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Introduction 
 
The Kalman filter is a widely used algorithm that has been around for more than 40 years.  The 
result of R.E. Kalman’s research work was presented in 1960 in a paper entitled A New Approach 
to Linear Filtering and Prediction Problems.  R.E. Kalman had the idea of applying the notion of 
state variables to the Wiener filtering problem.  The first application of the Kalman filter was in 
aerospace when R.H. Battin made the Kalman filter part of the Apollo onboard guidance1.  In 
1976 J.G. Balchen, N.A. Jenssen and S. Saelid wrote a paper on Dynamic Positioning Using 
Kalman Filtering and Optimal Control Theory.  This new approach based on the concept of 
modern control theory was aimed at addressing the disadvantages of PID-controller, such as slow 
integral action and phase lag in the control loops2.  Since then Kalman filtering has been widely 
used in Dynamic Positioning applications. 
 
This paper illustrates the basic concepts behind Kalman filtering in Dynamic Positioning 
application.  We will start the discussion with an overview of Dynamic Positioning and the role 
of the Kalman filter.  The concept of a predictor-corrector estimator will then be introduced and 
we will present the discrete Kalman filter algorithm and application.  In order to illustrate the 
operation of the Kalman filter an overview of Kalman gains and the evolution of estimate 
uncertainty are then presented.  Finally we discuss some of the considerations to make when 
implementing the Kalman filter in DP applications.  In order to illustrate some of the concepts 
introduced in the paper a simple example has been created and included in Appendix A. 
 
 
 
 

                                                           
1 Kalman Filtering – Theory and Practice Using MATLAB®, 2nd Edition, M. S. Grewal and A. P. 
Andrews, Wiley-Interscience Publication, 2001 
2 A Dynamic Positioning System Based on Kalman Filtering and Optimal Control, J.G. Balchen, N.A. 
Jenssen, S. Saelid, E. Mathisen, MODELING, IDENTIFICATION AND CONTROL, 1980, VOL. 1, No.3 
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1. Overview of a Dynamic Positioning System and Role of the Kalman 
Filter 

 
 

1.1. Objective of a Dynamic Positioning System 
 

According to ABS, by definition, a Dynamic Positioning system is “a hydro-dynamic system 
which controls or maintains the position and heading of the unit by centralized manual 
control or by automatic response to the variations of the environmental conditions within the 
specified limits”3. 
 
API defines Dynamic Positioning (DP) as “a technique of automatically maintaining the 
position of a floating vessel within a specified tolerance by controlling onboard thrusters 
which generate thrust vectors to counter the wind, wave and current forces”4. 
 
From both definitions we can determine the main functions to be performed in order for a 
dynamic positioning system to control a given vessel position (x,y) and heading (? ).  These 
functions are: 
 

à Estimate vessel motion 
à Measure vessel response 
à Determine error between prediction and measurement 
à Determine corrective action to be applied 
à Calculate and allocate appropriate command to thrusters to achieve desired 

corrective action 
 
 
 
 
 
 

                                                           
3 ABS, Guide for thrusters and dynamic positioning systems, 1994 Section 3, 3.2.4. 
4 API Recommended Practice for Design and Analysis of Station keeping Systems for Floating 
Structures, 1995 

Xref

Yref

x

y

Reference
Point

ψref

ψ



Olivier Cadet, Transocean Inc.  Introduction to Kalman Filter – Application to DP 

Dynamic Positioning Conference  September 16-17, 2003 Page 5/33 

 
Concentrating on vessel position and heading, the main functions typically performed by a 
DP System are summarised in figure 1: the vessel position and heading are estimated based 
on the vessel model, the forces acting on the vessel, and on the position and heading 
measurements returned by the position reference systems and gyros.  Based on the 
difference between the desired position (and heading) and the estimated position (and 
heading), the control command to the thruster system is calculated and allocated to the 
appropriate thrusters.  The thrusters then provide the necessary forces to counter the external 
forces and moment acting on the vessel and maintain the vessel on location (with the desired 
heading), using the power coming from the power system. 
 

