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1.
Why do we use sliding mode technique

(1) It 1s robust respect to bounded uncertainty
(2) It 1s model-free
Sliding-mode
[1] V.L.Utkin, Sliding Modes and Their Application in Variable

Structure Systems, MIR Publishers, Moscow, Soviet Union,
1978.

[2] V.L.Utkin, Sliding Modes in Optimization and Control,
Springer-Verlag, 1992.

There exist discontinuous dynamic
mx +kr+ F =0
where F' is friction as
ar x <0
F = LT
—ax v <0

Sliding-mode control,
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s>0

> X

s<0 s(x)

2.

where s(z) = 0 is sliding surface. How to design s(x) is key
problem of sliding-mode control.

Example 1 [f the tracking error satisfies

= (o—a')+a(-4")

We define sliding surface as s (x) = 0, s (x) = e. If the trajectory
convergence to s(x), e — 0. So the condition ss < 0 can make
the trajectory go to s = 0.

Stability of sliding surface s = 0. The dynamic of sliding
surface satisfies

s = —Ksign(s), K& R™"

Consider Lyapunov function

1
V=§STPS, P=P >0
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The derivative of V' 1s

[ sign (s1)

V =sTPs= —s'PKsign (s) = — [s1,89+ -+ 8,] L 51gn:(32)

sign (s,)

= — 3" |si (lm- + > ljsign (Sz’Sj))
i=1

j=Li#i
where x;sign(z;) = |z;|, z;sign(z;) = |x;|sign(x;z;) , [;; are the
elements of the matrix L = PK. If

lii > Z lij (1)
J=1,j#i

then we conclude that V < 0, s = 0 becomes stable.

We consider a affine nonlinear system
v = f(x) + g(z)u (2)
equivalent control
Ueg = =9 f, 0< Jue| < F
Sliding mode control u as

: F s5s>0
u:—Fs1gn(3)={_F R
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We define a dynamic of sliding surface as

5:f+gu:—gueq+gu=g(u—ueq) (3)

Consider Lyapunov function

1
V:§STPS, P="P>0

V = STPg (U — ueq) — STPg (FSlgn (S) o /UJGQ)
= Py (~FsTsign(s) — s"u,)

= Py (—F|s] — |s] i)

sign(s)

< |1Pgll 13| (~F - 525)

Since 0 < |ue,| < F, V <.
In the trajectory tracking case, force the system to trajectory

d

%ﬂi’f = o(z7)

Define e = x — x*. Let
s=Ke, K=K!'>0
s=Ke=Kr+ Kz, = Kf+ Kgu— o(x?)
= [Kf —¢(a7)] + Kgu

equivalent control

ey = — (Kg) K] — (@), 0< Jueg| < F
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. S
u = —Fsign(s) = { Fos-0

lim €t — 0
t—00

Sliding mode observer

For bounded unknown nonlinear system
r = f(x,u)
y=Cx
where C' is known, f(z, u) is bounded unknown.
f(z,u) — Az = =P 'C"h(z,u)

where h (z;, u;) is bounded as

h> ||h(z,u)
Transforms the system into the normal form
v=Ax+ F(z,u), y=Cx (4)

where F'(x,u) = f(x,u) — Az, A is a special matrix such that
the pair (A, C') is observable. Let us construct the sliding mode
observer as

@\:AEC\—I—S(ZC\,G)—K@ (5)
y=Cx
where € 1s output error defined as

e=y—y=CA=C(T;— )
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where /A, is observer error, S (T, ;) is selected
pP-ictcA
_p —
|CA
where P is a positive defined matrix, p is a positive constant, they
will be determined after. Clearly the sliding mode observer is not

depended on the nonlinear plant , only output y is needed. The
derivative of observer error 1s

A:AA+S<§3\,€> — KCA — F(z,u)
=(A—-KC)A+S(z,e) — F(x,u) (7)
= AgA+ 5 (Z,e) — F(x,u)

where Ag = A — KC. Because (A, C) is observable, there exists

K such that A is stable. So the following Lyapunov equation has
a positive solution P

AP+ PA =—-Q, Q=0 >0

for a positive define matrix ().

S (Ty,e) = = —pP~'Csign(e)  (6)

Theorem 1 If f is bounded, the observer gain satisfies

p>h
then the error between the sliding mode observer and the nonlin-
ear system is asymptotically stable

lim A =0 (8)

t—00
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Proof. Proof. Let consider the following Lyapunov function
candidate:

V; = A" PA
Calculate its derivative
V= AT (ATP + PA)) A+ 2ATP[S (&, ¢) — F(z,u)].
Using Al
F(xp,u) = =P 'CTh(z,u), ||h(z,u)] < p.

If we select S (T, e;) as (6), we have

Vt = —ATQA + 2ATCTh(x,u) — ZAT‘gTAC‘Y‘Atp
—ATQA + 20T CTh(z,u) — 2 ||CAl| p

< —ATQA +2[|CA[ (2, uw)l| = p) <0

Since Vt < 0, A € L. From the error equation (7) we also

conclude that A € L. Since V; < —ATQA and V; is bounded
process, A is quadratically integrable and bounded A € Lo .
Using Barbalat’s Lemma we obtain that the observer error A is
asymptotically stable, so lim A =0. =

t—00
The design procedure is

Example 2 The dynamics of an n—Ilink robot manipulator may
be expressed in the Lagrange form [?]

M()a+C(aq)a+G@+Fi(a) =7  ©
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—P Select A —» Select Q>0

Solution
P>0?

Yesi

» Select K> 0 Select h(x) bounded

A=A-KC
stable?

End
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One-link robot manipulator
where r; = {q, q} c 3%2, L1 =4(q, T2 = éL
q
flxy, 7) = B N - .
T = “(q) [T_O(%C])Q_G(Q>_Fd (q)}
D = [1,0]. Transform into the normal form:

v =Ax+ F(x,u), y= Dz

we can select A = [ (1) é to make the pair (A, D) observable;
2 | —2 1] .
If we select K = [2 > 0,50 Ay = A— KD = [_1 0] is
. [31 . .
stable; if we use () = g3l the solution of Lyapunov equation
AgP + PA! = —Q
is positive define P = [ 31'255 _00'25 ] , p = 15. Velocity observer,

7= AT — pP~tDlsign(e) — Ke
y=0Cx
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