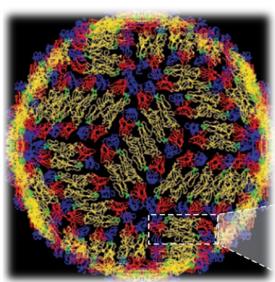
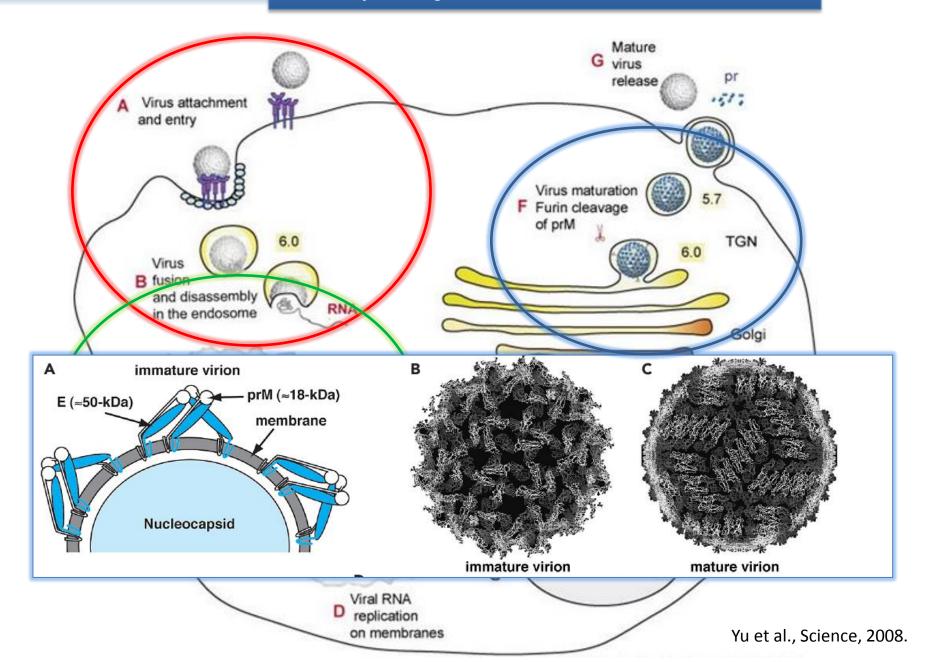
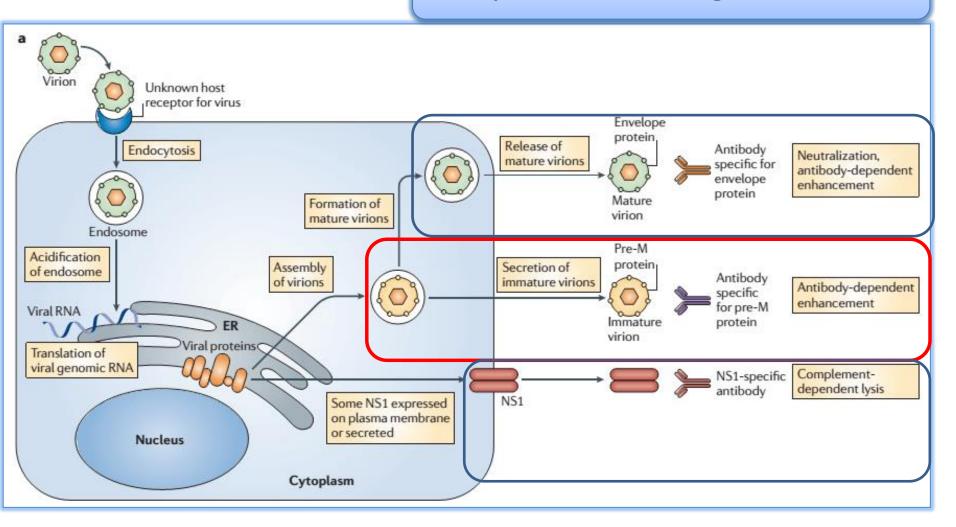

Por: MSc. Rúbens Prince Alves

Dengue a doença


>~390 milhões de casos no mundo por ano; ➤96 milhões de casos com algum sinal de gravidade; >~30 mil mortes por ano; ➤ Milhões de dólares gastos ou perdidos com hospitalizações, absenteísmo no trabalho e prejuízos ao turismo.

