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Objectives

Course objective
Gain the ability to design effective and sustainable breeding programs of cross-pollination species and to
implement modern selection tools

Learning outcomes:

1) Be able to predict response from selection in complex cross-pollination breeding programs

2) Understand the dynamics of cross-pollination populations under selection

3) Be able to use best linear unbiased prediction (BLUP) for both conventional and genomic selection

Be aware that
No basic concepts will be covered during the lectures
I assume that all the students have a basic knowledge in genetics and plant breeding



Methods of plant breeding

Population genetics

Quantitative genetics

Biometry

Mixed models and components of variance

Biometry of molecular markers

R

Requisites



Schedule

Workflow - LGN5825 -2019

On Wednesday, 8 -12 pm

Week Date Lectures Labs
1 14-Aug Population and quantitative review Data quality control
2 21-Aug Population structure and genetic eftects Population genetics and structure
3 28-Aug Covariance between relatives Pedigree
4 11-Sep Response to selection Kinship
5 28-Sep | Inbreeding, heterosis, and hybrids between populations Mixed Model Equations
6 09-Oct Hybrids between lines REML/BLUP (I, A and K)
7 09-Oct Test |
8 16-Oct Lines, testers and testcrosses Diallell
9 23-Oct Base populations and breeding schemes Phenotype correction and Optimized Training Sets
10 30-Oct GWAS GWAS
11 06-Nov Genomic Selection GS and GS multi-trait (GBLUP)
12 13-Nov Recurrent Selection GS (Bayes alphabet)
13 27-Nov Reciprocal Recurrent Selection GS (Bayes GE models)
14 27-Nov Test 11

Classes and tests

Moodle STOA

Homeworks

Every week, based on R labs

R labs (R Markdown file)
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Allogamous (cross-pollination)

* Species

* Cross-pollination > 95%

* Mechanisms

monoecy, dioecy, protogyny, protandry, self-incompatibility, morphological

* Evolution — some advantages of being heterozygous

Utilize the heterosis and avoid the inbreeding depresssion

Populations

Group of individuals that constitute a set of genes and are maintained using cross-fertilization at
the same place and time

Parents do not transfer the entire genotype to offspring, which is randomly formed each generation

Although the phenotype is evaluated, the alleles are selected



Variation in breeding populations

A phenotypic observation on a single individual is determined by the environment, genetic effects, and
residual effects
P=G+E yi=u+tgite

The total genetic value g is the genetic value of an individual per se, and this is of key importance when
selecting the best individuals to release as varieties

An individual’s genetic value can be further broken down into
Additive (g,),

Dominance (gy), and

Epistatic (g;)

Breeding value (BV)

Only additive allelic effects can be transmitted from parent to offspring
BV is the sum total of the additive allele effects

It is also the value of an individual as a parent



Additive effect of an allele

The additive effect at a locus is the linear effect of allele dosage on the phenotypic value

Note: Loci that are dominant or that interact epistatically with other loci still have an additive effect

In most cases, dominance and epistasis are assumed insignificant, and are included in the e error term

The general model then becomes

yi=u+a; +e; | //x

A e

where a; is the additive genetic value of individual i _—
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Transmitting ability

The average effect of a random sample of half of an individual’s alleles
Equals one half of an individual’s total breeding value (a/2)

Breeding values of parents and progeny
Each parent contributes half of its alleles to the progeny

Average breeding value of progeny is the average breeding value of the two parents
1

1
E(a) = > ap1 + 5 Ap2
where p; and p, are parents one and two respectively
Progeny breeding values vary due to random sampling

BV of individual i deviates from the parental mean due to random sampling of alleles
This random term is referred to as the ’Mendelian sampling”

1 1
E(a;) = Eapl + Eapz + m;



Heritability

The degree of correspondence between the phenotypic values and the breeding values
Indicates how well the trait will respond to selection
Ratio of additive genetic variance to phenotypic variance
2
O_a

2
Oy

pz =

Is also the regression of the breeding value on the phenotypic value

Oy

ha = bay =mLzyzray_
Oy Oq
This is because y = a + e where a is the additive genetic component of the phenotype (y), and e is the
non-additive genetic component
Then
cov(a, y) = cov(a, a+e) = cov(a, a) + cov(a, e)
Because a and e are uncorrelated cov(a,y ) = %



Correlation and regression coefficient

The normalized version of the covariance, the correlation coefficient, ranges from -1 to 1, and its
magnitude indicates the strength of a linear relationship between two variables

_COV(x,y)

Tx
y
Ox 0y

where x and y are the standard deviations of x and y

From standard regression theory, the regression coefficient for the regression of y on x is

b — Oxy Oy
xy = 2 T Txy
Oy Oy

Covariance, correlation, and regression coefficients are important for understanding and estimating
accuracy of selection



Mathematical expectation

It is also known as the expected value — (the mean)
How can we estimate the mean and variance?

