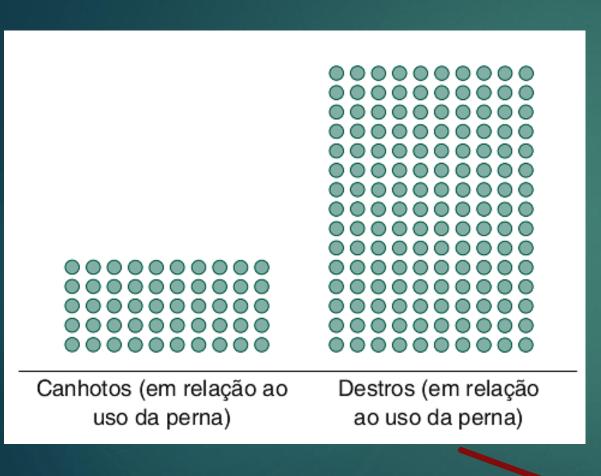
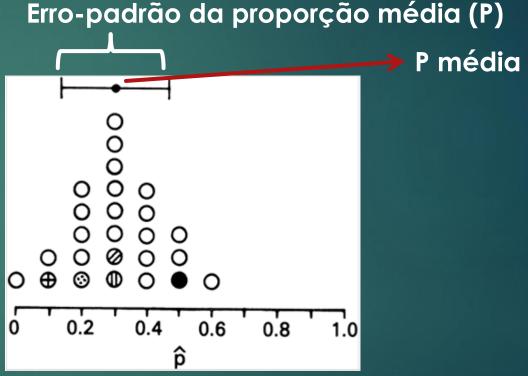
Bioestatística Básica RCA 5804


- Comparando Proporções
 Correlação
- 3. Poder estatístico do teste


Prof. Dr. Alfredo J Rodrigues

Departamento de Cirurgia e Anatomia
Faculdade de Medicina de Ribeirão Preto
Universidade de São Paulo

alfredo@fmrp.usp.br

Qual a proporção de canhotos ? 4 amostras de 10 indivíduos

• Erro-padrão
$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Teste de hipóteses para Proporções

O análogo de "T" para proporções é a Estatística Z

$$z = \frac{|\hat{p}_1 - \hat{p}_2| - \frac{1}{2}(1/n_1 + 1/n_2)}{\sqrt{\hat{p}(1 - \hat{p})(1/n_1 + 1/n_2)}}$$

Quando "Z" é "GRANDE" concluímos que é pouco provável que ambas as amostras provêm da mesma população.

Dogwood of Evondom	Probability, p					
Degrees of Freedom	0.1	0.05	0.01	0.001		
1	6.31	12.71	63.66	636.62		
2	2.92	4.30	9.93	31.60		
3	2.35	3.18	5.84	12.92		
4	2.13	2.78	4.60	8.61		
5	2.02	2.57	4.03	6.87		
6	1.94	2.45	3.71	5.96		
7	1.89	2.37	3.50	5.41		
8	1.86	2.31	3.36	5.04		
9	1.83	2.26	3.25	4.78		
10	1.81	2.23	3.17	4.59		
11	1.80	2.20	3.11	4.44		
12	1.78	2.18	3.06	4.32		

Teste X² (Chi-quadrado)

- Estatística "Z" testa hipótese no qual existe apenas 2 desfechos (atributos) mutuamente excludentes e a probabilidade permanece constante (ensaio independente de Bernoulli)
- Nas situações nas quais existe mais de dois grupos ou mais de dois eventos possíveis há necessidade de um ANÁLOGO AO TESTE DE VARIÂNCIA (ANOVA).
- ▶ O "análogo" ao teste Anova é o teste X² (Chi-quadrado ou Chi-quadrado de Pearson com correção de Yates para tabelas 2x2)
- Para comparações múltiplas em tables maiores 2x2 (como ANOVA com >2 grupos) há a necessidade de testes múltiplos 2x2 com correção de erro grupal (Bonferroni, Holm, Holm-Sidak, etc).

