ACH3657 Métodos Quantitativos para Avaliação de Políticas Públicas

Aula prática 08 Regressão Múltipla

Alexandre Ribeiro Leichsenring alexandre.leichsenring@usp.br

Aula 08

Determinantes do desempenho escolar

Suponha que você quer avaliar a influência do salário dos professores no desempenho dos estudantes (usando o arquivo meap93.RData).

i) Estime o modelo:

$$mate10 = \beta_0 + \beta_1 \log(gasto) + \beta_2 \log(salario) + \beta_3 prgalm + u$$

e relate os resultados da maneira habitual. Os sinais dos coeficientes de inclinação são os que você esperava?

- ii) Determine os resíduos do modelo de duas maneiras:
 - Através da função residuals()
 - Através da diferença $\hat{u}_i = y_i \hat{y}_i$
- iii) Calcule a variância dos resíduos estimados $(\hat{\sigma})$.
- iv) Calcule o erro padrão de $\hat{\beta}_2$:

$$\mathsf{ep}(\hat{\beta}_2) = \frac{\hat{\sigma}}{\left[\mathsf{SQT}_2(1 - R_2^2)\right]^{1/2}}$$

Compare com o valor apresentado na saída do modelo estimado.

Aula 08

2/4

Determinantes do desempenho escolar

v) Avalie a significância estatística dos coeficientes estimados (em particular, de $\hat{\beta}_2$).

Obs. Formas funcionais envolvendo logaritmos

Lembre-se da interpretação dos coeficientes para as diferentes formas funcionais envolvendo logaritmos.

TABLE 2.3 Summary of Functional Forms Involving Logarithms			
Model	Dependent Variable	Independent Variable	Interpretation of $oldsymbol{eta}_1$
Level-level	у	X	$\Delta y = \beta_1 \Delta x$
Level-log	у	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
Log-level	log(y)	X	$%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$%\Delta y = \beta_1 \% \Delta x$

4/4