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ABSTRACT 
 
This report presents a step by step extension of the simple one-dimensional linear momentum 
actuator disc theory (LMADT), which results in the well known Betz-Lanchester limit for wind 
turbines, to a general cross sectional array of tidal turbines in an open channel tidal flow. Unlike 
previous models no restriction is placed on the geometry of the turbine array or the Froude number 
of the flow.  
 
One of the key findings from applying LMADT to open channel flow is that the efficiency of an 
arbitrary array of turbines can be determined relative to the total power extracted from the channel 
flow, including the effects of downstream mixing. A general form of this dimensionless efficiency 
may be more important for open channel flow, given the possibility of downstream constraints, than 
the typical dimensionless power co-efficient used for wind turbines. 
 
1. INTRODUCTION 

The growing worldwide demand for renewable energy, coupled with the apparent pool of energy 
within the world’s tidal currents, has led to considerable interest in tidal power development over 
the last 25 years. Current developments in the U.K. leading towards tidal power generation include 
initiatives such as the Marine Energy Challenge (Carbon Trust, 2007) and the commissioning of an 
Atlas of Marine Renewable Energy Resources (DTI, 2007). However, despite this activity, very 
little has been established about the actual limit to power extraction from a flow in an open channel. 
Without this limit, it becomes hard to benchmark the efficiency of a given tidal power device or 
scheme, and subsequently to optimize a design for full scale generation. 
 
A method to determine the limit of power extraction in a fluid is the simple LMADT, first 
introduced by Betz in the 1920’s (Burton et al., 2001). The application of the model in an infinite 
volume of air is used in the analysis and design of wind turbines. However, it is well known that the 
flow of air in the atmosphere is different to that of a liquid constrained in an open channel (Bryden 
et al. 2007). For example, the atmospheric flow of air is substantially less constrained, due to the 
air’s negligible density, and therefore a given stream tube will expand relatively freely when the 
flow slows. By contrast an open channel flow is constrained by the fluid’s density, and the resulting 
free surface that forms. For these reasons it is acknowledged (Bryden et al. 2007) that the adoption 
of a Betz-Lanchester calculation, in its standard form, is irrelevant for tidal streams.  
 
The purpose of this report is to demonstrate how the simple LMADT can be extended to a flow that 
characterises an open channel more precisely. To illustrate how the extension can be achieved a 
series of four flows is analysed. The first of these flows is the simple LMADT in an infinite 
medium, which we can call the Betz analysis for convenience. The second and third flows then 
introduce the concept of a finite medium, through the addition of a constant pressure boundary and 
a constant volume boundary respectively. Finally, the fourth flow will introduce a finite medium for 
a dense fluid - a condition that represents an open channel. 
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The application of actuator disc models to open channel flow has been attempted before by Whelan 
et al. (2007) and by Garrett & Cummins (2004, 2007). These attempts have included restrictions on 
the flow conditions that do not permit general analysis of a cross sectional array of turbines in an 
open channel. For instance, Whelan et al. (2007) restrict their model to an infinite row of turbines in 
an open channel.  Alternatively Garrett & Cummins (2007) require a sufficiently low Froude 
number for their model to be accurate. (This requirement stems from Garrett & Cummins’ 
assumption of no change in height along the channel – a somewhat contradictory assumption given 
that at the same time they allow the pressure within the fluid to vary.) The model presented in this 
report has no restrictions on the geometry of the turbine array or the Froude number of the flow. 
 
The analysis of the finite flows allows for a thorough examination of the downstream mixing that 
results in the far wake of the actuator disc. The mixing process involves a loss of energy that will, in 
most cases, be an unavoidable by-product of the extraction of power at the actuator disc. If the total 
power that is removed from a channel is restricted, (for example by environmental constraints 
(Bryden et al. 2007)), the ability to extract as much power as possible, while minimising mixing 
losses will be desirable. This gives rise to the need to understand the efficiency of a tidal turbine 
device in an open channel flow. A measure of efficiency that can be used to characterise a turbine is 
presented in this report.  
 
2. LAYOUT OF THIS REPORT 

The four sections §6-§9 present the four flow conditions used to illustrate the extension of LMADT 
to an open channel flow. For each flow a standard framework is adopted, which consists of 
 

1. A diagram illustrating the flow conditions 
2. A table that develops the continuity relations between the different regions of the flow 
3. Commentary and manipulation of the relevant integral equations 
4. A proposed calculation sequence that can be used to ‘solve’ the integral equations (for the 

open channel flow an additional section on the solution space of the model is included) 
 
A summary table is presented at the end to allow comparison of the models. 
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5. NOMENCLATURE 

Symbol Definition 
u  Stream velocity (uniform) 
ρ  Fluid density 
g  Gravity 
p  Pressure (gauge) 
h  Stream height/hydrostatic head 