Tratamento	Sobreviveu	Morreu	total
Tratado	459	26	485
Controle	141	27	168
	600	53	653

600 (459+141) sobreviventes/653 indivíduos (total) x 100 = 91.8% sobreviventes

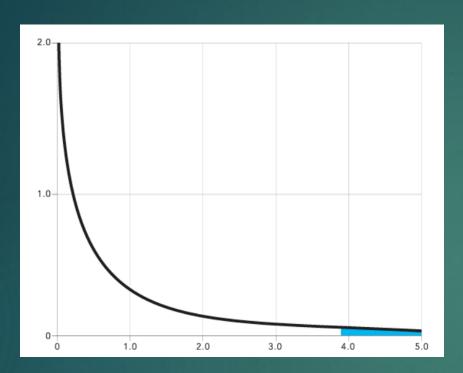
Se H0 é verdadeira (tratamento não tem efeito) o ESPERADO é que a proporção de sobreviventes em ambos os grupos seja semelhante

91,8% sobreviventes significa deveriam ter 445 sobreviventes no Tratado (91,8% de 485) e 154 no controle (91,8% de 168)

Todavia o OBSERVADO foi 459 sobreviventes no grupo tratado e 141 no controle. **Esta diferença entre o a PROPORÇÃO OBSERVADA e a ESPERADA é devida apenas ao acaso ou real?**

teste X² - Chi-quadrado

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$


Correção de Yates para Continuidade em tabelas 2x2

$$\chi^2 = \sum \frac{(|O - E| - \frac{1}{2})^2}{E}$$

O: proporção Observada

E: proporção Esperada

Teste X² (Chi-quadrado)

A distribuiça de X² depende do "n" de indivíduos e número de possíveis "desfecho" (graus de liberdade)

Quando o valor **de X² é "GRANDE**" (tabela) concluímos que é **pouco provável que** ambas as amostras provêm da mesma população, rejeita-se H0 (diferença é significativa).

Valores críticos para X²

Tratament o	Sobreviveu	Morreu	total
Tratado	459	26	485
Controle	141	27	168
	600	53	653

$$\chi^{2} = \sum \frac{(|O - E| - \frac{1}{2})^{2}}{E} = 19,194$$

V (graus de liberdade)= (L-1)x(C-1)= (2-1)x (2-1)=1

Significativo para p < 0,001

1									
				Probabilida	ade de um va	lor maior de	P		
	v	0,50	0,25	0,10	0,05	0,025	0,01	0,005	0,001
	1	0,455	1,323	2,706	3,841	5,024	6,635	7,879	10,828
	2	1,386	2,773	4,605	5,991	7,378	9,210	10.507	13,816
	3	2,366	4,108	6,251	7,815	9,348	11,545	12,838	16,266
	4	3,357	5,385	7,779	9,488	11,143	13,277	14,860	18,467
	5	4,351	6,626	9,236	11,070	12,833	15,086	16,750	20,515
	6	5,348	7,841	10,645	12,592	14,449	16,812	18,548	22,458
	7	6.346	9,037	12,017	14,067	16,013	18,475	20,278	24,322
	0	7,344	10,219	13,362	15,507	17,535	20,090	21,955	26,124
1	9	8,343	11,389	14,684	16,919	19,023	21,666	23,589	27,877
	10	9,342	12,549	15,987	18,307	20,483	23,209	25,188	29,588
	11	10,341	13,701	17,275	19,675	21,920	24,725	26,757	31,264
	12	11,340	14,845	18,549	21,026	23,337	26,217	28,300	32,909
	13	12,340	15,984	19,812	22,362	24,736	27,688	29,819	34,528
	14	13,339	17,117	21,064	23,685	26,119	29,141	31,319	36,123
	15	14,339	18,245	22,307	24,996	27,488	30,578	32,801	37,697
	16	15,338	19,369	23,542	26,296	28,845	32,000	34,267	39,252
	17	16,338	20,489	24,769	27,587	30,191	33,409	35,718	40,790
	18	17,338	21,605	25,989	28,869	31,526	34,805	37,156	42,312

Teste X² (Chi-quadrado)

- ► Condições para uso teste X²:
 - ▶ X² utilizado para dados categóricos, portanto é nãoparamétrico e não necessita distribuição normal.
 - Nas tabelas 2x2 o número de observações esperadas em **TODAS as células deve ser de no mínimo 5** (o que não ocorre usualmente com amostras pequenas).

