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A general method is outlined for determining the number of
vacant lattice sites or interstitial atoms in a monatomic solid
exposed to neutron radiation. The colliding atoms are assumed to
be within the energy range for which the orbital picture can be
applied. Following the treatment of Bohr, the scattering regions
of excessive and moderate screening, Rutherford distribution, and
electronic collisions are considered separately. The number of
vacancies or interstitial atoms as a function of the energy of the
primary knocked-out atom is given by the solution of certain
integral equations that are different for various energy regions
considered. It is found that if the velocity of a recoil atom resulting
from neutron collision is less than es/k (region of elastic collisions)
approximately half of its energy is used up to produce vacancies

or interstitials. If the velocity of the recoil atom is above e'/k
(region of inelastic collisions) then the energy used up to produce
vacancies and interstitials is approximately constant for medium
and heavy elements. A simple formula has been derived expressing
the average number of vacant lattice sites or interstitials produced
in a collision of a neutron having energy E in a monatomic solid
composed of medium or heavy elements having atomic mass SI.
The formula is as follows:

G(E) (nE—a)'/4anE for E&y/n,

G(E) P(nE a)' (1——11)—(nE —a—y)'j/4anE for E&y/n,
where y=kf e'/2ks; n=4M/(kg+1)s, a is the binding energy of
an atom in the lattice, and E7 is a slowly varying function of Z.

I. INTRODUCTION

EAVY corpuscular radiations such as neutrons or
~ - - ~ ionizing particles which enter a solid dissipate a
portion of their energy in close encounters with the
constituent atoms of the solid and eject some of them
irreversibly from their normal positions thus producing
vacant lattice sites and interstitial atoms which we shall

designate as "displacements" and "displaced atoms. "
The properties of the solid change with the number of
the displaced atoms and it is the purpose of the present
investigation to determine the number of such dis-

placements.
Wigner was the first to call attention to these phenom-

ena and the earlier treatments of this subject are based
largely on the pioneer work of Seitz' and utilize the
Born approximation for determining the elastic col-
lisions of atoms. The Born approximation is, however,
applicable in a range of velocities considerably higher
than those encountered in this problem. We are, there-
fore, applying classical considerations based on an
extended study of the subject made by Bohr.' Also, we

give a more detailed analysis of the cumulative processes
leading to the atomic displacements.

If the atom knocked out from its normal lattice posi-
tion has acquired a relatively high velocity, it will lose
much of its energy by colliding with the individual elec-
trons and thereby excite and ionize other atoms in the
solid. These processes are designated as inelastic col-
lisions. "As the atom slows down, the relative amount
of energy lost by inelastic collisions decreases and most
of the energy loss is due to direct hits on other atoms
in the solid. The latter process is designated as an

' F. Seitz, Discussions Faraday Soc. 5, 271 (194'9).
~ N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

18, No. 8 (1948).
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"elastic collision" and is effective in producing atomic
displacements.

We consider a monatomic solid composed of atoms
having atomic number Z. Following Bohr, we shall use
a simplided picture 'assuming that the stopping of a
knocked-out atom having energy x is due almost en-
tirely to inelastic collision if

x)y =Me'/2)'ts. (1)

co designates the velocity of the atom and is measured
in "atomic units, " i.e.,

M= V Spy

where ep is the "velocity" of the electron in the hydrogen
orbit:

no= e'/ttt= 2.18&(10' cm/sec. (3)

%e shall also assume that the stopping is entirely due
to elastic collisions if

co& j. or x&y.

II. ELASTIC COLLISIONS

A. Formulation of the Problem

The mechanism of collisions is assumed to be the
same as in the previous treatments and is based on the
existence of a binding energy e of the lattice atoms. In
determining the energy distribution of the struck atoms,
we use the cross section for collisions with free atoms.
If the energy acquired by this atom as a result of a
collision exceeds n, we assume that it leaves its cell in
the crystal and produces a permanent displacement. If,
however, this energy is below o,, then we assume that
the lattice acquires vibrational energy which becomes
eventually dissipated without producing any permanent
changes. The value of 0, is not accurately determined
and has been taken in the past tobe of the order of 25 ev.
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Each atom knocked out of the lattice as a result of
a collision gradually loses its energy in secondary col-
lisions, thus generating secondary particles. Each
secondary particle thus released moves through the
lattice and releases by the same mechanism tertiary
particles. This process may continue for several genera-
tions until the energy of the particles released after
several stages is insufhcient to knock out any additional
particles of the lattice and is dissipated in the form of
heat.

Assume that as a result of the mechanism described
above, a primary knocked-out atom having energy x
produces g(x) —1 displacements in all successive stages,
i.e., the total number of displacements is g(x) including
the primary atom. If the atoms in the solid were free
(i.e., if we neglect their binding energy) then the energy

y acquired by each atom would be used entirely to
produce further collisions. Since the atoms are not free,
a portion of the acquired energy is used to free the
atom from its bond and the remainder (y —n) is the
kinetic energy that is effective in producing further
collisions. Thus

g(x) =1 for x(n.

