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ABSTRACT 

Sliding  controllers have recently been shown to feature 
ezcellent robustness and  performance properties for specific 
classes of nonlinear  tracking problems. This paper ezam- 
ines the  potential use of sliding surfaces for observer design. 
A particular observer structure  including switching terms i s  
shown to have promising properties in  the presence of mod- 
elling  errors  and sensor noise. 

1. INTRODUCTION 

The  notion of a  sliding  surface  (Filippov, 1960) has been 
investigated  mostly in the Soviet literature (see Utkin, 1977 
for a  review),  where  it  has  been  used to stabilize  a  class of 
nonlinear systems.  Although it  theoretically  features excel- 
lent robustness  properties  in  the  face of parametric uncer- 
tainty, classical sliding  mode  control  presents  several  impor- 
tant drawbacks that severely  limit  its  practical  applicability. 
In particular, it involves large  control  authority  and  control 
chattering. Chattering is in general  highly  undesirable in 
practice  (with  exceptions,  such as the control of electric mo- 
tors using  pulse  width modulation), since it implies  extremely 
high  control  activity,  and  further  may  excite  high-frequency 
dynamics  neglected  in the course of modeling,  such as res- 
onant  structural modes,  neglected actuator time-delays,  or 
sampling effects. These  problems  can be remedied by replac- 
ing the  chattering  control by a  smooth  control  interpolation 
in a  boundary layer  neighboring  a  time-varying  sliding sur- 
face (Slotine and Sastry, 1983) and  monitoring  the  boundary 
layer width so as not to excite the high-frequency  unmodeled 
dynamics  (Slotine,  1984). 

In  this  paper, we consider the  dual  problem of designing 
state observers using  sliding  surfaces. We show that, as can 
be  expected,  sliding  observers  potentially offer advantages 
similar to those of sliding  controllers, in particular  inherent 
robustness to parametric  uncertainty  and  easy  application to 
important classes of nonlinear  systems. Further , contrary 
to  the case of controller  design, chattering issues in sliding 
observer  design are only  linked to numerical  implementation 
rather  than  'hard' mechanical  limitations. 
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Basic  concepts  on  implicit  dynamics  using  sliding  sur- 
faces are  introduced in  Section 2. Section 3 applies the de- 
velopment to the design of sliding  observers for nonlinear 
systems  in  'companion  form', i.e. of the  form 

.(n) 1 

x = [z, 5, ..., z("-1)]T 

where f is a  nonlinear,  uncertain  function of the  system  state: 

Section  4  extends the methodology to general  nonlinear  sys- 
tems,  and discusses  observability  requirements and  their re- 
lationship to sliding  observers.  Section 5 shows some  possible 
applications  and concluding  remarks are offered in Section  6. 

2. BASIC  CONCEPTS 

2.1 Sliding Surfaces 

Let us  first  briefly  summarize  the  basic  idea of a  sliding 
mode,  linked to  the  potential advantages of using  discontinu- 
ous  (switching)  control laws. Consider the dynamic  system: 

(1) 

where u(t) is scalar  control input, z is the  scalar  output of 
interest,  and x = [z,i, ..., z("-l)IT is the  state. In equation 
(1) the  function  f(x;t) (in general  nonlinear) is not  exactly 
known, but  the eztent of the imprecision lAfJ on  f(x;t) i s  
upper  bounded by a  known continuous function of z and t; 
similarly  control  gain b(x;t) is not exactly  known, but is of 
known sign,  and is bounded by known,  continuous  functions 
of x and t. Both f(x;t)  and  b(x;t)  are assumed to be  contin- 
uous  in x . The  disturbance d(t) is unknown but  bounded 
in absolute  value  by  a  known  continuous  function of time. 
The  control  problem is to get the  state x to track  a specific 
state x d  = [Zd, k d ,  ..., z r - ' ) ] ~  in  the presence of model im- 
precision on f(x;t) and  b(x;t), and of disturbances d(t). To 
guarantee that  this is achievable  using  a finite control  u, we 
must  assume : 

z(" ) ( t )  = /(x$) + b ( x ; t ) u ( t )  + d ( t )  

