Modelos Quantitativos de Bacias Sedimentares AGG0314

Aula 4 - Estado térmico, fluxo térmico e gradiente geotérmico (Parte I: equação de calor e modelos analíticos)

Formas de transporte de calor

Formas de transporte de calor

Formas de transporte de calor

Transporte de calor na litosfera

Transporte de calor na litosfera

Predomina condução

Transporte de calor na litosfera

Condução de calor

Condução de calor: Equação de difusão

- A condução de calor segue uma equação de difusão, em que a temperatura é difundida pelo meio sólido. Outros exemplos de processos que obedecem a equação de difusão são:
- Transporte em meios porosos.
- Difusão de um perfume no ar.
- Dispersão de multidões (difusão não linear... mas isso já é outra história...).

O que é difusão

https://en.wikipedia.org/wiki/Diffusion

Série Fundação de Isaac Asimov

Série Fundação de Isaac Asimov

"Há uma série muito antiga de Isaac Asimov - os romances da Fundação - na qual os cientistas sociais entendem a verdadeira dinâmica da civilização e a salvam. Isso é o que eu queria ser. E isso não existe, mas a economia é o mais próximo que se pode chegar. Então, como eu era adolescente, embarquei nessa." - Paul Krugman, Prêmio Nobel de Economia de 2008

Primeira Lei de Fick

 Para muitos problemas físicos (como a condução de calor), a difusão segue a primeira lei de Fick, em que o fluxo é proporcional à variação da concentração e ocorre no sentido contrário a concentração.

Volume: $\delta V = A \delta x$

Volume: $\delta V = A \delta x$

No instante t:

Volume: $\delta V = A \delta x$

No instante t:

Fluxo de calor em x:

Volume: $\delta V = A \delta x$

No instante t:

Fluxo de calor em x: q(x)

Volume: $\delta V = A \delta x$

No instante t:

Fluxo de calor em x: q(x)Fluxo em $x + \delta x$:

Volume: $\delta V = A \delta x$

No instante t:

Fluxo de calor em x: q(x)Fluxo em $x + \delta x$: $q(x + \delta x) = q(x) + \delta x \frac{dq}{dx} + \cdots$

No instante t:

Fluxo de calor em x: q(x)Fluxo em $x + \delta x$: $q(x + \delta x) = q(x) + \delta x \frac{dq}{dx} + \cdots$

$$q(x + \delta x) = q(x) + \delta x \frac{dq}{dx}$$

$$q(x + \delta x) = q(x) + \delta x \frac{dq}{dx}$$

$$q(x + \delta x) - q(x) = \delta x \frac{dq}{dx}$$

$$q(x + \delta x) = q(x) + \delta x \frac{dq}{dx}$$

$$q(x+\delta x) - q(x) = \delta x \frac{dq}{dx}$$

Mas
$$q = -k \frac{dT}{dx}$$
. Então:

$$q(x + \delta x) = q(x) + \delta x \frac{dq}{dx}$$

$$q(x + \delta x) - q(x) = \delta x \frac{dq}{dx}$$

Mas
$$q = -k \frac{dT}{dx}$$
. Então:
 $q(x + \delta x) - q(x) = \delta x \frac{d}{dx} \left[-k \frac{dT}{dx} \right]$

$$q(x+\delta x) - q(x) = \delta x \frac{d}{dx} \left[-k \frac{dT}{dx} \right]$$

$$q(x+\delta x) - q(x) = \delta x \frac{d}{dx} \left[-k \frac{dT}{dx} \right]$$

Se k é constante:

$$q(x+\delta x) - q(x) = \delta x \frac{d}{dx} \left[-k \frac{dT}{dx} \right]$$

Se *k* é constante:

$$q(x+\delta x) - q(x) = \delta x \left[-k \frac{d^2 T}{dx^2} \right]$$

$$q(x+\delta x) - q(x) = \delta x \frac{d}{dx} \left[-k \frac{dT}{dx} \right]$$

Se *k* é constante:

$$q(x+\delta x) - q(x) = \delta x \left[-k \frac{d^2 T}{dx^2} \right]$$

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Dedução da equação de difusão $\frac{q(x+\delta x)-q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$

$$\frac{q(x+\delta x)-q(x)}{\delta x}$$

Dedução da equação de difusão $\frac{q(x + \delta x) - q(x)}{\delta x} = -k \frac{d^2 T}{dx^2}$

