ACH3553 - Estatística I

Curso de Gestão de Políticas Públicas Aula 6

Alexandre Ribeiro Leichsenring alexandre.leichsenring@usp.br

EACH

Índice

Medidas de dispersão

- Amplitude
- Amplitude do intervalo interquartil
- Variância e Desvio Padrão
- Coeficiente de Variação

2/27

Aula 6

Índice

Medidas de dispersão

- Amplitude
- Amplitude do intervalo interquartil
- Variância e Desvio Padrão
- Coeficiente de Variação

Medidas de dispersão

Segundo o dicionário Houaiss:

dispersão

substantivo feminino (a1789)

ato ou efeito de dispersar(-se)

1 separação (de pessoas ou coisas) por diferentes lugares

2 p.ext. debandada, correria, desbarato

3 bio eco processo de separação de organismos anteriormente agrupados, como, p.ex., o afastamento da prole de seus pais ou o deslocamento de indivíduos de uma região de alta densidade populacional para outra, de baixa densidade

4 est grau de flutuação mostrado por uma variável aleatória

5 fisquím disseminação de uma substância em um fluido no qual não é solúvel

5.1 fisquim o resultante dessa disseminação (aplicável esp. a emulsões e suspensões estáveis, como leite, fog, smog)

6 ópt variação do índice de refração num meio de acordo com o comprimento de onda da radiação

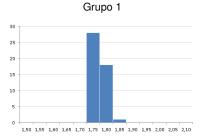
7 psic falta de concentração; desatenção

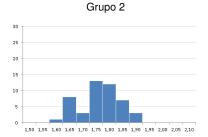
Medidas de dispersão

- Medidas de tendência central representam um valor típico de um conjunto de dados
 - o valor ao redor do qual os valores do conjunto estão distribuídos
- Como estão distribuídos esses valores ao redor da medida de tendência central?
 - Medidas de dispersão
- Também chamadas de medidas de variabilidade
- Principais medidas de variabilidade:
 - Amplitude
 - Variação interquartil
 - Variância
 - Desvio Padrão

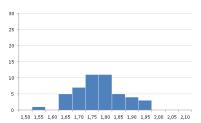
Dispersão

Vejamos a distribuição da altura dos indivíduos de 3 grupos diferentes.



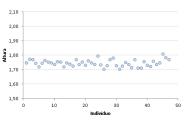


Grupo 3

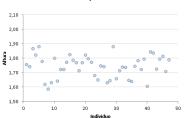


Dispersão

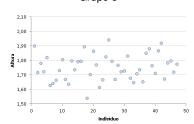
Outra forma de examinar.



Grupo 2



Grupo 3



Definição

Amplitude é a diferença entre o maior e o menor valor de uma distribuição.

$$A = x_{\text{máx}} - x_{\text{mín}}$$

- Medida simples
- Cálculo rápido e fácil
- Depende apenas de dois valores (x_{máx} e x_{mín})
- Medida influenciada por apenas um valor
- ⇒ Medida de variabilidade apenas aproximada

Exemplo

Com relação às alturas dos 3 grupos apresentados anteriormente:

	Grupo 1	Grupo 2	Grupo 3
Máximo (X _{max})	1,79	1,98	1,97
Mínimo (X_{min})	1,70	1,58	1,57
Amplitude $(X_{\text{max}} - X_{\text{min}})$	0,09	0,40	0,40

Exemplo

No exemplo das notas de estatística, o menor valor observado foi 0 e o maior foi 10.

$$x_{m\acute{a}x} = 10$$

 $x_{m\'{i}n} = 0$
 $A = x_{m\'{a}x} - x_{m\'{i}n} = 10 - 0 = 10$

A amplitude nesse caso é 10.

Exemplo

Com relação às idades dos alunos:

$$x_{m\acute{a}x} = 32$$

 $x_{m\'{i}n} = 17$
 $A = x_{m\'{a}x} - x_{m\'{i}n} = 32 - 17 = 15$

A amplitude nesse caso é 15.