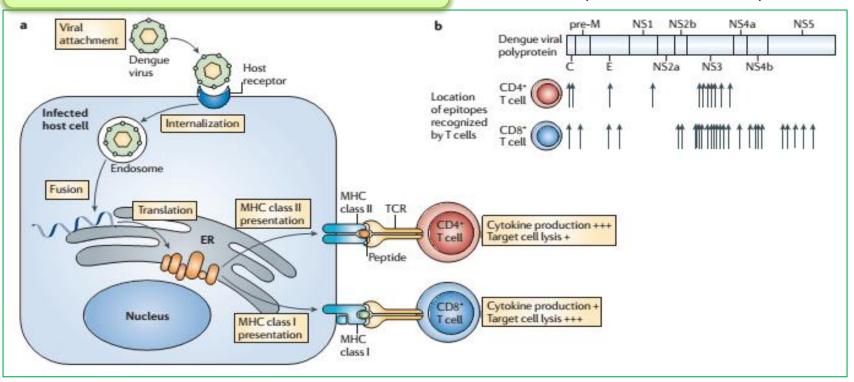
Vírus da Dengue


- Vírus dengue:
- Arbovírus (<u>ar</u>thropod <u>born virus</u>)
- Flaviviridae
- Vírus de RNA
- RNA (+) de fita simples
- Esférico
- Envelopado