I.et E(x,y) be the probability that the primary atom
loses energy in dy about y in an elastic collision. We have

E(x,y) = o.(x,y)/o (x), (6)

where o(x,y)dy is the differential cross section for an
atom of energy x to lose an amount of energy in dy about

y in an elastic collision and o (x) is the corresponding
total cross section for an elastic collision.

Assume that the struck atom gets energy in dy at y
and then the primary atom has energy x—y. If y~o, ,
then the number of displacements is g(x y)+g(y n), — —
but if y&a then the struck atom is not displaced and
the number is g(x —y).

Thus for x&n, g(x) is a solution of the integral equa-
tion

g

g(x) = g(x—y)X(x,y)dy+ i g(y —)Z(x,y)dy. (7)

2. Regiort of Validity of the Bore Approximation
amd of the Orbital Picture

A convenient criterion for the validity of the Born
approximation is that the scattered field is small when
compared to the incident field at the source. When
applied to the screened Coulomb field, this criterion
can be expressed as follows':

Z'e' (Mpsa)
ln] /«1.

hv E h

The inequality (11) should be satisfied for velocities
pi»242Z&m/M, which are those encountered in the
present problem.

Substituting (2) and (3) in (11) and taking into
account the fact that the term under the logarithm in
(11) is considerably larger than one, we obtain

o)))Z2. (12)

Thus, the Born approximation is not applicable to
medium and heavy elements and for the light elements
its applicability is limited to a relatively high-energy
region.

The criterion for the validity of the classical picture
has been established by Williams and can be expressed
as follows: (a) the wavelength of the moving particle
is very small when compared to the screening parameter
and (b) the uncertainty in the momentum of the particle
is much less than the disturbance caused by the de-
Rection in the field V.

The assumption (a) leads to the following inequality:

with the screening parameter

a- h'/(Vie'Z&). (10)

We shall apply the orbital picture to the study of the
collisions of particles in the field (9). Since previous
investigations utilized the Born approximation it
appears to be desirable to consider the range of validity
of the two methods and their possible applicability to
this problem.

(h/a)((M ps. (13)

If we define g(x) =0 for x~0, then (7) is satisfied also
foro~x~n.

B. Determination of the Kernel

1. General

We are dealing with a collision of two identical atoms
which, in the center-of-mass coordinates, is represented
as an interaction of a heavy particle having mass

Mp-—M/2,

Taking into account (2), (3), (8), and (10), we can
express (13) as follows:

(14)

This inequality is satisfied in all practical cases.
The assumption (b) leads to the following inequality:

Vr/hs))1.

Substituting (2), (3), and (9), in (15), we obtain

(Z/cp) exp( —r/a))&1. (16)

with a screened field characterized by

V= (Zse'/r) exp( —r/a), (9)

s L. I. Schiii, Qgamtgm Mechanics (McGraw Hill Book Com--

pany, Inc. , New York, 1949), p, 169.
4 E. J. Williams, Revs. Modern Phys. 17, 217 (1945).
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It is noted that for a given value of Z and co the
condition (16) can never be satisied for the whole

region of space and, consequently, the orbital picture
cannot be generally applied. We may associate with
each value of co a radius

R= a in(Z'/4d),

such that only for r«E is the orbital picture valid. If,
however, the region defined by the radius R is sufh-

ciently large so as to include most of the space occupied
by the scattering potential, i.e., if

R&)a or ln(Z'/co)))1, (18)

we may assume that the orbital picture applies to the
whole space.

Since in the present problem co«Z', we are dealing
with a problem in which the orbital picture is valid.

E(x,y) = 1/x for 0&y&x&P. (25)

(b) Region of Rutherford scattering Bo.—hr has re-
placed the screened field by a Coulomb field confined
within a sphere of radius e. Consequently,

0' x =wc. (26)

The cutoG introduced by the maximum impact param-
eter equal to c is equivalent to an angular cutoB 8;„
defined by'

The total cross section o (x) depends upon the effective-
ness of screening. For very low velocity in the region
of excessive screening (f)&1) it is of the order of mag-
nitude of the gas kinetic cross section and for higher
velocities in the region of moderate screening (f 1) it
has the form o (x) 7rfu'/e, where e= 2.74. Taking into
account (6) and (22), we have

3. Scattering of Particles in the Screened Coulomb Field tan(8; /2) =b/2a. (27)

l =b/u, (19)

A complete study of the scattering of particles in a
screened Coulomb field has been given by Bohr. Bohr
divides the space in which the scattering occurs into
regions defined by a screening parameter'

Substituting (20) and (22) in (27) we obtain

sin'8 =P'/(4x'+P') (28)

Consequently, the amount of energy y lost by the par-
ticle during the collision is comprised within the energy
range

where b designates the collision diameter, i.e., &min &g &x2 (29)

b=2 Ze'/M e'o. (20)
where

y; =x sin'8m4e ——xP'/(4x'+P'). (30)

t &1 or x)P, (23)

we assume that the nuclei of the colliding atoms will
penetrate substantially within each others electronic
shells and the scattering in the center-of-mass coor-
dinates will conform over a considerable angular interval
with the Rutherford law. This region shall be designated
as the "region of Rutherford scattering. -"

(a) Region of isotropic scattering (x&P).—We have'

o (x,y) =o (x)/x. (24)
~ Reference 2, p. 20.
4 Reference 2, p. 49, Eq. (2.2.8).