Amplitude do intervalo interquartil

- Como vimos, amplitude depende completamente de apenas dois valores extremos da distribuição
- Em aulas passadas, introduzimos o conceito de quartis
- Ao invés de usar valores extremos, podemos usar valores que determinam um conjunto de valores centrais

Definição

A amplitude do intervalo interquartil (AIQ) é dada pela distância entre o primeiro e o terceiro quartis:

$$AIQ = Q_3 - Q_1$$

Aula 6

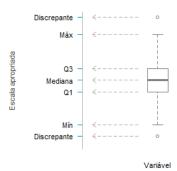
Amplitude do intervalo interquartil

Exemplo

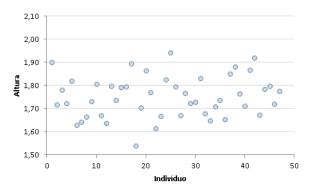
Vamos determinar a amplitude do intervalo interquartil dos dados de altura dos indivíduos dos 3 grupos.

Amplitude do intervalo interquartil

Amplitude do intervalo interquartil e o Boxplot

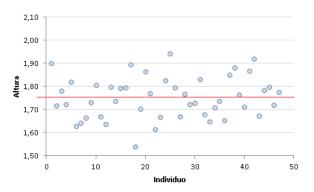


Medida de dispersão dos dados em torno da média.



- Suponha que a média do conjunto de dados retratado acima é $\bar{x} = 1,75$
- O afastamento de cada observação com relação à média é chamado de desvio
- ⇒ A Variância é uma medida do padrão dos desvios com relação à média.

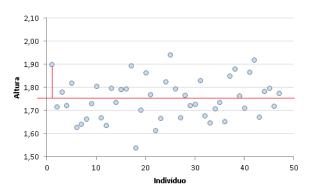
Medida de dispersão dos dados em torno da média.



- Suponha que a média do conjunto de dados retratado acima é $\bar{x} = 1,75$
- O afastamento de cada observação com relação à média é chamado de desvio
- ⇒ A Variância é uma medida do padrão dos desvios com relação à média

relação à média.

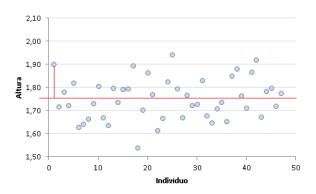
Medida de dispersão dos dados em torno da média.



- Suponha que a média do conjunto de dados retratado acima é $\bar{x} = 1,75$
- O afastamento de cada observação com relação à média é chamado de desvio

⇒ A Variância é uma medida do padrão dos desvios com relação à média.

Medida de dispersão dos dados em torno da média.



- Suponha que a média do conjunto de dados retratado acima é $\bar{x} = 1,75$
- O afastamento de cada observação com relação à média é chamado de desvio
- ⇒ A Variância é uma medida do padrão dos desvios com relação à média.

15 / 27

Variância

Para um conjunto de dados com n observações $x_1, x_2, \dots x_n$, de uma variável X, a **Variância** é definida por

$$Var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n},$$
 (1)

Onde \bar{x} é a média amostral.

Desvio Padrão

Para um conjunto de dados com n observações $x_1, x_2, \dots x_n$ de uma variável X, o **Desvio Padrão** é definido por:

$$DP(X) = \sqrt{Var(X)}$$
 (2)

Onde \bar{x} é a média amostral.

Alexandre Leichsenring ACH3553 - Estatística I Aula 6 16 / 27

Procedimento para calcular a Variância:

- \bigcirc Calcula-se a média \bar{x}
- 2 Para cada observação x_i , calcula-se o seu desvio com relação à média, isto é:

$$(x_i - \bar{x})$$

3 Eleva-se os termos acima ao quadrado, obtendo os desvios ao quadrado:

$$(x_i - \bar{x})^2$$

Soma-se os desvios ao quadrado:

$$\sum_{i=1}^n (x_i - \bar{x})^2$$

5 Divide-se a soma acima por *n*:

$$Var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

Exemplo

Vamos calcular a variância e o desvio padrão das alturas dos indivíduos do Grupo 1.

18 / 27

Exemplo

Abaixo temos as alturas dos 10 primeiros indivíduos de cada grupo. Vamos calcular à mão o **desvio padrão** das alturas dos 10 indivíduos do grupo 1.

Indivíduo	Grupo 1
1	1,78
2	1,71
3	1,75
4	1,70
5	1,76
6	1,75
7	1,75
8	1,72
9	1,78
10	1,74

Exemplo

Abaixo temos as alturas dos 10 primeiros indivíduos dos grupos. Para esses grupos, determine:

- Amplitude
- Média
- Variância
- Desvio padrão
- Em qual grupo os dados apresentam maior dispersão?
- Qual o grupo mais homogêneo?