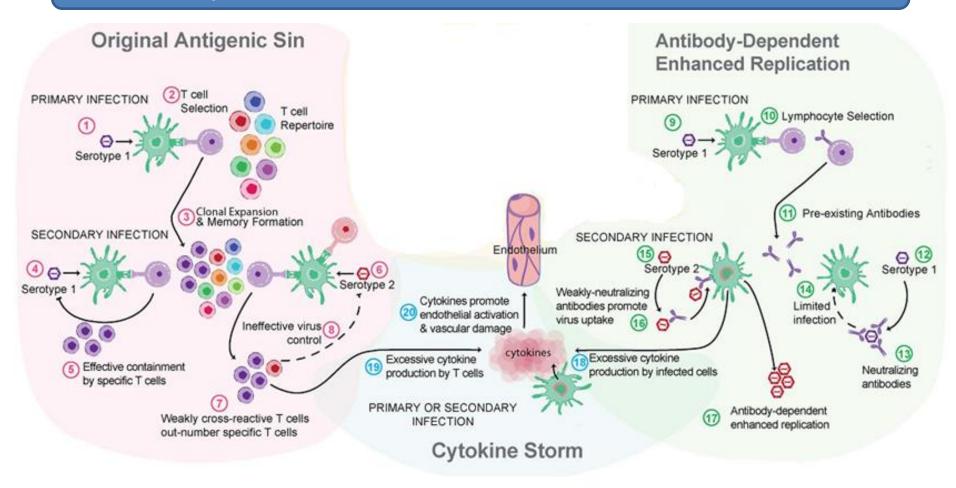


Multiplicação viral x alvos vacinais

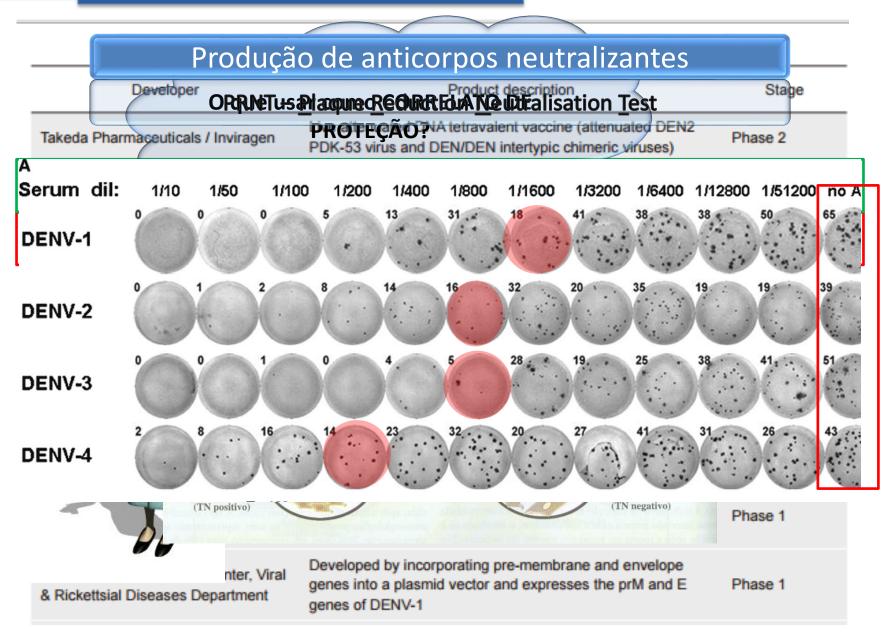
Resposta Imunológica contra dengue


Resposta imunológica humoral

Resposta Imunológica contra dengue


Resposta imunológica celular

Rothman, Nature Immunol, 2012.



Dificuldades no desenvolvimento de vacinas

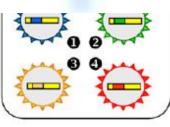
Principal: Necessidade de TETRAVALÊNCIA

Vacinas em desenvolvimento

Estratégia

Phase III Efficacy Latin America

- Countries: Colombia, Mexico, Honduras, Puerto Rico, and Brazil
- Age group: 9-16 years
- Sample Size: 20,875

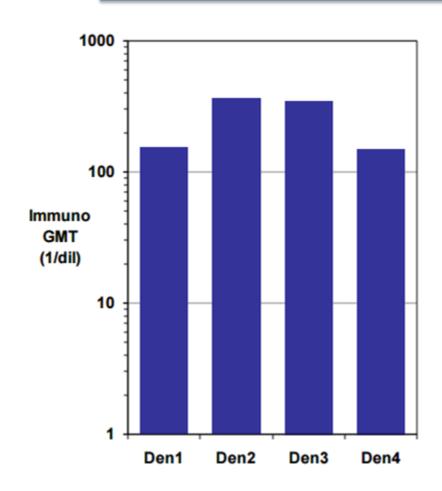

Phase III Efficacy Asian

- · Countries: Thailand, Indonesia, Malaysia, Viet Nam, Philippines
- Age group: 2-14 years
- Sample Size: 10,278

Phase Ilb Efficacy study Thailand

- · Country: Thailand
- · Age group: 4-11 years
- Sample size: 4,002

chimeric dengue viruses (CYD 1-- 4)




- 10⁵ doses infecciosas (salina 0,4%)
- •Placebo = salina 0,9%

subcutâneo

GUYA, B. et al. Vaccine, 2011.

Fase 3 – Resultado na Ásia

Fase 3 – Resultado na América Latina

The NEW ENGLAND JOURNAL of MEDICINE

Variable		Vossina C			Control	wa ii n	Vaccine Efficacy
Variable	Vaccine Group			Control Group			(95% CI)
	Cases	Person-Yr at Risk	Incidence Density (95% CI)	Cases	Person-Yr at Risk	Incidence Density (95% CI)	(
		no.	no./100 person-yr		no.	no./100 person-yr	%
Modified per-protocol analysis*							
Serotype 1	66	12,478	0.5 (0.4–0.7)	66	6,196	1.1 (0.8–1.4)	50.3 (29.1–65.2)
Serotype 2	58	12,495	0.5 (0.4–0.6)	50	6,219	0.8 (0.6–1.1)	42.3 (14.0–61.1)
Serotype 3	43	12,514	0.3 (0.2–0.5)	82	6,213	1.3 (1.1–1.6)	74.0 (61.9–82.4)
Serotype 4	18	12,522	0.1 (0.1-0.2)	40	6,206	0.6 (0.5-0.9)	77.7 (60.2–88.0)
Unknown	6	12,540	<0.1 (0.0-0.1)	3	6,268	<0.1 (0.0-0.1)	0.0 (-517.8-78.6
Intention-to-treat analysis							
Serotype 1	99	27,016	0.4 (0.3-0.4)	109	13,434	0.8 (0.7–1.0)	54.8 (40.2–65.9)
Serotype 2	84	27,035	0.3 (0.2-0.4)	84	13,461	0.6 (0.5-0.8)	50.2 (31.8–63.6)
Serotype 3	55	27,060	0.2 (0.2. 0.3)	106	13,459	0.8 (0.6–1.0)	74.2 (63.9–81.7)
Serotype 4	32	27,063	0.1 (0.1-0.2)	83	13,442	0.6 (0.5-0.8)	80.9 (70.9–87.7)
Unknown	15	27,079	<0.1 (0.0-0.1)	14	13,514	0.1 (0.1-0.2)	46.5 (-19.6-75.9)

