# Métodos Quantitativos para Avaliação de Políticas Públicas

Aula Teórica 09 A Variância dos Estimadores de MQO

Alexandre Ribeiro Leichsenring alexandre.leichsenring@usp.br



1/22

## Organização

- A Variância dos Estimadores de MQO
  - Variâncias amostrais dos Estimadores de Inclinação de MQO

- Componentes das Variâncias de MQO: Multicolinearidade
  - Variância do erro:  $\sigma^2$
  - Variação amostral total em x<sub>j</sub>: SQT<sub>j</sub>
  - As relações lineares entre as variáveis independentes:  $R_i^2$
  - Multicolinearidade

 $\colone{1}$  Estimação de  $\sigma^2$ : Os Erros-Padrão dos Estimadores de MQO



## A Variância dos Estimadores de MQO

- Além de conhecermos as tendências centrais dos  $\hat{\beta}_j$ , é importante termos uma medida da dispersão de sua distribuição amostral
- Antes de encontrarmos as variâncias, vamos adicionar uma hipótese de homoscedasticidade, como no caso da RLS. Por duas razões:
  - Ao impor a hipótese de variância constante do erro, as fórmulas são simplificadas
  - MQO tem uma propriedade importante de eficiência se acrescentamos a hipótese de homoscedasticidade

# Hipótese RLM.5 (Homocedasticidade)

$$\mathsf{Var}(u|x_1,x_2,\ldots,x_k) = \sigma^2$$

- A hipótese RLM.5 significa que a variância do termo erro, u, condicionada às variáveis explicativas, é a mesma para todas as combinações de  $x_1, x_2, \ldots, x_n$
- Se essa hipótese é violada, o modelo exibe heteroscedasticidade, (exatamente como no caso de duas variáveis)

Alexandre Leichsenring ACH3657 Aula 09 3/22

# Na equação

$$salarioh = \beta_0 + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ perm + u$$

a homoscedasticidade requer que a variância de u não dependa dos níveis de educação, experiência ou permanência. Isto é:

$$Var(u|educ, exper, perm) = \sigma^2$$

Se a variância varia com qualquer uma das três variáveis explicativas, então há heteroscedasticidade

⇒ As hipóteses RLM. 1 a RLM.5 são, em conjunto, conhecidas como as hipóteses de Gauss-Markov (para a regressão de corte transversal)





#### **Teorema**

Sob as hipóteses RLM.1 a RLM.5, condicionadas aos valores amostrais das variáveis independentes

$$\operatorname{Var}(\hat{\beta}_j) = \frac{\sigma^2}{\operatorname{SQT}_j(1 - R_j^2)}$$

para j = 1, 2, ..., k.

- $\mathsf{SQT}_j = \sum_{i=1}^n (x_{ij} \bar{x}_j)^2$  é a variação total em  $x_j$
- $R_j^2$  é o  $R^2$  da regressão de  $x_j$  sobre todas as outras variáveis independentes (incluindo um intercepto)

## Obs.

- Todas as hipóteses de Gauss-Markov são usadas na obtenção dessa fórmula
- A magnitude de  $Var(\hat{\beta}_j)$  é importante na prática: uma variância maior significa um estimador menos preciso, e isso se traduz em intervalos de confiança maiores e testes de hipóteses menos acurados

# Componentes das Variâncias de MQO: Multicolinearidade

A variância de  $\hat{\beta}_j$  depende de 3 fatores:

- $\bullet$   $\sigma^2$
- $\bullet$  SQT $_j$

Alexandre Leichsenring

 $\bullet$   $R_j^2$ 

Vamos considerar cada um desses fatores.



Variância do erro:  $\sigma^2$ 

Alexandre Leichsenring

$$\operatorname{Var}(\hat{\beta}_j) = \frac{\sigma^2}{\operatorname{SQT}_j(1 - R_j^2)}$$

- Quanto maior  $\sigma^2$  maior a variância de  $\hat{eta}_j$ 
  - Quanto mais "ruído" na equação, mais difícil estimar o efeito parcial de qualquer uma das variáveis independentes sobre y
  - $ightharpoonup \sigma^2$  é uma característica da população (não tem nada a ver com o tamanho da amostra)
- Componente desconhecido (veremos como estimar)
- Só uma maneira de reduzir a variância do erro: adicionar mais variáveis explicativas à equação (retirar alguns fatores do termo erro) – nem sempre é possível ou desejável

