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2.6 Free Vibration with Viscous Damping

2.6.1
Equation
of Motion

As stated in Section 1.9, the viscous damping force F is proportional to the velocity x or v
and can be expressed as

F = —ci (2.58)

where ¢ is the damping constant or coefficient of viscous damping and the negative sign indi-
cates that the damping force is opposite to the direction of velocity. A single-degree-of-freedom
system with a viscous damper is shown in Fig. 2.21. If x is measured from the equilibrium posi-
tion of the mass m, the application of Newton's law yields the equation of motion:

my = —cx — kx
or

mx +cex +kx=0 (2.59)
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FIGURE 2.21 Single-degree-of-freedom system
with viscous damper.




To solve Eq. (2.59), we assume a solution in the form
x(t) = Ce" (2.60)

where C and s are undetermined constants. Inserting this function into Eq. (2.59) leads to
the characteristic equation

ms +es + k=0 (2.61)

the roots of which are
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These roots give two solutions to Eq. (2.59):
xi(1) = Ce™ and  x5(1) = Cre™ (2.63)

Thus the general solution of Eq. (2.59) is given by a combination of the two solutions x,(1)
and x(1):
x(t) = Ce®™ + Cie™

€ fey E c Te g _k
=C 13{'5"' V() - + E'Ee{' 3=V (3 = (2.64)

where C; and C, are arbitrary constants to be determined from the initial conditions of the
system.



Critical Damping Constant and the Damping Ratio. The critical damping ¢, is
defined as the value of the damping constant ¢ for which the radical in Eq. (2.62) becomes
Zero:

or

[ k
. =2m . =2Vkm = 2mw, (2.65)

For any damped system, the damping ratio { is defined as the ratio of the damping constant
to the critical damping constant:

{=cfee (2.66)

Using Egs. (2.66) and (2.65), we can write

c c

2m ¢, 2m -

Lo, (2.67)

and hence

sip=(—¢ £ V& - 1o, (2.68)

Thus the solution, Eq. (2.64), can be written as
x(1) = CIEE-HV?-_I}W + Czei-ﬁ-x@-_l}wnf (2.69)
The nature of the roots s; and s, and hence the behavior of the solution, Eq. (2.69), depends
upon the magnitude of damping. It can be seen that the case { = () leads to the undamped

vibrations discussed in Section 2.2, Hence we assume that { # 0 and consider the follow-
ing three cases.



Case 1. Underdamped system ({ < 1 ore < c.ore/2m < Vk/m). For this condition,
(L 2 - 1) is negative and the roots s; and s, can be expressed as

si=(—C+iVl - Do,
s =(—¢— iVl — P)w,

and the solution, Eq. (2.69), can be written in different forms:

_[‘( II'} - C'Ie-{-g""f"'f]?jwnx _|_ szi_g-f'v 1 —gzllw,!f'

= E-gw"F{C|€EVEMEr + CEE-!' Wl —.r:zr.r.i-n.l'}

= g'fwnf{(li‘l + C3) cos VI — LPwut +i(Cy — C)sin V1 — gzmnr}

= e'f‘“»f{cf cos V1 — Pwyt + ChsinV1 — ._«:?m,,:}

= Xpe to sin( V1 — Pog + d:ﬂ)

(2.70)

= Xe ol cos( V1 — Pwgt — d:)

where (Cy, C3), (X, ¢), and ( X, ¢by) are arbitrary constants to be determined from the
initial conditions.
For the initial conditions x( 1

0) = xpand x(t = 0) = xy, Cj and C5 can be found:

Xg + {w,xg
Cf =xy and Ch)=—"2—>20 (2.71)
V1 - P,
and hence the solution becomes
x(r) = E“I""""{xn cos V1 — 2wyt
xp + {wyxg . \/72
L2 0 in VI — oyt (2.72)
V1 = Pw,
The constants ( X, ¢) and ( Xy, ¢by) can be expressed as
Vixdw: + 53 + 2xgx
X = Xo = V(C)Z + (C)2 = ~X0% * X0 * 2XoXoten (2.73)
V1 - 2w,
-1 C{ -1 [ Xoty V'l _gl
¢y = tan — | = tan - (2.74)
C; Xy + gm"_l‘n
4 [C3 -1 Xo + {wuxg
¢ = tan™ (—) = tan ( ) (2.75)
Ci xqw, V1 — 2