4 P 0 = 0 ( 2 )  

where P := x - x d  = [2,& ,. , , i?("-l)]T is the  tracking  error 
vector; the  relaxation of this  assumption  shall  be  further dis- 
cussed later. We define  a time-varying sliding surface s(t) in 
the  state-space R" as S(X; t )  = 0 with 

where X is a  positive constant. Given  initial  condition  (2), the 
problem of tracking x 3 x d  is equivalent to  that of remaining 
on the  surface  s(t) for all t > 0- indeed s 5 0 represents 
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a  linear differential equation whose unique  solution is i E 0 
given initial  conditions (2). Now a sufficient condition for 
such  positive  invariance of s(t) is to choose the  control law u 
of (1) such that  outside of s(t) 

where r) is a  positive constant. Inequality (4) constrains  tra- 
jectories to point  towards  the  surface  s(t)  (Figure I), and is 
referred to as the sliding condition. 

The idea  behind  equations (3, 4) is to pick-up  a well- 
behaved  function of the  tracking  error, s, according to (3), 
and  then select the feedback  control law u  in (1) such that 
s2 remains  a  Liapunov  function of the closed-loop  system 
despite the presence of model imprecision  and of disturbances. 
Further, satisfying (3) guarantees that if condition (2) is not 
exactly verified, i.e. if x(t=O is actually off xd(t=O, the  surface 
S(t) will none the less be  reached in a finite time inferior to 
Is(x(O);O)l/q , while definition (3) then  guarantees that x 
+ 0 as t + 00 . Control laws that satisfy (4), however,  have 
to  be discontinuous across the sliding  surface, thus leading  in 
practice to control  chattering. 

The obvious  problem in similarly  exploiting  sliding  be- 
havior  in the design of obseroers, rather  than controllers, is 
precisely that  the full state is not  available for measurement, 
and  thus  that  a sliding  surface  definition  analog to (3) is not 
adequate.  Some  intuition  can  be  developed for addressing 
this difficulty by considering  simple  second-order  dynamics. 

2.2 Shearing Effect and  Sliding  Patches 

Let us consider the  generation of sliding  behavior in a 
second-order  system through  input switching  according to 
the value of a single component of the  state,  rather  than  a 
linear  combination of both  components, as in (3). The  system 

I = I  1 2  

i, = - k ? w n ( ~ ~ )  

where k2 is a  positive  constant and sgn is the sign  function, 
clearly  exhibits no sliding  behavior  (Figure 2).  Instead, let 
us consider the  system 

i1 = I2 - klSg71(Zl) 

z '2 - -  - kzsgn(ll) 

where kl and k2 are positive  constants.  The  corresponding 
phase-plane  trajectories  are  illustrated  in  Figure 3, which can 
be  constructed  from  Figure 2 by shifting  the  trajectories on 

the right  half-plane  upwards, by the  quantity  kl,  and sim- 
ilarly shifting  the left half-plane  trajectories by -kl. This 
shearing effect generates  sliding  behavior  in  the  region 

I t* (  I k, ( 5 )  

which we shall refer to as the sliding patch. 

Let  us  detail the analysis. The  condition 

-(Il)* < 0 
d 

d t  

is satisfied if condition ( 5 )  holds, which  defines the sliding 
patch.  The dynamics on the sliding patch itself can  be de- 
rived  from  Filippov's  solution  concept  (Filippov, 1960), which 
formalizes  engineering  intuition: the dynamics on the  patch 
can  only  be  a  convex  combination (Le., an average of the 
dynamics on each  side of the discontinuity  surface 

i, = 7(t2 + kl) + (1 - -d(Z? - kl) 
i, = 7 k2 + (1 - kz) 

The value of 7 , and therefore the resulting  dynamics, are 
then  formally  determined by the invariance of the  patch itself: 

i 1 = 0  => f * = -  (k, /kl)  22 

Thus, z2 exponentially  decreases to 0 after  reaching the 
sliding patch,  with  a time-constant kl/k2 . Further, one  can 
easily show that all trajectories  starting on the z2 axis  reach 
the  patch in  a  time  smaller than Iz2(t = O)l/(klk2)  Actually, 
sliding  can  be  guaranteed  from  time t=O  by making klandk2 

