ACH3553 - Estatística I

Curso de Gestão de Políticas Públicas Aula 2

Alexandre Ribeiro Leichsenring alexandre.leichsenring@usp.br

Índice

Organização dos dados

- Distribuição de frequência de dados nominais
- Comparação de distribuições
- Distribuições de frequências agrupadas de dados intervalares
- Proporções e porcentagens
- Razões e taxas

Índice

Organização dos dados

- Distribuição de frequência de dados nominais
- Comparação de distribuições
- Distribuições de frequências agrupadas de dados intervalares
- Proporções e porcentagens
- Razões e taxas

Organização dos dados

- O que os cientistas sociais podem fazer para organizar a miscelânea de números brutos que coletam de seus objetos de estudos?
- O que podem fazer para transformar a massa de dados brutos em uma forma de fácil compreensão?
- 1º passo: construir distribuição de frequência em forma de tabela.

Distribuição de frequência de dados nominais

Exemplo

Suponha que estejamos estudando o desempenho das escolas de São Paulo no Enem.

Vamos examinar uma base de dados do R e construir tabelas de frequência para variáveis nominais.

Em particular, vamos analisar o número de escolas que oferecem EJA.

Acessar os dados em: https://rstudio.cloud/project/448060.

Comparação de distribuições

Exemplo

Suponha que em seguida se queira comparar se as escolas com indicador de nível socioeconômico (INSE) mais baixos são mais propensas a oferecer EJA.

Determinar a distribuição das escolas por oferecimento de EJA e INSE.

Apresentação dos resultados

- Variáveis qualitativas nominais são rotuladas (e não admitem ordenação natural)
- Categorias de distribuições em termos nominais não precisam ser listadas nenhuma ordem particular (qualquer ordenação é aceitável)

Distribuição do estado civil: qualquer ordem é aceitável

Estado civil	n _i	Estado civil	n _i
Casado(a)	30	Solteiro(a)	20
Solteiro(a)	20	Casado(a)	30
Divorciado(a)	10	Divorciado(a)	10
Total	60	Total	60
Ok!		Ok!	

Estado civil	n _i
Divorciado(a)	10
Solteiro(a)	20
Casado(a)	30
Total	60
Ok!	

Apresentação dos resultados

 Variáveis qualitativas ordinais devem ser apresentadas na sua ordenação

Distribuição de frequências de atitudes em relação às cotas de entrada na USP pelo ENEM:

Atitude	n _i	Atitude
Concordo parcialmente	15	Concordo totalmente
Discordo totalmente	15	Concordo parcialmente
Nem concordo, nem discordo	30	Nem concordo, nem discordo
Discordo parcialmente	25	Discordo parcialmente
Concordo totalmente	45	Discordo totalmente
Total	100	Total
Inadequado		Adequado

45 15

30 25 15

Distribuições de frequências agrupadas de dados intervalares

- Variáveis quantitativas (escalares) muitas vezes estão dispersas em uma ampla extensão de valores (do valor mais baixo ao mais alto);
- Distribuição de frequência nesse caso pode ficar longa e difícil de ler (pouco informativa!);
- Poucos casos se enquadram em cada valor possível
- Alternativa: distribuição de frequências agrupadas.

Exemplo

Vamos estudar a distribuição das notas das escolas em Língua Portuguesa.

Proporções e porcentagens

- Quando um pesquisador estuda populações do mesmo tamanho, os dados podem ser usados diretamente para fazer comparações entre grupos;
- Esse raramente é o caso.
- Para um uso mais geral, precisamos de um método de padronização das distribuições em termos dos tamanhos das populações: Proporções e porcentagens.

Proporções e porcentagens

Proporção

- Compara o número de casos n_i em uma determinada categoria com o tamanho total da amostra (ou da população), n.
- A partir da frequência observada n_i, podemos obter a frequência relativa f_i correspondente, que nada mais é do que a proporção:

$$f_i = \frac{n_i}{n}$$

Proporção

Exemplo

Calcular as proporções correspondentes às frequências calculadas no exemplo anterior (proporção de Escolas que oferecem EJA).

Porcentagem

Porcentagem

- Apesar da utilidade das proporções, muitas pessoas preferem indicar o tamanho relativo de uma subpopulação em termos de porcentagem;
- A porcentagem é a frequência de ocorrência de uma determinada categoria por 100 casos;
- Para calcular uma porcentagem, simplesmente multiplicamos um proporção dada por 100:

 $100 \times f_i$

Porcentagem

Exemplo

Calcular as porcentagens correspondentes às frequências calculadas no exemplo anterior.

Proporções e porcentagens

Exercício

Para ilustrar a utilidade de porcentagens em comparações entre distribuições grandes e desiguais, examine os gêneros de estudantes de engenharia de duas Universidades, conforme a tabela abaixo. Interprete os resultados.

Gênero de estudantes de engenharia nas universidades A e B.

	Universidade A		Universidade B	
Gênero do estudante	f	%	f	%
Masculino	1082		146	
Feminino	270		37	
Total				

Razões e taxas

- A razão é outro método de padronização de quantidades com relação ao tamanho;
- Compreende o número de casos que se enquadram em uma categoria (por exemplo, homens) com o número de casos enquadrados em outra categoria (por exemplo, mulheres).

Razão

Seja n_1 a frequência na categoria 1 e n_2 a frequência na categoria 2. Então:

Razão =
$$\frac{n_1}{n_2}$$

Razão

Exemplo: Razão de raça

Se estivéssemos interessados em determinar a razão de negros para brancos, compararíamos o número de entrevistados negros $(n_1 = 100)$ com o número de entrevistados brancos $(n_2 = 150)$.

Razão de raça =
$$\frac{n_1}{n_2} = \frac{100}{150} = \frac{2}{3}$$

Há 2 negros para cada 3 brancos.

Razão

Razão de gênero

Conceito bastante empregado por demógrafos. Se, por exemplo, a realação de homens para mulheres é 150/50, ha 150 homens para cada 50 mulheres. Para obter a versão convencional de razão de gênero, multiplicamos a razão anterior por 100.

Razão de gênero =
$$\frac{n_{homens}}{n_{mulheres}} \times 100 = \left(\frac{150}{50}\right) \times 100 = 300$$

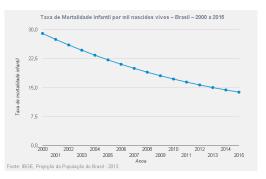
Taxa

- Outro tipo de razão: Taxa
- Mais amplamente utilizada por pesquisadores;
- Sociólogos frequentemente analisam populações em termos de taxas (de reprodução, morte, criminalidade, desempergo, divórcio, casamento, etc);
- Comparam número de casos de um subgrupo com número de casos de outro subgrupo;

Taxas

Indicam comparações entre o número de casos efetivos (*reais*) com o número de casos *em potencial*.

$$\mathsf{Taxa} = \frac{n_{\mathsf{casos\ reais}}}{n_{\mathsf{casos\ potenciais}}}$$



Taxa

Exemplo: taxa de mortalidade infantil (por mil habitantes)

Taxa de mortalidade infantil = $\frac{n_{\text{crianças mortas antes de completar 1 ano de idade}}}{n_{\text{nascidos vivos}}} \times 1.000$

Taxa

Outros exemplos:

- Taxa de fecundidade
- Taxa de natalidade
- Taxa de analfabetismo
- Taxa de homicídios
- Taxa de suicídio
- gasto per capita
- etc

Consultar:

- http://brasilemsintese.ibge.gov.br/populacao.html
- http://ibge.gov.br/home/estatistica/populacao/condicaodevida/indicadoresminimos/conceitos.shtm

