
1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 1

Evolutionary Generative Adversarial Networks
Chaoyue Wang, Chang Xu, Xin Yao, Fellow, IEEE, Dacheng Tao, Fellow, IEEE

Abstract—Generative adversarial networks (GAN) have been
effective for learning generative models for real-world data.
However, accompanied with the generative tasks becoming more
and more challenging, existing GANs (GAN and its variants) tend
to suffer from different training problems such as instability
and mode collapse. In this paper, we propose a novel GAN
framework called evolutionary generative adversarial networks
(E-GAN) for stable GAN training and improved generative
performance. Unlike existing GANs, which employ a pre-defined
adversarial objective function alternately training a generator
and a discriminator, we evolve a population of generators to play
the adversarial game with the discriminator. Different adversarial
training objectives are employed as mutation operations and each
individual (i.e., generator candidature) are updated based on
these mutations. Then, we devise an evaluation mechanism to
measure the quality and diversity of generated samples, such
that only well-performing generator(s) are preserved and used for
further training. In this way, E-GAN overcomes the limitations of
an individual adversarial training objective and always preserves
the well-performing offspring, contributing to progress in and the
success of GANs. Experiments on several datasets demonstrate
that E-GAN achieves convincing generative performance and
reduces the training problems inherent in existing GANs.

Index Terms—Generative adversarial networks, evolutionary
computation, deep generative models

I. INTRODUCTION

GENERATIVE adversarial networks (GAN) [1] are one
of the main groups of methods used to learn generative

models from complicated real-world data. As well as using
a generator to synthesize semantically meaningful data from
standard signal distributions, GANs (GAN and its variants)
train a discriminator to distinguish real samples in the training
dataset from fake samples synthesized by the generator. As the
confronter, the generator aims to deceive the discriminator by
producing ever more realistic samples. The training procedure
continues until the generator wins the adversarial game; that is,
the discriminator cannot make a better decision than randomly

This work was supported by the Australian Research Council Projects: FL-
170100117, DP-180103424, IH180100002, and DE180101438; and National
Key R&D Program of China (Grant No. 2017YFC0804003), EPSRC (Grant
Nos. EP/J017515/1 and EP/P005578/1), the Program for Guangdong Intro-
ducing Innovative and Enterpreneurial Teams(Grant No. 2017ZT07X386),
Shenzhen Peacock Plan (Grant No. KQTD2016112514355531), the Science
and Technology Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284) and the Program for University Key Laboratory
of Guangdong Province(Grant No. 2017KSYS008).

C. Wang, C. Xu and D. Tao are with the UBTECH Sydney Artificial
Intelligence Centre and the School of Computer Science, in the Faculty of
Engineering and Information Technologies, at the University of Sydney, 6
Cleveland St, Darlington, NSW 2008, Australia (email: chaoyue.wang, c.xu,
dacheng.tao@sydney.edu.au).

X. Yao is with the Shenzhen Key Laboratory of Computational In-
telligence, University Key Laboratory of Evolving Intelligent Systems of
Guangdong Province, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China,
and CERCIA, School of Computer Science, University of Birmingham, UK
(e-mail: x.yao@cs.bham.ac.uk).

guessing whether a particular sample is fake or real. Compared
with other existing generative models, GANs provide a concise
and efficient framework for learning generative models. There-
fore, GANs have recently been successfully applied to image
generation [2]–[6], image editing [7]–[10], video prediction
[11]–[13], and many other tasks [14]–[18].

Comparing with most existing discriminative tasks (e.g.,
classification, clustering), GANs perform a challenging gener-
ative process, which projects a standard distribution to a much
more complex high-dimensional real-world data distribution.
Firstly, although GANs have been utilized to modeling large-
scale real-world datasets, such as CelebA, LSUN and Ima-
geNet, they are easily suffering from mode collapse problem,
i.e., the generator can only learn some limited patterns from
the large-scale target datasets, or assigns all its probability
mass to a small region in the space [19]. Meanwhile, if the
generated distribution and the target data distribution do not
substantially overlap (usually at the beginning of training),
the generator gradients can point to more or less random
directions or even result in the vanishing gradient issue. In
addition, to generate high-resolution and high-quality samples,
both the generator and discriminator are asked to be deeper and
larger. Under the vulnerable adversarial framework, it’s hard
to balance and optimize such large-scale deep networks. Thus,
in most existing works, appropriate hyper-parameters (e.g.,
learning rate and updating steps) and network architectures
are critical configurations. Unsuitable settings reduce GAN’s
performance or even fail to produce any reasonable results.
Overall, although GANs already produce visually appealing
samples in various applications, they are still facing many
large-scale optimization problems.

Many recent efforts on GANs have focused on overcoming
these optimization difficulties by developing various adver-
sarial training objectives. Typically, assuming the optimal
discriminator for the given generator is learned, different
objective functions of the generator aim to measure the dis-
tance between the generated distribution and the target data
distribution under different metrics. The original GAN uses
Jensen-Shannon divergence (JSD) as the metric. A number of
metrics have been introduced to improve GAN’s performance,
such as least-squares [20], absolute deviation [21], Kullback-
Leibler (KL) divergence [22], and Wasserstein distance [23].
However, according to both theoretical analyses and exper-
imental results, minimizing each distance has its own pros
and cons. For example, although measuring KL divergence
largely eliminates the vanishing gradient issue, it easily results
in mode collapse [22], [24]. Likewise, Wasserstein distance
greatly improves training stability but can have non-convergent
limit cycles near equilibrium [25].

Through observation, we find that most existing GAN
methods are limited by the specified adversarial optimization

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 2

strategy. Since the training strategy is fixed, it is hard to adjust
the balance between the generator and discriminator during the
training process. Meanwhile, as aforementioned, each existing
adversarial training strategy has its own pros and cons in
training GAN models.

In this paper, we build an evolutionary generative adver-
sarial network (E-GAN), which treats the adversarial training
procedure as an evolutionary problem. Specifically, a discrim-
inator acts as the environment (i.e., provides adaptive loss
functions) and a population of generators evolve in response
to the environment. During each adversarial (or evolutionary)
iteration, the discriminator is still trained to recognize real
and fake samples. However, in our method, acting as parents,
generators undergo different mutations to produce offspring
to adapt to the environment. Different adversarial objective
functions aim to minimize different distances between the gen-
erated distribution and the data distribution, leading to different
mutations. Meanwhile, given the current optimal discriminator,
we measure the quality and diversity of samples generated
by the updated offspring. Finally, according to the principle
of “survival of the fittest”, poorly-performing offspring are
removed and the remaining well-performing offspring (i.e.,
generators) are preserved and used for further training. Based
on the evolutionary paradigm to optimize GANs, the proposed
E-GAN overcomes the inherent limitations in the individual
adversarial training objectives and always preserves the well-
performing offspring produced by different training objectives
(i.e., mutations). In this way, we contribute to progress in and
the success of the large-scale optimization of GANs. Following
vanilla GAN [1], we evaluate the new algorithm in image
generation tasks. Overall, the proposed evolutionary strategy is
largely orthogonal to existing GAN models. Through applying
the evolutionary framework to different GAN models, it is
possible to perform different kinds of generation tasks. For
example, GAN objectives were devised for generating text.
Considering them as mutation operations, the proposed evo-
lutionary framework can be applied to solve text generation
tasks.

Meanwhile, the proposed E-GAN framework also provides
a novel direction to apply evolutionary learning paradigm on
solving deep learning problems. Recent years, although deep
learning algorithms have achieved promising performance on
a variety of applications, they are still facing many challenges
in solving real-world problems. Evolutionary computation, as
a powerful approach to complex real-world problems [26]–
[29], has been utilized to solve many deep learning chal-
lenges. Among them, [30] devised an evolutionary algorithm
to automatically search the architecture and hyper-parameters
of deep networks. Moreover, evolution strategies have been
utilized as an alternative to MDP-based techniques to opti-
mize reinforcement learning models [31]. In this work, we
attempt to combine the back-propagation algorithm and the
evolutionary algorithm for optimizing deep generative models.
The parameters updated by different learning objectives are
regarded as variation results during the evolutionary process.
By introducing suitable evaluation and selection mechanisms,
the whole training process can be more efficiency and stability.
We hope the proposed evolutionary learning framework can

be generalized to more deep learning problems, such as
reinforcement learning.