I 

FIguro 11 The tliding condifion 
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time-varying,  with 

k,lk, 2 a 

k, > Iz,(t=O)k-"' 

where a = a( t )  is any positive function of time . 
2.3 System  Damping 

Consider now the  system 

t', = -alzl + t2 - klsgn(tl)  

Z2 = -a2z1 - k2sgn(zl) 

Repeating  the previous  analysis, the sliding  condition is  ver- 
ified in  the  extended region 

2, I k, + alzl if t1 > o 
2, 2 -k, + altl if tl < 0 

as illustrated  in  Figure 4. Thus,  the  addition of the  damping 
term in a1 increases the region of direct attraction.  Further, 
the value of a2 only affects the  capture  phase  but  not  the 
dynamics  on  the  patch itself, which remains  unchanged: 

z 2  = - (k,/kJ z, 

3. IMPLICIT  REDUCED-ORDER  OBSERVERS FOR 
NONLINEAR  SYSTEMS IN COMPANION  FORM 

3.1 Systems  with  a Single Measurement 

Let us now consider the  system 

i, = f 

where f is a nonlinear,  uncertain  function of the  state x = 
[zl, 22  = 21lT , and let us exploit the preceding development 
to design an observer for this  system,  based  on  the  measure- 
ment of 21 alone. From  the previous dicussion, we use  an 
observer structure of the form 

I 1 = -ali,  + i, - klbgn(il)  

r2 = -a2i l  + f - k2sgn(il)  
(6) 

where 51 = 21 - 21 , f is the  estimated value of f , and  the 
constants a, are chosen as in a Luenberger observer (which 
would correspond to kl = 0, k2 = 0) so as to place the poles of 
the linearized  system at desired  locations -si . The resulting 
error  dynamics  can be  written: 

5 ,  = -alil + i, - klsgn( i l )  

i2 = -az i l  + A f - k,sgn(i,) 

The value of A f = 1 - f depends  both  on  the modelling 
effort and of the  computational complexity allowable in  the 
observer itself. In this  paper, we assume  that dynamic  un- 
certainty Af is explicitely bounded. Known nonlinear  terms 
may  also, for simplicity, be  treated as bounded  error (us- 
ing known  bounds  on the  actual  system  state)  and included 
in A f .  The effect of A f is compensated  by  exploiting  this 
knowledge of its (generally  time-varying) bound, as we shall 
later  illustrate. 

The methodology can  be directly  extended to nth-order 
systems in companion form: 

= f 

where z1 is the single measurement available. The observer 

i' 

structure is then of the  form 

t1 = -ali, + i, - k,agn(il)  

z2 = -a2i, + 2, - k2sgn(il)  
... 

zn = -anil  + f - knsgn(il)  

The n - 1 poles associated  with the implicit dynamics  on 
the  patch  are defined by 

-k , /k ,  1 0 ... 0 

- k , / k ,  0 1 ... 0 

) = O  (7) 
... 1 

-k,/k, 0 0 ... 0 

Thus,  the poles on  the  patch  can  be placed arbitrarily by 
proper  selection of the  ratios k i / k l ,  [i = 2, ..., n]. A possible 
choice is to define kl as the desired precision in 52 , let 

k, 2 / A n  

and in a constant  ratio  with kl, and finally define the remain- 
ing poles k;, [i = 2, ..., n - 11 so that  the implicit dynamics 
associated  with the  patch  be critically damped, Le.,  have all 
poles real and equal to a positive constant X. One  can  then 

easily show that trajectories starting  on  the 51 axis and in 
the sliding patch  remain  in  the  patch,  and verify 

from which the precision on P can  be derived. 

Remark  that  there is no  reason for the implicit band- 
width  on  the  patch  to  be identical to  the  bandwidth of the 
Luenberger part . In particular, reducing kl increases the 
bandwidth  on  the  patch, yet  may potentially reduce sensitiv- 
ity  to measurement noise by reducing the  amplitude of the 
discontinuity in 51 . It is this  unusual  nonlinear effect that 
we must try  and exploit to make  sliding  observers  superior 
to Luenberger observers or  extended  Kalman  filters  under 
certain noise conditions, as we now discuss. 
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3.2 Effects of Measurement  Noise 

Consider  again  a  second  order  system  with  a  single  mea- 
surement, now corrupted by noise u = v ( t )  

2, = -Ql(il + U) + i, - klJg7t(il + U) 

(8) 
i2 = - O ~ ( Z ,  + o) + A/ - kzsgn(il  + V )  

Although the presence of the  terms in sgn(5, + v )  makes  an 
exact  stochastic  analysis fairly involved,  useful  insight  can  be 
obtained by using appropriate simplifying  approximations. 