2α  Turbine flow velocity coefficient 

4α  Turbine wake flow velocity coefficient 

4β  Bypass flow velocity coefficient 
A  Area of the turbine defined as an actuator disc 
R  Area ratio  
b  Width of flow (open channel) 
B  §8: Blockage ratio ( R/1 ) 

§9: Blockage ratio ( bhA / ) 
T  Thrust from the actuator disc to the fluid 
X  Reaction between the turbine flow and bypass flow 
P  Power extracted by the turbine 

WP  Power dissipate in downstream mixing 

PC  Dimensionless power coefficient, normalised by upstream kinetic flux 

*PC  Dimensionless power coefficient, normalised by upstream kinetic flux and the 
pressure drop across the actuator disc 

PWC  Dimensionless power dissipation in downstream mixing, normalised by 
upstream kinetic flux 

TC  Dimensionless thrust coefficient, normalised by upstream kinetic pressure 

TLC  Dimensionless thrust coefficient, normalised by turbine kinetic pressure 
η  Efficiency of a turbine in a  finite flow 

rF  Froude number = ghu  
 
Subscripts Definition 
t  Turbine flow 
b  Bypass flow 

...3,2,1  Station of the flow 
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6. THE STANDARD ‘BETZ’ LINEAR MOMENTUM ACTUATOR DISC THEORY 

6.1 Geometry of the flow 
 

 
Figure 1: One dimensional linear momentum actuator disc theory in an infinite medium. 

 
6.2 Continuity relations  

 
Region  Station 1 Station 2 Station 3 Station 4 

Area 21 α= AA t  AAA tt == 32  
4

2
4 α

α
= AA t  

Velocity uu t =1  232 α== uuu tt  44 α= uu t  
Volumetric 
flow 21 α== uAqq tt 232 α== uAqq tt 24 α= uAq t  

Turbine 

Pressure pp t =1  tp2  tp3  pp t =4  
Velocity uu b =1  uu b =4  

By-pass 
Pressure pp b =1  

 
pp b =4  

Table 1 
 
6.3 Commentary and derivation 
 
The basic Betz calculation, as applied to the power generation problem, relates to flow through a 
turbine in a medium of infinite extent. The analysis addresses just the flow through the turbine 
itself. We use the terminology defined in Figure 1 in which four stations are identified (1) far 
upstream of the turbine, (2) immediately upstream of the turbine, (3) immediately downstream of 
the turbine and (4) sufficiently far downstream from the turbine that the pressure can again be 
treated as uniform (although the velocity is not). Variables relating to each station will be identified 
by appropriate subscripts, and in addition the subscript “t” is used for that part of the flow passing 
through the turbine and “b” for the remainder of the flow (the by-pass flow, in this case infinite in 
extent). 
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In this simple case the analysis can be confined to the flow passing through the turbine. It is 
assumed that at station 1 the pressure and velocity are uniform so that ppp bt == 11  and 

uuu bt == 11 . At the turbine it is assumed that the velocity has been reduced to 232 α== uuu tt , 
and at station 4 that it is further reduced to 44 α= uu t . At station (4) it is assumed that the pressure 
is once more uniform across the flow so that ppp bt == 44  (in the by-pass region it is assumed 
that the pressure is p  throughout). The volumetric flux through the turbine is 2α= uAqt . 
 
Applying Bernoulli from station 1 to station 4 in the by-pass flow simply gives the result that, since 
the pressures are the same at these two stations, so are the velocities, so uu b =4 . Applying 
Bernoulli from stations 1 to 2 and from 3 to 4 in the turbine flow gives: 

2
2

2
2

2
2
1

2
1

αρ+=ρ+ upup t  …(1) 

2
4

22
2

2
3 2

1
2
1

αρ+=αρ+ upup t  …(2) 

and equilibrium across the turbine gives 

A
Tpp tt =− 32  …(3) 

Combining the above three equations gives: 

( )
A
Tu =α−ρ 2

4
2 1

2
1  …(4) 

 
We now consider the momentum equation. If the net axial force on the surface of the stream tube 
between stations 1 and 4 is X  above the force due to ambient pressure, the momentum equation is 
simply: 

( ) ( )142
2

14 −ααρ=−ρ=− AuuuqTX ttt  …(5) 

If we assume that there is no net change of momentum in the by-pass flow, then we can deduce that 
0=X . (Strictly we cannot make this deduction as an infinitesimal momentum change of an infinite 

volume could occur. However, the finite flow case considered below confirms that, in the limit of 
the infinite flow, the 0=X  assumption is justifiable.) We can therefore obtain: 

( )42
2 1 α−αρ= u

A
T  …(6) 

Equating (4) and (6) we immediately obtain 
2

1 4
2

α+
=α  and we can express the flow in terms of a 

single parameter family as a function of 4α . In particular we can write an expression for the power 
absorbed by the turbine (and possibly output as useful power) as: 

( ) ( ) ( ) PACuAuAuuTP 32
4

432
42

3
2 2

11
2

1
2
11

2
1

ρ=α−
α+

ρ=α−αρ=α=  …(7) 

 
The maximum power is extracted when the power coefficient PC  is maximised as a function of 

4α . Simple differentiation reveals that this occurs when 
3
1

4 =α , 
3
2

2 =α  and 
27
16

=PC . 