Taking into account (8), (19), (20) and putting
x=Me'/2, we obtain

x=2Z'e'/ia . (21)

The character of the problem depends essentially
upon the value of the screening parameter t Follow.ing
Bohr, we shall simplify the picture by assuming that,
for relatively slow particles such that

f)1 or x&P=2Z' /eu (22)

the nuclei of the two colliding atoms will not penetrate
substantially within each others electronic shells and
the scattering has a spherically symmetrical angular
distribution in the center-of-mass coordinates. We shall
designate this region as the "region of isotropic scat-
tering. "

If, however, the particle has a relatively high energy,
such that

and from (1) we have that

y/n=Me'/2h'n 2)&10'Z&6)&10' for Z) 3. (33)

It is clear that x~ is a decreasing function of x and we

have

tl' ( ]6n'q &

xg ——n for x=—1+I 1—
8n E P' )

We shall denote this value by P'. Similarly, for

P2
- ) 64n'q &

1+I1-, I

16n ( P' )
the cutoff value is (P")~=2n.

' Reference 2, p. 6, Eq. (1.1.3).

(34)

(35)

The cuto6' value associated with an energy x will be
denoted by x& in all that follows. Thus

x,=xP'/(IP'+4x'). (31)

The solution of our problem is found to depend, in part,
on the ratio of x~ to n.

From (22) and (10), we have (assuming that n=25
ev),

P 2v2rne4
-Z'+' 3.078Z'+')' 39.95 for Z) 3; (32)

n 5'n
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7
6
5
4
3

P/a

286.8
200.12
130.08
78.71
39.72

y/a

1 381X104
1 183X104
1 06?X10
8.893X10'
6.844X 103

0'/a

20560
10020
4276
1509
393.3

71/a

1.489
0.8463
0.4008
0.1697
0.05762

P"/a

10280
5006
2137
752.9
195.1

TABLE I. Numerical values of the parameters, for 0.'=25 ev.

g(x) =x/2n; (42)

For P&x&[P",y]», we may take B=1.15 and for
Z&7, P")y. If Z&7 and P"Kx&y, then we take
B= (8/7)+0.07. (See Appendix 109a.)

On the basis of the above results, we may assume
that in the region of elastic collisions, i.e., for 0(x(y,
the following relation is approximately correct

For the convenience of the reader, the following
table of numerical values is given (Table I). In cal-
culating these values, it has been assumed that o,= 25 ev.
It is easily seen that these quantities are increasing
functions of Z. Since'

o.(x,y) =s-Z'e'/xy', (36)

we obtain, taking into account (6), (26), and (36),

E(x,y) =p'/4xy for xp'/(4x'+p') &y&x,
(37)

E(x,y) =0 for y&xP'/(4x'+P').

QS

g(x) =1+- ' dug(u) for n&x&2n,

C. Determination of the Number of Displacements

We shall proceed now to determine g(x) from (7) in
the region of isotropic scattering and Rutherford scat-
tering.

Substituting E(x,y) as defined by (25) and (37) in

(7), we obtain

i.e., approximately half of the energy of a recoil atom
is used to produce displacements.

III. INELASTIC COLLISIONS

A. General

We are dealing here with a region in which the
velocity of the moving particle is less than the orbital
electron velocities in the solid and at the present time
there is no exact theory to evaluate the excitation and
ionization losses in this region. Our computation of
energy losses will be based on certain assumptions made
by Bohr that are applicable to intermediate and heavy
elements.

In the case of lighter elements it is necessary to
compute separately the effectiveness of each electronic
orbit as done by Livingston and Bethe, ' Hirschfelder
and Magee" and Neufeld"

B. Calculation of the Energy Loss

According to Bohr the rate of energy loss of a particle
in the above range moving through a medium composed
of intermediate or heavy elements is as follows":

20', 1
g(x) =—+— dug(u)+ — dug(u)

S~a x~
dx/ds=lVB e (3[sf '"+[sj ') (43)

where s is the length of the particle track. , X is the
number of atoms per cm' of the solid,

tie dtps dtps
g(x)= g(x t)+ ' — g(t n)—

~*, 4xts 4xP

2s (Z*)e4 2v
1fig= Zs—) K=

tS'V 'Vp

2Ze

for P&x&y, (40)

where x~ is defined by (31) and [n,x~]& designates the
larger of values o. and x~.