Reflexões

Por que esta estratégia vacinal não foi completamente efetiva?

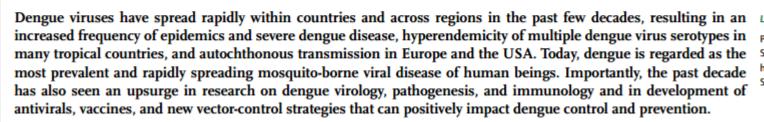
Será que neutralização viral é capaz, por si só, de induzir proteção duradoura contra o DENV?

Há envolvimento das proteínas não-estruturais na indução de proteção duradoura contra o DENV?

Reflexões

frontiers in IMMUNOLOGY

EDITORIAL published: 18 February 2015 doi: 10.3389/fimmu.2015.00075

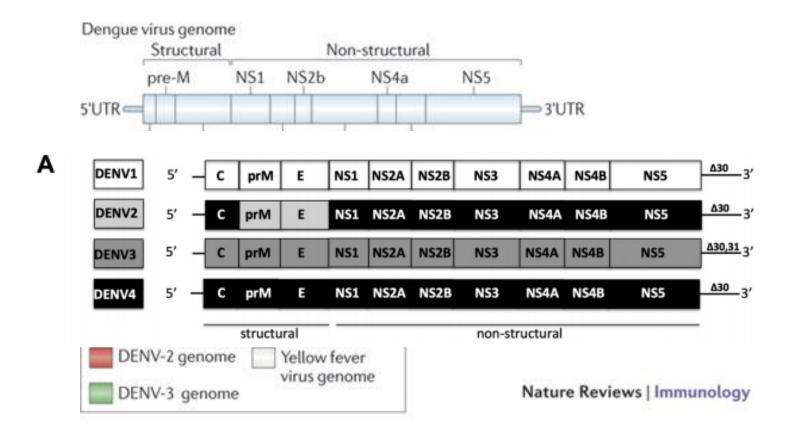


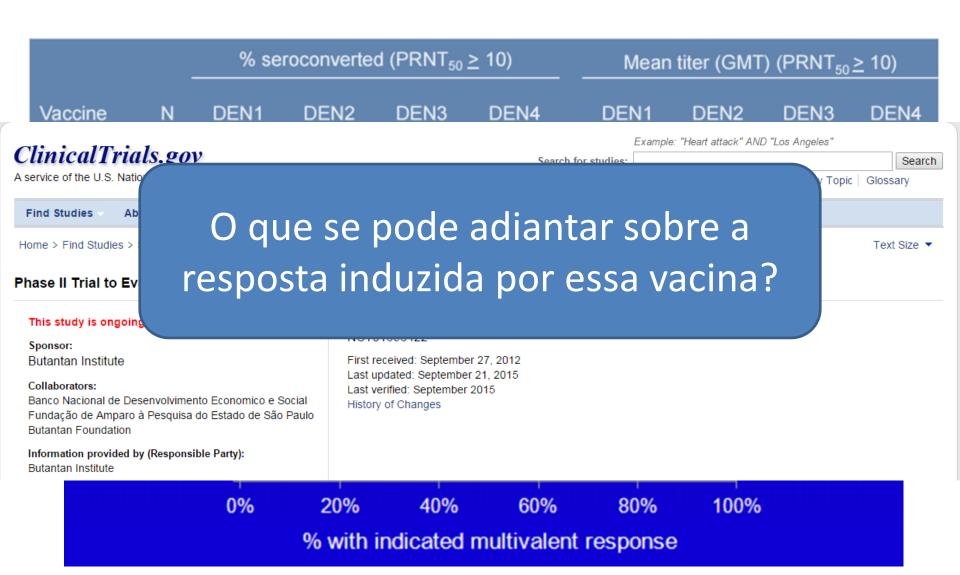
Protective immune responses to dengue virus infection and vaccines: perspectives from the field to the bench

