . . ; x

k
q will not be able to derive

through a nonlinear transform ony andz, the states of unknown input
free subsystem. Therefore, the proposed SMO works under much less
conservative conditions than NUIO.

Remark 7: The basic ideas presented in this article, can be used to
design robust (functional) sliding mode observers for linear systems.
In that case, a transformation based on the special coordinate basis
(SCB) theory can be used to decompose the systems into parts with
and without the unknown inputs. From there, similar equivalent con-
trol bases sliding mode observers can be designed, [22].

III. I LLUSTRATIVE EXAMPLE

Example 1: A three-phase current motor model [3] is described by
following nonlinear equations:

_x =

x2

�A1x2 � A2x3 sin x1 �A3 sin 2x1
�D1x3 +D2 cos x1

x

+

0 0

1 0

0 1

u1

u2
+

0 0

1 0

0 1

d1

d2

wherex = [x1; x2; x3]
T , andx1; x2 andx3 denote the motor’s rotor

angle, speed deviation and field flux linkage, respectively. The known
inputs areu1 (nominal mechanical power input) andu2 (field voltage)
and unknown inputs are

d1 = �A1x2 +�A2x3 sin x1 +�A3 sin 2x1

which represents uncertainties of parametersA1; A2 andA3, and

d2 = �D1x3 +�D2 cos x1

which represents uncertainties of parametersD1, andD2. All changes
are induced by the operating temperature, or component incipient
faults. The unknown inputsd1 or d2 may be small enough to be
neglected in different operation conditions.

Remark 8: It is not always necessary to design the proposed sliding
mode observer based on the transformed system model as it is not al-
ways easy to find the suitable transformation. For nonlinear systems
with linear output equation, we suggest to check the possibility of de-
signing an observer based on the original system equation. In this ex-
ample we shall illustrate this intuitive design procedure.
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(a) (b)

(c)

Fig. 1. Simulation results showing actual versus estimated states.

In the following discussion to illustrate the robust SMO design, we
shall consider several scenarios and the corresponding observer design
for each case. However, for the sake of brevity, simulation results based
on only one case are illustrated.

Case 1: Bothd1 andd2 are Nonzero: In this case, it is noted that
x1; x2 is a sub-system in the triangular form of (4) ifx1 is measured,
namelyy1 = x1, which will makex2 to be observed. If we havey2 =
x3, then all states can be estimated by following observer:

_̂x1 = x̂2 + �1 sign(y1 � x̂1)

_̂x2 =�A1x̂2 � A2y2 sin y1 � A3 sin 2y1

+ �2 sign((�1 sign(y1 � x̂1)eq)

_̂x3 =�D1x̂3 +D2 cos y1 + �1 sign(y2 � x̂3):

Case 2:d1 is Nonzero,d2 is Zero: In this case,x3 is an unknown
input free subsystem. Fortunately, it is also detectable becauseD1 > 0.
We can build the following observer:

_̂x1 = x̂2 + �1 sign(y1 � x̂1)

_̂x2 =�A1x̂2 � A2x̂3 sin y1 � A3 sin 2y1

+ �2 sign((�1 sign(y1 � x̂1)eq)

_̂x3 =�D1x̂3 +D2 cos y1:

Case 3:d1 is Zero,d2 is Nonzero: In this case, with only one mea-
surement forx1, the system can be transformed into triangular form
and all states can be estimated. Noteg(x) = [0 0 1]T , it is easy to
show that the relative degree of outputy = h(x) = x1 corresponding
to g(x) is r1 = 3 at pointx1 6= k�. The transformation is given by

�1 =�1(x) = h1(x) = x1

�2 =�2(x) = Lfh1(x) = x2

�3 =�3(x) = L
2

fh1(x) = f2(x):

The above transformation is valid at any point other thanx1 6= k�, and
its inverse transformation is

x1 = �1

x2 = �2

x3 = z(�) =
�3 +A1�2 + A3 sin 2�1

�A2 sin �1
:
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The nonlinear system under the new coordinates is now described by

_�1 = �2

_�2 = �3

_�3 =�A1�3 � �2(A2z(�) cos �1 + 2A3 cos 2�1)

�A2 sin �1(�D1z(�) +D2 cos �1)

y1 = �1:

Then a SMO in the form of (8) can be designed. In fact a SMO can be
designed in this case without using the above complicated transforma-
tion, in which case the observer is given by

_̂x1 = x̂2 + �1 sign(y1 � x̂1)

_̂x2 =�A1x̂2 � A2x̂3 sin y1 � A3 sin 2y1

+ �2 sign((�1 sign(y1 � x̂1)eq)

_̂x3 =�D1x̂3 +D2 cos y1 + �3 sign(e3)

note the equivalent control signal based on the second equation is

(�2 sign(e2))eq = �A2e3 sin y1

thus

e3 =
(�2 sign(e2))eq
�A2 sin y1

= e3:

Obviously, it is true only ifsin y1 6= 0.
For simulation purposes, the parameters in the model have

the following values:A1 = 0:2703; A2 = 12:01; A3 =
�48:04; D1 = 0:3222; D2 = 1:9, and�D2 = 0:6. The con-
trol inputu1 = 36:19; u2 = 1:9333. The gain�1 = �2 = �3 = 200.
The initial state is assumed to bex0 = f0:88; 0:0; 6:5g, and initial
value of observer is�0 = f0:0; 20g and�0 = 0:8. The simulation
results for case 3 are shown in Fig. 1. Based on the figures, it is clear
that the observer’s estimate quickly converge to the true state of the
system in spite of the considered modeling uncertainties.

IV. CONCLUSION

A robust sliding mode observer for a class of uncertain nonlinear
systems was proposed in this article. The uncertainties in the nonlinear
systems are assumed to be structured and representable through un-
known input terms to the system. The sliding mode observer design
which uses equivalent control concepts is based on a coordinate trans-
formation on the nonlinear system which renders a decomposition of
the system into two subsystems. The main advantage of the proposed
observer over previously proposed ones is that it can be designed under
less restrictive existence conditions. Applications of the proposed ob-
server to model based fault detection is a subject of future research.
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