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Synopsi s

Energetic atomic particles slowing down in a solid or a gas create cascades of atomic col -
lisions . This paper deals with the spatial distribution of the energy dissipated within the cascades ,
at the end of the slowing-down process . This distribution is of central interest in the theory o f
radiation damage and sputtering. An integro-differential equation determining the distribution
function is derived under the assumption of random slowing down in an infinite medium . A se t
of equations is derived determining spatial moments over the distribution functions, and th e
moment equations are solved explicitly under the assumption of elastic scattering with power -
law cross sections . The theory applies to heavy ions or recoil atoms in the keV range (for lighte r
ions only in the lower keV range), slowing down in a (monatomic or polyatomic) target unde r
conditions where crystal lattice effects may be neglected . Moments over the distribution ar e
tabulated for a wide range of mass ratios and several exponents in the Lindhard power cros s
section, and are compared to corresponding moments over the distribution of ion ranges . Severa l
methods of constructing distributions from spatial moments are discussed, and some typica l
energy and range distributions are presented, both in one dimension (depth distribution) an d
three dimensions . A brief discussion of the experimental situation concludes the paper .

PRINTED IN DENMARK
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1 . Introduction

T
his is the first of a series of papers dealing with the spatial extension o f
radiation damage induced by energetic atomic particles bombarding a

random target . The term radiation damage is used in a rather general sense
to comprise a number of changes in physical properties that may be con -

sidered stable on a time scale determined by the slowing down of the pri-
mary particle, such as lattice defects, disordering, ionization, dissociation,
etc . The bombarding particles may come from an external source such a s
ions from an accelerator, or from internal sources such as recoil atom s
from radioactive decays or collisions caused by fast neutrons in a reactor .
The targets may be gases, liquids, amorphous solids and, with some re -
strictions, crystalline solids .

Since radiation damage is a consequence of the deposition of the energ y

of the bombarding particle in the target, the spatial distribution of deposited

energy is of primary interest for all damage effects that are proportional

to the amount of energy deposited, and for emission phenomena like sput-
tering and secondary electron emission .

In general the energy of the primary particle will be shared between

atoms and electrons of the target . It is necessary to separate these two con-

tributions since the slowing-down behaviour of electrons and atoms is dif-
ferent . A further separation may have to be made when the target consists

of more than one kind of atom .

In this first paper we deal with the comparatively simple case of a heav y

ion or atom slowing down by binary elastic collisions, i. e . slow enough

that the energy dissipated among electrons may be neglected as a first ap-

proximation. This is a useful starting point since many calculations can b e
performed by exact methods . The results should be appropriate for keV

ions, the actual energy limit being determined by the atomic numbers o f

the ion and the target .
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It turns out that the equations governing the spatial distribution of de -
posited energy are much like those determining the distribution of io n
ranges . Both sets of equations can be solved by applying the same methods ,
and sometimes even the quantitative results are rather similar . We shal l
compare ion ranges and damage distributions extensively . One major
reason is that very accurate measurements of range distributions have bee n
done, while existing measurements of damage distributions suffer from
various kinds of uncertainties .

The basic physical assumptions entering the theory are essentially thos e
formulated by LINDHARD and his colleagues in a series of three paper s
published in this journal (LINDFIARD et al ., 1963 a, b, 1968) . The mathemat-
ical formalism has been described in detail by one of us (SANDERS, 1968a,
b, 1969). Parts of the present work have been presented at a recent con-
ference (SIGMUND & SANDERS, 1967), and some results have been utilized
in more specific applications (SIGMUND et al ., 1968 ; SIGMUND, 1968, 1969a) .
In Section 2 we briefly summarize the scattering cross sections used in the
present paper and discuss a zero order approximation to the damage distri-
bution, based only on the specific energy loss . Integral equations deter -
mining energy distributions are derived in Section 3, and special care i s
taken to make the notation general enough to enable us to use the same
equations under less restrictive assumptions . In Section 4 we conside r
equations determining moments over the damage distribution, and i n
Section 5 these equations are solved . 'While our previous calculations
(SIGMUND & SANDERS, 1967) were done on a desk calculator, the present
results were obtained by computer . This allows getting higher moment s
than previously and thus constructing distribution functions from th e
moments with more accuracy . Section 6 is devoted to this problem . Nu-
merical results are presented in Section 7, and Section 8 contains a com-
parison with experimental and computer work .

2. Scattering & Stopping Cross Section s

Elastic Scattering

For screened Coulomb interaction between an ion and an atom or between tw o
atoms LINDHARD et al. (1968) derived the following approximate form of the dif -
ferential cross section :

do = na2 2 di/2 f(tl/2) (1 )

where
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t = E 2 T/Tm ,

Tm = YE ,

E = initial energy ,
T = recoil energy, 0 < T < Tm ,
y = 4M 1M2/(M l + M2) 2 ,
Ml = mass of scattered particle ,
M2 = mass of recoiling particle,

(
j+	

) /Z 1 Z2e yl

1

	

2

	

a

The last two quantities are not accurately known. We shall follow LINDHARD
et al . (1968) and use the screening radius

a = 0.8853 ao Z- 1 / 3

	

(2 )
where

z2/3 = Z12/3 + Z 2 2/ 3 ,

	

(2a)

ao = h 2 /me 2 = 0 .529 A .