 

Figure 1 - Functional overview of a Dynamic Positioning control system 

 
 

 
 

 
Let’s now concentrate on one specific function of a Dynamic Positioning system: the 
estimation of the vessel state.  The vessel is considered as a dynamic system.  Its state can 
be defined by a set of variables that explicitly represent all the important characteristics of 
the vessel at any given time.  In a DP application it’s important to identify the motion 
variables of the vessel (position and speed) as well as the environmental variables 
influencing the motion.  The state of the vessel therefore usually consists of position (x, y), 
heading (? ), velocities (in surge, sway and yaw) as well as steady-state current. 
 
So position (x,y) is only part of the state of the vessel.  For the purpose of simplifying our 
discussion we will confine ourselves to the estimation of vessel position. 
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1.2. Estimating Vessel Position 

 
 
In order to estimate vessel position, the DP system uses information taken from: 
 
§ Position Reference Systems (also referred to as Position Measurement Equipment) – 

for example DGPS, Acoustics. 
§ Its own internal model based on physical description of the vessel. 

 
Each Position Reference System returns a measured position of the vessel.  Signals are 
converted to a common format and then validated before being used by the DP System 
(since Position Reference Systems are subject to failures which may result in erroneous 
output, a measurement ‘validation’ mechanism has to be in place).  This is referred to as 
Signal pre-processing in figure 2 below. 
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Figure 2 – Typical Position Reference System Pre-Processing Routines 
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Please note that like any other measurement, the measurements from Position Reference 
Systems are noisy.  The source of noise depends on the sensors used and on the method used 
for measuring position.  As a result different types of Position Reference Systems will have 
different noise characteristics.  DGPS and Acoustics are good examples of position 
reference systems with different update rates and noise characteristics. 

 
The model also provides some information on the state of the vessel.  The model contains a 
hydrodynamic description of the vessel.  In other words the model is used to describe the 
reaction of the vessel based on external forces acting on it.  The vessel model is a set of 
equations of motion that is used to predict the motion of the vessel when known forces and 
moment are applied.  In order to separate the wave induced oscillatory part of the motion 
from the remaining part of the motion, the total vessel motion is modeled as the added 
outputs of a low-frequency model (LF-model) and a high-frequency model (HF-model)5.  
The HF-model represents oscillatory wave components in the vessel motion.  The LF-model 
represents motions induced by wind, thrust and current in surge, sway and yaw.  The low 
frequency portion of the model is controllable by means of thrusters.  Figure 3 is a 
simplified block diagram of a typical vessel model. 
 
In order to achieve good performance of the DP system the model of the vessel has to be as 
detailed as practically possible.  The parameters of the model are verified during sea trials 
(“tuning” of the model).  However the model only represents some aspects, and cannot fully 
capture the entire physics behind vessel motion and dynamics. So the model of the vessel 
should only be considered as an approximation of the “real thing” and is not perfect. 
 

                                                           
5 A Dynamic Positioning System Based on Kalman Filtering and Optimal Control, J.G. Balchen, N.A. 
Jenssen, S. Saelid, E. Mathisen, MODELING, IDENTIFICATION AND CONTROL, 1980, VOL. 1, No.3 
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Figure 3 – Block Diagram of Typical Model (simplified) 

 
 

 
 

1.3. State Estimation Problem Formulation 
 
The estimation problem solved by the Kalman filter can be expressed as follows: how do 
you optimally estimate the state of a vessel with an approximate knowledge of the vessel 
dynamics (imperfect mathematical model) and with noisy measurements from sensors 
and position reference systems?  What is the best state estimate you can get out of all that? 
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1.4. Kalman Filter:  First Functional Definition 
 

A Kalman filter is, in fact, the answer to the state estimation problem formulated above.  In a 
Dynamic Positioning application a Kalman filter is used to estimate the state of the vessel 
(for which a dynamics model has been developed) based on noisy measurements from 
reference systems and sensors. 
 
This is a first “functional” definition of the Kalman filter.  We will define further this type of 
filter in the paragraphs that follow.  In order to fully appreciate the other attributes of this 
type of filter, we need to review its operation. 
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kx

2. The Discrete Kalman Filter 

 
2.1. Definition of terms 

 
§ Let’s first consider the system dynamic model.  This equation describes the behavior of 

the vessel).  It would be of the following type: 
 
 
         (2.1.1) 

          
 
 

 is the state that we’re trying to estimate.  Typically in DP application the 
state consists of vessel position and heading (x,y,? ), associated velocities (vx, vy, 
v? ) and steady-state current forces acting on the vessel (Cx, Cy, C? ).  So it would 
be a 9x1 matrix in our application6. 
 