Expectation of a constant => E(c) =c¢
Expectation of a random variable multiplied by a constant => E(cX) = cE(X)

Expectation of two random random variables
EX+Y)=EX) + E(Y)
E(XY) = EX) . E(Y) =>If they are independent

Variance and covariance

V(X) = E[X- E(0)]2

COV(X,Y) =E[X-E(X)] .E[Y-E(Y)]
VX+Y)=VX)+ V(Y) + 2C0V(X, Y)
VX-Y)=VX)+V(Y)-2C0V(X,Y)



Mathematical expectation applied to P=G+E

Yij = U+ gi T €
E(Y;) = u=> the mean of experiment, considered as fixed
E(g;) = 0 => deviations from the mean
E(ej) = 0 => deviations from the mean

E(gi+ e;) = E(g) + E(ey) =0

Phenotipic variance

V(Y) = E[Y;- E(Yy)]*=E[u + g+ e;; - u] * = E[g; + e;] > = E(g)* + E(e;) 2 + 2COV(g; ey)
E(g)? =E[gi - E(g)]° = Vg

E(ey) * = E[e; - E(ey)]* = Ve

V(Y) =Vp=Vg+ Ve

Heritability Y9t = o 0t T 5
Y, Zgi Y.
COV(YIJ, gl) ) ij
= E[Y;;- E(Y;)] . E[gi- E(g)] 0 3
= E[u + gi + ei]‘ - U] . E[gl - 0] rYl.j,gi = o o rYU,gi = hg
v, Ogi
= E(g)*+ E(e;).E(g) = E(g)*=Vg ud



Expectation between two observations

The same genotype evaluated in different replicates

COV(Yj;, Yip) = E[Yy;- ECYy)] - E[Y;;- E(Yy)]
=E[u+g+r+ei-u].E[u+g+ry+ey-ul =E[(g+rjtey) . (g+ 17+ ey)]
= E(g)* + E(g)-E(ry) + ...

= Vg

The variance among genotypes is equal to the covariance within

Independent of the experimental design

The covariance between related individuals means genetic covariance

The same genotype evaluated in different replicates at the same local

COV(Yijk» Yijk') = E[Yijk' E(Yijk)] -E[Yijk’ } E(Yijk')]

= E[u + g+ 1]' + rk/1+ glij + Cjjk — U — l]] . E[u + g+ lj + I'k'/1+ glij + Cjjk — U~ 1]]
E[gi+ rin+ glij+ eyl - E[gi + riep + gl + eyl

= E(g)* + E(gli)* + E(g)-E(riep) + -

= Vg + Vge

Overestimated the heritability — there is a confusion between these two components
Solution — evaluate in more than one place

The number of places depends on the expected heritability and ratio of components



Hardy-Weinberg law

States that the gene and genotype frequencies are constant across generations if:
population infinitely large

mating is random

no selection, mutation or migration

If allele frequencies in the parents are p and ¢, for allele 1 and 2 respectively, then the genotype

frequencies in the progeny should be:
p? for homozygous allele 1

Zpq for heterozygous
g° for homozygous allele 2

Processes that change the allele frequencies in a predicable manner
Migration, mutation, and selection

A process that changes allele frequencies in an unpredictable manner
Random sampling of gametes in small populations - drift



Random drift

Drift is predictable in amount but not in direction
Allele frequencies may be seen to change erratically from one generation to another

Leads to
Genetic differentiation between the populations

Reduced genetic variation within each population

Fix or loss alleles

Increase in homozygote genotypes at the expense of heterozygotes genotypes
Creates a uniform distribution

Coppright (=) 1995, 1996, 1997 The University of Chicago

- < .
Generaton




Magnitude of genetic drift

The change in allele frequency is random in that its direction unpredictable

Copyright (=) 1995, 1996, 1997 The Uniuersity of Chicaga

However, its variance can be predicted (magnitude but not the direction)

o 8.3

Freq, of '+ dllele

After one generation, the magnitude of drift between all lines is due to p,q,/ZNe
where Ne is the population size

In the next generation the sampling process is repeated T eober of Goritics.

The effect of this continued sampling of successive generations is that the allele frequencies in lines
fluctuates irregularly, and lines become more and more differentiated

Within a single line, the relationship between allele and genotype frequencies follows Hardy-Weinberg

The genotype frequencies across all lines, when considered together as one population are no longer in
HWE



Inbreeding

Inbreeding is the mating together of individuals that are related to each other by ancestry
It depends on the population size - number of possible ancestors

Identity by descent (IBD)

Two mating individuals that share a ancestor may carry replicates of alleles from the common ancestor
These replicates can then be passed on to the offspring from both parents

Leading to homozygous in the progeny, with both alleles being identical by descent (IBD)

The coefficient of inbreeding (F)

The probability that two alleles at any locus in an individual are IBD

Degree of relationship between an individual’s parents

At random mating F is the probability that two gametes taken at random from the population are IBD
Each individual will have its own F, but the average F is of main interest as a measure of random drift



Rate of inbreeding (AF)

AF provides a means of comparing the inbreeding effects of different breeding systems
F can be estimated based on the population size

In the first generation of mating from the base population, there are NV individuals and 2/ different gametes
Then, the probability that any given gamete unites with an identical gamete is /2N

In the second generation there are two classes of gametes that can be sampled

The first is a gamete identical to the gamete of interest and its probability is /2N

The second is a gamete that is not identical based on the current replication with probability (1 - 1/2N)F,
Thus, the new inbreeding is F, =1/2N + (1 - 1/2N)F,

The coefficient of inbreeding in generation #is F;=1/2N + (1 - 1/2N)F,

The F is made up of two parts, one attributable to new inbreeding and another to previous inbreeding
The new inbreeding is AF =1/2N

Then, we can rewrite as F,= AF + (1- AF)F.4

and rearrange it as AF = (F-F.;)/(1-F.))



Effective population size (Ne)

As AF can be estimated by looking at the IBD, then Ve can be estimated by
Ne = 1/2AF
When the breeding structure is known, Ne can be derived (approximately) from the actual number N

However, with unequal numbers of females and males
Ne = 4Nm.Nf/(Nm + Nf)

Thus, for half-sibs we have
Ne =40.1/(c0 + 1) = 40/(0) =4
AF=1/2Ne=1/(2.4)=1/8

And for full-sibs we have
Ne=411/(1+1)=4/2=2
AF=1/2Ne=1/(2.2)=1/4

Under unequal numbers in successive generations Ve is the harmonic mean of the /V in each generation