As shown in the Appendix, the solution of (38), (39)
and (40) is as follows:

For n&x&P, we have

A (x+n)/2u& g(x) &B(x+u)/2u, (41)

with A = 1 and B=8/7.
For p &x & [p',y1», where [p',yj» indicates the

smaller of P' and y, A = 1 is also valid and P') y if Z) 6.
For Z& 6 and P'& x &y, A may be taken from the table:

Z*=Zfr/es. (45)

We take K)1. From this it follows that co(2Z and,
consequently, the formula (43) is valid for p &x&4Z'y.
Substituting (44) and (45) in (43), we obtain

where
dx/ds= C+x,

4~V2EZIts
L3(2Z') '+2(Z') 'j

M&me'

(46)

(47)

[Irg=s for ~)1 and [s]=1 for ~&1. (44)

Here Z* represents the charge of tbe moving particle
and can be assumed to vary with the velocity as follows:

6
1

5
0.9627

s Reference 2, p. 42, Eq. (2.2.2).

0.8770
3

0.7542
~ M. S.Livingston and H. A. Bethe, Revs. Modern Phys. 9, 263

(1937)
's J.O. Hirschfelder and J.L. Magee, .Phys. Rev. 73, 207 (1948)."J.Neufeld, Proc. Phys. Soc. A66, 590 (1953)."Reference 2, p. 102, Eq. (3.5.7).
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VELOGIT& OF THE MOVING COPPER ATOM IN UNITS (~ )
e2

Zx IO-'2 I 2 4

I

is noted that the curve BI gives values of the same
order of magnitude than those shown on the curve IiG.
The assumptions leading to the curve HI have been
very rough and, therefore, the above calculations are
not considered as a verification of the formula (43).
They do indicate, however, that this formula is of the
right order of magnitude.

ns 2 xIO

6
cs

4I4

I a IO-12

I'

/ I
/ /

/ /
/

C. Determination of the Number of Displacements

We consider here a particle having energy x&p.
While slowing down the particle loses its energy by
inelastic collisions in accordance with (43) and also
participates in elastic collisions in accordance with (37).
Only the latter process is effective in producing lattice
holes and interstitial atoms.

The probability that the particle has traversed a
distance z without suBering an elastic collision is
exp( —/sr''s), where a.a' is the scattering cross section.

Thus, the probability that the striking atom has its
first elastic collision while traversing an element of path
length dz after going a distance z along its path without
an elastic collision is

.5 BIO-12

IO6 IO7 LOG X

ENE RG& OF THE MOVING GOPPER ATOM IN (I v)

Fxo. 1. Stopping power of copper ions in copper.

exp (—Zwu'z) Xa.u'ds.

Using (46), we have that

s= (2/C) (xl—tl),
and

(50)

ds = dt/Ct l. — (52)In view of the complete lack of experimental evi-
dence, we are not able to verify the results expressed by
(46). Some approximate estimates show, however, that
this expression gives at least the right order of magni-
tude for the energy loss. In I'ig. 1, the line IiG is based
on (46) and represents the stopping power of recoil
atoms in copper. The line HI shows a rough estimate
of the stopping power which has been obtained by
assuming

Substituting (51) and (52) in (50), the probability
that. the striking atom has its first elastic collision in
an energy interval dt about t is given by

,

—2Exa' dtXX~a'
exp (x-*'—tl) X

C Ct&
(53)

Once an elastic collision has occurred, the probability
distribution for the energy lost by the striking atom is
given by (37), and thus the probability that the striking
atom having energy x will have an elastic collision in an
energy interval dt about t where t&y, and that it loses

energy dy about y&t is given by

1 dS——=(Z')A ~,
X dz

where 0 designates the "specific electronic cross section"
and (Z')A„ is the average of the square of the moving
charge. " Using the experimental data of Warshaw"
giving (1/Ã)(dx/dz) for protons in copper, and the
experimental data of Hall's for (ZA„) for protons, we
derived from (48) the specific electronic cross section o

for copper corresponding to various velocities of the
moving ion. The stopping power due to inelastic col-
lisions has been calculated by using

—2'.as Kara'dt dyP'
exp (*&—t&) X

C 4ty'
(54)

for tP'/(P'+At') &y & t, and is 0 for 0~y& tP'/(P'+4ts)
Then the average number of displacements produced

by the particle which had its first collision within an
interval dt about t is

1 dg——= (Z*)',
X dz

(49)

(55)

pt dyP2 pt dyp2

g(t —y)+ g(y —~)
"e/9+4~&) 4ty

where Z* for copper has been determined from (45). It
's J. Knipp and E. Teller, Phys. Rev. 59, 659 (1941)."S.D. Warshaw, Phys. Rev. 76, 1759 (1949).
'~ T. Hall, Phys. Rev. 79, 504 (1950).