The function f(tl / 2) has been calculated for the collision of neutral Thomas -
Fermi atoms. Fig. 1 shows Lindhard's f(t1/ 2) together with an analytical approx-
imation

fA(tl/2) = 2 , 11/6[ 1 + (22 , 12/3)2/9 -3/2 ,

A'=1 .309 .

We determined A' by least-squares fit to the numerical curve . It is seen that the tw o
curves agree to well within the accuracy of the Thomas-Fermi approximation .

At small t eq. (3) goes over into f(tl / 2) = A't1 / 6 , which is a special case of the
power approximation (LINDHARD et al ., 1968)

f(tl/2) = Amtl/2-m .

	

( 4)

Figure 1 also shows three examples of (4) for m = 1/3, 1/2 and 1 with

A l/3 = A' = 1 .309 ; A1 /2 = 0.327 ; A l = 0.5 .

	

(4a )

It is seen that the case m = 1/3 is an excellent approximation at small values
of t, m = 1/2 is a reasonable over-all approximation, and m 1 (Rutherfor d
scattering) is appropriate for t )) 1 . In general (4) describes approximately th e
scattering from a potential of the form V(r) x r-ilm .

In the following paragraphs we work only with the cross sections of (4) for sev-
eral values of m since they allow simple analytic solution of the integral equation s
for range and damage distributions . From (1), (1 a) and (4) we obtain

Zl = atomic number of scattered particle,
Z2 = atomic number of recoiling particle ,
a = screening radius ,
f(tl / 2) is a function that depends on the assumed form of the screenin g
function .

(3 )
where
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Fig . 1 . Reduced Differential Cross Sections Calculated from Thomas-Fermi Potential . Thick
solid line : Lindhard's numerical result . Dashed line : eq . (3). Thin solid lines : Power cross sec -

tions, eq . (4) .

do = CE-mT- 1-mdT,
where

C

= ~ma 22

	

Mllm

/2ZlaZe 2`2 m

2,11

	

+`

	

JI

Apart from the above three choices, we have made numerical calculations with
m = 2/3, 1/4, 1/8, and 1/16 . While there is no specific energy region in Fig . 1 wher e
any of these exponents would provide a particularly useful approximation to f(tl / 2)
such calculations give an indication of how sensitive a quantity is to the shape o f
the differential cross section .

Calculations with the more accurate cross section (3) have also been performed .
These can be done either analytically or numerically . In order that these result s
allow a more quantitative comparison with experiment than is possible on the basi s
of power cross sections it is necessary at the same time to include the effect o f
electronic energy loss . This work will be published separately .

To estimate the range of validity of the power cross sections it is convenient t o
consider the stopping cross sectio n

S(E)

	

-
N dR

	

I Tda,

lo 3

(5 )

(5 a)

(6)

1 o

o
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Fig . 2 . Reduced Nuclear Stopping Cross Sections Calculated from Thomas-Fermi Potential .
Thick solid line : Lindhard's numerical result . Dashed line : Integrated from eq . (3) . Thin soli d

lines : eq . (10) .

where dE/dR is the specific energy loss and N the density of atoms in the target ,
and the path length,

R(E)

E

dE

NS(E) .
o

(7 )

( 8 )

(9)

In dimensionless units (LINDHARD et al . 1968), these read

S (e) _ -
e

=
s J

f(tl l 2)dt112 ,
P

o

d e
P( e) =

	

s(e)
,

o
where

Q = RN'ea 2y.

	

(9 a )

Fig . 2 compares Lindhard's numerical curve with the one following from (3 )
by integration and the power laws

and



w

E--
Fig. 3 . Reduced Path Lengths . Dashed line : Integrated from eq. (3) . Thin solid lines : eq . (11) .

S(a) =	
A m	 8 1-2m

2(1 - m)
corresponding to

	 I
0.1

	

1 .0

(10 )

S(E) = C	 Y l-mEl-2m .
1-m (10 a)

Fig . 3 compares the path length following from eq . (3) with the power law pat h
lengths

P(a) _ (1 - m) E2m
mÀ.m

If - 20 0 /0 accuracy in both stopping and path length is required for the power
cross-sections to be acceptable we obtain the following ranges of validity :

m = 1/3 for a~ 0 . 2

m = 1/2 for 0.08 a M1 2 .

Note also that the power law stopping with m = 1/3 is indistinguishable from
the Lindhard stopping on the scale of the figure for s , 0 .02, while the path length
figure indicates that the m = 1/2 stopping cross-section is a reasonable overal l
approximation . (Bolin. 1948 ; NIELSEN, 1956) . At very low energies all these cross



sections should be taken with caution since the Thomas-Fermi treatment become s
questionable.

It may be noted that in a previous communication (SIGMUND & SANDERS, 1967)
we used a slightly different coefficient in the power cross section for m = 1/3 ( A 113 =
1 .19), and energy limits that differed from eq. (12) . This is because both were de-
termined only from the range-energy relationship .