In summary, we make following contributions in this paper:
• In order to stabilize GAN’s training process, we devised a

simple yet efficient evolutionary algorithm for optimizing
generators within GANs framework. To the best of our
knowledge, it’s the first work that introduces the evolu-
tionary learning paradigm into learning GAN models.

• Through analyzing the training process of E-GAN, some
properties of existing GANs objectives are further ex-
plored and discussed.

• Experiments evaluated on several large-scale datasets are
performed, and demonstrate that convincing results can
be achieved by the proposed E-GAN framework.

The rest of the paper is organized as follows: after a brief
summary of previous related works in section II, we illustrate
the proposed E-GAN together with its training process in
section III. Then we exhibit the experimental validation of the
whole method in section IV. Finally, we conclude this paper
with some future directions in section V.

II. BACKGROUND

In this section, we first review some previous GANs devoted
to reducing training instability and improving the generative
performance. We then briefly summarize some evolutionary
algorithms on deep neural networks.

A. Generative Adversarial Networks

Generative adversarial networks (GAN) provides an excel-
lent framework for learning deep generative models, which
aim to capture probability distributions over the given data.
Compared to other generative models, GAN is easily trained
by alternately updating a generator and a discriminator using
the back-propagation algorithm. In many generative tasks,
GANs (GAN and its variants) produce better samples than
other generative models [32]. Besides image generation tasks,
GANs have been introduced to more and more tasks, such
as video generation [11], [33], visual tracking [34]–[36],
domain adaption [37], hashing coding [38]–[40], and feature
learning [41], [42]. In these tasks, the adversarial training
strategy also achieved promising performance.

However, some problems still exist in the GANs training
process. In the original GAN, training the generator was equal
to minimizing the Jensen-Shannon divergence between the
data distribution and the generated distribution, which easily
resulted in the vanishing gradient problem. To solve this
issue, a non-saturating heuristic objective (i.e., ‘− logD trick’)
replaced the minimax objective function to penalize the gen-
erator [1]. Then, [22] and [43] designed specified network
architectures (DCGAN) and proposed several heuristic tricks
(e.g., feature matching, one-side label smoothing, virtual
batch normalization) to improve training stability. Meanwhile,
energy-based GAN [21] and least-squares GAN [20] improved
training stability by employing different training objectives.
Although these methods partly enhanced training stability, in
practice, the network architectures and training procedure still
required careful design to maintain the discriminator-generator

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 3

balance. More recently, Wasserstein GAN (WGAN) [23]
and its variant WGAN-GP [44] were proposed to minimize
the Wasserstein-1 distance between the generated and data
distributions. Since the Wasserstein-1 distance is continuous
everywhere and differentiable almost everywhere under only
minimal assumptions [23], these two methods convincingly re-
duce training instability. However, to measure the Wasserstein-
1 distance between the generated distribution and the data
distribution, they are asked to enforce the Lipschitz constraint
on the discriminator (aka critic), which may result in some
optimization problems [44].

Besides devising different objective functions, some works
attempt to stable GAN training and improve generative per-
formance by introducing multiple generators or discriminators
into an adversarial training framework. [45] proposed a dual
discriminator GAN (D2GAN), which combines the Kullback-
Leibler (KL) and reverse KL divergences into a unified ob-
jective function through employing two discriminators. Multi-
discriminator GAN frameworks [46], [47] are devised and
utilized for providing stable gradients to the generator and
further stabilizing the adversarial training process. Moreover,
[48] apply boosting techniques to train a mixture of generators
by continually adding new generators to the mixture. [49]
train many generators by using a multi-class discriminator
that predicts which generator produces the sample. Mixture
GAN (MGAN) [50] is proposed to overcome the mode col-
lapse problem by training multiple generators to specialize
in different data modes. Overall, these multi-generator GANs
aim to learn a set of generators, and the mixture of their
learned distributions would approximate the data distribution,
i.e., different generators are encouraged to capture different
data modes. Although the proposed E-GAN also creates
multiple generators during training, we always keep the well-
performing candidates through survival of the fittest, which
helps the final learned generator achieving better performance.
Note that, in our framework, only one generator was learned
to represent the whole target distribution at the end of the
training.

B. Evolutionary Computation

Over the last twenty years, evolutionary algorithms have
achieved considerable success across a wide range of computa-
tional tasks including modeling, optimization and design [51]–
[55]. Inspired by natural evolution, the essence of an evolution-
ary algorithm is to equate possible solutions to individuals in
a population, produce offspring through variations, and select
appropriate solutions according to fitness [56].

Recently, evolutionary algorithms have been introduced to
solve deep learning problems. To minimize human participa-
tion in designing deep algorithms and automatically discover
such configurations, there have been many attempts to opti-
mize deep learning hyper-parameters and design deep network
architectures through an evolutionary search [57], [58]. Among
them, [30] proposed a large-scale evolutionary algorithm to
design a whole deep classifier automatically. Meanwhile, dif-
ferent from widely employed gradient-based learning algo-
rithms (e.g., backpropagation), evolutionary algorithms have

also demonstrated their capacity to optimize neural networks.
EPNet [59] was devised for evolving and training neural
networks using evolutionary programming. In [60], EvoAE
was proposed to speed up the training of autoencoders for
constructing deep neural networks. Moreover, [31] proposed
a novel evolutionary strategy as an alternative to the popu-
lar MDP-based reinforcement learning techniques, achieving
strong performance on reinforcement learning benchmarks. In
addition, an evolutionary algorithm was proposed to compress
deep learning models by automatically eliminating redundant
convolution filters [61]. Last but not the least, the evolutionary
learning paradigm has been utilized to solve a number of
deep/machine tasks, such as automatic machine learning [62],
multi-objective optimization [63], etc. However, to best of our
knowledge, there is still no work attempt to optimize deep
generative models with evolutionary learning algorithms.

III. METHODS

In this section, we first review the original GAN formu-
lation. Then, we introduce the proposed E-GAN algorithm.
By illustrating E-GAN’s mutations and evaluation mechanism,
we further discuss the advantage of the proposed framework.
Finally, we conclude with the entire E-GAN training process.

A. Generative Adversarial Networks

GAN, first proposed in [1], studies a two-player minimax
game between a discriminative network D and a generative
network G. Taking noisy sample z ∼ p(z) (sampled from
a uniform or normal distribution) as the input, the genera-
tive network G outputs new data G(z), whose distribution
pg is supposed to be close to that of the data distribution
pdata. Meanwhile, the discriminative network D is employed
to distinguish the true data sample x ∼ pdata(x) and the
generated sample G(z) ∼ pg(G(z)). In the original GAN,
this adversarial training process was formulated as:

min
G

max
D

Ex∼pdata [logD(x)]+Ez∼pz [log(1−D(G(z)))]. (1)

The adversarial procedure is illustrated in Fig. 1 (a). Most
existing GANs perform a similar adversarial procedure in
different adversarial objective functions.