Scott B. Halstead¹ and Simona Zompi^{2,3}*

Dengue

Maria G Guzman, Eva Harris



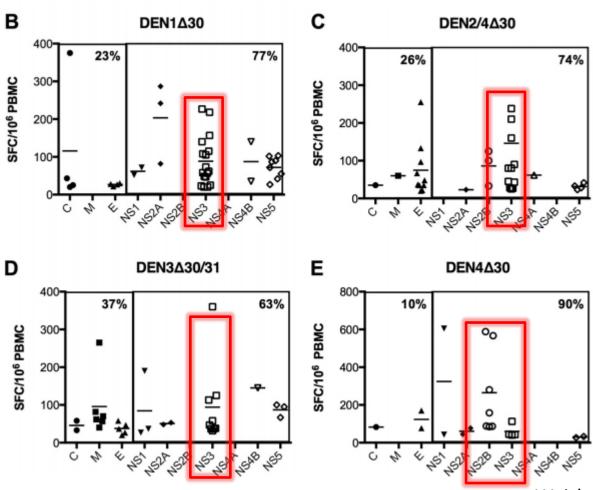

Lancet 2015; 385: 453-65

Published Online September 14, 2014 http://dx.doi.org/10.1016/ S0140-6736(14)60572-9

Estratégia

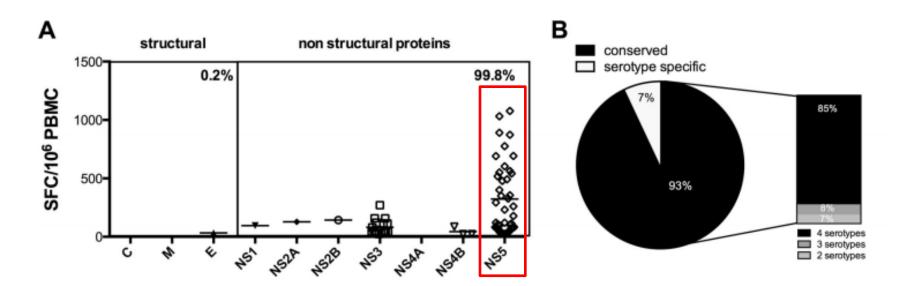
Resultados da fase I

Received 18 July 2014 Accepted 1 October 2014 Accepted manuscript posted online 15 October 2014


Editor: M. S. Diamond

The Human CD8⁺ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes

Daniela Weiskopf,^a Michael A. Angelo,^a Derek J. Bangs,^a John Sidney,^a Sinu Paul,^a Bjoern Peters,^a Aruna D. de Silva,^{a,e} Janet C. Lindow,^b Sean A. Diehl,^b Stephen Whitehead,^c Anna Durbin,^d Beth Kirkpatrick,^b Alessandro Sette^a


Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA*; University of Vermont College of Medicine and Vaccine Testing Center, Burlington, Vermont, USA*; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA*; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA*; Genetech Research Institute, Colombo, Sri Lanka*

Padrão de resposta celular para formulações monovalentes

Weiskopof et al., J Virol. 2015

Padrão de resposta celular para a formulação tetravalente

T-cell immunity to infection with dengue virus in humans

Daniela Weiskopf * and Alessandro Sette

Divis

Human CD8⁺ T-Cell Responses Against the 4 Dengue Virus Serotypes Are Associated With Distinct Patterns of Protein Targets

Daniela Weiskopf,¹
Françoise P. Sanchi
Angel Balmaseda,³

¹Division of Vaccine Disc
Health, University of Cali

Sustainable Sciences In:

Brazil: and ⁶Genetech Re

Dengue virus infection elicits highly polarized CX3CR1⁺ cytotoxic CD4⁺ T cells associated with protective immunity