Não satisfeitas essa condição (ao menos 5), deve-se utilizar o "TESTE EXATO DE FISHER", geralmente oferecido pelos softwares de estatística.

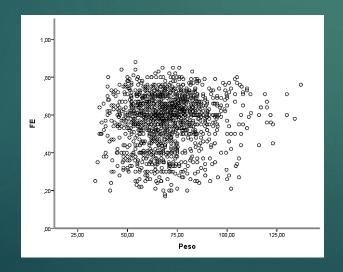
Nas tabelas 2x2 deve-se utilizar a correção de Yates para continuidade

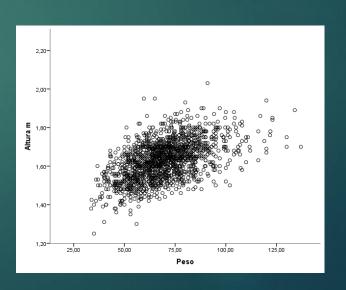
Teste X² (Chi-quadrado)

- Hipótese H0: mortalidade em homens e mulheres é a mesma em cirurgia cardíaca.
- ► H1: mortalidade é ≠

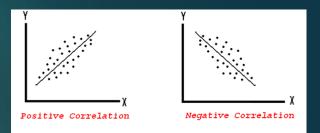
	Sexo * OBITO Crosstabulation						
			OBI	ТО			
			não	sim	Total		
Sexo	feminino	Count	513	74	587		
		% within Sexo	87,4%	12,6%	100,0%		
		% within OBITO	43,8%	46,3%	44,1%		
l '	masculino	Count	658	86	744		
		% within Sexo	88,4%	11,6%	100,0%		
		% within OBITO	56,2%	53,8%	55,9%		
Total		Count	1171	160	1331		
		% within Sexo	88,0%	12,0%	100,0%		
		% within OBITO	100,0%	100,0%	100,0%		

Regultado


Chi-Sq	uare	Tests
0111 00	uuic	10010

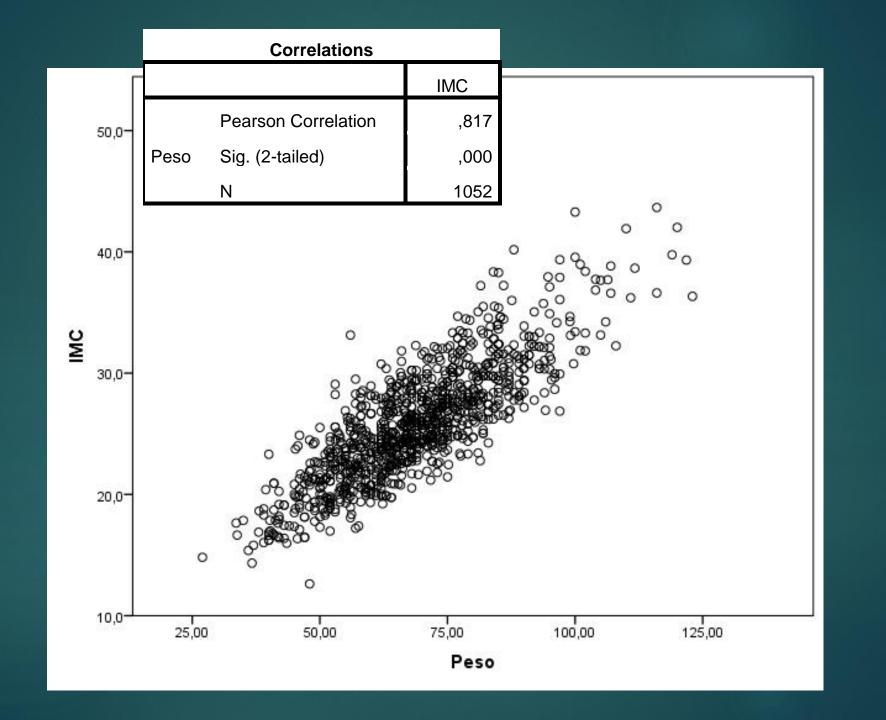

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)	Point Probability
Pearson Chi-Square	,340ª	1	,560	,611	,308	
Continuity Correction ^b	,248	1	,618			
Likelihood Ratio	,339	1	,560	,611	,308	
Fisher's Exact Test				,611	,308	
Linear-by-Linear Association	,340°	1	,560	,611	,308	,057
N of Valid Cases	1331					