B. Evolutionary Algorithm

In contrast to conventional GANs, which alternately update
a generator and a discriminator, we devise an evolutionary
algorithm that evolves a population of generator(s) {G} in a
given environment (i.e., the discriminator D). In this popu-
lation, each individual represents a possible solution in the
parameter space of the generative network G. During the
evolutionary process, we expect that the population gradually
adapts to its environment, which means that the evolved
generator(s) can generate ever more realistic samples and
eventually learn the real-world data distribution. As shown in
Fig. 1 (b), during evolution, each step consists of three sub-
stages:

• Variation: Given an individual Gθ in the population,
we utilize the variation operators to produce its off-
spring {Gθ1 , Gθ2 , · · · }. Specifically, several copies of

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 4

Noise 𝓏

Generator 𝐺

Discriminator 𝐷

Generator 𝐺𝜃

Discriminator 𝐷

𝐺𝜃1
𝐺𝜃2

𝐺𝜃3

…

𝐺𝜃𝑖 𝐺𝜃𝑗 𝐺𝜃𝑘

…

ℱ𝑖 > ℱ𝑗 > ⋯ > ℱ𝑘

E
v
a
lu

a
ti

o
n

Real/

Fake
Real/

Fake

𝑃data(𝑥)

(a) Original GAN (b) E-GAN

Noise 𝓏

Fig. 1. (a) The original GAN framework. A generator G and a discriminator D play a two-player adversarial game. The updating gradients of the generator G
are received from the adaptive objective, which depends on discriminator D. (b) The proposed E-GAN framework. A population of generators {Gθ} evolves
in a dynamic environment, the discriminator D. Each evolutionary step consists of three sub-stages: variation, evaluation, and selection. The best offspring
are kept.

each individual—or parent—are created, each of which
are modified by different mutations. Then, each modified
copy is regarded as one child.

• Evaluation: For each child, its performance—or individ-
ual’s quality—is evaluated by a fitness function F(·) that
depends on the current environment (i.e., discriminator
D).

• Selection: All children will be selected according to their
fitness value, and the worst part is removed—that is,
they are killed. The rest remain alive (i.e., free to act
as parents), and evolve to the next iteration.

After each evolutionary step, the discriminative network
D (i.e., the environment) is updated to further distinguish
real samples x and fake samples y generated by the evolved
generator(s), i.e.,

LD = −Ex∼pdata [logD(x)]− Ey∼pg [log(1−D(y))]. (2)

Thus, the discriminative network D (i.e., the environment) can
continually provide the adaptive losses to drive the population
of generator(s) evolving to produce better solutions. Next, we
illustrate and discuss the proposed variation (or mutation),
evaluation and selection operators in detail.

C. Variation

We employ asexual reproduction with different mutations
to produce the next generation’s individuals (i.e., children).
Specifically, these mutation operators correspond to different
training objectives, which attempt to narrow the distances be-
tween the generated distribution and the data distribution from
different perspectives. In this section, we introduce the muta-

tions used in this work1. To analyze the corresponding prop-
erties of these mutations, we suppose that, for each evolution-
ary step, the optimal discriminator D∗(x) = pdata(x)

pdata(x)+pg(x)
,

according to Eq. (2), has already been learned [1].
1) Minimax mutation: The minimax mutation corresponds

to the minimax objective function in the original GAN:

Mminimax
G =

1

2
Ez∼pz [log(1−D(G(z))]. (3)

According to the theoretical analysis in [1], given the optimal
discriminator D∗, the minimax mutation aims to minimize
the Jensen-Shannon divergence (JSD) between the data dis-
tribution and the generated distribution. Although the mini-
max game is easy to explain and theoretically analyze, its
performance in practice is disappointing, a primary problem
being the generator’s vanishing gradient. If the support of
two distributions lies in two manifolds, the JSD will be a
constant, leading to the vanishing gradient [24]. This problem
is also illustrated in Fig. 2. When the discriminator rejects
generated samples with high confidence (i.e., D(G(z))→ 0),
the gradient tends to vanishing. However, if the generated
distribution overlaps with the data distribution, meaning that
the discriminator cannot completely distinguish real from fake
samples, the minimax mutation provides effective gradients
and continually narrows the gap between the data distribution
and the generated distribution.

2) Heuristic mutation: Unlike the minimax mutation,
which minimizes the log probability of the discriminator being

1Although more mutation operations can be included in our framework,
according to the theoretical analysis below, we adopt three interpretable
and complementary objectives as our mutations. Meanwhile, we have tested
more mutation operations, yet the mutations described in this paper already
delivered a convincing performance.

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 5

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 Heuristic mutation
 Least-squares mutation
 Minimax mutation

Fig. 2. The mutation (or objective) functions that the generator G receives
given the discriminator D.

correct, the heuristic mutation aims to maximize the log
probability of the discriminator being mistaken, i.e.,

Mheuristic
G = −1

2
Ez∼pz [log(D(G(z))]. (4)

Compared to the minimax mutation, the heuristic mutation
will not saturate when the discriminator rejects the generated
samples. Thus, the heuristic mutation avoids vanishing gra-
dient and provides useful generator updates (Fig. 2). How-
ever, according to [24], given the optimal discriminator D∗,
minimizing the heuristic mutation is equal to minimizing
[KL(pg||pdata) − 2JSD(pg||pdata)], i.e., inverted KL minus
two JSDs. Intuitively, the JSD sign is negative, which means
pushing these two distributions away from each other. In
practice, this may lead to training instability and generative
quality fluctuations [44].

3) Least-squares mutation: The least-squares mutation is
inspired by LSGAN [20], where the least-squares objectives
are utilized to penalize its generator to deceive the discrimi-
nator. In this work, we formulate the least-squares mutation
as:

Mleast-square
G = Ez∼pz [(D(G(z))− 1)2]. (5)

As shown in Fig. 2, the least-squares mutation is non-
saturating when the discriminator can recognize the gener-
ated sample (i.e., D(G(z)) → 0). When the discriminator
output grows, the least-squares mutation saturates, eventually
approaching zero. Therefore, similar to the heuristic mutation,
the least-squares mutation can avoid vanishing gradient when
the discriminator has a significant advantage over the genera-
tor. Meanwhile, compared to the heuristic mutation, although
the least-squares mutation will not assign an extremely high
cost to generate fake samples, it will also not assign an
extremely low cost to mode dropping2, which partly avoids
mode collapse [20].

2 [24] demonstrated that the heuristic objective suffers from mode collapse
since KL(pg ||pdata) assigns a high cost to generating fake samples but an
extremely low cost to mode dropping.

Note that, different from GAN-minimax and GAN-heuristic,
LSGAN employs a different objective (‘least-squares’) to
optimize the discriminator, i.e.,

LLSGAN
D =

1

2
Ex∼pdata [(D(x)− 1)2] +

1

2
Ez∼pz [D(G(z))2]

=

∫
x

1

2

(
pdata(x)(D(x)− 1)2 + pg(x)D(x)2

)
dx.

(6)
Yet, with respect to D(x), the function LLSGAN

D achieves its
minimum in [0, 1] at pdata(x)

pdata(x)+pg(x)
, which is equivalent to

ours (i.e., Eq. (2)).
Therefore, although we employ only one discriminator as

the environment to distinguish real and generated samples, it is
sufficient to provide adaptive losses for all mutations described
above.

D. Evaluation

In an evolutionary algorithm, evaluation is the operation
of measuring the quality of individuals. To determine the
evolutionary direction (i.e., individuals’ selection), we devise
an evaluation (or fitness) function to measure the performance
of evolved individuals (i.e., children). Typically, we mainly
focus on two properties: 1) the quality and 2) the diversity of
generated samples. Quality is measured for each generated
sample. If a generated image could be realistic enough, it
will fool the discriminator. On the other hand, the diversity
measures whether the generator could spread the generated
samples out enough, which could largely avoid mode collapse.

Firstly, we simply feed generator produced images into the
discriminator D and observe the average value of the output,
which we name the quality fitness score:

Fq = Ez[D(G(z))]. (7)

Note that discriminator D is constantly upgraded to be optimal
during the training process, reflecting the quality of generators
at each evolutionary (or adversarial) step. If a generator obtains
a relatively high quality score, its generated samples can
deceive the discriminator and the generated distribution is
further approximate to the data distribution.