A is a n x n matrix that relates the state at step k-1 to the state at step k, in the 
absence of any driving function or process noise.  This is a description of how the 
state changes between measurements. In a DP application that would be a 9x9 
matrix if you consider the state described above. This matrix A is given by the 
mathematical model of the vessel. 
 
B is a [n x l] matrix that relates the control input uk to the state xk.  This matrix B 
is given by the mathematical model of the vessel. 
 
Uk represents the control input (from the thrusters in DP application). 
 
Wk represents the process noise or model uncertainty.  We will assume that the 
process noise is white7 and with a normal distribution of zero mean and Q 
variance (see figure 4): 

  

Q is called Process Noise Covariance.  It represents the 
uncertainty in the process or model. 
 

 
 

                                                           
6 Please note that in some cases pitch and roll are added to the state. 
7 By definition white noise is a signal that does not repeat and that has a frequency spectrum that is 
continuous and uniform over a specified frequency band.  White noise has equal power per hertz over that 
frequency band. 

11 −− +⋅+⋅= kkkk wuBxAx

),0(~)( QNwp
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Figure 4 – Typical Normal Distribution with Zero Mean 
 
 

§ Let’s also consider the measurement model for a measurement Zk (in our case a 
measurement would be given by a position reference system or a sensor). 
 
        

(2.1.2) 
 

     
H is a [m x n] matrix that relates the state to the measurement        .  It describes 
how the measurement depends on the state. 
 
        represents the measurement noise.  We will assume that the measurement 
noise is independent from the process noise, white and with the following normal 
probability distribution: 

 

 
R is called Measurement Noise Covariance.  It represents the 
uncertainty in the measurement. 

 
 
Please note that both the process noise covariance Q and the measurement noise covariance 
R can change with time, however they are considered constant in most applications of 
Kalman filters in Dynamic Positioning system. 
 
 
At this stage we need to introduce            which is the a priori estimate at step k given 
knowledge of the process prior to step k.  This is the estimate of our vessel state at step k 
given our knowledge of the state prior to step k. 
 
The a posteriori state estimate,         , is the state estimate at step k given measurement       .  
This is the estimate of our vessel state at step k based on the measurement received from a 
Position Reference System. 
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−
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2.2. Predictor-Corrector Structure 

 
We are going to introduce in this section the Predictor-Corrector structure of the Kalman 
filter.  In order to see why the Kalman filter is said to have this type of structure, let’s look at 
its operation. 
 
§ Prediction 
 
The first step of the Kalman filter operation is called the Prediction step, or Time Update 
step, or State Estimate Extrapolation.  The Kalman filter is going to predict the state of the 
system based on the current state and the model.  Using the state dynamic model presented in 
equation 2.1.1 the Kalman filter determines the a priori estimate during this prediction step.  
We have the following prediction equation: 
 
 
         (2.2.1) 
 
 
In addition at this step the Kalman filter projects what is called the error covariance 
The error covariance can be considered as the uncertainty of this first prediction of 
the state. 
 
 
         (2.2.2) 
 
  
§ Correction 
 
The next step is called the Correction step, or Measurement Update step, or State 
Estimate Observational Update.  The Kalman filter is going to correct or update its first 
prediction obtained at step 1 based on the measurement received from the Position Reference 
System.  Please note that at this stage the Kalman gain Kk is calculated.  We will come back 
in paragraph 2.3. on how this gain is computed.  The result of this second step is a new 
estimated state of the system, the a posteriori state estimate (as defined above).  We can see 
from the formula below that this a posteriori state estimate is in fact the a priori state 
estimate plus a correction factor which is proportional to the difference between the 
measurement and the measurement prediction.  This is why we call this second step the 
correction step.  Please note that this difference between the measurement and the estimated 
measurement is called innovation or residual.  This is an important part of the Kalman filter.  
We will use the terminology residual in the rest of the paper. 
 
