ESTRUTURA DE COMUNIDADES VEGETAIS

BIE 0320 (2019)

TRÊS PROPRIEDADES DE UMA COMUNIDADE:

1 - RIQUEZA

2 - COMPOSIÇÃO

3 - ABUNDÂNCIAS RELATIVAS

Por que a RIQUEZA de espécies varia entre comunidades?

Helarctis Ral eptropis 23 Pates ropis ----31.0 Neutropis aftralis će. Anta ctis 600 OW Bertilet 1996,1997

GLOBAL BIODIVERSITY: SPECIES NUMBERS OF VASCULAR PLANTS

see surface temperature

cold coments

W Bathlett, N. Biedinger, G. Braun F. Faig, O. Ker, W. Laver & J. Marke 1997 mobiled after W. Bathlett, W. Laver & A. Placket 1996 Department of Botony and Geography University of Bonn German-Aerospace Research Establishment, Cologne

Catography: M. Graf Department of Deography University of Bonn

Por que a COMPOSIÇÃO de espécies varia entre comunidades?

Por que a ABUNDÂNCIA das espécies varia entre comunidades?

Primeira resposta que vem à mente?

Diferenças de Nicho

Outros processos discutidos na nossa disciplina...

Ecology, 84(4), 2003, pp. 932–947 © 2003 by the Ecological Society of America

ARE PLANT POPULATIONS IN FRAGMENTED HABITATS RECRUITMENT LIMITED? TESTS WITH AN AMAZONIAN HERB

Emilio M. Bruna^{1,2,3}

Migração Dispersão

Oecologia (2011) 165:175–184 DOI 10.1007/s00442-010-1718-x

COMMUNITY ECOLOGY - ORIGINAL PAPER

Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation

Yi-Ching Lin · Li-Wan Chang · Kuoh-Cheng Yang · Hsiang-Hua Wang · I-Fang Sun Limitação de dispersão

Ecology Letters, (1998) 1:193–199

Can high tree species richness be explained by Hubbell's null model?

Teoria Neutra Especiação

Dependência Negativa da Densidade - Hipótese Janzen-Connell (aulas)

Uma proposta para organizar essas ideias

High level processes X Low level processes

QUATRO PROCESSOS FUNDAMENTAIS (High level) EM ECOLOGIA DE COMUNIDADES

Low leve

Vellend 2010

Por que a RIQUEZA de espécies varia entre comunidades?

ESPECIAÇÃO (+) 🏓 RIQUEZA

Manguezais no oeste do oceano Pacífico chegam a ter 40 espécies

Condições propícias ao surgimento de espécies (e dispersão interrompida)

Maior riqueza em comunidades locais

Teoria de Biogeografia de Ilhas (MacArthur & Wilson, 1967)

Ilhas mais próximas -> Maior migração/dispersão -> Maior riqueza

Metacomunidades (Holyoak et al. 2005)

Migração entre comunidades

Altas taxas de migração

Manutenção e aumento da riqueza

Modelo Continente-Ilha

Modelo Ilha-Ilha

Espécies ocorrendo juntas -> COMPETIÇÃO -> Exclusão competitiva

Mais de 100 hipóteses para explicar como as espécies evitam a exclusão competitiva

Segundo Wright (2002) os três mecanismos mais importantes são :

- → Diferenciação de nicho (a partir das ideias de Gause, 1934)
- → Controle por inimigos naturais (Janzen-Connell, 1970)

→ Regulação populacional dependente da densidade (Mortalidade Compensatória
- Connell, 1984; Seleção dependente de frequência - Chesson, 2000)

C1 - Marlierea racemosa

Partição de recursos

SELEÇÃO (-) 🗲 RIQUEZA

Ex.: Ocorrência de duas espécies arbóreas em uma floresta de restinga com dois tipos de solos

C2 - Ternstroemia brasiliensis

LIMITE?

Diferenciação de Nicho (+)

SELEÇÃO (-) **→** RIQUEZA

Inimigos naturais (+)

Modelo JANZEN - CONNELL

Maior densidade e proximidade à planta mãe geram maior chance de PREDAÇÃO e ATAQUE DE PATÓGENOS

A redução na densidade de coespecíficos próximos à planta mãe, favorece o estabelecimento de outras espécies abaixo da copa -> Manutenção da riqueza

SELEÇÃO (-) 🏓 RIQUEZA

Mortalidade Compensatória (Connell, 1984)

Espécies abundantes teriam maior mortalidade e espécies raras teriam vantagem (Manutenção da Riqueza)

DERIVA (-) -> RIQUEZA

Dinâmica Neutra (Hubbell, 2001)

Indivíduos sujeitos às mesmas regras em relação à natalidade e mortalidade.

Taxas demográficas estocásticas

Quanto menor o tamanho da comunidade local, mais rápida a perda de espécies

Por que a COMPOSIÇÃO de espécies varia entre comunidades?

Como os quatro processos afetam a beta-diversidade? ESPECIAÇÃO

DISPERSÃO

SELEÇÃO

DERIVA

ESPECIAÇÃO **→** COMPOSIÇÃO

Conjuntos diferentes de espécies surgem e persistem em diferentes locais Diferentes modelos de especiação (Alopátrica/Simpátrica/Parapátrica)

Mesmo sob condições ambientais similares - Aumenta a beta-diversidade

LIMITAÇÃO DE DISPERSÃO

Aumenta AGREGAÇÃO ESPACIAL -> Aumenta beta-diversidade

EFEITO DE MASSA (Metacomunidade)

Altas taxas de dispersão -> Manutenção de espécies mesmo em condições desfavorávei

Reduz a beta-diversidade

SELEÇÃO **→** COMPOSIÇÃO

HETEROGENEIDADE ESPACIAL

Diferentes conjuntos de espécies conseguem persistir sob diferentes condições ambientais (Partição de Nicho)

Aumenta a beta-diversidade

CARACTERÍSTICAS FUNCIONAIS

A seleção pode atuar não apenas na identidade das espécies, mas também nas características funcionais

DERIVA **→** COMPOSIÇÃO

Dinâmica Neutra (Hubbell, 2001)

Taxas demográficas aleatórias levam diferentes espécies à extinção em diferentes comunidades

Mesmo sob condições ambientais iguais

Aumenta a beta-diversidade

PROPOSTA DE ANÁLISE INTEGRADA - PARTIÇÃO DA VARIAÇÃO

Qual proporção da variação na composição de espécies entre amostras é explicada por condições ambientais (nicho), descontando-se o efeito da distância geográfica (dispersão)? Qual a proporção não explicada?

Jones et al. (2011) - Samambaias em Floresta Montana na Bolívia

Bueno et al. (2011) - Região ecotonal no Paraguai

Gueze et al. (2013) - Diferentes classes de tamanho - Amazônia

QUAL É O PROCESSO MAIS IMPORTANTE?

Talvez essa não seja a melhor pergunta, e sim:

QUAL A IMPORTÂNCIA DE CADA PROCESSO?

Tendência proposta por diversos autores

Lortie et al. (2004)

Roughgarden (2009)

Vellend (2010)

Rosindell et al. (2011)

ESTRUTURAÇÃO DE COMUNIDADES (Vellend, 2010)

Processos atuando em diferentes escalas espaciais e temporais