- a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 70,56.
- b. Computed only for a 2x2 table
- c. The standardized statistic is -,583:
 - Como nenhuma célula tem < 5 posso utilizer X², caso contrário utilizaria o valor fornecido pelo Fisher (no caso p=0,611)
 - p= 0,560 (> 0,05), não significativo. Não rejeito a hipótese nula, ou seja, não há ≠ na mortalidade entre homens e mulheres

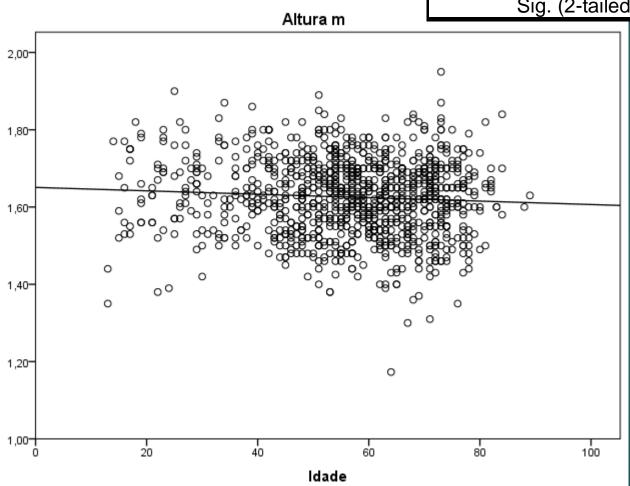

Correlação

- Mostra se há ou não associação entre duas variáveis independentes, de modo que as variações ocorrem simultaneamente em ambas
- Correlação não implica em causação, ou seja, não implica que uma variável influencie a outra, apenas que ambas "variam" juntas
- As correlações entre dois fatores pode ser causada por um terceiro fator que afeta ambas. Este terceiro fator é chamado de fator de confusão (confounder).

Correlação Linear

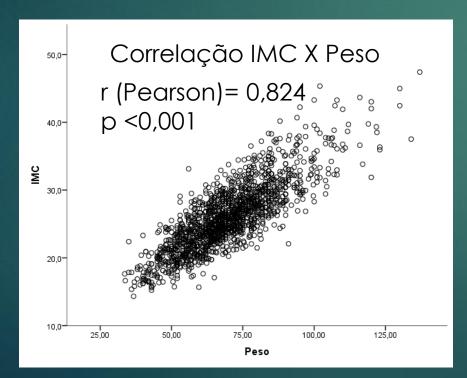

- A correlação pode ser positiva ou negatiga
- ▶ A "força" da correlação pode ser gradada: fraca, moderada e forte
 - Os coeficientes de correlação mostram a direção e a "força" da correlação
 - ▶ Para dist. Normal: Coeficiente de correlação (R)de Pearson
 - Para dist. "não-normais" ou dados categóricos (ordinais) Coeficiente de correlação de (R) Spearman
 - ▶ O sinal do coeficiente (+ ou -) indicam a direção da correlação
- O valor do coeficiente "r" varia de 0 a 1 e indica a "força", o grau de associação entre as variáveis:
 - D a 0,39: fraca; 0,4 a 0,59: moderada; ≥ 0,6-forte
- A correlação também é testada quando a significância
 - Se p> 0,05 ou 0,01 a correlação não é significante, ou seja, a "linha " de associação é horizontal
 - Assim, podemos ter uma correlação significante mas fraca