Assume, first,  that u is a  deterministic C' signal  of  bounded 
spectrum: 

o s w <  w- or w > w+ => F, (w)=O 

where F, is the Fourier  transform of v .  Sliding  behavior, if 
any, can  then  only occur  on the surface 

i 1 + u = 0  

Repeating  the analysis of Section 2.2, the sliding  region is 
then defined by 

I f *  + i l l  5 k, (9) 

and  the equivalent  dynamics are given  by 
t', = - v  

i, + ( k 2 / k l )  5, = - ( k z l k 1 )  " + '1 

Two  limiting  cases  deserve  particular  attention: 
a) w+ << ( k 2 / k l )  . We  then  have, if A /  = 0 

i2 = -6 << (k*/k,) ",,, 

In  particular,  the  estimate of z2 is exact if the measurement 
error  in z1 is constant. 

b) w- >> ( k 2 / k l )  We then  have, if A/ = 0 

5, EJ 0 

However, the  bound on k z / k l  also  implies that  the observer's 
robustness to model  uncertainty is directly  limited by the 
value  of w - .  The  corresponding precision in 52 is then 

Ii*l I r F /  w- 

where r x  3 is the desired ratio between w- and k z / k l ,  and 
F is the available  (in  general  time-varying)  bound  on jAf1 . 
It is obtained by choosing k l  and IC2 according to 

k, 2 IC1 + rF/w- 

k, = klw-/r 

so as to  satisfy (9) while maintaining k2 larger  or  equal 
to F. 

The above  discussion  implies that, as could be expected, 
the  system  cannot  remain in a  pure  sliding  mode  in the pres- 
ence of arbitrary measurement  noise,  since this could  require 
using an infinitely large k. Instead,  assuming that  the mea- 
surement  noise is bounded by some  constant 00 , the  system 
will remain in a  vicinity of the z2 axis of width uo. The  ma- 
jor  potential  advantage of the proposed  sliding  observer, over 
e.g. an  extended  Kalman  filter, is that  the sliding  observer 
can  still be made  considerably  more robust  to  parametric  un- 
certainty.  This  can  be  easily  understood by considering the 
'average'  error of the  observer, 5, , whose dynamics  can  be 
approximated as 

j l a  E -alila + i2a - k, Average(sgn(ila + v)] 

z2a = -a2i1. - k, Average[sgn(i,, + u) ]  + A/, 

where  Average [51, + u] is computed over 'short'  time  periods 
during which 5, is treated as a  constant,  and A fa is d e h e d  
as Average [A j]. If we assume for simplicity that u ( t )  is 
white  noise, then 

Average[sgn(i, + u)] = Expectation[sgn(i, + u)I 

= /:g:(P, + u)p(u)du = 2 
-m 0 

where the  last  equality assumes that  the  probability density 
p ( u )  is symmetric.  Thus,  the average  value is an  odd  continu- 
ous  function  of 51.  For  instance, if u is uniformly distributed 
on the  interval [ - u o , v ~ ]  , we get 

Expectationlsgn(il + u)] = i l / u o  

so that  the average  dynamics  can  be  written 
ila = - (a1 + ~ , / u ~ ) ~ , ~  + i,, 

i2, = -(a* + k,/VO)ila + A/, 
(10) 

Thus, the effect of the switching terms  is to  modify the ef -  
fective bandwidth of the average dynamics according to the 
actual level of the  measurement  noise. In particular, we re- 
cover Fillipov's  equivalent  sliding  dynamics as the noise level 
uo tends to zero.  Indeed, 

l /uo  -L 03 => i,, -+ 0 => i,, + 0 

* -(k?/k1)'2, + A/, 
The above  simplified  analysis  can  be  used to guide the 

choice of the switching  gains k j  . Consider, for instance,  the 
average  error  dynamics of a  third-order  system 

ila = -(a1 + kl/uo)i,a + t'2a 

22, = -(a2 + k2/Uo)ila + 2,. 