Electronic Energy Loss

According to LINDHARD & SCHARFF (1961) electronic stopping can be approx-
imated by

(d8
e - ka l/2 for E

	

Z 14/ 3 A 1 . 25 keV ,

where k is of the order of 0 .1 to 0 .2 except for Z 1 (( Z2 where k can become larger
than 1. Al is the atomic weight of the ion . Thus, for e ti 1 electronic stopping i s
usually a minor correction, unless Z 1 ,,, 10 Z2 , when it may not be neglected
(SCHIØTT, 1966) .

Deposited Energy: Simple Estimate

LINDHARD et al . (1963b) established their basic range vs . energy rela-
tionship by evaluating the integral of eq . (9). This would be appropriat e
for continuous slowing down along a straight line . Subsequently they showe d
that (9) is a good approximation to the total travelled path length eve n
when the slowing down is not continuous, and that the path length does
not deviate much from the projected range as long as Mi >M2 . It is tempting
to make a similar estimate for the deposited energy. For purely elastic stop -
ping the amount of energy deposited in primary collisions on the path ele-
ment dx is given by

dE = NS(E(x)) dx = F(x) dx (14)

where x is the path length travelled from the initial energy E down to energ y
E(x). Eq. (14) defines a depth distribution function F(x) of energy loss ,
which neglects the fact that energy is carried away by recoiling atoms .

For the case of the power cross section, equation (5), we obtain, by
inserting (10 a) into (7),

( ) (1 - m) ym-1 2
m

E E = 2m N G
	 E

	

(15)

and, from (10a) and (14),

(13)
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E
E(1 - x'R) 2m

	

for 0 <_ x <_ R
F(x) = 2mR

0

	

otherwise .

easily verified from (16) that

f F(x)dx = E;

	

(17)

1

JXF(

	

2m
E

	

.x)dx = 1 + 2mR
;

	

(18)
_co

<Ax2>

	

<x2> - <x> 2	 1	
<x> 2

	

<x> 2

	

1+ 4m .

	

(19)

Eq . (17) states that the total amount of energy deposited along the whol e

trajectory is just the initially available kinetic energy, and (18, 19) deter -

mine the center and the width of the distribution . The path length R(E)
is an appropriate length unit to eliminate the explicit dependence on energy .

In fact, it will be seen in the following that, provided a number of sim-

plifying assumptions can be made, the path length R(E) as given by eq .

(15) is a length unit that determines the energy dependence of the extensio n
of the collision cascade in all three dimensions . Hence, within the limit o f

the power cross section the shape of the cascade can be considered in -

dependent of energy. This is one of the simplifying features of the powe r

cross section .

The two major simplifications leading to eqs . (18) and (19) are th e

assumption of motion along a straight line, which breaks down for MI ,;,M2 ,
and the neglect of energy transported a measurable distance away fro m
the particle trajectory by energetic recoil atoms . Since the latter assump-

tion becomes questionable for Ml ti M2 we have to conclude that (14) is
probably less useful than eq . (7) .

Estimates of the type discussed in this paragraph are more successful
at high ion energies when the slowing down of the ion is governed by elec-

tronic stopping. Then, the ion trajectory becomes straightened out even fo r

Ml << M2 , and the recoil ranges tend to become relatively small as com-
pared to ion ranges unless Ml )» M2 . Obviously, eq . (17) is no longer valid

then. An estimate of this type has been made previously (SIGMUND & SAN-

It is
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DERS, 1967) . BRICE (1970) improved the procedure by taking into account

energy loss straggling and path length correction as well as electronic energ y

loss by recoil atoms. BrucE's approach is feasible if none of the three cor -
rections has a dominating effect on the distribution . The finite range o f
recoiling atoms was neglected . *

3 . Basic Integral Equations

It is well known that the distribution of ion ranges in a random mediu m

is determined by an integro-differential equation of the transport type . The

same is true for the distribution of deposited energy . There is, however ,

a major difference between the two distributions . For any single ion path

the range distribution shrinks to one point, namely the end point of th e

ion 's trajectory . The distribution is then generated by repeating the slowing -

down process a sufficiently large number of times with the same initia l

conditions. For any single ion path however, the distribution of deposited

energy extends over a region whose dimensions are expected to be of th e

order of the ion range. If we repeat the slowing down process many times
with the same initial conditions, these distributions will be superimposed t o

create a distribution that, in general, extends over a larger region in space .

Hence, while the range distribution contains all information that can pos-

sibly be obtained about the end points of the ion trajectories for rando m

slowing down, the spatial distribution of deposited energy will in genera l
not contain all possible information about the location of energy at the end
of the slowing-down process : for example, one could also inquire about the

energy distribution given the projectile's path, or end point . Whether th e
information contained in the distribution function of deposited energy i s
sufficient depends on the specific experimental situation . If it is not, on e

has to consider correlation functions . These will be investigated in anothe r
paper .