# Variação amostral total em $x_j$ : SQT $_j$

$$\operatorname{Var}(\hat{\beta}_j) = \frac{\sigma^2}{\operatorname{SQT}_j(1 - R_j^2)}$$

$$\mathsf{SQT}_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$

- Quanto maior a variação total em  $x_j$  menor é  $\text{Var}(\hat{\beta}_j)$
- ullet Tudo o mais sendo igual, preferimos ter tanta variação amostral em  $x_j$  quanto possível
- Aumentar tamanho da amostra faz aumentar variação nas variáveis explicativas  $x_j$
- Componente da variância que depende sistematicamente do tamanho da amostra
- Quando  $SQT_j$  é pequeno,  $Var(\hat{\beta}_j)$  pode ser muito grande

$$\mathsf{SQT}_j \to 0 \Rightarrow \mathsf{Var}(\hat{\beta}_j) \to \infty$$

O caso extremo de nenhuma variação amostral em  $x_j$  não é permitido pela EACH hipótese RLM.4

As relações lineares entre as variáveis independentes:  $R_i^2$ 

$$\operatorname{Var}(\hat{eta}_j) = rac{\sigma^2}{\operatorname{SQT}_j(1 - R_j^2)}$$

- ullet  $R_i^2$  é obtido de uma regressão que envolve somente as variáveis independentes do modelo original – que  $x_i$  desempenha o papel de uma variável dependente
- ullet  $R_j^2$  é a proporção da variação total de  $x_j$ , que pode ser explicada pelas outras variáveis independentes
- Para dados  $\sigma^2$  e SQT $_j$ , a menor  $\mathrm{Var}(\hat{\beta}_j)$  é obtida quando  $R_i^2=0$ 
  - Só ocorre quando x<sub>i</sub> tem correlação amostral zero com cada uma das outras variáveis independentes
  - Melhor caso, mas raramente encontrado
- Outro caso extremo: R<sub>i</sub><sup>2</sup> = 1
  - Excluído pela hipótese RLM.4, pois  $R_i^2 = 1$  significa que, na amostra,  $x_i$ , é uma combinação linear perfeita de outras variáveis independentes da regressão
- Caso mais relevante: R<sub>i</sub><sup>2</sup> "próximo" de 1
  - ▶ Pode fazer com que  $Var(\hat{\beta}_i)$  seja grande:

$$R_j^2 \to 1 \Rightarrow \mathsf{Var}(\hat{\beta}_j) \to \infty$$

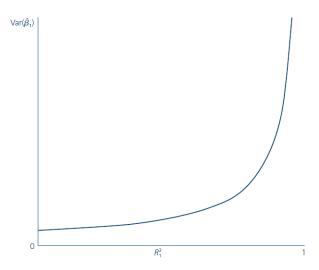
 Correlação alta (mas não perfeita) entre duas ou mais variáveis independentes ACH ... chamada multicolinearidade

### Multicolinearidade

- R<sup>2</sup> próximo de um não viola hipótese RLM.4
- O "problema" da multicolinearidade não é, de fato, bem definido.
- Não há um número absoluto que podemos citar para concluir que a multicolinearidade é um problema
- E.g.:  $R_j^2=0,9$  significa que 90% da variação amostral em  $x_j$  pode ser explicada pelas outras variáveis independentes do modelo
- ullet  $x_j$  tem uma forte relação linear com as outras variáveis independentes
- No entanto, se isso se traduz em uma  ${\rm Var}(\hat{\beta}_j)$  grande demais depende da magnitude de  $\sigma^2$  e de  ${\rm SQT}_j$
- Essencialmente o que importa é a relação entre  $\mathrm{Var}(\hat{\beta}_j)$  e a magnitude de  $\beta_j$









- Assim como um valor grande de  $R_j^2$  pode causar uma  $\text{Var}(\hat{\beta}_j)$  grande, um valor pequeno de  $\text{SQT}_j$  também pode fazer com que  $\text{Var}(\hat{\beta}_j)$  seja grande
- Portanto, um tamanho pequeno da amostra pode também levar a variâncias amostrais grandes
- Preocupar-se com graus elevados de correlação entre variáveis independentes da amostra não é, de fato, diferente de se preocupar com um tamanho pequeno da amostra: ambos funcionam para aumentar  $Var(\hat{\beta}_i)$
- Reagindo à obsessão dos econometristas pela multicolinearidade, o famoso econometrista da Universidade de Wisconsin Arthur Goldberger, criou (jocosamente) o termo *micronumerosidade*, que ele define como o "problema do tamanho pequeno da amostra"
- Uma coisa é clara: tudo mais sendo igual, para estimar  $\text{Var}(\hat{\beta}_j)$  é melhor ter menos correlação entre  $x_j$  e as outras variáveis independentes
- Nas ciências sociais somos geralmente coletores passivos de dados: não há uma boa maneira de reduzir as variâncias dos estimadores não-viesados que não seja coletar mais dados
- Podemos tentar suprimir outras variáveis independentes do modelo –
  infelizmente, suprimir uma variável que pertence ao modelo populacional pode
  levar viés, como vimos