■ Tabela 12.1 Resumo de alguns métodos estatísticos para testar hipóteses

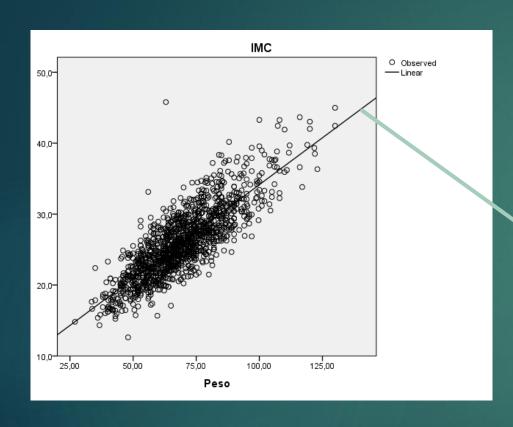

Escala de medida Dois grupos de tratamento compostos por indivíduos diferentes Três ou mais grupos de tratamento compostos por indivíduos diferentes Três ou mais grupos de tratamento compostos por indivíduos diferentes Três ou mais grupos de tratamento compostos por indivíduos diferentes Três ou mais grupos de tratamento com os mesmos indivíduos Múltiplos tratamentos com os mesmos indivíduos Associação entre duas variáveis						
tratamento compostos por indivíduos diferentes de tratamento compostos por indivíduos diferentes Intervalo (e tomada a partir de populações normalmente distribuídas") Nominal Análise qui-quadrado de tabelas de contingência (Cap. 5) Ordinal† Teste de soma de postos de Mann-Whitney (Cap. 10) Tempo de sobrevivência Teste de medida Teste t pareado (Cap. 4) Análise de variância (Cap. 9) Teste de variância (Cap. 9) Análise de variância de medidas repetidas (Cap. 9) Análise de variância de medidas repetidas (Cap. 9) Teste de McNemar (Cap. 9) Teste de McNemar (Cap. 9) Teste de postos sinalizados de Wilcoxon (Cap. 10) Teste de log rank ou teste				Delineamento do estudo		
partir de populações normalmente normalmente distribuídas") Nominal Análise qui-quadrado de tabelas de contingência (Cap. 5) Ordinal† Teste de soma de postos de Mann-Whitney (Cap. 10) Tempo de sobrevivência (Cap. 4) (Cap. 3) (Cap. 3) (Cap. 9) (Cap. 9) Teste de McNemar (Cap. 9) Teste de McNemar (Cap. 9) (Cap. 9) Teste de McNemar (Cap. 9) Teste de postos sinalizados de Wilcoxon (Cap. 10) Teste de Friedman (Cap. 8) Teste de Friedman (Cap. 8) Teste de Friedman (Cap. 8)	Escala de medida	tratamento compostos	de tratamento compostos	único tratamento com		,
tabelas de contingência (Cap. 5) (Cap. 5) (Cap. 5) Ordinal† Teste de soma de postos de Mann-Whitney (Cap. 10) (Cap. 10) Tempo de sobrevivência tabelas de contingência (Cap. 9) (Cap. 9) Teste de postos sinalizados (Cap. 10) (Cap. 10) (Cap. 10) (Cap. 10) Tempo de sobrevivência tabelas de contingência (Cap. 9) (Cap. 5) Teste de postos sinalizados (Cap. 10) (Cap. 10) (Cap. 10) (Cap. 10)	partir de populações normalmente				de medidas repetidas	correlação de momento- -produto de Pearson, ou análise de Bland-Altman
de Mann-Whitney (Cap. 10) de Wilcoxon (Cap. 10) (Cap. 10) Spearman (Cap. 8) (Cap. 10) Tempo de sobrevivência Teste de <i>log rank</i> ou teste	Nominal	tabelas de contingência	tabelas de contingência		Cochrane Q [†]	
	Ordinal [†]	de Mann-Whitney			10010 0011100111011	
	Tempo de sobrevivência	_				

^{*} Se o pressuposto de populações normalmente distribuídas não for satisfeito, deve-se ordenar as observações e usar os métodos para dados medidos em escala ordinal.

† Ou dados de intervalo que não são necessariamente distribuídos de maneira normal.



Correlations			
		Altura m	
Idodo	Pearson Correlation	-,067	
Idade	Sig. (2-tailed)	,030	


R²: Coeficiente de determinação

- ▶ O quadrado do coeficiente de correlação (r²) é conhecido como **coeficiente de determinação**.
- ▶ É uma medida da proporção (%) da variabilidade de uma variável ("Y") que é explicada por outra variável "X".

Correlations				
		Peso	IMC	
IMC	Pearson Correlation	,824	1	
	Sig. (2-tailed)	,000		
	N	1375	1375	

R²: Coeficiente de determinação

$$R^2 = (0.824)^2 = 0.678$$

68 % da variação no IMC é explicada pela relação com o peso, 32% não é explicada pelo peso.