Furthermore we can write: 
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( ) TACuAuT 22
4

2
2
11

2
1

ρ=α−ρ=  …(8) 

And note that at the optimum conditions 
9
8

=TC . For some purposes it might be more useful to 

define the thrust in terms of a local velocity, therefore: 

TLTL CAuACuT 2
2

22
2 2

1
2
1

αρ=ρ=  …(9) 

and we note that at optimal conditions 2=TLC . 
 
It is worth noting some of the approximations and anomalies in the Betz analysis. Firstly it assumes 
that only axial components of velocity are significant – so that radial velocities and tangential 
(swirl) velocities are ignored.  
 
Secondly there is clearly an anomaly in the calculation of pressure in the turbine flow region and 
the by-pass region. Upstream of the turbine the Bernoulli calculation implies that the pressure in the 
turbine region is higher than in the by-pass, and downstream of the turbine the pressure in the 
turbine region is lower than in the by-pass. The ambiguity of the pressure along this boundary 
means that the unknown force X  cannot be derived from the pressure calculations.  
 
Finally note that far downstream from the turbine (even further than station 4) the wake will 
eventually mix with the by-pass flow. The infinite boundary condition means that the pressure and 
velocity far downstream will be the same as far upstream. At first sight this implies that no energy 
has been extracted, but this is of course erroneous – in this case it is clear that the integral of an 
infinitesimal change over an infinite area will lead to a finite energy loss. In fact there is an 
additional energy loss in the wake mixing process. This issue can only be resolved by considering a 
finite flow, as is addressed in section 7 below. 
 
6.4 Calculation sequence  
 
The calculation sequence below includes calculations of the wake energy loss and overall 
efficiency, as addressed in section 7. 
 
1. Specify principal dimensioning parameters ρ , u  and A  
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures) 
3. Specify dimensionless velocity factor 10 4 ≤α≤  
4. Calculate dimensionless quantities: 

a. 
2

1 4
2

α+
=α  

b. ( )2
41 α−=TC  

c. 2
2α

= T
TL

CC  

d. TP CC 2α=  

e. ( )242 1 α−α=PWC  

f. 
WPWP

P

PP
P

CC
C

+
=

+
=η  
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5. Calculate dimensioned quantities: 

g. TACuT 2
2
1
ρ=  

h. PACuP 3
2
1
ρ=  

i. PWW ACuP 3
2
1
ρ=  

j. Pressure drop across turbine 
A
T

pT =∆  
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7. LINEAR MOMENTUM ACTUATOR DISC THEORY IN A FINITE FLOW 
(PRESSURE CONSTRAINED) 

7.1 Geometry of the flow 
 

41 2

ub4

At1 At4

ub4

ut4u1 = u

3

A
T Mixing

5

u5

AR

X

 
Figure 2: One dimensional linear momentum actuator disc theory in a  

finite medium bounded by a constant pressure boundary 
 
7.2 Continuity Relations 
 

Region  Station 1 Station 2 Station 3 Station 4 Station 5 

Area 21 α= AA t  AAA tt == 32  
4

2
4 α

α
= AA t  

Velocity uu t =1  232 α== uuu tt  44 α= uu t  
Volumetric 
Flow 21 α== uAqq tt 232 α== uAqq tt 24 α= uAq t  

Turbine 

Pressure pp t =1  tp2  tp3  pp t =4  
Area ( )21 α−= RAA b ( )24 α−= RAA b  
Velocity uu b =1  uu b =4  

Volumetric 
Flow ( )2

1
α−=

=
RuA

qq bb ( )24 α−= RuAq b  
By-pass 

Pressure pp b =1  

 

pp b =4  

 

Area ARA =1   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

+α−=
4

2
24 RAA  5A  

Velocity uu =1  Varies Varies 5u  
Volumetric 
Flow uARqq ==1   uARq =4  uARq =5

Total 

Pressure pp =1  Varies Varies pp =4  pp =5  
Table 2 
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7.3 Commentary and derivation 
 
We now consider an equivalent calculation to §6 for a flow of finite dimensions. We assume that 
the flow occurs within a region that has a constant pressure boundary condition around the outside 
(quite how this could be realised in practical terms is uncertain, but theoretically it is of value). The 
main variables are set out in Table 2, and Figure 2 shows the main features of the flow. We now add 
consideration of Station 5, which is sufficiently far downstream that mixing has occurred and the 
flow is of uniform velocity. The dimension of the flow far upstream is taken as ARA =1 , where R  
is a dimensionless ratio. For some applications the blockage factor RB 1=  may be more 
convenient. 
 