Besides generative quality, we also pay attention to the
diversity of generated samples and attempt to overcome the
mode collapse issue in GAN optimization. Recently, [25]
proposed a gradient-based regularization term to stabilize
the GAN optimization and suppress mode collapse. When
the generator collapses to a small region, the discriminator
will subsequently label collapsed points as fake with obvious
countermeasure (i.e., big gradients). In contrast, if the gener-
ator is capable of spreading generated data out enough, the
discriminator will not be much confident to label generated
samples as fake data (i.e., updated with small gradients). Other
techniques, e.g.exploiting conditioning latent vector [64] or
subspace [65], can also be applied to purse diversity. But this
issue does not fall within the scope of this paper.

We employ a similar principle to evaluate generator op-
timization stability and generative diversity. Here, since the
gradient-norm of the discriminator could vary largely during
training, we employed logarithm to shrink its fluctuation.

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 6

Specifically, the minus log-gradient-norm of optimizing D
is utilized to measure the diversity of generated samples. If
an evolved generator obtains a relatively high value, which
corresponds to small discriminator gradients, its generated
samples tend to spread out enough, to avoid the discrimi-
nator from having obvious countermeasures. Thus, the mode
collapse issue can be suppressed and the discriminator will
change smoothly, which helps to improve the training stability.
Formally, the diversity fitness score is defined as:

Fd = − log
∣∣∣∣∇D − Ex[logD(x)]− Ez[log(1−D(G(z)))]

∣∣∣∣.
(8)

Based on the aforementioned two fitness scores, we can
finally give the evaluation (or fitness) function of the proposed
evolutionary algorithm:

F = Fq + γFd, (9)

where γ ≥ 0 balances two measurements: generative quality
and diversity. Overall, a relatively high fitness score F , leads
to higher training efficiency and better generative performance.

It is interesting to note that, the proposed fitness score
can also be regarded as an objective function for generator
G. However, as demonstrated in our experiments, without
the proposed evolutionary strategy, this fitness objective is
still hard to achieve convincing performance. Meanwhile,
similar with most existing objective function of GANs, the
fitness function will continuously fluctuate during the dynamic
adversarial training process. Specifically, in each iteration, the
fitness score of generators are evaluated based on the current
discriminator. Comparing them, we are capable of selecting
well-performing ones. However, since the discriminator will
be updated according to different generators, it is hard to
discuss the connection between the fitness scores over different
iterations.

E. Selection

In an evolutionary algorithm, the counterpart of the mutation
operators is the selection. In the proposed E-GAN, we employ
a simple yet useful survivor selection strategy to determine
the next generation based on the fitness score of existing
individuals.

First of all, we should notice that both the generators
(i.e., population) and the discriminator (i.e., environment) are
optimized alternately in a dynamic procedure. Thus, the fitness
function is not fixed and the fitness score of generators can
be only evaluated by the corresponding discriminator in the
same evolutionary generation, which means fitness scores
that evaluated in different generations cannot compare with
each other. In addition, due to the mutation operators of the
proposed E-GAN actually correspond to different adversarial
training objectives, selecting desired offspring is equivalent
to selecting the effective adversarial strategies. During the
adversarial process, we hope that generator(s) can do it best
to foolish the discriminator (i.e., implement the optimal ad-
versarial strategy). Considered these two points, we utilize the
comma selection, i.e., (µ, λ)-selection [66] as the selection
mechanism of E-GAN. Specifically, after sorting the current
offspring population {xi}λi=1 according to their fitness scores

Algorithm 1 Evolutionary generative adversarial networks (E-
GAN). Default values α = 0.0002, β1 = 0.5, β2 = 0.99,
nD = 3, nm = 3, m = 32.
Require: the batch size m. the discriminator’s updating steps

per iteration nD. the number of parents µ. the number
of mutations nm. Adam hyper-parameters α, β1, β2, the
hyper-parameter γ of evaluation function.

Require: initial discriminator’s parameters w0. initial gener-
ators’ parameters {θ10, θ20, . . . , θ

µ
0 }.

1: for number of training iterations do
2: for k = 0, ..., nD do
3: Sample a batch of {x(i)}mi=1 ∼ pdata (training data),

and a batch of {z(i)}mi=1 ∼ pz (noise samples).
4: gw ← ∇w[1m

∑m
i=1 logDw(x

(i))

5: + 1
m

∑µ
j=1

∑m/µ
i=1 log(1−Dw(Gθj (z

(i))))]
6: w ← Adam(gw, w, α, β1, β2)
7: end for
8: for j = 0, ..., µ do
9: for h = 0, ..., nm do

10: Sample a batch of {z(i)}mi=1 ∼ pz
11: gθj,h ← ∇θjMh

G({z(i)}mi=1, θ
j)

12: θj,hchild ← Adam(gθj,h , θ
j , α, β1, β2)

13: F j,h ← Fj,hq + γF j,hd
14: end for
15: end for
16: {F j1,h1 ,F j2,h2 , . . . } ← sort({Fj,h})
17: θ1, θ2, . . . , θµ ← θj1,h1

child , θ
j2,h2

child , . . . , θ
jµ,hµ
child

18: end for

Fi, the µ-best individuals are selected to form the next
generation.

F. E-GAN

Having introduced the proposed evolutionary algorithm and
corresponding mutation operations, evaluation criteria and
selection strategy, the complete E-GAN training process is
concluded in Algorithm 1. Overall, in E-GAN, generators {G}
are regarded as an evolutionary population and discriminator
D acts as an environment. For each evolutionary step, gen-
erators are updated with different mutations (or objectives)
to accommodate the current environment. According to the
principle of “survival of the fittest”, only well-performing
children will survive and participate in future adversarial
training. Unlike the two-player game with a fixed and static
adversarial training objective in conventional GANs, E-GAN
allows the algorithm to integrate the merits of different adver-
sarial objectives and generate the most competitive solution.
Thus, during training, the evolutionary algorithm not only
largely suppresses the limitations (vanishing gradient, mode
collapse, etc.) of individual adversarial objectives, but it also
harnesses their advantages to search for a better solution.

IV. EXPERIMENTS

To evaluate the proposed E-GAN, we run experiments on
serval generative tasks and present the experimental results
in this section. Compared with some previous GAN methods,

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 7

TABLE I
THE ARCHITECTURES OF THE GENERATIVE AND DISCRIMINATIVE

NETWORKS.

Generative network G

Input: Noise z, 100

[layer 1] Fully connect and Reshape to (4× 4× 2048); LReLU;

[layer 2] Transposed Conv. (4, 4, 2048), stride=2; LReLU;

[layer 3] Transposed Conv. (4, 4, 1024), stride=1; LReLU;

[layer 4] Transposed Conv. (4, 4, 1024), stride=2; LReLU;

[layer 5] Transposed Conv. (4, 4, 512), stride=1; LReLU;

[layer 6] Transposed Conv. (4, 4, 512), stride=2; LReLU;

[layer 7] Transposed Conv. (4, 4, 256), stride=1; LReLU;

[layer 8] Transposed Conv. (4, 4, 256), stride=2; LReLU;

[layer 9] Transposed Conv. (4, 4, 128), stride=1; LReLU;

[layer 10] Transposed Conv. (4, 4, 128), stride=2; LReLU;

[layer 11] Transposed Conv. (3, 3, 3), stride=1; Tanh;

Output: Generated Image, (128× 128× 3)

Discriminative network D

Input: Image (128× 128× 3)

[layer 1] Conv. (3, 3, 128), stride=1; Batchnorm; LReLU;

[layer 2] Conv. (3, 3, 128), stride=2; Batchnorm; LReLU;

[layer 3] Conv. (3, 3, 256), stride=1; Batchnorm; LReLU;

[layer 4] Conv. (3, 3, 256), stride=2; Batchnorm; LReLU;

[layer 5] Conv. (3, 3, 512), stride=1; Batchnorm; LReLU;

[layer 6] Conv. (3, 3, 512), stride=2; Batchnorm; LReLU;

[layer 7] Conv. (3, 3, 1024), stride=1; Batchnorm; LReLU;

[layer 8] Conv. (3, 3, 1024), stride=2; Batchnorm; LReLU;

[layer 9] Conv. (3, 3, 2048), stride=1; Batchnorm; LReLU;

[layer 10] Conv. (3, 3, 2048), stride=2; Batchnorm; LReLU;

[layer 11] Fully connected (1); Sigmoid;

Output: Real or Fake (Probability)

we show that the proposed E-GAN can achieve impressive
generative performance on large-scale image datasets.