i3a = -(a3 + k3/u0)ila + A/, 

still  with  uniform  bounded  white  noise of amplitude uo , and 
choose the a; as in a  standard  Kalman filter. It is then 
reasonable to select the k ,  so that  the average  dynamics  be 
critically damped, e.g.: 

a, + k , / u o  = 3X 

a, + k, /vo  = 3Xz 

a3 + k S / v o  -- X' 

Further,  the minimum  acceptable  value of X is determined by 
the condition 

I i 1 . I  I uo 

which can  be  written 
uo 2 F/X3 

where F is a  constant (or 'slowly' varying, as compared to 
bandwidth X) upper  bound  on Af.  The value of X that yields 
the  smallest kj ' s  is then 

x = (F/uo)'la (11) 

which represents  a  reasonable choice as long as the corre- 
sponding kj'  s remain  positive. The  bounds  on LZa and 
citn be  computed  accordingly.  In particular,  they can  be  eas- 
ily analyzed in the frequency  domain:  letting p be the Laplace 
variable, we have 
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i~, a 11 - (3X2P + X * ) / ( P  ( A / , / P * )  

5s. = 11 - X ’ / ( P  +X)’] ( A ~ , / P )  

Thus, for the observer to be  fully effective, X must  be  larger 
than  the frequency  content of Afa , which, if tuning (11) is 
used,  imposes in turn  an  upper  bound on the noise level 00. 

Alternatively, the condition  can  be  satisfied by increasing X 
to a  value  larger than (ll), thus also  increasing the k, and 
thereby the noise  content of the  state estimates. 

3.3 Noise  Sensitivity and Implementation  Aspects 

Based on the previous  averaging  analysis, the  algorithm 
may be modified as follows: the  magnitude of the switching 
t e r m  can  be  modulated proportionally to  the average value 
of Z1 over a  short period of past  history; in particular,  the 
gains  can  be  made  small when this  average is close to zero, 
which reflects  small  values of Afa and therefore  adequacy of 
the  Kalman filter part alone. A  practical way to do so is 
to multiply the vector k by a  smoothing  factor of the form 
sat([Zlfl/4), where Zlf  is a lowpass filtered  value of 51, and4 
is a  suitably chosen boundary layer width.  This  procedure 
will be  illustrated  in  Section 3.5. Note that  the multipli- 
cation of k by the smoothing  factor leaves the  ratios k ; / k l  
unchanged. 

Further, in practice, the  ratios k ; / k l  are  limited by the 
sampling rate, i.e., the  bandwidth of the equivalent dynam- 
ics on the sliding patch has to be  smaller than  the sampling 
frequency by a  factor 2 or 3 . Moreover, in  order for the 
boundary layer  interpolation to be effective, the  boundary 
layer width  must  be modulated, so that  the  time  the esti- 
mation  error 51 would take  to cross the  boundary layer,  in 
the absence of measurement  noise, be  at least two sampling 
periods. 

3.4 Systems  with  Mult iple   Measurements  

The case of system in  companion  form  with  multiple 
measurements is a particular  instance of a  more  general  class 
of system, discussed  in  Section 4. 

3.5 Numerical   Example 

Let us consider  a  second  order  nonlinear  system,  consist- 
ing of a  mass  connected to a nonlinear  spring  in the presence 
of dry friction and  stiction , in  companion form : 

2 = z  1 2  

i* = - K Z I S  - AZ2)  + u 
2 = z 1 + v  

where u is the measurement  noise, n is a  constant  nonlin- 
ear  spring  coefficient, and f(z2) represents  dry  friction  with 
stiction. For this  system,  the  sliding  mode observer can  be 
written : 