Daniela Weiskopf^{a,1,2}, Derek J. Bangs^{a,1}, John Sidney^a, Ravi V. Kolla^a, Aruna D. De Silva^{a,b}, Aravinda M. de Silva^c,

RESEARCH ARTICLE

www.ScienceTranslationalMedicine.org 11 March 2015 Vol 7 Issue 278 278ra35

ech Research Institute, Colombo, 00800, Sri Lanka; hapel Hill, NC 27599

March 25, 2015)

DENGUE

Virus-specific T lymphocytes home to the skin during natural dengue infection

Laura Rivino,^{1,2}* Emmanuelle A. Kumaran,¹ Tun-Linn Thein,³ Chien Tei Too,¹ Victor Chih Hao Gan,³ Brendon J. Hanson,⁴ Annelies Wilder-Smith,⁵ Antonio Bertoletti,^{2,6} Nicholas R. J. Gascoigne,¹ David Chien Lye,³ Yee Sin Leo,^{3,5} Arne N. Akbar,⁷ David M. Kemeny,¹ Paul A. MacAry¹

Reflexões

- → O correlato de proteção baseado apenas em neutralização viral não é suficiente como indicador de proteção;
- → O braço de resposta imunológica celular conta dengue tem importante papel na indução de proteção contra a infecção viral;
- → Porém, mais informações sobre a imunidade celular contra a dengue deve ser estudada.

Vacinas para o controle da dengue: potencial vacinal da combinação das proteínas não estruturais na geração de resposta celular protetora em modelo experimental

Beneficiário: Rubens Prince dos Santos Alves

Instituição-sede da Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brasil

Pesquisador responsável: Luis Carlos de Souza Ferreira 🔞 🦓

Área do conhecimento: Ciências Biológicas - Microbiologia - Microbiologia Aplicada

Linha de fomento: Bolsas no Brasil - Doutorado

Processo: 15/02352-7

Vigência (Início): 01 de agosto de 2015 Vigência (Término): 31 de julho de 2018

- → Estudar alvos em separado (Proteína não estrutural 1, 3 e 5);
- Associar padrões de resposta imunológica induzida com controle da multiplicação viral;
- → Propor uma formulação vacinal que reúna antígenos corretos e que induzam padrões de resposta capazes de controlar a infecção

O que temos a dizer... Agora!

Virology 487 (2016) 41-49

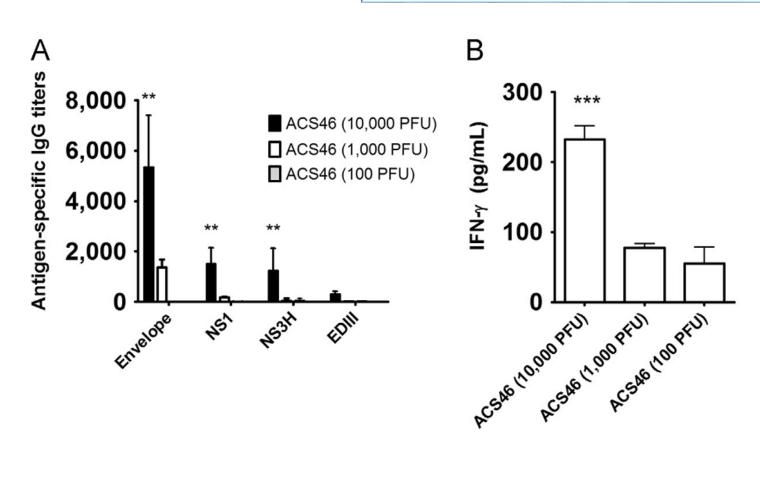
Contents lists available at ScienceDirect

Virology

Antibodies are not required to a protective immune response against dengue virus elicited in a mouse encephalitis model

Jaime Henrique Amorim ^{a,*}, Rúbens Prince dos Santos Alves ^a, Raíza Bizerra ^a, Sara Araújo Pereira ^a, Lennon Ramos Pereira ^a, Denicar Lina Nascimento Fabris ^a, Robert Andreata Santos ^a, Camila Malta Romano ^b, Luís Carlos de Souza Ferreira ^{a,*}

^a Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil


b Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias (LIMHC), Universidade de São Paulo, Brasil

Hematological patterns measured in mice inoculated with ACS46 or JHA1 DENV2 strains.^a