A. Implementation Details

We evaluate E-GAN on two synthetic datasets and three
image datasets: CIFAR-10 [67], LSUN bedroom [68], and
CelebA [69]. For fair comparisons, we adopted the same
network architectures with existing works [22], [44]. In ad-
dition, to achieve better performance on generating 128× 128
images, we slightly modified both the generative network and
the discriminator network based on the DCGAN architecture.
Specifically, the batch norm layers are removed from the
generator, and more features channels are applied to each con-
volutional layers. The detailed networks are listed in Table I,
note that the network architectures of the other comparison
experiments can be easily found in the referenced works.

We use the default hyper-parameter values listed in Algo-
rithm 1 for all experiments. Note that the hyper-parameter γ is
utilized to balance the measurements of samples quality (i.e.,
Fq) and diversity (i.e., Fd). Usually, the quality fitness score

Fq lies in [0, 1], while the diversity fitness score Fd measures
the log-gradient-norm of the discriminator D, which can vary
largely according to D’s scale. Therefore, we first determine
γ’s range based on the selected discriminator D. Then, we run
grid search to find its value. In practice, we choose γ = 0.5
for the synthetic datasets, and γ = 0.001 for real-world
data. In addition, recently, some works [44], [70] proposed
the gradient penalty (GP) term to regularize the discrimina-
tor to provide precise gradients for updating the generator.
Within the adversarial training framework, our contributions
are largely orthogonal to the GP term. In our experiments,
through the setting without GP term, we demonstrated the
efficiency of the proposed method. Then, after introducing the
GP term, the generative performance was further improved,
which demonstrated our framework could also benefit from
the regularization technique for the discriminator. Furthermore,
all experiments were trained on Nvidia Tesla V100 GPUs.
To train a model for 64 × 64 images using the DCGAN
architecture cost around 20 hours on a single GPU.

B. Evaluation metrics

Besides directly reported generated samples of the learned
generative networks, we choose the Maximum Mean Dis-
crepancy (MMD) [71], [72], the Inception score (IS) [43]
and the Fréchet Inception distance (FID) [73] as quantitative
metrics. Among them, the MMD can be utilized to measure
the discrepancy between the generated distribution and the
target distribution for synthetic Gaussian mixture datasets.
However, the MMD is difficult to directly apply to high-
dimensional image datasets. Therefore, through applying the
pre-trained Inception v3 network [74] to generated images, the
IS computes the KL divergence between the conditional class
distribution and the marginal class distribution. Usually, this
score correlates well with the human scoring of the realism
of generated images from the CIFAR-10 dataset, and a higher
value indicates better image quality. However, some recent
works [6], [75] revealed serious limitations of the IS, e.g., the
target data distribution (i.e., the training data) has not been
considered. In our experiments, we utilize the IS to measure
the E-GAN’s performance on the CIFAR-10, and compare our
results to previous works. Moreover, FID is a more principled
and reliable metric and has demonstrated better correlations
with human evaluation for other datasets. Specifically, FID
calculates the Wasserstein-2 distance between the generated
images and the real-world images in the high-level feature
space of the pre-trained Inception v3 network. Note that lower
FID means closer distances between the generated distribution
and the real-world data distribution. In all experiments, we
randomly generated 50k samples to calculate the MMD, IS
and FID.

C. Synthetic Datasets and Mode Collapse

In the first experiment, we adopt the experimental design
proposed in [76], which trains GANs on 2D Gaussian mixture
distributions. The mode collapse issue can be accurately mea-
sured on these synthetic datasets, since we can clearly observe
and measure the generated distribution and the target data

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 8

Target GAN-Heuristic
GAN-

Least-squares
GAN-Minimax

E-GAN

(𝛾 = 0)

8
 G

au
ss

ia
n
s

2
5

 G
au

ss
ia

n
s

E-GAN

(𝛾 = 0.5)

Fig. 3. Kernel density estimation (KDE) plots of the target data and generated data from different GANs trained on mixtures of Gaussians. In the first row,
a mixture of 8 Gaussians arranged in a circle. In the second row, a mixture of 25 Gaussians arranged in a grid.

TABLE II
MMD (×10−2) WITH MIXED GAUSSIAN DISTRIBUTIONS ON OUR TOY
DATASETS. WE RAN EACH METHOD FOR 10 TIMES, AND REPORT THEIR

AVERAGE AND BEST RESULTS. THE METHOD WITH LOWER MMD VALUE
IMPLIES THE GENERATED DISTRIBUTION IS CLOSER TO THE TARGET ONE.

Methods
8 Gaussians 25 Gaussians

Average Best Average Best

GAN-Heuristic 45.27 33.2 2.80 2.19

GAN-Least-squares 3.99 3.16 1.83 1.72

GAN-Minimax 2.94 1.89 1.65 1.55

E-GAN (λ = 0, without GP) 11.54 7.31 1.69 1.60

E-GAN (λ = 0.5, without GP) 2.36 1.17 1.20 1.04

distribution. As shown in Fig. 3, we employ two challenging
distributions to evaluate E-GAN, a mixture of 8 Gaussians
arranged in a circle and a mixture of 25 Gaussians arranged
in a grid.3 Here, to evaluate if the proposed diversity fitness
score can reduce the mode collapse, we did not introduce the
gradient penalty norm and set the survived parents number µ as
1, i.e., during each evolutionary step, only the best candidature
are kept.

Firstly, we utilize existing individual adversarial objectives
(i.e., conventional GANs) to perform the adversarial training
process. We train each method 50K iterations and report
the KDE plots in Fig. 3. Meanwhile, the average and the
best MMD values which running each method 10 times are
reported in Table II. The results show that all of the individual
adversarial objectives suffer from mode collapse to a greater
or lesser degree. Then, we set hyper-parameter γ as 0 and
test the proposed E-GAN, which means the diversity fitness
score was not considered during the training process. The
results show that the evolutionary framework still troubles with
the mode collapse. However, when the diversity fitness score

3We obtain both 2D distributions and network architectures from the code
provided in [44].

TABLE III
INCEPTION SCORES AND FIDS WITH UNSUPERVISED IMAGE GENERATION
ON CIFAR-10. THE METHOD WITH HIGHER INCEPTION SCORE OR LOWER
FID IMPLIES THE GENERATED DISTRIBUTION IS CLOSER TO THE TARGET

ONE. † [22], ‡ [6].

Methods Inception score FID

Real data 11.24± .12 7.8

-Standard CNN-

(ours) E-GAN-GP (µ = 1) 7.13± .07 33.2

(ours) E-GAN-GP (µ = 2) 7.23± .08 31.6

(ours) E-GAN-GP (µ = 4) 7.32± .09 29.8

(ours) E-GAN-GP (µ = 8) 7.34± .07 27.3

(ours) E-GAN (µ = 1, without GP) 6.98± .09 36.2

DCGAN (without GP)† 6.64± .14 -

GAN-GP‡ 6.93± .08 37.7

WGAN-GP‡ 6.68± .06 40.2

is considered in the selection stage (in this experiment, we
set γ = 0.5), the mode collapse issue is largely suppressed
and the trained generator can more accurately fit the target
distributions. This demonstrates, our diversity fitness score
has the capability of measuring sample diversity of updated
generators and further suppress the mode collapse problem.