Average Deposited Energy

We first consider a monatomic, random, and infinite medium charac-
terized by an atomic number Z2, atomic mass M2, density of atoms N ; and

a projectile of the saine type (Z2 ,M2) starting its motion at a point 7 = 0
with a velocity v. Only binary collisions are considered . The energy o r
damage distribution function, F(%å), is defined so that F(iv)d3r is the

*Note added in proof : Comparison with recent results of P . SIGMUND, M . T . MATTHIES ,
and D . L . PHILLIPS (t.o be publ .) shows that for equal masses of target and projectile, Brice' s
approach is valid for E )) 1 .
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average amount of energy located in the volume element (r,d 3r), after both
the projectile and all recoiling atoms have slowed down below a certai n
energy limit that is very small compared to the initial energy . In most nu-

merical calculations in this paper we take this limiting energy to be zero ;
we discuss this assumption in a subsequent paragraph . It is implied that th e
time after ' hich the location of energy is determined is long enough t o
ensure that energy no longer propagates any appreciable distance via col-
lision processes, but short enough to prevent sound waves from carrying
the energy away . (The time constant for slowing-down is of the order o f
1o- 13 seconds for keV ions, i.e . of the order of only one lattice vibrational
period) .

For the moment we neglect the binding forces acting on target atoms .
Then, from the definition and energy conservation it follows that

fF(r,v)d 3r = E .

	

(20)

F(r,Û ) satisfies the integral equation

v d -> -i

	

-~,
varF(r,v) = Nfdo-F(r,v ) -F(r,v )],

	

(21)

where

v= I I ;
-6-" ' = velocity of scattered particle ;

= velocity of recoiling atom ;

	

(21 a )

da = differential cross section = K(r,v' ,v")d3v'd3å " ;

(21) is analogous to the integral equation for the vector range (SANDER S

1968 a) and is also derived in the same way. The argument follows that
of LINDHARD et al . (1963 a, b), and, briefly, is this . The distribution F is
that due to a particle starting at the origin with velocity . After this original

particle has moved a short vector distance åR there is one particle at åR
with velocity v , if no scattering has taken place, or, if a collision has taken

Tplace,with probability NI RI da, two moving particles, with velocitie s
and . ". The original distribution must be the same as the superposition

of distributions with these new initial conditions . Thus, to first order in åR,
and using the translational invariance of the medium ,

F(i,i) = NISRI
J

da[F(r,v ' ) + F(i,v ")] + (1 - NISRI fda)F(i - ôR,n ) (22)
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where the integrations are over all possible (binary) collisions . Expanding

the second term on the right to first order in 6R, and using SåRI = vfv,
we obtain eq. (21) .

We now proceed to the case of a monatomic medium, characterized

by Z2, M2, N, and bombarded by a projectile with atomic number Zl and

mass M1 . We have to distinguish between the function F( Jr) defined a s

before (i . e ., for a bombarding target atom) and a new function F (1) (.,v)
that determines the spatial distribution of energy as a consequence of th e
projectile ion (Z1 ,M 1 ) slowing down from velocity -6" . Collisions between the

ion and target atoms are described by a cross section dam, while do- still

describes collisions between target atoms . By the same argument as previ-

ously we obtain

f F(i)(I ,v)dar = E; (23)

and

~ a
-

v
F(1)`L

- „
v ) = NT da(1)[F(1)(r,v

~
) - F(l)(-r>-,-"v') - F( r>, v

	

)J- (24)var

The essential difference between (21) and (24) is that the former i s

homogeneous while the latter contains F(i: ,v ") as an inhomogeneity. This
is a major complication of the computational work as compared to th e
range distribution F( R)(r ,v) where we have (SANDERS, 1968 a)

J

	

-~F(R)(r,v
>

)d3r = 1

a'

	

p

	

_
v arF(R)( r ,v) = NJ da(1)[F(R)(r ,v) - F(R)(i•,v ) J

for either equal or unequal masses .
Next, we consider the case of a polyatomic medium containing atom s

of type j (ZZ ,Mf ), (j = 2,3,4 . .), where collisions between atoms i (striking)
and j (struck) are described by a cross section dam ) . We define Fw)(r,v)d3r
as the average amount of energy located in the volume element d3r as kinetic
energy of atoms of type j, as a consequence of an atom of type i slowing
down from a point T" = 0 with initial velocity -1r. By generalizing the previous
argument we obtain

f F(i1)(r°U)d3l' = E;
j

	

(27)

(25)

(26)

and
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_Û a

	

_
varF(i9)~, U

»
) _ ~Nkf da(ik)[F(i.t)(r,v)-F(ij)(rÛ )-F(kJ)(r,v„)]

(28)
k

Eqs . (27) and (28) are in general not sufficient to determine F05 )(1-,v )
uniquely. Also, the sharing of energy between the various components o f
the system may lead to conceptual difficulties, especially in solids . In many
practical problems Foi ) (r,v) may not even be of interest. One may need
only the simpler energy distribution function s

F (i )(r,v) =

	

)

f

that determine the location of energy irrespective of its distribution amon g
the constituent atoms . These satisfy the following equations :

fF(0(1-,v)d3r = E

	

(27 a)

and

-

	

F(i )( r , v )

	

NkJ dQ(ik)[F(i)(r,U)-F(i)(r,a ) -F(k)( r , U )]