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x+\delta x)-q(x)}{\delta x}=-\frac{dQ}{dtA}\frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível
$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x+\delta x)-q(x)}{\delta x}=-\frac{dQ}{dtA}\frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível $\Delta Q = \Delta T \cdot C$

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x+\delta x)-q(x)}{\delta x}=-\frac{dQ}{dtA}\frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível

$$\Delta Q = \Delta T \cdot C$$

Capacidade térmica

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x + \delta x) - q(x)}{\delta x} = \frac{-\frac{dQ}{dtA}}{\frac{1}{\delta x}} = \frac{-(dT \ C)}{dtA} \frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível

$$\Delta Q = \Delta T \cdot C$$

Capacidade térmica

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x + \delta x) - q(x)}{\delta x} = \frac{-\frac{dQ}{dtA}}{\frac{1}{\delta x}} = \frac{-(dT \ C)}{dtA} \frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível

 $\begin{array}{lll} \Delta Q = \Delta T \cdot C & = \Delta T \cdot c \cdot M \\ \hline \\ \mathsf{Capacidade} \ \mathsf{t\acute{e}rmica} \end{array}$

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x + \delta x) - q(x)}{\delta x} = \frac{-\frac{dQ}{dtA}}{\frac{1}{\delta x}} = \frac{-(dT \ C)}{dtA} \frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível

 $\begin{array}{lll} \Delta Q = \Delta T \cdot C & = \Delta T \cdot c \cdot M \\ & \downarrow \\ \mbox{Capacidade térmica} & \mbox{Calor específico} \end{array}$

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Quantidade de calor por unidade de tempo por área $\frac{q(x + \delta x) - q(x)}{\delta x} = \frac{-dQ}{dtA} \frac{1}{\delta x} = \frac{-(dT \ C)}{dtA} \frac{1}{\delta x}$

Lembrando de calorimetria: calor sensível

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Lembrando de calorimetria: calor sensível

$$\frac{q(x+\delta x) - q(x)}{\delta x} = -k\frac{d^2T}{dx^2}$$

Lembrando de calorimetria: calor sensível

Assim chegamos na equação de difusão

$$c\rho \frac{dT}{dt} = k \frac{d^2T}{dx^2}$$

Assim chegamos na equação de difusão

$$c\rho \frac{dT}{dt} = k \frac{d^2T}{dx^2}$$

Se *T* não varia com o tempo $\left(\frac{dT}{dt} = 0\right)$

Assim chegamos na equação de difusão

$$c\rho \frac{dT}{dt} = k \frac{d^2T}{dx^2}$$

Se T não varia com o tempo $\left(\frac{dT}{dt}=0\right)$

$$0 = k \frac{d^2 T}{dx^2}$$

Final Estimate of Heat Flow (mW m²-2) (Area-weighted Median)

Davies (2013)

 $0 = k \frac{d^2 T}{dx^2} + \rho H$

$$\rho H = -k \frac{d^2 T}{dx^2}$$
$$\rho H x = -k \frac{dT}{dx} + c_1$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

 $0 = k \frac{d^2 T}{dx^2} + \rho H$

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

Para x = 0, $T = T_0$
Produção de calor radiogênico

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

Para x = 0, $T = T_0 \rightarrow c_2 = kT_0$

Produção de calor radiogênico

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

Para
$$x = 0$$
, $T = T_0 \rightarrow c_2 = kT_0$
Assim

Produção de calor radiogênico

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

Para
$$x = 0$$
, $T = T_0 \rightarrow c_2 = kT_0$
Assim

$$T = T_0 + \frac{q_0}{k}x - \frac{\rho H}{2k}x^2$$

$$0 = k \frac{d^2 T}{dx^2} + \rho H$$

$$H = 9.6 \times 10^{-10} \text{ W/kg}$$

 $\rho = 2800 \text{ kg/m}^3$
 $T_0 = 20^{\circ}\text{C}$

$$\rho Hx = -k\frac{dT}{dx} + q_0$$

$$\rho H \frac{x^2}{2} = -kT + q_0 x + c_2$$

Para
$$x = 0$$
, $T = T_0 \rightarrow c_2 = kT_0$
Assim
 $T = T_0 + \frac{q_0}{k}x - \frac{\rho H}{2k}x^2$ Vamos plotar!!