The motion described by Eq. (2.72) is a damped harmonic motion of angular frequency
1 — ¢*w,, but because of the factor e™“»' the amplitude decreases exponentially with

time, as shown in Fig. 2.22. The quantity

w; = VI —:j’zmﬂ

is called the fequency o fdamped vibration. It can be seen that the frequency of damped
vibration wy is always less than the undamped natural frequency w, The decrease in
the frequency of damped vibration with increasing amount of damping, given by Eq.
(2.76), is shown graphically in Fig. 2.23. The underdamped case is very important in
the study of mechanical vibrations, as it is the only case that leads to an oscillatory

motion | 2.10].

(2.76)

FIGURE 2.22 Underdamped solution.
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FIGURE 2.23 Variation of w, with
damping.




Case 2. Critically damped system ({ = 1 or¢ = c.ore/2m = \k/m). In this case the
two roots s; and s, in Eq. (2.68) are equal:

Ce

5| =5 = _% = —wy, [2.??}
Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]'
x(t) =(Cy + Cyt)e™ (2.78)

The application of the initial conditions x(t = 0) = x; and ¥(r = 0) = ¥, for this case
gives

G =xp
Cy = Xg + wyxp (2.79)
and the solution becomes
x(t) =[xp + (%9 + wyxp)t]e” ™ (2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.e., nonperiodic).

Since ¢ ™ — () as 1 — 00, the motion will eventually diminish to zero, as indicated in
Fig. 2.24.
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FIGURE 2.24 Comparison of motions with different types of damping.




Case 3. Overdamped system({ = 1 ore = c.oref2m = Vik/m). As Vi -1 =0,
Eq. (2.68) shows that the roots s, and s are real and distinct and are given by

5 =(—¢+ V-1, <0
$=(~¢{ -V -1Ne,<0
with 55 <= 5. In this case, the solution, Eq. (2.69), can be expressed as
x(1) = cle'i'ﬁﬁiﬂnf - cze{'f'"*’?'_ll'ﬂnf (2.81)

For the initial conditions x(t = 0) = xyand X(r = 0) = ¥, the constants C; and C, can

be obtained:
oo el d+ VE D) +
1 20, VT —1

—xow,({— VI — 1) — ¥

C, = (2.82)

20,V — 1

Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions
imposed on the system. Since roots s; and s, are both negative, the motion diminishes

exponentially with time, as shown in Fig. 2.24.
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FIGURE 2.25 Phase plane of a damped system.




2.6.3
Logarithmic
Decrement

The logarithmic decrement represents the rate at which the amplitude of a free-damped
vibration decreases. It is defined as the natural logarithm of the ratio of any two successive
amplitudes. Let t; and t, denote the times corresponding to two consecutive amplitudes

(displacements), measured one cycle apart for an underdamped system, as in Fig. 2.22.
Using Eq. (2.70), we can form the ratio

X _ X(}E‘-g‘”"r' cos( wyty — dyp) (2.83)
X2 Xge~ 2 cos(wgts — ) |

But 1 =t + 74, where 74 = 27/ wy is the period of damped vibration. Hence
cos(wgty — ) = cos(2m + wyty — ¢y) = cos(wgt; — &), and Eq. (2.83) can be writ-
ten as

= = layTy
.1—2 Er_':{""r!['rl + r.n'] ¢ [28 4}

The logarithmic decrement & can be obtained from Eq. (2.84):

; 2 2 2
5=t = fwry = Lo, T 2T (285

X V]—glm,,= Ul—gl_wd‘?am

For small damping, Eqg. (2.85) can be approximated:

8=~2m¢ if <=1 (2.86)

The logarithmic decrement is dimensionless and is actually another form of the
dimensionless damping ratio {. Once é is known, { can be found by solving Eq. (2.85):
&
[ = (2.87)