	

(28a)
k

which follow immediately from (27) and (28) . Eq. (28 a) represents a system
of as many coupled integro-differential equations as there are component s
in the system. Once all F(i) (r,v) have been determined-which may be a
cumbersome procedure-it is relatively easy to determine the function F (1 )
determining the deposited energy in a poly-atomic medium bombarded b y
an ion (Z1 ,M1 ) that is different from any of its components . We obtain

f F (1) (r,v)d 3r = E,

	

(27 b)

v

-
v a

år' F(1)
(1-, v) _Nkf do (lk)[F(1)Crv) -FYI)

	

-F(k)(,-'-v )], (28b)
U k

i . e . only one additional equation containing all F(k) as inhomogeneities .
The corresponding equations for the ion range ar e

f
F(R)(r,v)d3r = 1 ,

	

(25 a)

-U
a

F(R)( r,v) _ ~ Nkf dcr(lk)[F(R)(i,v)-F(R)(r,v(26a)
Dar

	

k



Nr.14

	

1 7

Special cases of (26 a) have been considered by SANDERS (1968 a),

SCHIØTT (1968), and BAROODY (1969) .

A number of other authors have used integral equations of this type t o

investigate ion ranges (HOLMES & LEIBFRIED, 1960 ; LEIBFRIED, 1962, 1963 ;

BAROODY, 1964, 1965 ; LEIBFRIED & MIHA, 1965) and damage distribution s

(CoaciovEl et al ., 1962, 1963, 1966 ; v. JAN., 1964 ; DEDERICHS, 1965 ;

DEDERICHS et al ., 1966) . All the work on damage distributions and part of

the range work dealt only with the equal mass case . Furthermore, all of thes e

investigations except the one by BAROODY (1965) used hard-sphere or hard-

sphere-like scattering in the numerical work . We have shown in an earlie r

communication (SIGMUND & SANDERS, 1967) that hard-sphere scattering is

too poor an approximation to allow quantitative conclusions, and sometimes
even produces results that differ qualitatively from those obtained with th e

(more accurate) power cross sections .

Finally we mention that the integral equations derived in this paragrap h

are rather general and apply also to situations other than heavy ions slowin g

down by elastic collisions . As long as the cross sections are not specifie d
the equations apply as well to moving electrons, neutrons, etc ., and the
different components of the system in (28) may also be electrons on th e
one side and atoms on the other . In this case, of course, the conventional
picture of a series of successive two-particle collisions is not necessaril y
applicable . For example, from one impact of an ion on an atom there ma y

arise several energetic electrons . In such a case the recoil term F(i -, ii " )
in (24) or an equivalent equation has to be replaced by F

	

,i)

	

Y

	

(v> ( r v ")
v

which is the sum of the contributions to F(7,) of all particles originatin g

from a collision (LINDHARD et al ., 1963 a, b) . These more general cases wil l
be dealt with in a later paper .

Deposited Energy: Relation to Damage Effect s

In the foregoing paragraph we assumed that the process of dissipatio n
of kinetic energy can continue to arbitrarily low particle energies, via binary
collisions between freely moving atoms . Obviously, at low particle energie s
the effects of atomic binding have to be considered . We limit our discussion
to a solid target, which may be amorphous or crystalline, the effects of regula r
lattice structure on slowing down being neglected . Two effects of potential
energy appear to be dominant .

a) There will be a certain minimum energy W for a particle either to
get displaced "permanently" from its original position or to displace othe r
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atoms. This has the immediate consequence that the quantity Elm/NC is
no longer a universal length unit, since e . g . W 2''/NC also has the dimension

of a length . W may be a function of the position of the atom and its directio n

of motion. In the bulk, W is the order of the radiation damage threshol d
energy Ed (- 10 - 100 eV), while considerably smaller values of W are

expected at and near the surface . The energy lost in subthreshold collision s

(T < W) will normally be converted into heat and thus not be of interest

to radiation damage (except that subthreshold collisions may cause an-
nealing of existing radiation damage) . From the theory of displacemen t

cascades it is well known that the number N(E) of permanently displaced

atoms is of the order of N(E) ti E/2W for E »» W, W now being a suitabl e

average threshold energy (LEIIMANN, 1961, SIGMUND, 1969 b, c) . Thus, on e

would expect that, in the average, one atom will be displaced for eac h

volume element containing an amount of - 2W of deposited energy. Pro-
vided that the initial energy E »» 2W, this volume element is much smalle r

than the total extension of the collision cascade . Hence, in the limit o f

E »» W, the introduction of a finite threshold energy W should not affect

the gross spatial distribution of deposited energy . This will be formulate d

more quantitatively in sect . 5. The close similarity to the spatial distribution

of interstitials or vacancies can be formulated more quantitatively, too, if

certain additional assumptions are made concerning the displacement pro-

cess (DEDERICns, 1965 ; v . JAN, 1964 ; SIGMUND et al ., 1968) .