## Exemplo

Suponha que estamos interessados em estimar o efeito de várias categorias de despesas de escolas sobre o desempenho de estudantes.

- Provável que as despesas com salários de professores, materiais institucionais, atletismo etc. estejam altamente correlacionadas:
  - Escolas mais ricas tendem a gastar mais com tudo
  - Escolas mais pobres gastam menos com tudo
- Pode ser difícil estimar o efeito de qualquer categoria de despesa específica sobre o desempenho dos estudantes quando há pouca variação em uma categoria que não pode ser, em grande medida, explicada por variações das outras categorias de despesas (isso leva a um  $R_j^2$  alto para cada uma das variáveis de despesas)
- Em certo sentido, nós mesmos nos impusemos o problema: estamos formulando questões que podem ser sutis demais para que os dados disponíveis as respondam com alguma precisão
- Provavelmente, podemos fazer algo muito melhor mudando o escopo da análise e agrupando todas as categorias de despesa em uma única categoria, desde que não mais estivéssemos tentando estimar o efeito parcial de cada categoria separadamente

# Ponto importante

- Um elevado grau de correlação entre certas variáveis independentes pode ser irrelevante no que diz respeito a quão bem podemos estimar outros parâmetros do modelo
- Por exemplo, considere um modelo com três variáveis independentes:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

com  $x_2$  e  $x_3$  altamente correlacionados.

- $\Rightarrow$  Var $(\hat{\beta}_2)$  e Var $(\hat{\beta}_2)$  podem ser grandes.
- Mas o valor da correlação entre  $x_2$  e  $x_3$  não tem efeito sobre  $\mathrm{Var}(\hat{\beta}_1)$
- Se  $x_1$  é não correlacionado com  $x_2$  e  $x_3$ , então:
  - $R_1^2 = 0$   $Var(\hat{\beta}_1) = \frac{\sigma^2}{SOT}$
- Se  $\beta_1$  é o parâmetro de interesse, não devemos nos preocupar com o valor da correlação entre  $x_2$  e  $x_3$ .



#### Exercício

Suponha que você postula um modelo que explica a nota do exame final em termos da frequência às aulas. Assim, a variável dependente é a nota do exame final, e a principal variável explicativa é o número de aulas frequentadas. A fim de controlar as aptidões dos estudantes e pelos esforços fora da sala de aula, você inclui entre as variáveis explicativas a nota acumulada durante todo o curso, a nota do teste de avaliação de conhecimentos para ingresso em curso superior e as medidas do desempenho do estudante no ensino médio. Alguém diz: "Você não pode esperar aprender nada com esse exercício, pois todas essas variáveis são, provavelmente, altamente colineares". Qual seria sua resposta?



# Estimação de $\sigma^2$ : Os Erros-Padrão dos Estimadores de MQO

- Lembremos que  $\sigma^2 = \text{Var}(u)$
- É necessário de um estimador não-viesado de  $\sigma^2$  para obter estimadores não-viesados de  ${\rm Var}(\hat{\beta}_j)$
- Estimativas são obtidas através dos termos de erro estimados

$$\hat{u}_i = y_i - \hat{y}_i$$

com

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k$$

• O estimador não-viesado de  $\sigma^2$  no caso geral da regressão múltipla é:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (\hat{u}_i^2)}{n-k+1} = \frac{\mathsf{SQR}}{n-k+1}$$