V(2m)? + &

If we use Eq. (2.86) instead of Eq. (2.85), we have

8
[ =5 (2.88)
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If the damping in the given system is not known, we can determine it experimentally by
measuring any two consecutive displacements x; and x». By taking the natural logarithm
of the ratio of x; and x,, we obtain &. By using Eq. (2.87), we can compute the damping
ratio £. In fact, the damping ratio { can also be found by measuring two displacements sep-
arated by any number of complete cycles. If x; and x,,+; denote the amplitudes corre-
sponding to times #; and 1,,+; = f; + m7, where m is an integer, we obtain

M _hBREB I (2.89)

Xm+1 X2 X3 X4 Xm+l

Since any two successive displacements separated by one cycle satisfy the equation

.I'Jr

E = :E’g“"""r‘i [29[}}
i
Eq. (2.89) becomes
I.l'l = (E_g’mmrd}m = M{@nTd (2.91)
m+l
Equations (2.91 ) and (2.85) yield
1 X
b = —ln( ) (2.92)
m Xm+1

which can be substituted into Eq. (2.87) or Eq. (2.88) to obtain the viscous damping ratio {.

11



The free vibration of a single-degree-of-freedom spring-mass-viscous-damper system
shown in Fig. 2.21 is governed by Eq. (2.59):

mx +ex +kx =0 (2.106)
whose characteristic equation can be expressed as (Eq. (2.61)):
ms> +es + k=0 (2.107)
or
52+ 2{w,s + wr =0 (2.108)

The roots of this characteristic equation, called the characteristic roots or, simply, roots,
help us in understanding the behavior of the system. The roots of Eq. (2.107) or (2.108) are
given by (see Eqgs. (2.62) and (2.68)):

— + Vet — dmk

2m

51, 87 =

(2.109)

or

$10 8 = —lw, + iw, V1 — (2.110)

The roots given by Eq. (2.110) can be plotted in a complex plane, also known as the s-plane,
by denoting the real part along the horizontal axis and the imaginary part along the vertical
axis. Noting that the response of the system is given by

x(1) = Cie + Cpe™! (2.111)

where C; and C, are constants, the following observations can be made by examining Egs.
(2.110) and (2.111);
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. Because the exponent of a larger real negative number (such as e~ decays faster
than the exponent of a smaller real negative number (such as e™), the roots lying far-
ther to the left in the s-plane indicate that the corresponding responses decay faster
than those associated with roots closer to the imaginary axis.

. If the roots have positive real values of s—that is, the roots lie in the right half of
the s-plane—the corresponding response grows exponentially and hence will be
unstable.

. If the roots lie on the imaginary axis (with zero real value), the corresponding
response will be naturally stable.

. If the roots have a zero imaginary part, the corresponding response will not
oscillate.

. The response of the system will exhibit an oscillatory behavior only when the roots
have nonzero imaginary parts.

. The farther the roots lie to the left of the s-plane, the faster the corresponding
response decreases.

. The larger the imaginary part of the roots, the higher the frequency of oscillation of
the corresponding response of the system.

STABLE (LHP) Im (s) UNSTABLE (RHP)
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FIGURE 2.32 Locations of characteristic roots () and the comresponding responses of the system.
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Although the roots s; and s, appear as complex conjugates, we consider only the roots
in the upper half of the s-plane. The root s; is plotted as point A with the real value as
{w, and the complex value as w, V1 — gzﬁ so that the length of OA is w, (Fig. 2.33).
Thus the roots lying on the circle of radius w, correspond to the same natural fre-
quency (w,) of the system (PAQ denotes a quarter of the circle). Thus different con-
centric circles represent systems with different natural frequencies as shown in Fig.
2.34. The horizontal line passing through point A corresponds to the damped natural

frequency, wy = w, V1 — 2. Thus, lines parallel to the real axis denote systems hav-
ing different damped natural frequencies, as shown in Fig. 2.35.