b) Upon leaving its rest position, an atom will in general lose an amoun t

of energy U that may depend on position, energy, and direction of motio n

of the atom. U may be of the order of the cohesive energy or less . Also ,
the lattice may be left in an excited state, so that some of the lattice poten -

tial energy is converted into kinetic energy of the atoms surrounding

the initial position of the displaced atom . Although one could in principle
define the deposited energy function F(r ,v) in such a way that energy i s

conserved, so eq. (20) holds, it is more convenient not to include the abov e

amounts of potential energy in the energy balance . Then, of course, eq . (20)
does not hold . The energy defect can be found by counting the number of

recoil events in which potential energy is converted. For example, let u s

assume a sharp threshold energy W as defined above, and let a particle

stop dissipating energy as soon as its energy is below W. Let us further

assume that a recoiling atom loses a fixed amount of energy U upon leavin g

its initial position. Then, the total number of atoms that recoil with an

energy in the interval (Eo, dEo) in a collision cascade initiated by an ato m
of energy E is given by (SIGMUND, 1969c) .
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m

	

E
F(E'Eo)dEo

	

V)(1) - v)(1 - m) (Eo + U)1-mEo + m dEo ,

for E >j E 0 »» U assuming the scattering to be described by the power cros s

section eq. (5) . The function p(x) (d/dx) In F(x) is the digamma function .

The total amount of kinetic energy lost during slowing down to W is
then given by

E

r
4E = U J F(E,Eo)dEo = (1 + U/W)m -

1	 E.

	

(29a)
V(1) - yß(1 - m)

w

Depending on the ratio of U/W, 4E can be a sizable fraction of E . If U/ W

is small, the fraction 4E/E is of the order of U/W . However, even though

this energy defect may not be negligible when the amount of deposited
energy is considered, the spatial distribution is hardly affected at all, since

eq. (29) clearly shows that the great majority of these energy quanta U ar e

lost by atoms recoiling with very low energy Eo, i .e . that do not affect the

spatial distribution. In fact, for Eo »» U we have an - E~ 2 recoil density .

This point also will be elucidated more quantitatively in sect. 5 .
Apart from the effects of potential energy, another limit is imposed on

the energy dissipation when essentially every atom within the cascad e

volume is set in motion with a sizable energy . This defines a limiting energy

E* of the order of - E/NQ, where Q is the volume covered by the cascade .
Rough estimates indicate that E* is usually small compared with W, so
this effect will be assumed negligible in the following . *

The above discussion concentrated on the spatial distribution of displaced
atoms, as characterized by a threshold energy W . Obviously, the argument
also applies to the spatial distribution of recoils with energies different fro m
W, for example, those described by the recoil density F(E,Eo) of eq. (29) ,
and to the slowing-down-density that dominates the numbers of atoms
moving in a certain energy interval under steady-state conditions . The lat-
ter quantity is of great use in sputtering theory (SIGMUND, 1969a) . In fact,

the number of atoms moving with an energy greater than the sputterin g
threshold energy is proportional to the total energy, but the fraction of thos e
that are close enough to the target surface to be sputtered is determined by
the energy deposition function . Also the spatial distribution of the collision
density can be reduced to the deposited energy distribution, provided tha t

*Note added in proof : E* can become comparable to W for very heavy ions in the lower
keV region. Presumably, this affects the number of atoms set in motion (recoil density) but
hardly the spatial distribution .

(29)

2*
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the collision density is defined to count all collision products in suitabl e
energy intervals (SANDERS, 1966, 1968b ; ROBINSON, 1965b ; KOSTIN, 1965 ;
FELDER & KOSTIN, 1966) . Various concepts of collision density have been
introduced in the literature ; a discussion of their physical significance is a
delicate task, but not the subject of this paper .

Finally, we mention that the assumption of complete randomness of th e
system under consideration is not necessarily applicable to crystalline tar -
gets . The assumption is not valid when single crystals are bombarded unde r
channelling conditions, and even in polycrystals, or single crystals bom-
barded in a "random" direction, there is a possibility for scattering of ion s
and recoil atoms into a channel, and of linear collision chains travelling
over a distance exceeding that for random slowing down at the same energy .
It is implied that random-slowing-down theory holds approximately only
when these lattice effects are rare, or when the corresponding range s
are small compared with the total extension of the collision cascade . Ob-
viously, the significance of these lattice effects depends on the target, damag e
stale, ion dose, and irradiation temperature .

Probability Distribution of Deposited Energy

It was mentioned earlier that the distribution function F(--",v) and relate d
quantities do not contain all possible information on the distribution of deposite d
energy. At present we go only one step further and derive an equation for th e
probability distribution of deposited energy, of which F(r, ) is the average . We
define the function G(rv P) in the following way.

G(r',å,P) dP is the probability that an amount of energy between Pd 3r and
(P + dP)d 3 r is deposited in the volume element (r , d3 r), by a projectile starting
with velocity v at r = 0, and all generations of recoiling particles .

Obviously G has to he normalized :

J G(r , n, P)dP = 1 .