The analysis proceeds much as before. Again the constant pressure condition leads to uuu bt == 11 . 
Equations (1), (2), (3) and (4) are unchanged. Consideration of the momentum change (in fact zero) 
of the by-pass flow between stations 1 and 4 leads to the conclusion 0=X , so that equation (6) still 

applies, and again we deduce 
2

1 4
2

α+
=α . Once more the flow is a function of a single parameter 

4α . The conditions for optimal power extraction are unchanged. All of these are useful results 
which indicate that the standard result is an appropriate limiting condition as ∞→R . 
 
The additional analysis that is now possible is consideration of the mixing zone. The momentum 
equation between stations 4 and 5 gives (given the fact that there is no net force on this zone): 

( ) 52
2

42
2 uARuRAuAu =α−+αα  …(10) 

From which we deduce that 
( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α−
−=

αα+α−
=

R
u

R
Ruu

2
11

2
4422

5 . The additional energy loss 

in the wake mixing process is: 

( )

( )

( ) ( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ α+
−α−

α+
ρ=⎟

⎠
⎞

⎜
⎝
⎛ α
−α−αρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ αα+α−
−α−+ααρ=

ρ−α−ρ+ααρ=

R
Au

R
Au

R
RRAu

uARuRAuAuPW

2
111

2
1

2
111

2
1

2
1

2
1

2
1

2
1

42
4

4322
42

3

2
422

2
2
42

3

2
52

32
42

3

 …(11) 

Note we can also write 
( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛ α
−

α+
α−

=
R

PPW
2

4

4 1
1
1 . 

As ∞⇒R , 
( )
( )4

4
1
1

α+
α−

= PPW , so that at optimal conditions ( 314 =α ), 2PPW = . The important 

conclusion is that there is an inevitable further power loss in the flow due to wake mixing, over and 
above any useful power extracted at the turbine. 
 

As a result we can define an efficiency factor 
WPP

P
+

=η , which is the proportion of the total 

energy extracted from the flow that can usefully be extracted, the remainder being lost in the wake. 
It is straightforward to show that: 
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( )
( ) ( )( )244

4
111

1
α−α−+α+

α+
=

+
=η

BPP
P

W
 …(12) 

 
7.4 Calculation sequence 
 
1. Specify principal dimensioning parameters ρ , u  and A  
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures) 
3. Specify area ratio ∞≤≤ R1  and dimensionless velocity factor 10 4 ≤α≤  
4. Calculate dimensionless quantities: 

a. 
2

1 4
2

α+
=α  

b. ( )2
41 α−=TC  

c. 2
2α

= T
TL

CC  

d. TP CC 2α=  

e. ( ) ⎟
⎠
⎞

⎜
⎝
⎛ α
−α−α=

R
CPW

22
42 11  

f. 
WPWP

P

PP
P

CC
C

+
=

+
=η  

5. Calculate dimensioned quantities: 

g. TACuT 2
2
1
ρ=  

h. PACuP 3
2
1
ρ=  

i. PWW ACuP 3
2
1
ρ=  

j. Pressure drop across turbine 
A
T

pT =∆  

k. Downstream velocity 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −
−=

R
uu 42

5
11 αα  
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8. LINEAR MOMENTUM ACTUATOR DISC THEORY IN A PARALLEL-SIDED 
TUBE 

8.1 Geometry of the flow 
 

 
Figure 3: One dimensional linear momentum actuator disc theory in a  

finite medium bounded by a parallel-sided tube 
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8.2 Continuity Relations 
 
Region  Station 1 Station 2 Station 3 Station 4 Station 5 

Area 21 α= AA t  AAA tt == 32  
4

2
4 α

α
= AA t  

Velocity uu t =1  232 α== uuu tt  44 α= uu t  
Volumetric 
flow 21 α== uAqq tt 232 α== uAqq tt 24 α= uAq t  

Turbine 

Pressure pp t =1  tp2  tp3  44 pp t =  

Area ( )21 α−= RAA b ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

−=
4

2
4 RAA b  

Velocity uu b =1  
( )

( )42

2
4 αα−

α−
=

R
Ruu b  

Volumetric 
flow ( )2

1
α−=

=
RuA

qq bb ( )24 α−= RuAq b  

By-pass 

Pressure pp b =1  

 

44 pp b =  

 

Area ARA =1   ARA =4  ARA =5  
Velocity uu =1  Varies Varies uu =5  
Volumetric 
flow uARqq ==1   uARq =4  uARq =5  Total 

Pressure pp =1  Varies Varies 4p  
pp

AR
Tpp

∆−=

−=5

Table 3 
 
8.3 Commentary and derivation 
 
We now consider another finite flow, but this time a flow in a confined tube. The main parameters 
are defined in Table 3 and shown in Figure 3.  
The key difference is that the by-pass flow is no longer at constant velocity and one can deduce 