It can be seen, from Fig. 2.33, that the angle made by the line OA with the imaginary
axis is given by

== (2.112)

wy

sinf =

or
9 =sin”! ¢ (2.113)

Thus, radial lines passing through the origin correspond to different damping ratios, as
shown in Fig. 2.36. Therefore, when { = 0, we have no damping (# = 0), and the damped
natural frequency will reduce to the undamped natural frequency. Similarly, when { = 1,

we have critical damping and the radical line lies along the negative real axis. The time
constant of the system, 7, is defined as

|

Ly,

T =

(2.114)

5=

and hence the distance DO or AB represents the reciprocal of the time constant, {w, =

Hence different lines parallel to the imaginary axis denote reciprocals of different time
constants (Fig. 2.37).

FIGURE 2.34 w, in s-plane.
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Exercicios

2.101 A shock absorber is to be designed to limit its overshoot to 15 percent of its initial displace-
ment when released. Find the damping ratio { required. What will be the overshoot if { is
made equal to (a) %{ 0, and (b) %g" 0?
2.104 A railroad car of mass 2,000 kg traveling at a velocity v = 10 m/s is stopped at the end of the
tracks by a spring-damper system, as shown in Fig. 2.108. If the stiffness of the spring is
k = 80 N/mm and the damping constant is ¢ = 20 N-s/mm, determine (a) the maximum

displacement of the car after engaging the springs and damper and (b) the time taken to reach
the maximum displacement.
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2.97 A simple pendulum is found to vibrate at a frequency of 0.5 Hz in a vacuum and 0.45 Hz in
a viscous fluid medium. Find the damping constant, assuming the mass of the bob of the pen-
dulumis 1 kg,

2.103 For a spring-mass-damper system, m = 50 kg and £k = 5,000 N/m. Find the following: (a)
critical damping constant c., (b) damped natural frequency when ¢ = ¢./2, and (c) logarith-
mic decrement.

2.107 A wooden rectangular prism of weight 20 Ib, height 3 ft, and cross section 1 ft X 2 ft floats
and remains vertical in a tub of oil. The frictional resistance of the oil can be assumed to be
equivalent to a viscous damping coefficient {. When the prism is depressed by a distance of
6 in. from its equilibrium and released, it is found to reach a depth of 5.5 in. at the end of its
first cycle of oscillation. Determine the value of the damping coefficient of the oil.
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2.112-2.114 Derive the equation of motion and find the natural frequency of vibration of each of the sys-
tems shown in Figs. 2.110to 2.111
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2.119 The system shown in Fig. 2.113 has a natural frequency of 5 Hz for the following data:
m = 10kg, J, = 5 kg-m? r;, = 10cm, r, = 25 cm. When the system is disturbed by giv-
ing it an initial displacement, the amplitude of free vibration is reduced by 80 percent in 10
cycles. Determine the values of k and c.

’;’1—)— x(1)
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Pulley,
mass moment of inertia J,
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FIGURE 2.113
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2.126 The needle indicator of an electronic instrument is connected to a torsional viscous
damper and a torsional spring. If the rotary inertia of the needle indicator about its pivot
point is 25 kg-m? and the spring constant of the torsional spring is 100 N-m/rad, deter-
mine the damping constant of the torsional damper if the instrument is to be critically

damped.

2.132 The mass moment of inertia of a nonhomogeneous and/or complex-shaped body of revolu-
tion about the axis of rotation can be determined by first finding its natural frequency of tor-
sional vibration about its axis of rotation. In the torsional system shown in Fig. 2.114, the
body of revolution (or rotor), of rotary inertia J, is supported on two frictionless bearings and

connected to a torsional spring of stiffness k, By giving an initial twist (angular displace-
ment) of 6 and releasing the rotor, the period of the resulting vibration is measured as 7.

a. Find an expression for the mass moment of inertia of the rotor (J) in terms of 7 and k,.
b. Determine the value of Jif 7 = 0.5s and k, = 5000 N-m/rad.

2%, £
( (A E
777 77\~ =
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Body of revolution Torsional
) spring (k)

FIGURE 2.114
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Tracker = video analysis

https://physlets.org/tracker/
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