D. CIFAR-10 and Training Stability

In the proposed E-GAN, we utilize the evolutionary algo-
rithm with different mutations (i.e., different updating strate-
gies) to optimize generator(s) {G}. To demonstrate the ad-
vantages of the proposed evolutionary algorithm over existing
two-player adversarial training strategies (i.e., updating gen-
erator with a single objective), we train these methods on
CIFAR-10 and plot inception scores [43] over the training
process. For a fair comparison, we did not introduce the
gradient penalty norm into our E-GAN and set the parents

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 9

0 2 4 6 8 10
Generator Iterations 104

1

2

3

4

5

6

7

In
ce

pt
io

n
Sc

or
e

Convergence on CIFAR-10

 E-GAN (μ=1, without GP)
 GAN-Heuristic(DCGAN)
 GAN-Least-square
 GAN-Minimax
 WGAN-GP
 WGAN
 Fitness function

0 0.5 1 1.5 2 2.5 3 3.5
Wallclock time (in secdons) 104

1

2

3

4

5

6

7

In
ce

pt
io

n
Sc

or
e

Convergence on CIFAR-10

 E-GAN (μ 1, without GP)
 GAN-Heuristic(DCGAN)
 GAN-Least-square
 GAN-Minimax
 WGAN-GP
 WGAN
 Fitness function

0

2000

4000

6000

8000

10000

0-2 2-4 4-6 6-8 8-10

Selected Objectives

Heuristic Least-squares Minimax × 104
(Iterations)

Fig. 4. Experiments on the CIFAR-10 dataset. CIFAR-10 inception score over generator iterations (left), over wall-clock time (middle), and the graph of
selected mutations in the E-GAN training process (right).

TABLE IV
FIDS WITH UNSUPERVISED IMAGE GENERATION ON LSUN BEDROOM DATASET. THE METHOD WITH LOWER FID IMPLIES THE GENERATED

DISTRIBUTION IS CLOSER TO THE TARGET ONE.

Methods FID

-Baseline- -Weak G- -Weak D- -Weak both-

DCGAN 43.7 187.3 410.6 82.7

LSGAN 46.3 452.9 423.1 126.2

WGAN 51.1 113.6 129.2 115.7

WGAN-GP 38.5 66.7 385.8 73.2

(ours) E-GAN (µ = 1, without GP) 34.2 63.3 64.8 71.9

(ours) E-GAN (µ = 4, without GP) 29.7 59.1 55.2 60.9

number µ as 1. Moreover, the same network architecture is
used for all methods.

As shown in Fig. 4-left, E-GAN can get higher inception
score with less training steps. Meanwhile, E-GAN also shows
comparable stability when it goes to convergence. By compar-
ison, conventional GAN objectives expose their different lim-
itations, such as instability at convergence (GAN-Heuristic),
slow convergence (GAN-Least square) and invalid (GAN-
minimax). In addition, we employ the proposed fitness func-
tion (i.e., Eq. (9)) as generator’s objective function, and find
its performance is also inferior to E-GAN. This experiment
further demonstrates the advantages of the proposed evolution-
ary framework. Through creating and selecting from multiple
candidates, the evolutionary framework can leverage strengths
of different objective functions (i.e., different distances) to
accelerate the training process and improve the generative
performance. Based on the evolutionary framework, E-GAN
not only overcomes the inherent limitations of these individual
adversarial objectives, but it also outperforms other GANs (the
WGAN and its improved variant WGAN-GP). Furthermore,
when we only keep one parent during each evolutionary step,
E-GAN achieves comparable convergence speed in terms of
wall-clock time (Fig. 4-middle). During training E-GAN, we
recorded the selected objective in each step (Fig. 4-right). At
the beginning of training, the heuristic objective and the least-
square objective are selected more frequently than the minimax
objective. It may due to the fact that the minimax objective

is hard to provide effective gradients (i.e., vanishing gradi-
ent) when the discriminator can easily recognize generated
samples. Along with the generator approaching convergence
(after 20K steps), ever more minimax objectives are employed,
yet the number of selected heuristic objectives is falling. As
aforementioned, the minus JSDs of the heuristic objective may
tend to push the generated distribution away from target data
distribution and lead to training instability. However, in E-
GAN, beyond the heuristic objective, we have other options
of objective, which improves the stability at convergence.

Furthermore, we discussed the relationship between the
survived parents’ number and generative performance. As
shown in the Table III, both the Inception score and FID
are utilized to evaluate the generative performance of learned
generators. Firstly, compared with the basic E-GAN (i.e., E-
GAN, µ = 1, without GP), adding the gradient penalty (GP)
norm to optimize the discriminator indeed improves generative
performance. Then, we preserved multiple parents during the
E-GAN training process and measured their scores at the
end of training. We can easily observe that the generative
performance becomes better accompanying with keeping more
parents during the training. This further demonstrates the
proposed evolutionary learning paradigm could suppress the
unstable and large-scale optimization problems of GANs.

Theoretically, if we regard updating and evaluating a child
G as an operation and define mutations number as n, keeping
p parents will cost O(np) operations in each iteration. Com-

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 10

Baseline (G: DCGAN, D: DCGAN)

No normalization in either G and D

G: DCGAN, D: 2-Conv-1-FC LeakyReLU

G: No BN and a constant number of filters , D: DCGAN

DCGAN LSGAN WGAN WGAN-GP E-GAN (𝝁 =1) E-GAN (𝝁 = 𝟒)

Fig. 5. Experiments of architecture robustness. Different GAN architectures, which correspond to different training challenges, trained with six different GAN
methods (or settings). The proposed E-GAN achieved promising performance under all architecture settings.

paring with traditional GANs, our evolutionary framework
would cost more time in each iteration. However, since the
evolutionary strategy always preserves the well-performing
off-spring, to achieve the same generative performance, E-
GAN usually spends less training steps (Fig. 4-left). Overall,
keeping one parent during each evolutionary step will only
slightly reduce the time-efficiency but with better performance
(Fig. 4-middle). Yet, accompanied by increasing p, although
the generative performance can be further improved, it will
also cost more time on training the E-GAN model. Here, if
we regard the parents number p as a hyper-parameter of our
algorithm, we found setting its value less than or equal to
4 is a preferable choice. Within this interval, we can easily
improve the generative performance by sacrificing affordable
computation cost. If we continually increase the number of
survivors, the generative performance can only be improved
mildly yet largely reduce the training efficiency. In practice,
we need to further balance the algorithms efficiency and
performance according to different situations.

E. LSUN and Architecture Robustness

The architecture robustness is another advantage of E-
GAN. To demonstrate the training stability of our method, we

Fig. 6. Generated bedroom images on 128× 128 LSUN bedrooms.

train different network architectures on the LSUN bedroom
dataset [68] and compare with several existing works. In
addition to the baseline DCGAN architecture, we choose
three additional architectures corresponding to different train-

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 11

𝐺(1 − 𝛼 𝓏1 + 𝛼𝓏2)

𝛼 = 0.0 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 𝛼 = 1.0

Fig. 7. Interpolating in latent space. For selected pairs of generated images from a well-trained E-GAN model, we record their latent vectors z1 and z2.
Then, samples between them are generated by linear interpolation between these two vectors.

ing challenges: (1) limiting the recognition capability of the
discriminator D, i.e., 2-Conv-1-FC LeakyReLU discriminator
(abbreviated as weak D); (2) limiting the expression capability
of the generator G, i.e., no batchnorm and a constant number
of filters in the generator (weak G); (3) reducing the network
capability of the generator and discriminator together, i.e.,
remove the BN in both the generator G and discriminator
D (weak both). For each architecture, we test six different
methods (or settings): DCGAN, LSGAN, original WGAN
(with weight clipping), WGAN-GP (with gradient penalty),
our E-GAN (µ = 1), and E-GAN (µ = 4). For each
method, we used the default configurations recommended in
the respective studies (these methods are summarized in [44])
and train each model for 100K iterations. Some generated
samples are reported in Fig. 5, and the quantitative results (i.e.,
FID) are listed in Table IV. Through observation, we find that
all of these GAN methods achieved promising performance
with the baseline architecture. For DCGAN and LSGAN,
when the balance between the generator and discriminator is
broken (i.e., only one of them is limited), these two methods
are hard to generate any reasonable samples. Meanwhile, we
find the performance of the standard WGAN (with weight
clipping) is mostly decided by the generator G. When we limit
G’s capability, the generative performance largely reduced. As
regarded the WGAN-GP, we find that the generative perfor-
mance may mainly depends on the discriminator (or critic).
Our E-GAN achieved promising results under all architecture
settings. Moreover, we again demonstrated that the model
performance is growing with the number of survived parents.