( )
( ) 4

42

2
4 β=

αα−
α−

= u
R

Ruu b . It follows that Bernoulli in the by-pass flow gives: 

( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

α−
−ρ=β−ρ=− 2

42

2
222

4
2

4 1
2
11

2
1

R
Ruupp  …(13) 

Equations (1) and (3) are unchanged, but (2) becomes 

2
4

2
4

2
2

2
3 2

1
2
1

αρ+=αρ+ upup t  …(14) 

On combining (1), (3), (13) and (14) one obtains: 

( ) ( )
( ) A

T
R

Ruu =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

αα−

α−
ρ=α−βρ 2

42
42

2
222

4
2
4

2
2
1

2
1  (15) 

The momentum equation for the entire flow between stations 1 and 4 is written: 
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( ) ( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

αα−
α−

α−ρ+−αρα=−− 11
42

2
2

2
42

2
4 R

RRAuAuTARppAR  …(16) 

which can be simplified to 

( )
( )42

2
4

4

22
4

1
αα−

α−
α
α

ρ+=−
R

u
RA
Tpp  ... (17) 

Combining (17) with (13) and (15) gives 

( ) ( ) ( )
( )42

2
4

4

22
2
4

2
422

4
2 1

2
11

2
1

αα−
α−

α
α

ρ+
α−β

ρ=β−ρ−
R

u
R

uu  …(18) 

After some manipulation this leads to: 

( ) ( ) 03212 242
2
4242

2
4 =αα−α+αα+α−−ααR  …(19) 

Now we can consider two limits: 

As ∞→R , 
2

1 4
2

α+
=α  

As 1→R , ( ) 034 242
2
42

3
4

2
4 =αα−α+αα+α−α− , which is consistent with 12 →α , 14 →α , 

and in fact leads to 42 α=α . 
 
For general R , solve the quadratic: 

( ) ( ) ( ) 011231 4
2
42

2
4

2
24 =α+α−αα++αα− RR  

The most convenient form of the solution is 

( )
( ) ( ) ( )

( )
( ) ( ) ( )24

2
4

2
4

2
4

2
1111

1

1111

1

α−+−++

α+
=

α−+−++

α+
=α

BBBRRR

R  …(20) 

The power is then given by: 

( )
( )

( ) ( )
( )

( ) ( )
( ) P

t

CAu
B

BAu

R
RRAu

R
RAuTuTuP

3
2

42

24
42

3

2
24

24
4

2
42

3

2
42

42

2
2

2
3

22

2
1

1

211
2
1

211
2
1

2
1

ρ=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

α−α+
α−αρ=

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

α−α

α−α+
α−ααρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α−

αα−

α−
αρ=α==

 …(21) 

where the solution for 2α  from equation (20) should be substituted. 

It is found numerically that this is always maximised by 
3
1

4 =α  for which ( )13
2

2 +
=α

R
R  and the 

power is: 

( ) PCAu
R

RAuP 3
2

3
2
1

127
16

2
1

ρ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρ=  …(22) 
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Note, however, that as 1→R  the power extracted becomes infinite. This is because of the drop of 
pressure in the tube. Since from simple statics: 

( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

α−α+
α−ρ==∆ 2

42

24
4

2

1

21
1

2
1

B
BBu

AR
Tp  

A more rational measure of the performance might be 
T

P
P BC

C

puAAu

PC
+

=
∆+ρ

=
1

2
1 3

* , where 

( ) ( )
( ) ⎟

⎟

⎠

⎞
⎜
⎜

⎝

⎛

αα−

α−α+
α−=

ρ
= 2

42

24
4

2 1

211

2
1 B

B

Au

TCT . Thus: 

( ) ( )
( )

( ) ( )
( )

( )
( )
( ) ( )4

24

2
42

42

2
42

24
4

2
42

24
42

*

1
21

1

1

1

2111

1

21
1

α−+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

α−α+
αα−

α−α
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

α−α+
α−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

α−α+
α−α

=

B
B

B
B

BB

B
B

CP  …(23) 

After substituting (20), this may be optimised as a function of 4α  value for each value of B . Note 
that all the above solutions are entirely compatible with the original Betz solution as ∞→R . 
 
At this stage we can also reconsider the force X that is acting between the turbine flow and the 
bypass flow. Previously this force has been zero, but now with the inclusion of the volume 
boundary we can expect that it is finite and positive. Considering momentum across the bypass flow 
we can write: 

( ) ( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− 1

42

2
2

2

4

2
42 αα

α
αρ

α
α

α
R

RRAuXRApRpA  …(24) 

If we concern ourselves only with pressures above atmospheric we can take 0=p , also substituting 
for 4p  from (13), (24) can be rewritten as 

( ) ( )( )11
2
1

42
2

4

22
4

2 −βα−ρ=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

−β−ρ− RAuXRAu  

so that 

( )( ) ( )

( ) ( ) ( )

( ) ( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

−αβ−ρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−

α
α

−+α−−β−ρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

−β++α−−β−ρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
α

−β−+−βα−ρ=

4

2
24

2

2
4

2
24

2

4

2
424

2

4

22
442

2

1
2
1

221
2
1

121
2
1

112
2
1

Au

RRAu

RRAu

RRAuX
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Since 42 α>α and 14 >β  for all values of R , it follows that X must also be greater than 0 for all 
values of  R . 
 