Teorema (Estimador não viesado de  $\sigma^2$ 

Sob as hipóteses de Gauss-Markov RLM.1 a RLM.5:

$$\mathbf{E}(\hat{\sigma}^2) = \sigma^2$$

## Erro-Padrão da Regressão

- $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$  é denominado **Erro-Padrão da Regressão** (EPR)
  - O EPR é um estimador do desvio-padrão do termo de erro
  - Essa estimativa é usualmente informada pelos programas de regressão, embora ela seja chamada de nomes diferentes pelos diferentes programas.
  - Para construir intervalos de confiança e conduzir testes sobre os parâmetros da equação de regressão, precisaremos estimar o desvio-padrão de  $\hat{\beta}_j$ :

$$\mathrm{dp}(\hat{\beta}_j) = \frac{\sigma}{\left[\mathrm{SQT}_j(1-R_j^2)\right]^{1/2}}$$

Como  $\sigma$  é desconhecido, ele é substituído pelo seu estimador  $\hat{\sigma}$  . Isso nos dá o erro-padrão de  $\hat{\beta}_j$ :

$$\mathrm{ep}(\hat{\beta}_j) = \frac{\hat{\sigma}}{\left[\mathrm{SQT}_j(1-R_j^2)\right]^{1/2}}$$





## Observações

- Se os erros exibem heteroscedasticidade, fórmula do erro-padrão não é um estimador válido de  ${\rm dp}(\hat{\beta}_j)$
- A presença de heteroscedasticidade não causa viés em  $\hat{\beta}_j$ , mas leva viés à fórmula usual da  $\text{Var}(\hat{\beta}_j)$ 
  - ⇒ Invalida a estimativa do erro padrão!
- Se suspeitarmos de heteroscedasticidade, então os erros-padrão de MQO "habituais" não são válidos (alguma ação corretiva deve ser tomada)



## Teorema de Gauss-Markov

Sob as hipóteses RLM.1 a RLM.5:

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$$

são os melhores estimadores lineares não-viesados (BLUEs) de

$$\beta_0, \beta_1, \ldots, \beta_k$$

- Por causa desse teorema as hipóteses RLM.I a RLM.5 são conhecidas como as hipóteses de Gauss-Markov
- Nenhum outro estimador será melhor que MQO
- Se qualquer uma das hipóteses de Gauss-Markov for violada, o teorema não é mais válido



19/22



Alexandre Leichsenring ACH3657 Aula 09

#### Resumo

- O modelo de regressão múltipla nos permite, efetivamente, manter os outros fatores fixos ao examinarmos os efeitos de uma variável independente particular sobre a variável dependente. Ele permite, explicitamente, que as variáveis sejam correlacionadas
- Embora o modelo seja linear em seus parâmetros, ele pode ser usado para modelar relações não-lineares ao se escolher, apropriadamente, as variáveis dependente e independente
- O método de mínimos quadrados ordinários é facilmente aplicado para estimar o modelo de regressão múltipla. Cada estimativa de inclinação mede o efeito parcial da variável independente correspondente sobre a variável dependente, mantendo todas as outras variáveis independentes fixas.
- lack Q é a proporção da variação amostral da variável dependente explicada pelas variáveis independentes, e é utilizado como uma medida do grau de ajuste. E importante não dar importância demais ao valor do  $R^2$  na avaliação de modelos econométricos

20/22

#### Resumo

- Sob RLM.1 a RLM.4, os estimadores de MQO são não-viesados
  - incluir uma variável irrelevante em um modelo não tem nenhum efeito sobre a inexistência de viés dos estimadores
  - omitir uma variável importante faz com que MQO seja viesado (em muitas circunstâncias, a direção do viés pode ser determinada)
- Sob RLM.1 a RLM.5, a variância de um estimador de inclinação de MQO é dada por

$$\mathrm{Var}(\hat{\beta}_j) = \frac{\sigma^2}{[\mathsf{SQT}_j(1-R_j^2)]}$$

- quando a variância do erro  $\sigma^2$  cresce,  $Var(\hat{\beta}_j)$  cresce
- lacktriangle quando a variação amostral em  $x_j$ , SQT $_j$ , aumenta, Var $(\hat{eta}_j)$  diminui
- ightharpoonup o termo  $R_j^2$  mede a magnitude da colinearidade entre  $x_j$  e as outras variáveis explicativas
- ▶ Quando  $R_j^2$  se aproxima de um,  $Var(\hat{\beta}_j)$  cresce ilimitadamente



- Adicionar uma variável irrelevante a uma equação geralmente aumenta as variâncias dos demais estimadores de MQO, por causa da multicolinearidade
- Sob as hipóteses de Gauss-Markov (RLM.I a RLM.5), os estimadores de MQO são os melhores estimadores lineares não-viesados (BLUE).