R² é um bom índice do quanto uma linha reta descreve a relação entre duas variáveis

Poder Estatístico do Teste

Há diferença entre mostrar que o tratamento não tem efeito e falhar em demonstrar o efeito, sobretudo quando limitações nos estudos!!

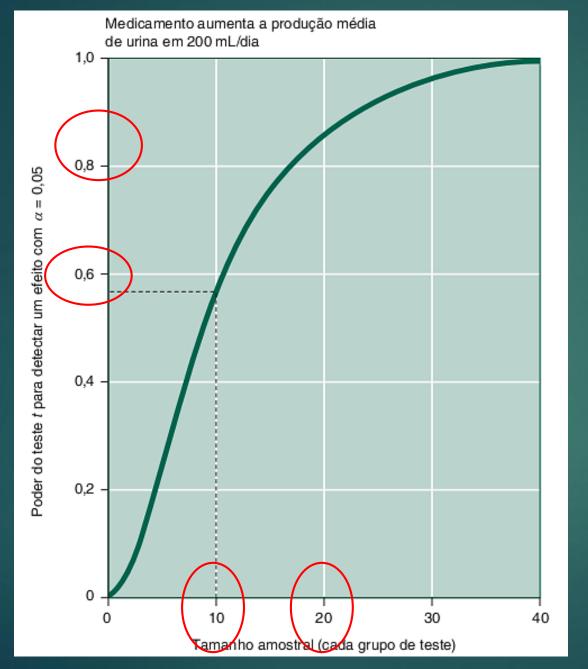
	Sit	Situação real		
Conclusão a partir das observações	Tratamento tem efeito	Tratamento não tem efeito		
Tratamento tem efeito	Positivo-verdadeiro Conclusão correta $1-eta$	Falso-positivo Erro do Tipo I (α)		
Tratamento não tem efeito	Falso-negativo Erro do Tipo II (β)	Negativo-verdadeiro Conclusão correta 1 – α		

Poder do teste = 1- β (probabilidade de erro tipo II)

"Poder do teste"

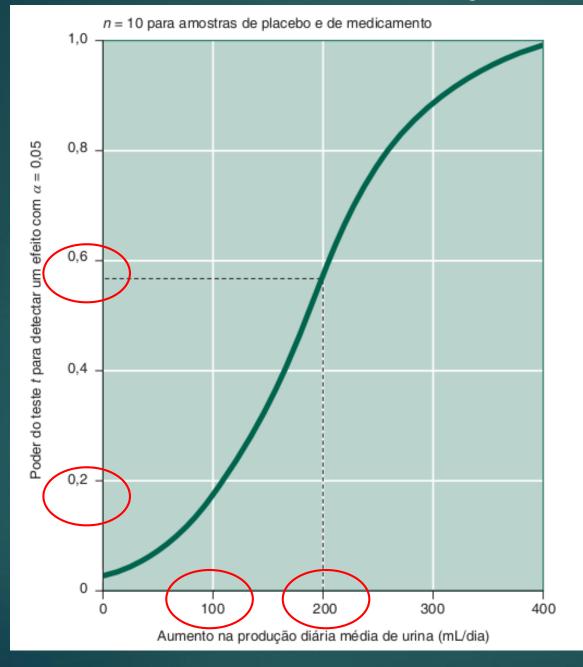
- A capacidade para detectar o efeito de um "tratamento", ou seja, **rejeitar H0**
- Assim, se o poder do teste é 0,80, significa que a chance de detectar um positivo verdadeiro é de 80% (rejeitar H0).