If the striking atom reaches energy y without an
elastic collision, then its first elastic collision is at
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energy p since it can, in our model, lose no more energy
by inelastic collisions. The probability that the first
collision is at energy p is given by

IOO

90
Rl AVERAGE

1 IRp

exp
2Sxa'

(h$ ~$)
C

80

70

Consequently g(x) can be expressed as follows:

g(x) =g (y) exp[ —2)Vlra'(x& —y&)/C]
60

Lira'
+) dk

Ct
exp[ —21Vlra'(x& —t&)/C j

Z 50

+0

X g(&—y)
"lan &4»+I»& 4&y'

pt p2

dy, g(y —~) . (57)
t'~. lwl (4»+0') 3& +y

50

l0—

In the right-hand side of the above expression, the
first term represents the number of displacements
produced by the particle after it had slowed down from
the initial energy x to y, and the second term represents
the number of displacements produced while the par-
ticle is slowing down from x to y.

The solution of (5'7) is found to satisfy the ine

FIG. 2. Variation of R1 and R2 with Z.

IV. IRRADIATION BY NEUTRONS

Rg 7 Vl+a—(h —V+Vl)+- &g(*)
2A 2'

R2 1.15y+2n
&—(x—~)+

2Q 2Q H(E,x) =dx/nE for x&,nE,

H(E,x) =0 for x&nE,
(61)

for y ~x~ 20 Mev and Z~ 16.Ri and R2 are defined by
(120) and (123) respectively and are shown graphically
on Flg. 2.

The average of these bounds will be taken as the
approximate solution for g(x) for x&y. Neglecting
terms of minor importance, we have

where n =4M'/(M+ 1)'.
Consequently, the average number of displacements

produced in the solid by a single collision of neutrons is

nE—a

H(E,x)g(x n)dx= —g(x)dx. (62)
nE ~.

G(E)=
R

g(x) =—(x—y)+—,
2(x 20!

(59)
Substituting in (62) the simplified expressions for

g(x) given by (42) and (60), we obtain
with 8= (Rl+Rg)/2.

gt is clear that for x&y the slope of the function g(x)
is substantially less than for x&p, and the curve seems
to be nearly constant for low values of Z.

The values of R~ and R2 are graphed for Z~ 16 which
we take as the lower limit of the range in Z for energies
above y. (See Fig. 2.)

Refinements of the arguments given in the Appendix
show that instead of being constant, Ri and R2 are
decreasing functions of x. While g(x) increases the rate
of increase is generally much less than for x&y.

We can thus assume that g(x) is constant, i.e.,

(63)G(E) nE/4n for E&p/n,

G(F) [(nE n)2 (1 R—) (nE—a y)—~]/4nnE— —
for E&y/m. (64)

We assume that the solid is irradiated by a Qux
comprising 1V(E)dE neutrons having energy in dE about
E and velocity s„=(2E/1.662&(10 ~)&. Then the
number of displacements produced by this Aux in one
cm' per second is

J= v~(E) o (E)G(E)dE, (65)
(60)g(*)=g(V)-v/2~

quality We assume that the solid is irradiated by a Qux of
neutrons of known spectrum and that the scattering is
isotropic in center-of-mass coordinates. Let H(E,x)dh
represent the number of primary knock-outs assumed
initially as free, with energy in dx about x that result
from a collision with a neutron having energy E. 9/e

(58) have
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g(x) =
40

x
t

dyE(x, y)g(x y)+—
4

dyE(x, y)g('y n). (6—6)

Fquation (66) is easily seen to be of Volterra type:

g( ) = ( )+~" drx(*,r)g(r),
a

where X(x,y) is non-negative and bounded on the range
Q S P, Q y

It follows from the standard theory of such equations
that there is a unique solution of (66) given by the
formula:

where o(E). is the cross section for the collision of a
neutron with the atom of the solid and the integral
extends over the whole range of the neutron spectrum.

For a neutron spectrum comprising only energies
E& (2+1)'6.25X10' ev, the total amount of energy
used up to produce displacements is equal to the half
of the energy absorbed by the solid (for any solid
having Z) 3).

APPENDIX

For the range cr&x&y, we have from (7) the equation

which is again of the same form as (67) but with the
bracketed quantity as source term. Then, for x in the
interval [c,y],

e(x)+ drX(x y)g(r) + drX(*,r)F2(r)1,

1
g(x) =1+-) dyg(y),

a
(72)

and it is easy to verify that the exact solution is given by

g (x) = 1+in(x/n). (73)

For x in the interval [2&x,P], Eq. (66) becomes [see
(39)]:

2Q 1 pZ 0!

g(x) =—+- ' drg(r)+- dyg(y) (74)
x x~ X 4~

&F,(x) &F,(x), (71)

and hence the result follows from the preceding
theorem.