 
  
          (2.2.3) 
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Figure 5 – Predictor-Corrector Structure of Kalman Filter with Equations 
 

 
 

Figure 6 – Simplified Block Diagram of Kalman Filter 
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But what does that mean for our DP System? 
 
Let’s come back to the main objective of our Kalman filter: to estimate the state of the vessel.  
Let’s take position as an example for one of the vessel state. 
 
Based on the vessel model, and using the previous position estimate of the vessel, the 
prediction step of the Kalman filter gives us a prediction of the vessel position.  Based on the 
forces acting on the vessel, on the vessel model and on the previous position estimate, this is 
where the DP system thinks the vessel is. 
 
A measurement comes in from one of the position reference systems.  That measurement is 
going to be used to refine the prediction previously calculated.  The second step, or correction 
step, compares the measurement with the measurement prediction calculated by the DP 
system.  There has to be a mechanism in place to give less “weight” to an inaccurate 
measurement and more “weight” to a very good (compared to the model) and valid 
measurement: this is what the Kalman gain (computed by the Kalman filter) does.  The 
previously calculated position prediction is then corrected by a factor equal to the Kalman 
Gain multiplied by the difference between the estimated position and the measured position 
(this difference is also called innovation or residual as defined above). 
 
And the process goes back to the prediction step and starts over. 
 
A simplified schematic of a Kalman filter for our DP application is given in figure 7. Please 
note that the implementation of the Kalman filter presented in the figure below is only one of 
several possible implementations. 
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Figure 7 – Simplified schematic of Kalman filter (one possible implementation) 

 
 
So you can consider the Kalman filter in our DP application as the most efficient way to 
“blend” measurements coming from Position Reference Systems and Sensors and 
information coming from the vessel model.  The end result or output of the filter is an optimal 
estimate of the state of your vessel.  An example of the estimated position (East) taken from 
the Deepwater Frontier drillship is given in figure 8.  Figure 9 shows the Innovations or 
Residuals (for each of the Position Reference Systems) and the Kalman gains for the same 
example.  We can see with this example how the “blending” works and how the estimated 
position is derived.   
 
Please note that applying Kalman gains on each individual Position Reference System is one 
way of implementing Kalman filter.  Another implementation would be to apply the Kalman 
gain on a “weighted” measurement (all positions returned by the different reference systems 
are “blended” by a pooling system and that “weighted” average is then sent to the Kalman 
filter). 
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Figure 8 – Example of Estimated Position (East) compared to Position Reference System 
measurements (after pre-processing) – Deepwater Frontier, Brazil 
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Figure 9 – Kalman Gains and Residual for each Position Reference System
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2.3. Kalman Gain 

 
 
The Kalman gain (Kk) is computed by the Kalman filter so that the a posteriori error 
covariance is minimized.  That means that the gain is calculated so that the uncertainty in the 
state estimate is minimized.  One form of the calculated Kalman gain is given by formula 
2.3.1.8: 
 
           

(2.3.1) 
 

 
 
A good way of defining in simpler terms the Kalman gain is to describe its ‘behavior’.  The 
Kalman gain is indeed calculated based on how much we weight the measurement that comes 
in and how much we weight the model. 
 
Ø If the model is excellent (model uncertainty is small) and the measurement is very 

noisy (measurement uncertainty is high), then the Kalman gain will be small.  By 
calculating a small gain the Kalman filter voluntarily decreases the effect of a 
measurement that comes in.  So the filtered position will have less tendency to 
“follow” the measurements (which are noisy).  This is apparent when looking at the 
following update equation: 

 
 
 

(2.3.2) 
 
 
Ø If the error covariance is very large and the measurement noise covariance is 

negligible compared to the error covariance, then going back to formula 2.3.1.: 
 

Please note that in theory H cannot be 
inverted.  We use the notation H-1 only for 
the purpose of describing the behavior of the 
Kalman gain in an extreme case.  

 
If you then replace Kk by H-1 in equation 2.3.2 giving the a posteriori state estimate, 
you get: 

 
This means that in case the error covariance is very large then the a priori estimate 
will not be used in the update and only the measurement will be used. 