- ▶Depende:
 - ►Tamanho do efeito ou diferença a ser detectada
 - ► Variabilidade na população ou DP (σ)
 - Tamanho das amostras "n"
 - ▶Tamanho do erro tipo de l
 - ▶Tipo de teste estatístico a ser utilizado

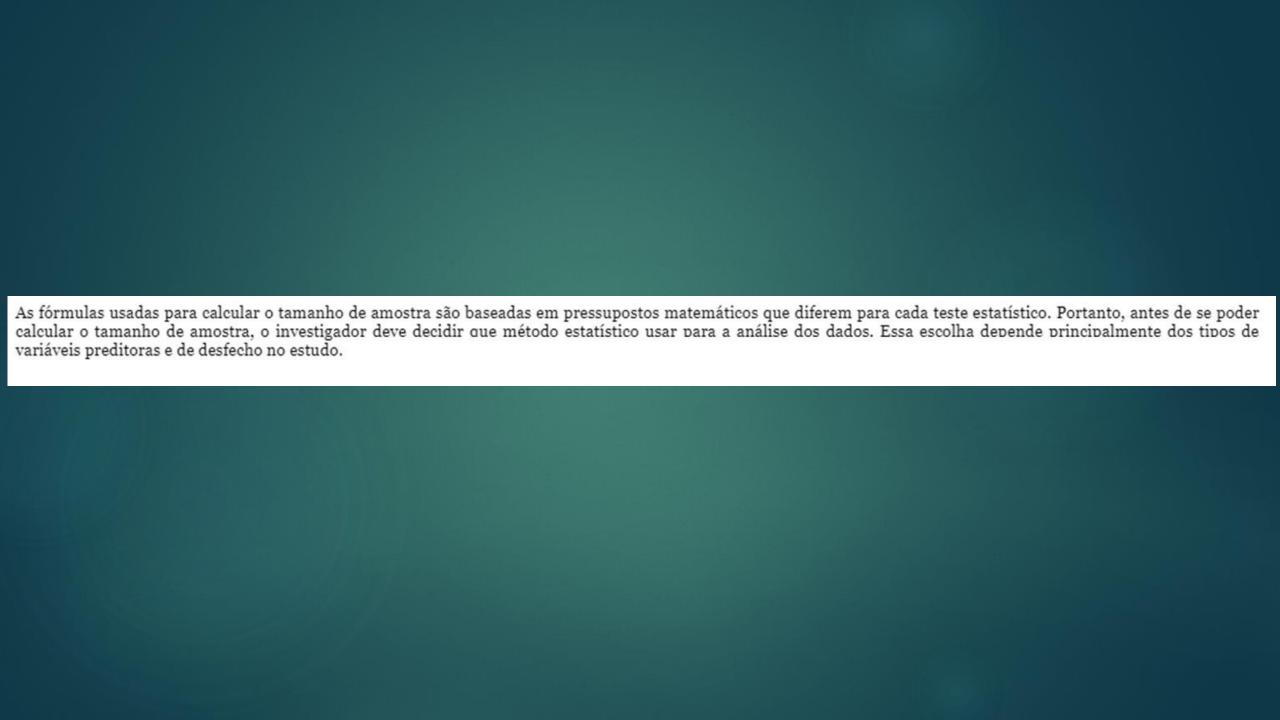

Poder do teste= 1- (β Erro tipo II)

$$\Box \alpha \rightarrow \Box \beta \rightarrow Poder \Box$$

- ► Tamanho do efeito do tratamento (a diferença a se detectar) :
 - QUANTO MAIOR A ≠ a se detectar, MAIOR o PODER.
- Variabilidade na população
 - QUANTO MENOR o desvio-padrão, MAIOR o PODER
- ▶ Tamanho da amostra
 - ►QUANTO MAIOR A TAMANHO DA AMOSTRA, MAIOR o PODER
- O único modo de reduzir α e β é aumentando o tamanho das amostas


- Daí a razão de ser necessário na elaboração do projeto de pesquisa que se saiba:
 - O tamanho do efeito que se vai considerar relevante
 - O tipo de teste a ser aplicado, para que se possa calcular o tamanho do "n" para determinado "poder do teste"

TAMANHO DA AMOSTRA E PODER DO TESTE



- Experimento
- Diurético aumenta volume urinário
- ▶ n=10 em cada grupo
- ► Resultado:
- Diferença de 200ml no vol. urina entre grupos
- Qual o poder do teste "t" para detectar tal ≠ com este tamanho de amostras ("n")?

TAMANHO DA DIFERENÇA E PODER DO TESTE

- Experimento
- Diurético X aumenta o volume urinário?
- n=10 em cada grupo
- Resultado:
- Diferença de 200ml no vol. urina entre grupos
- Considerando este "n" qual o poder do teste "t" para detectar a ≠ observada?