	

(30 )

0

The average energy deposited in (r, dar) is then

f (Pd 3 r)G(r , v , P)dP = F(v , v)dar ,

so

	

P _
°

	

(31 )

F(r,v) = f PG(r,v,P)dP
o

where F(7, v>) is the function defined, by (20) and (21) with W finite or zero .
By use of the argument leading to (22) we obtain the following equation fo r

G(r,v,P) :
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P

2 1

G( r , v , P) = NIBRl
J

da j dQG(r,v',Q)G(r,v" P - Q)
(32 )

r o

+(1-NaR
J

da)G(r- R,v,P) .

	

J
The first term on the right side expresses the fact that the total energy deposite d

in (,d3r) by the scattered projectile and the recoiling particle must sum to P.
Letting åR go to zero we obtain

--->-

	

P

v v Sr
G(r ' v ' P) = N

i
ck' G(rv, P) -f dQG(r .v}',Q)G(r,v",P_ Q)

	

(33)

o

We want to derive eq. (21) from (33) . Multiplying (33) by P and integrating ove r
P we obtain, by use of (31)

Û a

	

r

	

oo

	

P

v a
r

F(r,v) = N
J

do- F(r,Ti) - f dP J dQ PG(r',v ', Q)G(r , v ", P - Q) . (34 )
o

	

o

Substituting P -> P + Q in the second term on the right side in (34) we obtai n

- f dPf dQ(P+Q)G(r,v',Q)G(r,v,,,P) = - F(r,v') - F(r,v"),

	

(35 )

o

	

o

using (30) and (31) . Inserting (35) into (34) we arrive at (21) .
Eq . (33) could easily be generalized to all the cases discussed at the beginning

of this section. This is merely a matter of notation .

4. Equations for Spatial Average s

There are several methods available to find . approximate solutions o f
integral equations of the type derived in the preceding section. These are
reviewed in textbooks and review articles on slowing down of neutrons ,
penetration of X-rays, etc . But even in the highly simplified case of hard-
sphere scattering it has not been possible to find the exact solutions . It is ,
however, possible to calculate exact expressions for averages over the dis-
tribution functions, for a certain class of cross sections including the power
cross sections specified in (5) . We shall, therefore, calculate averages first ,
in order to have a solid basis for comparison with experiments, and try t o
construct distribution functions from the averages, rather than attack di-
rectly the equations for the distribution functions . The derivations in th e
present section arc based on standard methods developed several decade s
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ago in other penetration problems and used also in the theory of ion ranges .

We sketch the derivations for completeness and because of some sligh t

differences from the equations occurring in other problems .

Plane Monodirectional Sourc e

In experiments with ion beams one has a more or less monodirectional

source of projectiles, hitting a target with a more or less planar surface . It
is convenient to solve the integral equations for planar geometry . This de-

termines the depth distribution of the deposited energy .

Let us assume a coordinate system with the x-axis perpendicular to th e
surface of the target, and a plane monodirectional source at x = 0 . Then
F(i, v) does not depend on y and z so (20) and (21) rea d

f F(x,û ) dx = E,

	

(36)

a
- cos Ø x F(x,Û)= N I

r
da[F(x,v)- F(x,v' ) - F(x, v")],

	

(37 )

where F(x,i)dx = dx fF(r å)dydz is the energy deposited in the laye r

(x,dx) on the average by one projectile starting in the plane x = 0 with

velocity v and cos O = y is the directional cosine of Û with respect to th e

x-axis . Note that (37) still requires the medium to be infinite, and that th e

"surface" at x = 0 is only a reference plane. Whether our results apply

to a target with a real surface depends on the importance of scattering bac k

and forth through the plane x = 0 .

For an isotropic medium, F(x,å) cannot depend on the azimuth of

with respect to the x-axis . Hence

F(x,v)

	

F(x, E,'7)

	

(21 + 1)Fi(x,
E)-P l(y),

	

(38)
a o

after changing from velocity to energy variables, and expanding F in terms

of Legendre polynomials. The factor (21+ 1) is included for convenience .

The coefficients FI(x,E) are then given b y

i

Fa(x, E)

	

2 f drF(x, E, r7) p1 (rl)

	

(38 a)

_1



Nr . 14

Integrating (38 a) over x, and taking into account eq . (36), we obtain

2 3

JdxFl (xE) _ 6 10 E. (39)

Eq. (37) will now be reduced to a set of equations for the FI(x,E) . On the

left side we employ the recurrence formula for Legendre polynomials, s o

that

axF(x'Û) = - dxFt (x,E) [(I+1)Pt+i(~7) + WI- 1(77)]

(40 a)

1 xFt _ 1(x, E) + (1 + 1 ) axF1+1(x, E)]Pt (n) .