For x in the interval [n,2a], Eq. (66) becomes [see
(38)]:

g(*)=F (x)+2 LF-(x)—F- (x)],
n=1

If we take F (2)x=B( +xn)/2n, then
68

F,(x)—Fo(x) =~(8—7B)/4x, (75)
where Fo is an arbitrary bounded integrable function
on the range Q ~x~ y and

F„+&(x)=s(x)+ dyx(x, y)F„(y), 22=0, 1, 2,

(69)

Our method of obtaining an approximate solution of
(166) depends upon the following theorem, which does
not seem to be standard in the literature:

Theorem I. If the. kernel X of (67) is non-negative
and bounded and if F2(x)) F2(x) on the interval

[n,y], then for every 22~0,

F„(x)~g(x), n&x&y.

If the inequalities are reversed, the statement remains
true.

Proof. Clearly F„(x))'F„,(x), n &x &y implies
F +2(x))'F„(x),a&x&y and the theorem follows from
(68).

Corollary I. If F2(x)) g(x) on the interval [n,c] and
if F2(x) ~Fq(x) on the interval [c,y] then F2(x) ~g(x)
on the interval [c,y] also. If the inequalities are re-
versed, the statement is also true.

Proof For x in the inter. val [c,y], we may rewrite

(67) as

x+n x
B &1+in— for a lower bound,

2Q Q
(76)

or that

x+(x x
B )'1+in— for an upper bound.

2Q Q
(77)

It is easy to verify that 8=1 is the largest value of
B for which (76) holds, and that (77) holds if B=8/7.
Thus, we have, for x in the interval [n,P], ~

(x+n)/2m& g(x) &4(x+n)/7n. (78)

For x in the interval [P,y], Eq. (66) becomes [see
(40)]:

pa dyP2 aa dyP2

g(x)=,g(*—y)+,g(r —), (79)
~ ay 4xr 4 La,ai]) 4xr

where x& is equal to y;„as defined by (31).
For all elements Z)6 we have P')y see (34) and

thus (79) becomes

and this is positive or negative according as B&8/7
or as B)8/7.

To apply the corollary, we also need that for x in
the interval [n,2n],

pC a

g(x) = ~(x)+ drX(x, y)g(r) + dyX(x, y)g(r)dyJ
(70)

~a dyp2
g(x) = Lg(*—r)+g(y —a)]

& ~y 4' (80)
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An exact solution of (80) is given by

(x+u)
g(x) =Bi i, B=any constant.

E 2u)'

Taking 8= 1 and applying Corollary I, we have

Substituting from (88) for the first integral and
integrating in (87), the condition for a lower bound

(81)
becomes

Pa P2 1 1 2n
+———ln-

16x' 4x 20. 20, xg

t
Z)6, p&x&y

(x+n)/2n& g(x),
l Z&6, p&x& p'.

(82)
sx]

k a p'(x —p'+n)
+—1——+ln )0. (89)

26K x

For Z&6, P'&x&y, the equation determining g(x)
becomes

1*dyP' e dyP'
g(*)= g(x-y)+ g(y-a) (83)

i 4xy' " 4xy'

but we may continue to write (83) as

Multiplying by Snx/P', Kq. (89) becomes

X$1

An elementary argument shows that

n' xi n p'(x —p'+n)
1+ +ln—+k 1——+ln )0. (90)

2x 2Q x

pe dyp2

g(*)=,Lg(*—y)+ g(y —a)],
~ ~~ 4xy'

if we agree to define g(x) =0 for x&0.
To obtain a lower bound for g(x), define

f(x) =0, x&0;

f(x) =1, 0&x&a;

f(x) = (x+n)/2n, n&x&P' n;—

1+(n/x') +In (xi/2n)
k+ %0

1—(n/x)+lngt'(x —P'+n)/xxi]
(91)

Since (91) is a decreasing function of x, (91) will be
true for p'& x&y provided

1—n/x+1n[j9'(x —P'+n)/xxi]
(84)

is an increasing function of x and is positive for x)p'.
Dividing (90) by 1 n/x—+I nLP'(x P'+—n)/xxi], the

condition becomes

x+n k
f(x) = —(x—p'+n), p' —u &x(~;

2(x 2c
(85)

where k= constant.
To determine k)'0 so that f(x) will be a lower

bound, we note that f(x) &g(x) for x&p', and so f(x)
will be a lower bound also for P'&x&y provided

—1—(a'/2y') —ln(pi/2n)
k=max 0,

1—( n/y)+lnt P'(y P'+n)/—py, )
(92)

For Z&6, Eq. (92) gives the following values for k:

z dyP2

,Lf(*—y)+f(y —)]—f(*)=0.
~ zg 4xy'

(86)

5
0.0622

3
0.2607

p2n dyp2
- y—
1——

2n ~ 4xy' .. 20.