Fig. 8. Generated human face images on 128× 128 CelebA dataset.

Furthermore, we trained E-GAN to generate higher res-
olution (128 × 128) bedroom images (Fig. 6). Observing
generated images, we demonstrate that E-GAN can be trained
to generate diversity and high-quality images from the target
data distribution.

F. CelebA and Space Continuity

Besides the LSUN bedroom dataset, we also train our E-
GAN using the aligned faces from CelebA dataset. Since
humans excel at identifying facial flaws, generating high-
quality human face images is challenging. Similar to generat-
ing bedrooms, we employ the same architectures to generate
128 × 128 RGB human face images (Fig. 8). In addition,

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 12

given a well-trained generator, we evaluate the performance
of the embedding in the latent space of noisy vectors z. In
Fig. 7, we first select pairs of generated faces and record their
corresponding latent vectors z1 and z2. The two images in
one pair have different attributes, such as gender, expression,
hairstyle, and age. Then, we generate novel samples by linear
interpolating between these pairs (i.e., corresponding noisy
vectors). We find that these generated samples can seamlessly
change between these semantically meaningful face attributes.
This experiment demonstrates that generator training does not
merely memorize training samples but learns a meaningful
projection from latent noisy space to face images. Meanwhile,
it also shows that the generator trained by E-GAN does not
suffer from mode collapse, and shows great space continuity.
Overall, during the GAN training process, the training stability
is easily influenced by ‘bad’ updating, which could lead the
generated samples to low quality or lacking diversity, while
the proposed evolutionary mechanism largely avoids undesired
updating and promote the training to an ideal direction.

V. CONCLUSION

In this paper, we present an evolutionary GAN framework
(E-GAN) for training deep generative models. To reduce
training difficulties and improve generative performance, we
devise an evolutionary algorithm to evolve a population of
generators to adapt to the dynamic environment (i.e., the
discriminator D). In contrast to conventional GANs, the evo-
lutionary paradigm allows the proposed E-GAN to overcome
the limitations of individual adversarial objectives and preserve
the well-performing offspring after each iteration. Experiments
show that E-GAN improves the training stability of GAN
models and achieves convincing performance in several im-
age generation tasks. In this work, we mainly contribute to
improving the image generation performance. More generation
tasks will be considered in future works, such as video
generation [33] and text generation [77].

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (NIPS), 2014, pp.
2672–2680.

[2] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 2172–2180.

[3] Z. Gan, L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li, and
L. Carin, “Triangle generative adversarial networks,” in Advances in
Neural Information Processing Systems (NIPS), 2017.

[4] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N.
Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks,” in The IEEE International Conference
on Computer Vision (ICCV), 2017.

[5] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
gans for improved quality, stability, and variation,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[6] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral nor-
malization for generative adversarial networks,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[8] C. Wang, C. Wang, C. Xu, and D. Tao, “Tag disentangled generative
adversarial networks for object image re-rendering,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence
(IJCAI), 2017, pp. 2901–2907.

[9] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in The IEEE
International Conference on Computer Vision (ICCV), 2017.

[10] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with con-
ditional gans,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[11] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with
scene dynamics,” in Advances In Neural Information Processing Systems
(NIPS), 2016, pp. 613–621.

[12] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 64–72.

[13] C. Vondrick and A. Torralba, “Generating the future with adversarial
transformers,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[14] Y. Zhang, Z. Gan, and L. Carin, “Generating text via adversarial
training,” in NIPS workshop on Adversarial Training, 2016.

[15] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: Better text genera-
tion via filling in the ,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

[16] J. Lu, A. Kannan, J. Yang, D. Parikh, and D. Batra, “Best of both worlds:
Transferring knowledge from discriminative learning to a generative
visual dialog model,” in Advances in Neural Information Processing
Systems (NIPS), 2017.

[17] X. Lan, A. J. Ma, and P. C. Yuen, “Multi-cue visual tracking using
robust feature-level fusion based on joint sparse representation,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014, pp. 1194–1201.

[18] X. Chen, C. Xu, X. Yang, L. Song, and D. Tao, “Gated-gan: Adversarial
gated networks for multi-collection style transfer,” IEEE Transactions on
Image Processing, vol. 28, no. 2, pp. 546–560, 2019.

[19] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and
equilibrium in generative adversarial nets (GANs),” in Proceedings of
the 34th International Conference on Machine Learning (ICML), 2017,
pp. 224–232.

[20] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in The IEEE International
Conference on Computer Vision (ICCV), 2017.

[21] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative ad-
versarial network,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2016.

[23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference
on Machine Learning (ICML), 2017, pp. 214–223.

[24] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

[25] V. Nagarajan and J. Z. Kolter, “Gradient descent gan optimization is
locally stable,” in Advances in Neural Information Processing Systems
(NIPS), 2017.

[26] C. Qian, J.-C. Shi, K. Tang, and Z.-H. Zhou, “Constrained monotone
k-submodular function maximization using multi-objective evolutionary
algorithms with theoretical guarantee,” IEEE Transactions on Evolution-
ary Computation, 2017.

[27] S. He, G. Jia, Z. Zhu, D. A. Tennant, Q. Huang, K. Tang, J. Liu, M. Mu-
solesi, J. K. Heath, and X. Yao, “Cooperative co-evolutionary module
identification with application to cancer disease module discovery,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 874–891,
2016.

[28] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, “The expressive power
of parameterized quantum circuits,” arXiv preprint arXiv:1810.11922,
2018.

[29] L. M. Antonio and C. A. C. Coello, “Coevolutionary multi-objective
evolutionary algorithms: A survey of the state-of-the-art,” IEEE Trans-
actions on Evolutionary Computation, 2017.

[30] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” in Proceedings

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 13

of the 34th International Conference on Machine Learning (ICML),
2017, pp. 214–223.

[31] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies
as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[32] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[33] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing
motion and content for video generation,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[34] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W.
Lau, and M.-H. Yang, “Vital: Visual tracking via adversarial learning,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[35] X. Lan, S. Zhang, P. C. Yuen, and R. Chellappa, “Learning common and
feature-specific patterns: a novel multiple-sparse-representation-based
tracker,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp.
2022–2037, 2018.

[36] X. Lan, A. J. Ma, P. C. Yuen, and R. Chellappa, “Joint sparse repre-
sentation and robust feature-level fusion for multi-cue visual tracking,”
IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5826–5841,
2015.

[37] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrimi-
native domain adaptation,” in Computer Vision and Pattern Recognition
(CVPR), vol. 1, no. 2, 2017, p. 4.

[38] Z. Qiu, Y. Pan, T. Yao, and T. Mei, “Deep semantic hashing with gen-
erative adversarial networks,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 2017, pp. 225–234.