Indivíduo	Grupo 1	Grupo 2	Grupo 3
1	1,78	1,84	1,57
2	1,71	1,77	1,70
3	1,75	1,79	1,69
4	1,70	1,69	1,68
5	1,76	1,64	1,88
6	1,75	1,69	1,69
7	1,75	1,77	1,66
8	1,72	1,75	1,89
9	1,78	1,69	1,70
10	1,74	1,72	1,77

Cálculo da variância para dados agrupados em tabela de frequência

Exemplo

Suponha que numa prova com 100 alunos, o número de questões certas no teste de múltipla escolha tenha se distribuído como na tabela abaixo:

Nota	Frequência
1	1
2	6
3	10
4	18
5	29
6	19
7	8
8	4
9	3
10	2
Total	100

Como calcular a variância nesse caso?

Cálculo da variância para dados agrupados em tabela de frequência

Basta observar o procedimento original, ponderando os desvios correspondentes a cada valor pela frequência observada do valor. Isso corresponde a aplicar a seguinte fórmula:

$$Var(X) = \frac{\sum_{i=1}^{k} (x_i - \bar{x})^2 \times f_i}{\sum_{i=1}^{k} f_i}$$

Onde k é o número de distintos valores observados da variável x.

▶ Observe que $\sum_{i=1}^{k} f_i = n$, ou seja, o número total de observações no conjunto de dados.

22 / 27

Cálculo da variância para dados agrupados em tabela de frequência

Roteiro para o cálculo da variância para os dados agrupados do exemplo anterior:

- Observe que há 10 valores distintos, ou seja, k = 10.
- Calcule a média:

$$\bar{x} = \frac{\sum_{i=1}^{10} x_i \times f_i}{\sum_{i=1}^{10} x_i}$$

$$= \frac{(1 \times f_1) + (2 \times f_2) + \dots + (10 \times f_{10})}{f_1 + f_2 + \dots + f_{10}}$$

$$= \frac{(1 \times 1) + (2 \times 6) + \dots + (10 \times 2)}{1 + 6 + \dots + 2}$$

$$= \frac{509}{100}$$

$$= 5,09$$

Calculando a variância quando se tem dados agrupados numa tabela de frequência

2 Para cada nota x_i , calcula-se o seu desvio com relação à média, isto é:

$$(x_i - \bar{x}) = (x_i - 5, 09)$$

3 Eleva-se os termos acima ao quadrado, obtendo os desvios ao quadrado:

$$(x_i - 5, 09)^2$$

Soma-se os desvios ao quadrado ponderados pelas frequências observadas:

$$\sum_{i=1}^{n} (x_i - 5, 09)^2 \times f_i$$

Divide-se a soma acima pelo número total de observações, ou seja, por 100 (observe que $\sum_{i=1}^{10} f_i = 100$):

$$Var(X) = \frac{\sum_{i=1}^{10} (x_i - 5, 09)^2 \times f_i}{100}$$

Exercício

Um levantamento de idades de 100 mães grávidas obtive a seguinte tabela de frequências:

ldade da mãe	f_i
15 a 20	7
20 a 25	36
25 a 30	23
30 a 35	18
35 a 40	10
40 a 45	6
Total	100

- Calcule o desvio padrão desses dados, considerando o ponto médio dos intervalos como valor representativo do intervalo.
- Dica: use o procedimento do exemplo anterior, substituindo os valores x_i pelos pontos médios dos intervalos (\hat{x}_i)

Aula 6

25 / 27

Coeficiente de Variação

- A variância ou do desvio padrão medem a dispersão em relação à média de forma absoluta!
- Vamos comparar os seguintes contextos:
 - desvio padrão de 10 g, num conjunto de dados cujo peso médio é 1.000 g
 - desvio padrão de 5 g, num conjunto de dados cujo peso médio é 50 g
- Qual das duas distribuições acima apresenta maior variabilidade?
- É necessário avaliar a variabilidade de maneira relativa...

Coeficiente de Variação

Coeficiente de variação (CV)

$$CV = 100 \times \frac{DP}{\bar{x}},$$

onde:

- DP é o desvio padrão
- \bar{x} é a média