= ali + f, + k,sgn(i) 
t2 = a2i - ki13  - ](f2) + tr+ k28gn(i). 
i = t - i l  

The numerical values used in the simulations  are : 
K = 1.0 

F, = static friction = 1.0 

Fd = dynamic friction = 0.75 

while the  estimated values  used  in the observer are : 

k = 0.75 

F, = 1.25 

F,, = 1.00 

Dry  friction with  stiction  represents  a  multivalued  func- 
tion at  the origin, and therefore, no linearization  technique 
can be applied. Assume a  white  measurement noise with 
standard deviation .1 .Modelling the effect of parametric  un- 
certainty as a white  process  noise  acting on state 2 2  with 
standard deviation 1, approximating (incorrectly) dry fric- 
tion by viscous friction  ,and  linearizing, the Kalman  Filter 
gains a1 and a2 can be  obtained : 

a1 = 3.785 
o2 = 7.162 

The switching  gain kl is chosen as a  bound on the  steady 
state  estimation  error on 2 2 ,  and k2 is chosen to be  larger 
than modelling  errors . 

k, = 0.1 

k, = 2.0 

The  true  system is excited by a  sinusoidal input : 
u = J i n ( t )  

and  the  initial conditions  are : 
zl(0) = 0.0 and t 2 ( 0 )  - 0.5 

with  the  estimated  initial conditions : 
fl(0) = 0.0 and f2(0) = 0.2 

The simulation  results,  in  absence of measurement  noise, 
are shown in Figures 5 . The  results with  gaussian  mea- 
surement noise of standard deviation .l, are  shown  in  Figure 
6 . These  simulations show that, in  spite of the  parameter 
mismatch, the sliding  mode  observer  provides adequate per- 
formance . 

The reader  may  be  curious about how a  simple “Kalman 
filter” would perform  in  this  problem.  This would correspond 
to using the linearized  model  alone and  to  letting kl and kz 
equal zero in the sliding  mode  observer. The corresponding 
comparative  results are shown in Figure 7 . As one  can  see, 
the sliding  observer  yields,  with  a  minor  increase in complex- 
ity, a  considerable  increase  in  performance. 

We now consider, for further  illustration,  a  purely  linear 
problem, to which the Kalman  Filter  applies  directly. As- 

d.  1.5 3. / . 5  lo. 
Time(acc) 

Figure 5 : Nonlinear  deterministic  case:true and  estimated 
states. One  can see that  the estimation is essentially  perfect. 
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sume that  the  true  system is a harmonic oscillator, and  has 
been  modelled  (poorly) as a pure  integrator . Introducing 
measurement  noise,  with standard  deviation .1, we obtain 
the  plots shown in Figure 8. Comparing  the  estimation er- 
rors  resulted  from  the  Kalman  Filter  and  the  Sliding  Mode 
Observer,  one  can  see that Sliding  Mode  Observer  provided 
an  estimation  error for z2 which  is 62% of the one  from the 
Kalman  Filter. This significative  improvement is due to  the 
fact that  the Sliding  Mode  Observer  explicitly  accounts for 
modelling errors . Note,  however, that further  tuning of the 
Kalman  Filter  may allow it  to  handle  modelling  errors  more 
effectively. 

0.5- Time(see) 

standard  devi3tion of i 
2----2- 

-0. 

Time (sec) 
standard  deviation of i, 

p-2----L 

-0. 
Time  (see) 

Figure 7a : Nonlinear  stochastic  case:  statistics of estima- 
tion  errors ( Kalman  Filter ) . 

O - 4  standard  deviation of i, 

Mean of i, -0. 
Time  (sec) 

standard  deviation of i2 
2--2-2- 

.\le311 of  i2 
-0. 

Time  (sec) 
Figure 7b : Nonlinear  stochastic  case:  statistics of estima- 
tion  errors ( Sliding  Mode  Observer) . 