The power lost in the wake mixing process may also be determined. First of all it is necessary to 
determine the change of pressure from stations 4 to 5: 

( ) ( ) ( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
αα−

α−
α−−αα−ρ=−

42

2
242

2
54 R

RRRAuRApp  …(25) 

( )
( )424

2
422

54
1

αα−α
α−α

ρ−=−
R

upp  …(26) 

( ) ( )

( )
( )

( )
( )

( ) ( ) ( )( )
( )

( ) ( )
( )

( ) ( )
( ) ⎟

⎟
⎠

⎞

⎜
⎜
⎝

⎛

αα−α

α−α
+α−αρ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

αα−

αα−α+
α−αρ=

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

αα−

αα−α+−α−α−α−α+−α+α
αρ=

αα−α
α−α

ρ−
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
−

αα−

α−
+ααρ=

−+ρ−βα−ρ+ααρ=

2
42

2
4

222
42

3

2
42

2
4422

42
3

2
42

4244
2
4424

2
4

2
3

424

2
423

2
42

3
22

42
3

54
32

42
32

42
3

1

111
2
1

21
1

2
1

21212332
2
1

1
2
1

2
1

2
1

2
1

B
BBAu

R
RRAu

R
RRRAu

R
ARuR

R
RAu

ppARuARuRAuAuPW

 

 …(27) 

Note that as ∞→R  this gives the same asymptotic solution as for the constant pressure case. We 
can also calculate: 

( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

α−α+
αα−α+

α−=
24

2
442

4 21
2111

B
B

P
PW  …(28) 

 
8.4 Calculation sequence 
 
1. Specify principal dimensioning parameters ρ , u  and A  
2. (Optionally specify upstream pressure p , which acts as purely additive term to all pressures) 
3. Specify blockage ratio 10 ≤≤ B  and dimensionless velocity factor 10 4 ≤α≤  
4. Calculate dimensionless quantities: 

a. ( )
( ) ( ) ( )24

2
4

2
1111

1

α−+−++

α+
=α

BBB
 

b. 
( )

( )42

2
4 1

1
αα−

α−
=β

B
B  

c. ( )2
4

2
4 α−β=TC  

d. 2
2α

= T
TL

CC  
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e. TP CC 2α=  

f. 
T

P
P BC

CC
+

=
1*  

g. ( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

αα−α

α−α
+α−α= 2

42
2
4

222
42

1

1
11

B

BBCPW  

h. 
WPWP

P

PP
P

CC
C

+
=

+
=η  

5. Calculate dimensioned quantities: 

i. TACuT 2
2
1
ρ=  

j. PACuP 3
2
1
ρ=  

k. PWW ACuP 3
2
1
ρ=  

l. Pressure drop across turbine 
A
T

pT =∆  

m. Downstream pressure 
A

BTpp −=5  
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9. LINEAR MOMENTUM ACTUATOR DISC THEORY IN AN OPEN CHANNEL 
FLOW  

9.1 Geometry of the flow 
 

Mixing

41 2 5

ub4

h5

At1

At4

ub4

u5ut4

h

h1 = h

u1 = u

3

A
T

X

Figure 4: One dimensional linear momentum actuator disc theory in an open channel flow 
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9.2 Continuity relations 
 
Region  Station 1 Station 2 Station 3 Station 4 Station 5 

Area 21 α= bhBA t  bhBAA tt == 32  
4

2
4 α

α
= bhBA t  

Velocity uu t =1  232 α== uuu tt  44 α= uu t  

Volumetric 
flow 2

1
α=

=
ubhB
qq tt

2

32
α=

=
ubhB
qq tt  24 α= ubhBq t  

Turbine 

Elevation head hh t =1  th2  th3  44 hh t =  

Area ( )2

1
1 α−

=
Bbh

A b  
( )

4

2
4

1
β
α−

=
BbhA b  

Velocity uu b =1  44 β= uu b  

Volumetric 
flow ( )2

1
1 α−=
=

Buhb
qq bb ( )24 1 α−= Buhbq b  

By-pass 

Elevation head hh b =1  

 

44 hh b =  

 

Depth hh =1   4h  hhh ∆−=5  

Velocity uu =1  Varies Varies ( )hh
uhu
∆−

=5

Volumetric 
flow ubhqq ==1   ubhq =4  ubhq =5  Total 

Pressure 
force 

2
1 2

1 ghp ρ=  Varies Varies 2
44 2

1 ghp ρ=  ( )2
5

2
1 hhg

p

∆−ρ

=

Table 4 
 

9.3 Commentary and derivation 
 
The open channel flow calculation follows a similar pattern to before, except that in the Bernoulli 
calculation the total head is now employed. We assume that at stations 1, 4, and 5 the pressure can 
be treated as hydrostatic. In some senses the calculation is a hybrid between the calculation at 
constant pressure and the one in a fixed tube: the downstream dimensions of the flow are not fixed, 
but there are relationships between dimension and velocity and between dimension and pressure 
force. 
 