H não é constante!

Litosfera continental superfície $k\frac{\partial^2 T}{\partial z^2} + \rho H_0 e^{-z/h_r} = 0$ $k\frac{\partial T}{\partial z} - h_r \rho H_0 e^{-z/h_r} = c_1$

Litosfera continental superfície $\partial^2 T$

 \mathcal{Z}

$$k\frac{\partial^2 I}{\partial z^2} + \rho H_0 e^{-z/h_r} = 0$$

$$k\frac{\partial T}{\partial z} - h_r \rho H_0 e^{-z/h_r} = c_1$$

$$-q - h_r \rho H_0 e^{-z/h_r} = c_1$$

Superfície

$$k \frac{\partial^2 T}{\partial z^2} + \rho H_0 e^{-z/h_r} = 0$$

$$k \frac{\partial T}{\partial z} - h_r \rho H_0 e^{-z/h_r} = c_1$$

$$-q - h_r \rho H_0 e^{-z/h_r} = c_1$$

 $z \to \infty; q \to -q_m$

superfície

$$k \frac{\partial^2 T}{\partial z^2} + \rho H_0 e^{-z/h_r} = 0$$

$$k \frac{\partial T}{\partial z} - h_r \rho H_0 e^{-z/h_r} = c_1$$

$$-q - h_r \rho H_0 e^{-z/h_r} = c_1$$

 $z \to \infty; q \to -q_m$ $c_1 = q_m$

Superficie

$$k \frac{\partial^2 T}{\partial z^2} + \rho H_0 e^{-z/h_r} = 0$$

$$k \frac{\partial T}{\partial z} - h_r \rho H_0 e^{-z/h_r} = c_1$$

$$-q - h_r \rho H_0 e^{-z/h_r} = c_1$$

$$z \to \infty; q \to -q_m \qquad c_1 = q_m$$

Litosfera continental $T = T_0 + \frac{q_m z}{k} + \frac{h_r^2 \rho H_0}{k} \left(1 - e^{-z/h_r}\right)$ $-q - h_r \rho H_0 e^{-z/h_r} = q_m$ $q(0) = -q_0$ $q_0 = q_m + h_r \rho H_0$

Litosfera continental $T = T_0 + \frac{q_m z}{k} + \frac{h_r^2 \rho H_0}{k} \left(1 - e^{-z/h_r}\right)$ superfície $-q - h_r \rho H_0 e^{-z/h_r} = q_m$ $q(0) = -q_0$ $q_0 = q_m + h_r \rho H_0$ f(x) = a + bx

Litosfera continental

$$T = T_0 + \frac{q_m z}{k} + \frac{h_r^2 \rho H_0}{k} \left(1 - e^{-z/h_r} \right)$$
$$T_0 = 20^{\circ} C$$
$$q_m = 25 \text{ mW/m}^2$$
$$k = 2 \text{ W K}^{-1} \text{m}^{-1}$$
$$\rho H = 2 \times 10^{-6} \text{ W/m}^3$$
$$h_r = 10 \text{ km}$$

Final Estimate of Heat Flow (mW m²-2) (Area-weighted Median)

Davies (2013)

Litosfera oceânica: estado transiente

T(z,t)

T(z,t)

 $T(z,0) = T_1$

T(z,t)

Litosfera oceânica

Litosfera oceânica

Exercício

Problem 4.9 Assume that the radioactive elements in the Earth are uniformly distributed through a near-surface layer. The surface heat flow is 70 mW m⁻², and there is no heat flow into the base of the layer. If $k = 4 \text{ W m}^{-1} \text{ K}^{-1}$, $T_0 = 0^{\circ}\text{C}$, and the temperature at the base of the layer is 1200°C, determine the thickness of the layer and the volumetric heat production.