## Line Impedance

Now let's define line impedance $Z(z)$, a complex function which is simply the ratio of the complex line voltage and complex line current:

$$
Z(z)=\frac{V(z)}{I(z)}
$$

Q: Hey! I know what this is!
The ratio of the voltage to current is simply the characteristic impedance $Z_{0}$, right ???

A: NO! The line impedance $Z(z)$ is (generally speaking) NOT the transmission line characteristic impedance $Z_{0}$ !!!
$\rightarrow$ It is unfathomably important that you understand this!!!!! $\leftarrow$

## Why Line Impedance is not $Z_{0}$

To see why line impedance $Z(z)$ is different than characteristic impedance $Z_{0}$, recall that:

$$
V(z)=V^{+}(z)+V^{-}(z) \quad \text { and that } \quad I(z)=\frac{V^{+}(z)-V^{-}(z)}{Z_{0}}
$$

Therefore, line impedance is:

$$
Z(z)=\frac{V(z)}{I(z)}=Z_{0}\left(\frac{V^{+}(z)+V^{-}(z)}{V^{+}(z)-V^{-}(z)}\right) \neq Z_{0}
$$

Or, more specifically, we can write:

$$
Z(z)=Z_{0}\left(\frac{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}}\right)
$$

## What then is $Z_{0}$ ?

Q: I'm confused! Isn't:

$$
V^{+}(z) / I^{+}(z)=Z_{0} ? ? ?
$$

A: Yes! That is true! The ratio of the voltage to current for each of the two propagating waves is $\pm Z_{0}$.

However, the ratio of the sum of the two voltages, to the sum of the two currents, is not equal to $Z_{0}$ (generally speaking)!
$\rightarrow$ This is actually confirmed by the expression of $Z(z)$ above.

Say that $V^{-}(z)=0$, so that only one wave $\left(V^{+}(z)\right)$ is propagating on the line.
In this case, the ratio of the total voltage to the total current is simply the ratio of the voltage and current of the one remaining wave-the characteristic impedance $Z_{0}$ !

$$
Z(z)=\frac{V(z)}{I(z)}=Z_{0}\left(\frac{V^{+}(z)}{V^{+}(z)}\right)=\frac{V^{+}(z)}{I^{+}(z)}=Z_{0} \quad\left(\text { when } V^{-}(z)=0\right)
$$

## Let's Summarize!!

Q: So, it appears to me that characteristic impedance $Z_{0}$ is a transmission line parameter, depending only on the transmission line values $L$ and $C$.

Whereas line impedance is $Z(z)$ depends the magnitude and phase of the two propagating waves $V^{+}(z)$ and $V^{-}(z)$-values that depend not only on the transmission line, but also on the two things attached to either end of the transmission line!

Right!?

## A: Exactly!

Moreover, note that characteristic impedance $Z_{0}$ is simply a number, whereas line impedance $Z(z)$ is a function of position ( $z$ ) on the transmission line.