~* dyp' x—y+n1—
~. .4xy&

Thus
Substituting for f(x) and integrating, (86) becomes

x+n k——(*—P'+u) =f(*)&g(*)
2(x 20,'

(93)

for Z&6, P'&x&y.
Since A(x+n)/2n& f(x), u&x&y, where A=1

—[k(y—P'+n)/(y —n)], we have

dyP' y k 1"dyP'
(x y —p'+n)—

"xi 4xy' 2n 2n ~ ~, 4xy'

k p dyP' k

,(y-P)+ (* P+-)=o—(8-7)
2n ~ p 4xy' 26K

A(x+n)/2u&g(x), 0&x&y,

with A = 1 for Z&6; and for Z~6, A is given by the
The first integral of (87) is small compared to the accompanying table.

second and will be replaced by

p'n p dyp'(n —y) t dyp' ( x—y+ni Z
1— ). (88)

16x ~ 0 Snx & 4xy' ( 2n

5
0.9627

4
0.8770

3
0.7542
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Now consider a function h(x) defined by

h(x) =0, x&0;

h(x) =1, 0&xSa

h(x) =4(x+a)/7a, a&x&P a—;

t'8 q x+a
h(x)=I -+k I, P-a&x(~,

E7 ) 2a

(95)

+k ln
7x(x a)— 4(x—p+a) x—p+a

~o. (1o3)

The function in square brackets in (103) has a maxi-
mum at x= 2(P—a), and this maximum is

In(P/4P —a) —1&a/(P —a) —2.386.

Since xi&p'/4x, ln[x/(x —a)]&[a/(x —a)], Eq.
(102) will be true if

6n'

Thus8 (x+a) P' 3a—4x 4 x k x
hi(x) =-I I+- +—ln +—ln- .

7 E 2a ) 4x.7x(x—a) 7a x a—2a P
(96)

)8 y x+a
)I

-+2.7X1O-4
I

)g(x), a&x&P". (103)

where k= constant. Thus (103) is satisfied if we take
Let p~ be the energy x, where xi ——x—p+a. It is

easily seen that P&P*&P" (see 35). Then for P~x&P* 3Q 6u'
we have x~—0.&n, and so k=2 7X10 ') ) (104)

7p' 7p(p a) [2—386 .a/(p—a)]—

Hence, the condition hi(x) &h(x) is equivalent to For P"&x&y we have to add the term

3n —4x 4 x
+—ln

7x(x—a) 7a x—a

1 x 2x(x+a)
+k —In- — &0. (97)

2a P

dy 4y' I2 dy 4y 1 4—1——&' —1——=———ln2
~(~,gQ~ y . 7a. ~~ y - 7a 2a 7a

Since ln[x/(x a)]—&[a/(x a)],—Eq. (97) will be to (102). Thus, on the range P"&x&y, hi(x) &h(x) is
satished if true if

3n 1 x 2x' 3n —4x i 4 4 x
+k —ln— &0, PCx&P~. (98)

7x(x a) —2a P aP' 7x(x—a) 2a 7a 7a x—a

For k)0, the left member of (98) is a decreasing
function of x, and hence (98) is satisfied for p&x& p* if

3Q

k xxi a p+—ln +
2a P(x P+a) x—x—P+a

&0. (106)

k~
14P(P—a)

(99) Making the same substitutions as before, we get

Since P/a) 39.71, we have

k = j..377)&10-'
(107)

6a' 8 P p a-
+1—-In2+k In &0.

7g(g —a) 7 . 4(x—P+a) x—P+a
(100)

as an admissible value of k, and thus Since x)P")2(P—a), (107) is a decreasing function
of x for x)P". Putting x=P" and using P/a) 39.71,

+1 377X10-4
I

)g(g) p(x&p2' (101) we get as an admissible value for k:
E7 2'

8 6n'
1——ln2+

7 7pl/(pl/ )

4(p"-p+ )
+ln

For p*(x&p", we only need to add the term

(«8)k-0.068)

tlat-p+n

dyp2
(x—y+a)

20. &» 4xy' p" p+a-
3~—4x 4 x

+—ln
7x(x a) 7a x—a— For Z) 7, p" exceeds y and so

k xxi a P f8 ) x+a
+—ln &0. (102) I

-+2.'7X10-'
I

)g(x), a&g~v, Z) 7 (1o9b)
2a P (x—P+a) x x—P+a. ) 2a

to (97), so that on this range hi(x) &h(x) is equivalent
Thus

to /8 ) x+a
I

—+p.p7
I

)g(x), a&x~y, Z) 3. (109a)
(7 ) 2
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ln the energy region x)p, the equation to be solved
is given by [see (57); we have substituted X for
(Zs a'/C) v&j:

(x)
g(x)=g(v) exp —»1 —

1

—1 + d@l —
I

~t ~~-
Xexp —21~1 —

1

—
1

—
1

) c dypm

X ff (t y)+g
—(y )j—(110)

~g~ 4ty'
The energy

P'- t' 16n'q &

P'= 1+—I
1-

8n ( p' i
where (P') i ——n, exceeds 20 Mev if Z& 16 and Ln, tij&= ti
if we require Z& 16 and x&P'.

