FÍSICA DO CORPO HUMANO - LISTA DE EXERCÍCIOS 1

EXERCÍCIO 1) Supondo que você tenha interesse em perder 4.5kg por dieta ou por exercícios físicos:

a) Quantas horas de atividades você precisa realizar, a um trabalho de 10^3 J/s, para perder 4,5kg de gordura? (dica: use o gráfico no final do exercício)

[resposta: T=2810 min = ~47 horas]

b) Geralmente é considerado que seja mais fácil reduzir a massa corpórea diminuindo a quantidade de comida ingerida. Se uma dieta normal consiste em 2400kcal/dia, quanto tempo deve durar a dieta se diminuir pela metade a esse valor (1200kcal/dia) para perder os mesmos 4,5kg de gordura?

[resposta: T= ~ 35dias]

Food or Fuel	Energy released per unit volume of O ₂ consumed (J/m³)	Energy released per kilogram consumed (J/kg)	Energy released per gram (kcal/g)
Carbohydrates	22.2×10^6	1.72×10^{7}	4.1
Proteins	18.0×10^6	1.72×10^{7}	4.1
Fats	19.7×10^6	3.89×10^{7}	9.3
Typical Diet	$20.1-20.9 \times 10^6$	_	
Gasoline	_	4.77×10^7	11,4
Toal	_	3.35×10^{7}	8.0
Vood (pine)	_	1.88×10^{7}	4.5

EXERCÍCIO 2)

a) Qual é a energia necessária para caminhar uma distância de 50 km a uma taxa de 5 km/h.

[resposta: $9.5 \cdot 10^6$ *J ou* 2270 *kcal*]

b) Considerando a energia equivalente de uma refeição $2.1 \cdot 10^7$ J/kg (5 kcal/g), calcule a quantidade de comida necessária para a caminhada.

[resposta: 0,45 kg]

EXERCÍCIO 3) Compare a energia necessária para viajar 20 km de bicicleta com a de um carro pela mesma distância. A energia presente na gasolina é de $4,77 \cdot 10^{-7}$ J/kg e sua densidade é $6,8 \cdot 10^2$ kg/ m^3 . Assuma que o carro pode viajar a $8,5 \cdot 10^3$ km por m^3 de gasolina (8,5 km por litro).

[resposta: o ciclista usa aproximadamente $1.9 \cdot 10^6$ J para viajar 20km; por outro lado, o carro usa $7.5 \cdot 10^7$ J $^{\sim}$ 40 vezes mais pelo mesmo percurso]

EXERCÍCIO 4) Um corpo tem uma área superficial efetiva de 1,2 m² e temperatura da pele de 34°C, calcule a taxa (em kcal/h e W) no qual ele irá perder calor para o meio (25°C). Qual(is) o(s) principal(is) processo(s) envolvido(s) nessa troca de calor?

[resposta: 54 kcal/h = 62,8 W]

EXERCÍCIO 5) Considere uma pessoa sentada numa praia. Em um dia ensolarado, a radiação do sol é absorvida pela pessoa a uma taxa de 30 kcal/h ou 34,9W. A temperatura do ar é quente 30°C, e a temperatura da pele da pessoa é de 32°C. A área efetiva exposta ao sol é de 0,9 m².

- a) Encontre o ganho ou perda de energia por cada hora. [resposta: ganhar 21 kcal/h ou 24 W]
- **b)** Se aparecer uma brisa de ar constante de 4 m/s, encontre a energia perdida por convecção a cada hora.

[resposta: 48 kcal/h ou 56 W]

c) Se a taxa metabólica individual é de 80 kcal/h, e a respiração contribuir com mais 10 kcal/h, quanto de calor adicional deve ser perdido por evaporação para manter a temperatura corporal constante?

[resposta: 55,5 kcal/h ou 64,5 W]