                                                           
8 Stochastic Models, Estimation and Control, Volume 1, Peter S. Maybeck, Dept of EE Air Force Institute 
of Technology, Academic Press, 1979 
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Another important point to take into account is the fact that Position Reference Systems are 
different in nature as we alluded to in the first part of this paper.  By different in nature we 
mean that they have different noise characteristics (this is especially true when you compare 
DGPS with Acoustics) and different update rates.  So how do you “merge” or combine two 
different Position Reference Systems efficiently (taking into account their differences)?  If 
nothing is done the Kalman filter will give too much weight to DGPS which has low high 
frequency noise and a high update rate.  A solution to this problem is given in Improved DP 
Performance in Deep Water Operations Through Advanced Reference System Processing 
and Situation Assessment by Nils Albert Jenssen (Kongsberg Simrad)9.  The solution 
proposed uses quality figures from each position reference system and applies Kalman gain 
on the individual measurements. 

  
 
 
 

2.4. Typical Evolution of Error Covariance or Estimate Uncertainty with time 
 

This paragraph illustrates the evolution of the Error Covariance (identified as Pk previously) 
or Estimate Uncertainty with time as the DP system receives valid measurement updates from 
the Position Reference Systems.  This section was added as a means to visualize how a 
Kalman filter operates. 
 
First let’s start with an extreme case: no measurement is received.  In this case (also known as 
dead reckoning) the Kalman filter only relies on the vessel model to estimate the state of the 
vessel.  Let’s take position in this case to simplify.  What do you think will happen to this 
position?  Will you trust this estimate?  Well as time goes by the estimate will be less and less 
correct simply because the model of your vessel is only an approximation of the real behavior 
of the vessel.  Therefore the estimate uncertainty will increase with time in this particular 
case. 
 
Now imagine that a position reference system is selected and returns a valid measurement of 
vessel position.  The Kalman filter will want to give this new information a high weight to 
correct what it thinks is a very approximate estimate (remember that the estimate uncertainty 
is high as described before).  Therefore the calculated Kalman gain will be high and the 
Kalman filter will give a high weight to the residual.  This makes sense and confirms the 
Kalman gain behavior described on page 14. 
 
All this evolution of error covariance is described on the hypothetical graph in figure 10. 
 

                                                           
9 Improved DP Performance in Deep Water Operations Through Advanced Reference System 
Processing and Situation Assessment, 1997 MTS DP Conference, Nils Albert Jenssen (Kongsberg 
Simrad) 
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Figure 10 – Evolution of position estimate uncertainty with time 
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2.5. What makes the Kalman Filter optimal? 

 
First of all Kalman filtering is a very convenient filter for online real time processing.  As 
previously defined a Kalman filter is a recursive filter.  That means that all the past “history” 
is contained in the a priori estimate.  So another way to look at that is to consider that each 
new estimate incorporates all previously calculated estimates.  So you don’t need to store all 
previous estimates.  Whether the filter works on estimate #1 or on estimate #1000 the 
computations and work performed by the filter is the same.  That’s why this type of filter is 
very convenient for online real time processing.  It is also relatively easy to implement. 
 
A Kalman filter is also optimal in the sense that it uses any valid measurement that comes in.  
So it uses all available (and valid) data and then applies the appropriate weight to it.  So any 
valid measurement that comes in will be used and will contribute to the estimating the state of 
the system. 
 
In parallel to the recursive nature of the filter it is also interesting to note that Error 
Covariance calculations and the Kalman Gain calculations do not depend on the 
measurements coming in.  That means that these two values can be computed ahead of time.  
The overall algorithm is really tailored to real-time applications. 
 
 
 
2.6. Summarizing:  Complete Definition of a Kalman Filter and of the Extended 

Kalman Filter 
 

As a way to summarize all the notions introduced above, we can give a better and more 
complete definition of a Kalman filter. 
 
A Kalman filter is a linear estimator. It is used to estimate the state of a linear dynamic 
system by using measurements linearly related to the state of the system but corrupted with 
noise. 
 
A Kalman filter is a recursive data processing algorithm.  It is a software tool that does not 
require all previous data to be kept in memory.  All previous “history” is in fact captured in 
the most recent estimate of the state of the system.  This is an important characteristic when it 
comes to implementing this type of algorithm in computers. 
 