[39] E. Yang, T. Liu, C. Deng, and D. Tao, “Adversarial examples for
hamming space search,” IEEE transactions on cybernetics, 2018.

[40] E. Yang, C. Deng, W. Liu, X. Liu, D. Tao, and X. Gao, “Pairwise
relationship guided deep hashing for cross-modal retrieval.” in AAAI,
2017, pp. 1618–1625.

[41] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

[42] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropi-
etro, and A. Courville, “Adversarially learned inference,” in Proceedings
of the International Conference on Learning Representations (ICLR),
2017.

[43] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 2234–2242.

[44] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2017.

[45] T. D. Nguyen, T. Le, H. Vu, and D. Phung, “Dual discriminator gen-
erative adversarial nets,” in Advances in Neural Information Processing
Systems (NIPS), 2017.

[46] I. Durugkar, I. Gemp, and S. Mahadevan, “Generative multi-adversarial
networks,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

[47] B. Neyshabur, S. Bhojanapalli, and A. Chakrabarti, “Stabilizing
gan training with multiple random projections,” arXiv preprint
arXiv:1705.07831, 2017.

[48] I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and
B. Schölkopf, “Adagan: Boosting generative models,” in Advances in
Neural Information Processing Systems (NIPS), 2017, pp. 5424–5433.

[49] A. Ghosh, V. Kulharia, V. P. Namboodiri, P. H. Torr, and P. K. Dokania,
“Multi-agent diverse generative adversarial networks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[50] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “Mgan: Training
generative adversarial nets with multiple generators,” in Proceedings
of the International Conference on Learning Representations (ICLR),
2018.

[51] K. A. De Jong, Evolutionary computation: a unified approach. MIT
press, 2006.

[52] H.-L. Liu, L. Chen, Q. Zhang, and K. Deb, “Adaptively allocating
search effort in challenging many-objective optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 3, pp.
433–448, 2018.

[53] Y. Wang, M. Zhou, X. Song, M. Gu, and J. Sun, “Constructing cost-
aware functional test-suites using nested differential evolution algo-
rithm,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 334–346, 2018.

[54] P. Yang, K. Tang, and X. Yao, “Turning high-dimensional optimization
into computationally expensive optimization,” IEEE Transactions on
Evolutionary Computation, vol. 22, no. 1, pp. 143–156, 2018.

[55] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping local optima using
crossover with emergent diversity,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 3, pp. 484–497, 2018.

[56] A. E. Eiben and J. Smith, “From evolutionary computation to the
evolution of things,” Nature, vol. 521, no. 7553, p. 476, 2015.

[57] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving deep neural
networks,” arXiv preprint arXiv:1703.00548, 2017.

[58] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments. ACM, 2015, p. 4.

[59] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[60] S. Lander and Y. Shang, “Evoae–a new evolutionary method for training
autoencoders for deep learning networks,” in Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2.
IEEE, 2015, pp. 790–795.

[61] Y. Wang, C. Xu, J. Qiu, C. Xu, and D. Tao, “Towards evolutional
compression,” arXiv preprint arXiv:1707.08005, 2017.

[62] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016. ACM, 2016, pp. 485–492.

[63] A. Rosales-Pérez, S. Garcı́a, J. A. Gonzalez, C. A. C. Coello, and
F. Herrera, “An evolutionary multiobjective model and instance selec-
tion for support vector machines with pareto-based ensembles,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 6, pp. 863–877,
2017.

[64] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[65] J. Liang, J. Yang, H.-Y. Lee, K. Wang, and M.-H. Yang, “Sub-gan: An
unsupervised generative model via subspaces,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 698–714.

[66] O. Kramer, Machine learning for evolution strategies. Springer, 2016,
vol. 20.

[67] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[68] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

[69] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in The IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 3730–3738.

[70] W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed,
and I. Goodfellow, “Many paths to equilibrium: Gans do not need to
decrease adivergence at every step,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[71] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A hilbert space em-
bedding for distributions,” in International Conference on Algorithmic
Learning Theory. Springer, 2007, pp. 13–31.

[72] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” Journal of Machine Learning Research,
vol. 13, no. Mar, pp. 723–773, 2012.

[73] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in Neural Information Processing Systems
(NIPS), 2017, pp. 6629–6640.

[74] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[75] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention gen-
erative adversarial networks,” arXiv preprint arXiv:1805.08318, 2018.

[76] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

[77] N. Duan, D. Tang, P. Chen, and M. Zhou, “Question generation
for question answering,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2017,
pp. 866–874.

1089-778X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2895748, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT 14

Chaoyue Wang is research associate in Machine
Learning and Computer Vision at the School of
Computer Science, The University of Sydney. He
received a bachelor degree from Tianjin University
(TJU), China, and a Ph.D. degree from University
of Technology Sydney (UTS), Australia. His re-
search interests mainly include machine learning,
deep learning, and generative models. He received
the Distinguished Student Paper Award in the 2017
International Joint Conference on Artificial Intelli-
gence (IJCAI).

Chang Xu is Lecturer in Machine Learning and
Computer Vision at the School of Computer Science,
The University of Sydney. He obtained a Bachelor
of Engineering from Tianjin University, China, and a
Ph.D. degree from Peking University, China. While
pursing his PhD degree, Chang received fellowships
from IBM and Baidu. His research interests lie in
machine learning, data mining algorithms and re-
lated applications in artificial intelligence and com-
puter vision, including multi-view learning, multi-
label learning, visual search and face recognition.

His research outcomes have been widely published in prestigious journals
and top-tier conferences.

Xin Yao (F’03) obtained his PhD in 1990 from
the University of Science and Technology of China
(USTC), MSc in 1985 from North China Institute
of Computing Technoogies and BSc in 1982 from
USTC. He is a Chair Professor of Computer Science
at the Southern University of Science and Technol-
ogy, Shenzhen, China, and a part-time Professor of
Computer Science at the University of Birmingham,
UK. He is an IEEE Fellow and was a Distinguished
Lecturer of IEEE Computational Intelligence Soci-
ety (CIS). His major research interests include evo-

lutionary computation, ensemble learning, and their applications to software
engineering. His paper on evolving artificial neural networks won the 2001
IEEE Donald G. Fink Prize Paper Award. He also won 2010, 2016 and 2017
IEEE Transactions on Evolutionary Computation Outstanding Paper Awards,
2011 IEEE Transactions on Neural Networks Outstanding Paper Award, and
many other best paper awards. He received the prestigious Royal Society
Wolfson Research Merit Award in 2012 and the IEEE CIS Evolutionary
Computation Pioneer Award in 2013. He was the the President (2014-15)
of IEEE CIS and the Editor-in-Chief (2003-08) of IEEE Transactions on
Evolutionary Computation.

Dacheng Tao (F’15) is Professor of Computer
Science and ARC Laureate Fellow in the School
of Information Technologies and the Faculty of
Engineering and Information Technologies, and the
Inaugural Director of the UBTECH Sydney Artificial
Intelligence Centre, at the University of Sydney.
He mainly applies statistics and mathematics to
Artificial Intelligence and Data Science. His research
results have expounded in one monograph and 200+
publications at prestigious journals and prominent
conferences, such as IEEE T-PAMI, T-IP, T-NNLS,

IJCV, JMLR, NIPS, ICML, CVPR, ICCV, ECCV, ICDM; and ACM SIGKDD,
with several best paper awards, such as the best theory/algorithm paper runner
up award in IEEE ICDM07, the best student paper award in IEEE ICDM13,
the distinguished paper award in the 2018 IJCAI, the 2014 ICDM 10-year
highest-impact paper award, and the 2017 IEEE Signal Processing Society
Best Paper Award. He received the 2015 Austrlian Scopus-Eureka Prize and
the 2018 IEEE ICDM Research Contributions Award. He is a Fellow of the
Australian Academy of Science, AAAS, IEEE, IAPR, OSA and SPIE.