4. EXTENSION TO GENERAL  NONLINEAR  OB- 
SERVABLE SYSTEMS 

4.1 Observer Structure 

Consider the nth order  nonlinear  system : 

i = l(x,t) , x E Rn 
and, for convenience,  consider  a  vector of measurements that 
are linearly  related to  the  state vector : 

r = C x  , I E RP 
We define an observer  with the following structure : 

X = l(x,t) - Hi - KI, 1 .  

where f E R", ? is our model of f, H and K are n x p gain 
matrices to be  specified, and 1, is the p X 1 vector 

1,=13gn(il) s g n ( i 2 )  ugn(i,) ... ugn(i,)lT 

ii := Cif - .Ti (12) 

where 

and c i  is the  i-th row of the p X n C matrix. We also define 
the  error vectors : 

I := i = C(f - x) (13) 

(14) 
I : = - l - x  

Using equations (8) and (9) we have : 
Z = A d l - H i - K l ,  (15) 

Mean of I, -0. 
Time  (see) 

standard  deviation of i, 

Time (see) 
Figure sa : Linear  stochastic  case:  statistics of estimation 
errors ( Kalman  Filter ) . 
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Figure 8b : Linear  stochastic  case:  statistics of estimation 
errors ( Sliding  Mode  Observer) . 
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where 
df := i ( f , t )  - f ( x , t )  

For convenience we can rewrite (15) as , - -  
L = f ,   f = d f - H d - K l ,  (16) 

The p dimensional  surface, s = 0 ,will be attractive i f ,  
aiii < 0 , i=1, , . . p  (17) 

Sliding will occur on the surface if in an  arbitrarily small 
vicinity of s i  , 

siii 5 -qlaJ , i=l, ... p (18) 

Equations (18)  define the sliding region , i.e. the multivari- 
able  extension of the sliding patch defined by (5). During 
sliding the  system dynamics are effectively reduced from nth 
order  system  to a n - p equivalent or reduced  order system . 

The  approximate dynamics on this reduced  order  man- 
ifold can be formally derived using the so-called 'equivalent 
control' method (Utkin,1977), which is equivalent to Fillipov's 
solution  concept  in the case of linear input  switching. During 
sliding, the switching term in (16) is acting to keep 8 G 0 , 
hence, formally, .i E 0 . We can express the second condition 

grad(n).f(Z,lO) = 0 (19) 
as - -  
where 

i := Af - H i  -Ki,  

and 1, is the equivalent switching vector , which can be 
obtained from (13), (19) and (20) : 

C(4f  - HE - Kl, )  = 0 

so that 
i, = (CK)-'CAf (21) 

Thus,  the equivalent dynamics on the reduced order manifold 
is given by : 

i = ( I  -K(CK)-'C)Af 

Cf = 0 (22) 

Example 4.1 Companion form (single measurement) 

With c = [ I  0 0 ... 01 

k = [k, .... k,IT 

dl = [3?,1, ,..., sn,j(f) - / (x) lT  

-- 

expression (22) yields the reduced order dynamics previously 
obtained in Section 3.1. 

Example 4.2 Non-companion form (single measurement) 

Consider the second order  nonlinear  system 

-- 

i1 = f l ( Z 1 4  

J, = /,(tlJ,) 

2 = 2, 

The observer dynamics can  be  written as 
~. 1 i:, = / l ( ~ l , ~ z )  - alZ, - klsgn( i l )  

iz = / * (Z l ,Z2)  - a2Z1 - k 2 a ! P ( i J  
. .  ~ 

In order  to use equivalent dynamics (22) we identify : 

C = [ I  01 , K = [k, k2IT , Jf = [A/, 

where Afi = 1; - fi , Condition (17) becomes 
i l ( ~ / l  - alii - k , s g n ( i , ) ) <  0 

Thus, sliding occurs when a151 + IC1 > Afl  for 51 > 0 , 
and a151 - kl < Afl  for 51 < 0 . Equation (22) yields the 
sliding dynamics 

3, = 0 
2', = - (k*lk,)Al ,  + 4 2  (23) 

The  structure of Afl  and A f2  must  be known before any 
further analysis can be  done, as we now discuss . 
4.2 Observability  Requirements 

Consider the  system 
x = r ( x , t )  , x E R" 

L 3 g ( x , t )  , L E RP 

This  system must  be observable in order for any observer 
structure  to be succesfull in reconstructing the  state x from 
the measurement e. Convenient algebraic observability con- 
ditions on f and g are  not nearly so easy to find as in the 
linear case. (Hermann  and KrenerJ977) discuss the use of 
Lie derivatives to develop local conditions.  Intuitively, in 
order for the  system  to be observable one must be  able to 
perform successive differential operations on g(x) until  an 
implicit inversion can be  performed to  obtain x . 