Finally this type of filter is optimal: it calculates the best possible estimate (minimum 
variance) for the state of the system. 
 
Please note that in DP application the standard linear approach will not work because the 
vessel model has non-linearities (quadratic drag effect and velocity-position relations).  In 
order to take these non-linearities into account an Extended Kalman Filter is used.  It uses 
the same principle as a standard Kalman filter but linearizes about the current mean and 
covariance. 
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3. Implementation of Kalman Filter and items to consider 
 
A Kalman filter does not function properly when the Kalman gain K becomes too small, but the 
measurements still contain information for the estimates.  In such condition the filter is said to 
diverge.  It is then necessary to determine how well the filter functions and how to tune it.  A 
tuned Kalman filter will have optimal performance10. 
 
 

3.1. Starting point for checking Kalman Filter operation 
 

The residual provides the starting point for checking the filter operation.  As indicated in 
Digital and Kalman Filtering by S.M. Bozic a necessary and sufficient condition for a 
Kalman filter to be optimal is that the residual is zero-mean and white.  Various statistical 
tests can be done to check that.  An example of innovation is given on figure 11. 
 
For a specific system like a DP system it is necessary to specify the system model in terms of 
parameters, noise statistics and initial conditions.  However, as stated in the first section of 
this document, the model is not perfect and is only an approximation of the actual physical 
system.  The same is true with the noise statistics and parameters.  These errors can cause the 
Kalman filter to diverge. 
 
 
 
 
 
 
 
 
 
 

                                                           
10 Digital and Kalman Filtering, 2nd Edition, S.M. Bozic 
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Figure 11 - Example of residual (or innovation) on the Deepwater Pathfinder (Innovation East 

on DGPS1) 
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3.2. ‘Tuning’ the Kalman Filter 

 
 
Kalman filter performance can be improved by adjusting the process noise covariance Q and 
the measurement noise covariance R.  As indicated in the two equations below, we can 
clearly see that adjusting these two values will have consequences on the Kalman gain. 
 

 
 
Please note that in conditions where Q and R are constant (this is usually the case in our DP 
system application) the estimation error covariance and the Kalman gain will stabilize 
quickly and then remain constant11. 
 
If Q is too large, then the Kalman gain will be too high and as a result the estimates will have 
a tendency to follow the measurements “too much” and they will bounce around a lot.  If Q is 
too small, it’s exactly the opposite. 
 
If R is too large, then the Kalman gain will be too small and the filter will not take into 
account the new measurements as much as it should.  If R is too small, it’s the opposite. 
 
Some DP Systems allow the operator to “adjust” the Kalman filter to be either more relaxed 
or tighter.  These pre-determined filter settings make use of different Q and R values in the 
filter as explained above.  For example a “tight” filter will have a large R and a small Q.  In 
that case the state estimate (output of Kalman filter) will not give too much weight to the 
measurements from the position reference systems and sensors.  A “relaxed” Kalman filter on 
the other hand will have a small R and a large Q and as a result will follow more position 
reference systems and sensor measurements. 
 
It is important to note that adjusting the Kalman filter settings will have consequences on the 
overall behavior of the DP system and of the vessel. 
 

                                                           
11 An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Greg Welch and 
Gary Bishop. 
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Conclusion 
 
Kalman filters are an important part of a DP system.  This very mature and standard algorithm is 
used to estimate the vessel state based on noisy measurements from Position Reference Systems 
and sensors and an imperfect model of the ship.  The recursive nature of that filter, along with the 
fact that the estimated solution output by the filter is optimal make that filter very interesting from 
an implementation point of view.  The Kalman filter is applied in a lot of different fields apart 
from the Dynamic Positioning world.  You find Kalman filters in GPS, in navigation systems, in 
cars, in airplanes just to name a few applications.  The main disadvantage of the Standard Kalman 
filter is that it is a linear filter.  As a result the Standard Kalman filter does not handle well highly 
non-linear systems.  The Extended Kalman filter was developed in an effort to treat this issue, but 
the overall solution still does not apply to highly non-linear processes.  New types of non-linear 
filters might in the future replace Kalman filters…  Or maybe not. 
 