It is easy to see that (110) may be written in the
form (67) and is also an integral equation of Volterra
type. A function f which is an upper (lower) bound for

g in the region x~y and which satisfies

where A, B, E, and D are constants. Substituting in
(112), the left side becomes

R(xV)1 p' (x—v+vi) (v —vi+n)+—(A —R) ln
4x $$$

n A (v+n)+ (8 D)—2n (A——R)v,—(A -R)-+
x x—v+vi

(D—8)2n —R(v+n)
1 (113)

Taking
Rvl v vi+n

8=0, A=1, D= +, R&1,
2' 2(x

f(x) &g(x) for x&v,

and substituting these values in (113), the condition
for a lower bound is that for x~ y,

liP'—1+(1—R) 1+

g(v) exp( —27 L(*/v)' —1]} (x—v+vi) (v —vi+n)
X 1——+ln

S ggl
&0. (114)

+ exp( —21~L(x/v)' —(t/v)'j}J,
p i dyp2

X i $f(t y)+ f(y —n)j-"i, 4ty' —f(x) &0(&0) (111)

will give an upper (lower) bound for g in the region
So

Now (111) is certainly true for x=v if f(v)&g(v)
Lf(v) &g(v) j, and thus f will be an upper (lower) bound
for x& v if f is an upper (lower) bound for x&v and if
the derivative of (111) is negative (positive) for all
x)y.

The same is true if we multiply (111)by

exp(21~(x/v) &—1}.
Thus we obtain the conditions f(x) &g(x), $f(x) & g(x)]
for x~y and

ps dyp9
(f(x y)+f(y n)—3—

&~, 4'
f'(*)(*v)'—f(x)— &0(&0) (112)

for an upper (lower) bound.
Let

x+n
f(x)=A +8, x~v —vi,

2'
E.

f(x) = (x v)+D, xav ——v, ;—
2a

(xv)&

Xp' n—1.15+(1.15—R) 1+ 1—-+
4V&x1 x V Vi+n—

vi (*—v+vi) (v —vi+n) l

+ln 1 KO. (115)
v+vi SXl

S 1 4 j. 4 a u-=—+—&—
p' xxi p' x' p'

Eq. (114) will be satisfied for x& v if

—1+(1—R) 1+
4V&x~

4(x—v+vi) (v —vi+n)
X 1——+ln &0; (116)

and (115) will be satisfied for n& v if

0.85o.'A liP' t

——1.15+(1.15—R) 1+ i 1+
v-v.+

5(*—v+vi) (v —vi+n)
)

1

ln — &0. (117)

Taking A=1.15, 8=0.425, D=1+(1.15v/2n), and
substituting in (113),the condition for an upper bound
is that for x~y,
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Now x occurs in (116) and (117) only in the form

(*-v+v )(v-v.+-)-
H(x)=x-: u— +In

s—v+vi

is an increasing function of x, we have

+1
H(x ) & 7=v-'* +

-v+3vi v —vi+a

with u nearly 1, b either 0 or p&, and r=4 or 5.
The derivative of (118) is

5b+v vi —2b(v —vi)
2x-@' 2—3a+

~—v+vi (~—v+vi)'

~(&—v+vi) (v —vi+~)—3ln

(118)

(119)

1.15—(0.85uX/v)
1.15—R2=

1y (Zp'/4v~) r (122)

Neglecting the term (0.85nX/v), which is very small,
we may take

5(v+3vi) (v —vi+~)
ln (121)

32

and hence for an upper bound, we take R=R2 where

1.15
(123)

1+(4v~/7 P&T)

R2 1 157
&—(x—v)+1+, (124)

2Q 2(x

It is easily seen that the bracketed quantity in (119) R=
is a decreasing function of x which is positive at x=y
and negative at x= ~, and thus (119) changes sign Thus
exactly once for x)p.

It follows that both (116) and (117) are concave Ri v —vi+ii
downward for x~v and hence attain a maximum at (~ v+v')+

2(x 2Q
some value of x, &y while the minimum is attained
at one end of the range of x.

Thus for a lower bound on the range p& x~ 8 we may
take R=R1 where

8— +in
v+vl

(*—v+v)(v —v+ )

p2

1 R]— (120)
2m[1+ (XP'/4v&) minLH(v), H (8)1)

where H is defined by (118).
It is not diflicult to show that (119) is negative for

x=4v/3, and thus the value x, where H attains its
maximum satisfies x,„&4v/3. Since

where Ri is the value of R defined by (121) and R& the
value or R defined by (123).

The values of R1 and R2 are plotted in Fig. 2, with
the value 8=800v/A which corresponds to an energy
of 20 Mev.
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