Hematological parameters ^b	Infection groups						
parameters	ACS46 (100 PFU)	ACS46 (1000 PFU)	ACS46 (10,000 PFU)	JHA1 (100 PFU)			
HCT ^c	33.02 ± 0.90	32.02 ± 0.85	33.40 ± 1.25	43.74 ± 2.80**			
RBC	9.12 ± 0.30	8.72 ± 0.22	$\textbf{8.42} \pm \textbf{0.92}$	9.45 ± 0.20			
WBC	8.11 ± 0.48	8.61 ± 0.68	9.21 ± 0.98	$1.98 \pm 0.61^{***}$			
LYM	5.79 ± 0.54	5.98 ± 0.37	1.12 ± 0.78	$1.06 \pm 0.21^{***}$			
NEU	$\textbf{1.50} \pm \textbf{0.15}$	1.62 ± 0.25	$\boldsymbol{0.89 \pm 0.97}$	$0.64 \pm 0.28^{***}$			
PLT	7.28 ± 0.45	7.68 ± 0.33	$\textbf{7.48} \pm \textbf{0.33}$	6.56 ± 0.37			
PT ^d	19.40 ± 1.55	20.30 ± 2.56	21.30 ± 3.06	263.60 ± 15.28***			

ACS" ACSAN CSAN' JIN

Resposta imunológica induzida pelo prime com ACS46

Proteção induzida pelo prime com ACS46

-primed

 ± 1.64

+0.41

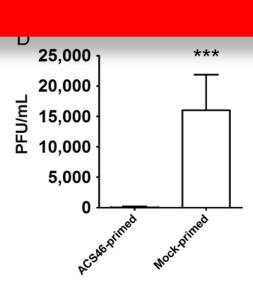
+0.53

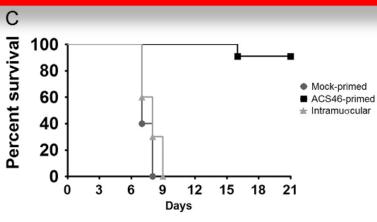
+0.60

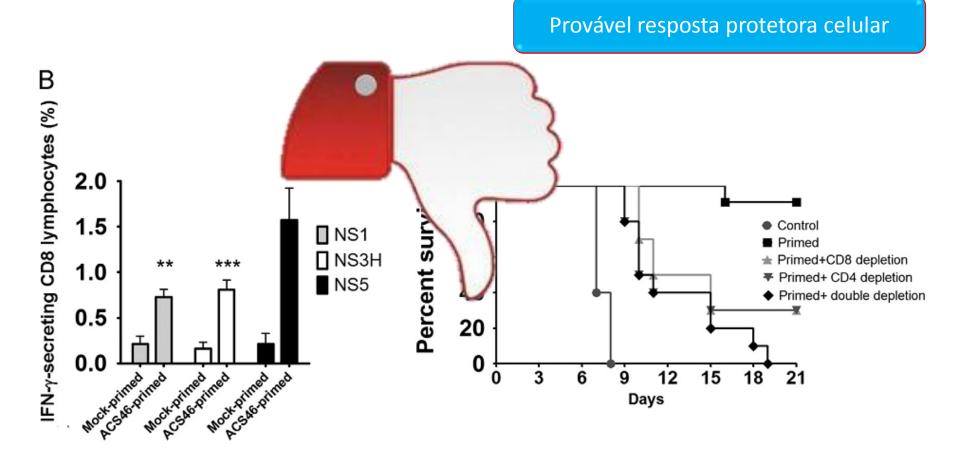
+0.38

+0.51

+0.96




Table 2 Hematological


Hematol

HCT RBC WBC LYM NEU PLT PT

Por que houve proteção?

Conclusões...

- Não é simples... Abaixo o empirismo...
- Repensar o desenvolvimento de vacinas para controle da dengue;
- Associar padrões de resposta imunológica com controle da multiplicação viral;
- Estudar alvos em separado;
- Propor uma formulação vacinal que reúna antígenos corretos e que induzam padrões de resposta capazes de controlar a infecção.

Agradecimentos

Laboratório de Desenvolvimento de Vacinas