 

 
 
 



Olivier Cadet, Transocean Inc.  Introduction to Kalman Filter – Application to DP 

Dynamic Positioning Conference  September 16-17, 2003 Page 26/33 

References  

 
 
§ A Dynamic Positioning System Based on Kalman Filtering and Optimal Control, J.G. 

Balchen, N.A. Jenssen, S. Saelid, E. Mathisen, MODELING, IDENTIFICATION AND 
CONTROL, 1980, VOL. 1, No.3 

 
§ An Introduction to the Kalman Filter, by Greg Welch and Gary Bishop, University of North 

Carolina at Chapel Hill. http://www.cs.unc.edu/~welch/kalman/ 
 
§ Kalman Filtering – Theory and Practice Using MATLAB®, 2nd Edition, M. S. Grewal and 

A. P. Andrews, Wiley-Interscience Publication, 2001 
 
§ Digital and Kalman Filtering, 2nd Edition, S.M. Bozic 
 
§ Design of a Dynamic Positioning System Using Model-Based Control, A.J. Sorensen, S.I. 

Sagatun, T.I. Fossen, Control Eng. Practice, Vol. 4, No. 3, pp. 359-368 
 
§ Identification of Dynamically Positioned Ships, T.I. Fossen , A.J. Sorensen, S.I. Sagatun, 

Control Eng. Practice, Vol. 4, No. 3, pp. 369-376, 1996 
 
§ Stochastic Models, Estimation and Control, Volume 1, Peter S. Maybeck, Dept of EE Air 

Force Institute of Technology, Academic Press, 1979 
 
§ Improved DP Performance in Deep Water Operations Through Advanced Reference 

System Processing and Situation Assessment, 1997 MTS DP Conference, Nils Albert 
Jenssen (Kongsberg Simrad) 

 
§ Guidance and Control of Ocean Vehicles, by Thor I. Fossen, University of Trondheim, 

Norway, 1994 
 
§ La Commande par Calculateur, M. Ksuvri, P. Borne, Editions Technip 1999 
 
§ Digital Control Systems, Volume II, Rolf Iserman, Springer-Verlog 1991 
 
§ Dynamic Positioning of Offshore Vessels, by Max J. Morgan, Marine Division, Honeywell 

Inc. 
 
§ Dynamic Positioning, by David Bray, OPL, Oilfiled Seamanship Volume 9 
 
§ ABS Guide for thrusters and dynamic positioning systems, 1994 Section 3, 3.2.4. 
 
§ API Recommended Practice for Design and Analysis of Station keeping Systems for 

Floating Structures, 1995 
 
 
 



Olivier Cadet, Transocean Inc.  Introduction to Kalman Filter – Application to DP 

Dynamic Positioning Conference  September 16-17, 2003 Page 27/33 

Appendix A – Simple Example: Estimating a Constant 

 
 
Let’s take a simplified example to illustrate some of the elements presented above.  This 
example was built using Excel.  It does not represent any physical description of Kalman 
filter applied to dynamic positioning, but it illustrates with numbers how a Kalman filter 
operates. 
 
Let’s take the East position of your vessel as an example.  Imagine that the vessel is not 
moving and not subject to any forces (!).  Let’s assume that the correct East position of the 
vessel is 100.  A position reference system is sending a measured position to the Kalman 
filter.  This position reference system is noisy. 
 
The equation describing the behavior of our vessel would be of the type given in equation 
2.1.  The “state” of our vessel is the East position.  Because the vessel is fixed, the East 
position does not change with time and therefore A = 1.  There’s no control input and so 
uk=0.  Because the Position Reference System returns a measurement that is directly the East 
Position (our state) we have H = 1.  As previously identified we will assume that both the 
process noise and the measurement noise are independent of each other, white and with the 
following normal probability distributions: 
 

 
 
The following table and graph illustrate the “filtering” aspect of the Kalman filter. 
 