We start by noting that in the by-pass flow: 

g
uh

g
uh

22

2
4

2
4

2 β
+=+  …(29) 

As before, Bernoulli in the turbine flow upstream and downstream of the turbine gives: 

g
uh

g
uh t 22

2
2

2
2

2 α
+=+  …(30) 

g
uh

g
uh t 22

2
4

2
4

2
2

2
3

α
+=

α
+  …(31) 

And the equilibrium of the turbine gives: 
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( ) TBbhhhg tt =−ρ 32  …(32) 

Combining equations (29), (30), (31) and (32) gives: 

( )2
4

2
4

2
32 2

α−β=
ρ

=−
g

u
gBbh
Thh tt  …(33) 

( )2
4

2
4

2

2
α−β

ρ
=

BbhuT  …(34) 

Now consider the momentum equation between stations 1 and 4, which gives: 

( ) ( ) ( )( )111
2
1

42
2

42
22

4
2 −βα−ρ+−ααρ=−−ρ BhbubhBuThhgb  …(35) 

Eliminating T  between (34) and (35) gives 

( ) ( ) ( ) ( )( )111
22

1
42

2
42

22
4

2
4

2
2
4

2 −βα−+−αα=α−β−− BhuhBuuBhhhg  …(36) 

And we can make use of the continuity relationship 

( )
4

2

4

2
4

1
β
α−

+
α
α

=
BhBhh  …(37) 

Note also the following forms 

( ) ( )42424 1 αα−α−=β BhhBh  …(38) 

( ) ( )( )
)(

.1

44

4444
2 β−α

−β+β−α
=α

hhh
Bh

 …(39) 

To eliminate (in principle) 4h  and 4β  between (29), (36) and (37), leaving, as previously, a 
relationship between 2α  and 4α . First eliminate 4h  to give: 

( ) ( )1
2

11 2
4

2

4

2

4

2 −β=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α−

+
α
α

−
gh

uBB  …(40) 

and 

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )2
4

2
44442

2

2
4

2
44242

22

4

2

4

2

122

1121211

α−β+−β+β−αα=

α−β+−βα−+−αα=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α−

+
α
α

−

BB
gh
u

BBB
gh
uBB

 …(41) 

It is convenient later to write the results in terms of the upstream Froude number ghuFr = . 
Dividing (41) by (40) we obtain 

( )
( ) ( ) ( ) ( )( )2

4
2
444422

44

2

4

2 122
1

21
1 α−β+−β+β−αα

−β
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
α−

+
α
α

+ BBBB
 …(42) 

which re-arranges to 
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( ) ( ) ( ) ( )
4

3
42

4
2
4

44

2
4

442
1214
β
β−

+α−β=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

βα
−β

+α−βα BB  …(43) 

leading to the solution: 

( ) ( )
( )

( )
44

2
4

444

3
4

44

2
14

12

βα
−β

+

α−ββ
−β

−α+β
=α

B
 …(44) 

Rewriting (40) as 

( ) ( ) ( )1
2

1 2
4

2

4

4

44

44
2 −β−

β
−β

=
βα
α−β

α
gh

uB  …(45) 

And dividing (44) and (45) to eliminate 2α we obtain after some manipulation: 

( )( ) ( ) ( ) ( ) ( )344
2
4

2
44

2
4

2
4

2
444 121

2
114 −β−βα−β=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
β−β−−β−β+βα BFr  …(46) 

Which is a quartic in 4β  

( ) ( ) 0224
2

424222
2

2
44

2
4

2
44

2
4

23
4

2
4

4
4

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−α−α++β−α+α−β+−−βα+β BFFFBFF r

rrr
r

 …(47) 

As 0→B  and 14 →β  note the limit 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

α−

α
=

−β gh
uB 2

2
4

4

4
1

1

2
1

 …(48) 

The downstream head drop can be calculated from overall momentum: 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

∆−
ρ=−∆−−ρ u

hh
uhbhuThhhgb 22

2
1  …(49) 

⎟
⎠
⎞

⎜
⎝
⎛

∆−
∆

=
ρ

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆−

∆
hh

h
gh
u

bgh
T

h
h

h
h 2

2

2
2

2
1  …(50) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆−

∆
=

ρ
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆−

∆
hh

hhF
bgh
T

h
h

h
h

r 1
2

2
1 2

2

2
 …(51) 