For instance, consider again the order  nonlinear  system 
of Example 4.2 : 

L, = f l ( ~ , , Z * )  

L, = / 2 ( 2 , J , )  

2 = tl 

In order for this  system  to be observable, fl must be a single 
valued function of 2 2 .  One can see from equation  (23) that 
Afl  must  be a  function of 52 in order for the control term 
-(kz/kl)Afl to have any influence on  the error  dynamics . 

In general, the observability condition is strongly linked 
to  equation (22) through  the  structure of the Af vector, and 
an unobservable system will result in uncontrollable error dy- 
namics . 

5. APPLICATIONS 

* Although high-precision (- 16 bits) measurements of 
joint  displacements are typically available in robot  manip- 
ulators,  tachometers  are generally needed to generate  ade- 
quate velocity feedback signals. In high performance robots, 
such as direct-drive arms,  the cost of the tachometers  may  be 
comparable to  the cost of the  motors themselves. Sliding ob- 
servers should  provide the capability of generating clean ve- 
locity signals  directly from joint displacement measurements, 
using the nonlinear robot model, therefore reducing cost and 
furthermore potentially yielding improved performance. 

* The performance of force control schemes is critically 
dependent on the quality of the derivative of the contact force 
signal  (Slotine,  1986). However, force signals are typically 
corrupted by large amounts of mechanical noise generated by 
the  robot  and  the environment (from gears, stiction, etc.). 
Furthermore, force observer design requires a model of the 
generally poorly known environment stiffness. This is again 
a  domain where robust observer design using sliding behavior 
could potentially be very effective. 
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* In electric motors,  pure sliding  mode  (switching) con- 
trol  may  be used in place of pulse-width  modulation. This 
requires, however, to use  third-order  models, which  involves 
estimating  joint velocities and accelerations  from  encoder sig- 
nals (as well as, perhaps,  tachometer signals and  armature 
current  measurements) in order to compute  the value of s . 
Using each actuator  in a pure  saturated switched  mode 

u = -u,,,sgn(s) 

in  conjunction  with a sliding  observer, at switching  frequen- 
cies similar to those of P WMs (10-40 KHz), would in principle 
allow extremely  high  performance  using  simple  design. In a 
robot  manipulator,  it would also  permit  each  motor to  be 
controlled  independently (Le., without  accounting explicitely 
for the coupling effects and nonlinear  dynamic  forces). This 
would allow modularity in the  robot design,  with afferent 
costs and  maintenance savings. 

* Along the  same lines, pure sliding  mode  can be applied 
directly in end-effector space: the expression of the vector s 
(of components s i )  is then based  on errors in end-effector po- 
sition rather  than  errors in joint  displacements. The result- 
ing end-effector forces are  then expressed in terms of joint 
torques 0 to be  applied,  using  the  manipulator  Jacobian J 
(Asada  and Slotine, 1986): 

where the  components of are of the form 

Accurate  computation of s involves again the use of a non- 
linear  observer. 

* Another  potentially useful application of sliding  mode 
observer is to  estimate  shaft  torques in automotive power- 
train applications. Force sensors are available , but  (again) 
several  orders of magnitude  too expensive for practical im- 
plementation . The extremely  nonlinear nature of the  en- 
gine/transmission  environment  prohibits  the  use of linear es- 
timations. 

6. CONCLUDING  REMARKS 

But is it  Art ? Clearly, this  study is only a step in de- 
veloping a complete  and  systematic methodology of sliding 
observer design for nonlinear  systems, and  the reader  may 
not  want to  throw away his Kalman filters yet. However, 
sliding  observers  have intriguing properties in  the presence 
of measurement  noise,  and have predictably  robust  proper- 
ties in  the presence of modelling errors. 

By a simple but very nonlinear  example it was shown 
how a simple  sliding  observer  could be designed, and  that  its 
switching part provided  robustness  to  modelling errors. A 
simple  linear  example  with  modelling errors also illustrated 
that  the sliding  observer significantly reduced the  estimation 
error over its  Kalman  Filter  counterpart.  These  properties 
should  make  sliding  observers  worthy of extensive further re- 
search. 
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