),0(~)( QNwp
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Step East Position 
Estimate before 
measurement

Error Covariance before 
measurement k

East Measurement 
returned by Position 
Reference System

Kalman Gain East Position Estimate after 
measurement

Error Covariance after 
measurement k

0 0.0 1000.0 98.8 1.0 98.0 8.9
1 98.0 12.9 100.0 0.6 99.2 5.3
2 99.2 9.3 98.9 0.5 99.0 4.6
3 99.0 8.6 100.2 0.5 99.6 4.4
4 99.6 8.4 100.9 0.5 100.2 4.3
5 100.2 8.3 100.5 0.5 100.3 4.3
6 100.3 8.3 98.6 0.5 99.5 4.3
7 99.5 8.3 98.5 0.5 99.0 4.3
8 99.0 8.3 99.2 0.5 99.1 4.3
9 99.1 8.3 100.6 0.5 99.8 4.3

10 99.8 8.3 101.1 0.5 100.4 4.3
11 100.4 8.3 99.4 0.5 99.9 4.3
12 99.9 8.3 100.0 0.5 100.0 4.3
13 100.0 8.3 99.7 0.5 99.8 4.3
14 99.8 8.3 100.7 0.5 100.3 4.3
15 100.3 8.3 99.2 0.5 99.8 4.3
16 99.8 8.3 101.2 0.5 100.5 4.3
17 100.5 8.3 100.0 0.5 100.2 4.3
18 100.2 8.3 99.3 0.5 99.8 4.3
19 99.8 8.3 99.5 0.5 99.6 4.3
20 99.6 8.3 100.4 0.5 100.0 4.3
21 100.0 8.3 99.0 0.5 99.5 4.3
22 99.5 8.3 100.3 0.5 99.9 4.3
23 99.9 8.3 98.6 0.5 99.2 4.3
24 99.2 8.3 99.6 0.5 99.4 4.3
25 99.4 8.3 98.5 0.5 99.0 4.3
26 99.0 8.3 99.9 0.5 99.4 4.3
27 99.4 8.3 100.4 0.5 99.9 4.3
28 99.9 8.3 98.7 0.5 99.3 4.3
29 99.3 8.3 99.4 0.5 99.3 4.3
30 99.3 8.3 100.1 0.5 99.7 4.3

Initial conditions:  East Position Estimate = 0 and Error Covariance = 1000
Values used in example: A=1, H=1, R=9, Q=4
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We can also visualize with this example the effect of changes in the Process Noise Covariance Q 
and the effect of changes in the Measurement Noise Covariance R. 
 

 
 
 
A value of R larger than Q means that the uncertainty of the measurement is way higher than the 
uncertainty of the process, and therefore the filtered position will follow less the measurements. 
 
A value of Q larger than R means on the other hand that the uncertainty of the process is way 
higher than the uncertainty of the measurement.  And therefore the filtered position is going to 
follow more the measurements. 
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It is also interesting in this simple example to see how the Kalman Gain stabilize (as mentioned in 
the paper, when Q and R are constant then the Kalman Gain will quickly stabilize). 
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Appendix B – Simple Example of State Dynamic Model Equation 
 
 
Let’s consider an object in flight moving in a given coordinate system.  We will not take into 
account any other force other than gravity.  In the original projection the object is traveling at 
speed v0 with an angle of a to the horizontal axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We know that:   ?  Forces = Mass x Acceleration 
 

m.g = m.a 
 

a = g 
v = v0 + g.t 
r = r0 + v0.t + ½ g.t2 

 
 

r0 = (0;0) 
v0 = (v0 . cos a ; v0 . sin a) 
g = (0 ; -g) 

 
 

x = v0 . cos a.t 
y = v0 . sin a.t - ½ g.t2 

 
 
In this example, we’re trying to track the position and the velocity of an object in the air.  The 
position and velocity are the state parameters.  Let (xk ; yk) be the position of the object at step k 
and (vxk ; vyk) its speed at step k.  We can determine the following relations: 
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v0 
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xk+1 = xk + vxk  . t 
 

yk+1 = yk + vyk  . t - ½ g.t2 
 

vxk+1 = vxk  
 

vyk+1 = vyk – g.t 
 
 
 
In this example, if we chose: 
 
 
 

Xk = 
 
 
 
We can see that: 
 
 

Xk+1 = A.Xk 
 
 
   
 

with   A   = 
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