Where 
2

2
1 Bbhu

TCT
ρ

=  so that 
2

2

2
rT BFC

bgh
T

=
ρ

. This is a cubic in hh∆ : 

0
22

1
2
3

2
1 22

2
23

=−
∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+⎟

⎠
⎞

⎜
⎝
⎛ ∆−⎟

⎠
⎞

⎜
⎝
⎛ ∆ rTrT

r
BFC

h
hBFCF

h
h

h
h  …(52) 

The power lost in the mixing is calculated as: 
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( ) ( )

( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆−

−β
α−

+ααρ=

ρ−+⎟
⎠
⎞

⎜
⎝
⎛

∆−
ρ−βα−ρ+ααρ=

Bu
ghh

hhBB
BBbhu

ghhhbu
hh

hbhuBbhubhBuPW

2
54

2
2
4

22
42

3

54

2
32

42
32

42
3

2
1

111
2
1

2
11

2
1

2
1

 …(53) 

Alternatively it can be useful simply to calculate the total power taken out of the flow: 

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆−

∆−
−∆ρ=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∆
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆−

−ρ=

ρ−+⎟
⎠
⎞

⎜
⎝
⎛

∆−
ρ−ρ=+

2
2

2

2
3

5

2
33

1

2112
1

11
2
1

2
1

2
1

hh
hhFhgubh

F
hh

hh
bhu

ghhhbu
hh

hbhubhuPP

r
r

W

 …(54) 

Therefore the efficiency of the turbine is simply: 

( )

1

2
2

1
211

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆−
∆−

−
∆

=
+

=
hh

hhF
hgubh

P
PP

P
r

W ρ
η  …(55) 

For small Froude number flows this may be approximated by 
hgubh

P
∆ρ

≈η . 

 
9.4 Calculation sequence 
 
1. Specify principal dimensioning parameters ρ , g  and h  
2. (Optionally specify width b , which acts as purely scaling term on power and force) 
3. Specify upstream Froude number ghuFr = , blockage ratio 10 ≤≤ B  and dimensionless 

velocity factor 10 4 ≤α≤  
4. Calculate dimensionless quantities: 

a. Solve for 4β  from: 

( ) ( ) 0224
2

424222
2

2
44

2
4

2
44

2
4

23
4

2
4

4
4

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−α−α++β−α+α−β+−−βα+β BFFFBFF r

rrr
r

 such that 14 >β and 421 α>α> . 

b. 
( ) ( )

( )
( )

44

2
4

444

3
4

44

2
14

12

βα
−β

+

α−ββ
−β

−α+β
=α

B
 

c. ( )2
4

2
4 α−β=TC  

d. 2
2α

= T
TL

CC  

e. Solve for hh∆  from:  

0
22

1
2
3

2
1 22

2
23

=−
∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+⎟

⎠
⎞

⎜
⎝
⎛ ∆−⎟

⎠
⎞

⎜
⎝
⎛ ∆ rTrT

r
BFC

h
hBFCF

h
h

h
h  

f. TP CC 2α=  
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g. ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∆
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆−

−=+ 2

2 2
1

111

r
PWP

F
hh

hhB
CC  

h. 
WPWP

P
PP

P
CC

C
+

=
+

=η  

5. Calculate dimensioned quantities: 

i. TBbhCuT 2
2
1
ρ=  

j. PBbhCuP 3
2
1
ρ=  

k. PWW BbhCuP 3
2
1
ρ=  

l. 
h
hhh ∆

=∆  

m. Pressure drop across turbine 
Bbh
TpT =∆  

 
9.5 Solution space of the model 
 
The quartic defined by equation (47) will yield real solutions for 4β  only for a subset of input 
variables 4,, αBFr . To determine the range of this subset we can reconsider the equations derived in 
§9.3. It is clear that both equation (29) and equation (35) express quantities that will have a 
minimum value when plotted against 4h . These minimum values indicate that the flow within the 
bypass and the far wake, respectively, will be exactly critical. If 4h  is specified as less than this 
critical point no real solutions will exist for a given upstream discharge rate. More specifically the 
turbine will ‘block’ the flow and a hydraulic jump will result. 
 
To determine the critical point consider equation (29). Mathematically the condition of critical flow 
can be expressed as 

01
22

2
4

4

2
4

22
4

44
=+β=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

β
=

dh
dhFrh

g
V

dh
d

dh
dE  …(56) 

Giving the condition 

2
4

2
4 2)(

hFrdh
d

−=
β  …(57) 

A similar exercise can be done for equation (35) to determine the minimum momentum. However it 
can be shown numerically that in all cases the bypass condition given by (57) is reached at the point 
when solutions to the quartic (47) become complex. The far wake will never reach critical 
conditions before the bypass flow. 
 
Therefore the solution space of this open channel model is bounded by the requirement that the 

bypass flow remains sub-critical, or mathematically 
( )

24

2
4 2

hFrdh
d

−<
β . 
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