The first integral on the right of (37) is given b y

Nf daF(x,v) = 1(21 + 1) NI da(E, T)Fi(x, E)P1 01),

	

(40 b )

while the second,

-Nf daF(x,v') = -2(21+ 1)Nf da(v,Û')Ft (x,E- T) (n') ,

has to be transformed in such a way that 27, not 17 ' , is the variable in PI (iy) .
17 ' is the directional cosine of v ' with respect to the x-axis . We can expres s

the cross section for elastic collisions by

'
da(W,v') = dc(E,T)

dé
S~é'- cosq,'),

	

(41)
2z

where é = vfv, é ' = Û' /v' and 99' is the laboratory scattering angle of the
projectile, a function of E and T. We expand the 6-function,

21+ 1
6(é .1' - cos 99 ' ) = ~	 Pt(é e ') P t (cos q9 ' ) ,

t=o 2

and insert the addition theorem for spherical harmonics ,

4~
Pt(é.é')

	

21 +1 Yt~`
(e)Ytµ( é
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where Y1 (é) are spherical harmonics in the notation of SCHIFF (1955) .
With the x-axis as a reference axis, the integral over é ' can be performe d
and yields

- Nf daF(x,v') = -2(21+ 1)Nf do'(E,T)P i (cos )Fi(x,E-T)Pa(n) . (40 c )

A similar calculation for the third integral in (37) yields

- Nf d6F(x,i")

	

-1(21 + 1)Nf da(E,T)P 1 (cos T")Fl(x,T)Pa(7), (40 d)

where cp" is the laboratory scattering angle of the recoiling atom . Collectin g
equations (40 a-d) we obtain

1 a	 Fl _ i (x,E) - (1 + 1) -

	

+1(x,E) _ (21 + 1)Nf do'(E,T)

• [Fi (x,E) - P l (cos (p ')Fa(x,E - T) - PI (cos T")Fl (x, T)] .

l

	

4 2j

	

()

Spatial averages over the distribution function F(xv) are obtained by in-
tegration of (38),

r
m

J
xndxF(x,v) _ I (21 + 1)Fz n (E)Pa(n),

	

(43)
a = o_ Go

where

Fe(E)

	

J
dxxnFt (x,E) .

	

(43a)

So, by integrating (42) ,

nlFln i l (E) + n(1 + 1)Fi+ll(E) = (21 + 1)Nf do-

. [Fi n (E) - P I (cos 99')Fi n(E - T) - Pj(cosç " ) Fi n ( T) ]

Using the notation of (43 a), (39) reads

Fi°(E) = å1oE.

Thus (44) represents a system of integral equations that can be solve d
stepwise with increasing n, the case n = 1 being defined by (45) . Obviously ,
for n = 1 only the moment F1(E) is different from zero since, because o f
eq. (45), eq . (44) is homogeneous for n = 1 and 1

	

1 . Similar arguments

(44)

(45)
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apply to higher order moments . It turns out that F1 0 0 only for 1 n

and 1 +n even. Thus, the sum (43) is always finite .

Eq. (44) has been derived from (21) for the simplest of the distributio n

functions discussed in the previous section . Generalization to other func-

tions is a matter only of adding the right indices . For example, (23) reduces

to

(46)

where q ' ( 1) and T" (1) are laboratory scattering angles for M1 0 M2 , and

F(1)å (E) derives from F (1) (-,v) in the same way as Fi n(E) from F( , ) .
Furthermore, from (22) and (45) ,

F(1) ? (E) = å 10 E.

	

(47)

If the last term on the right side of (46) is omitted one obtains the equa-
tion for the moments of the projected range distribution . Eq. (47) has then

to be replaced by F(l) ?(E) = å 1o . This system of equations has been studie d

by BAROODY (1964, 1965) .

Point Monodirectional Source

If one is interested in the extension in three dimensions of collision cas -
cades it may be more convenient to consider a point source . This case has

been studied by CORCIOVEr et al . (1962, 1963, 1966), v . JAN (1964), DEDE-

RICHS (1965), and SANDERS (1968), as well as in our previous communica-

tion (SIGMUND & SANDERS, 1967), and in all the range work quoted pre-

viously, with the exception of BAROODY (1964, 1965, 1969) . A general rela-

tion between the solutions for plane and point sources has been derive d
by BERGER & SPENCER (1959), and is quoted in Appendix C . We remind
the reader that F( r-',v) does not in general determine the dimensions of a

single cascade but those of the region covered by a great number of cascade s

with the same initial conditions .

With a point source at

	

0, the initial velocity vector v is used as a
reference axis X. The Y and Z axes are perpendicular toi.

We expand
F(i,Û) __ ~(21 + 1) f1(r,E)Pl(0 ,

	

(48)

nlF( l ) i-i(E) +n(1 + 1)F(1)7+i(E) = (21 + 1)NJ dam

' [Fa) (E) - P l (cos T ' (I))F (1) (E - T )

- Pl (cos Tir
(i)) Fln (T)] ,

where

	

(r . v )/(rv) . For the moments
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fa n (E) = 43 r 2 + ndr fi
(r, E)

	

(49)
0

we obtain the following set of equations :

1(1+n+1)fi il (E)+(1+1)(n-1)fn il (E) _ (21+1 )Nfdo-

[fi n (E) - Pa(cos g9' ) fa n (E -T) - Pi (cos (pI ' ) fa n (T)] ,

and the normalization condition

fo°(E) = E .

The e (E), 1

	

0 are not prescribed, in contrast to (45) . However, thos e
moments fn(E) that can be calculated recursively from f g (E) determine the

spatial averages f TO, F(iv)d3r for integer t,j,k O. From (48) we
obtain

r

	

1

	

9+Ie

fXa Yi Zk F(r,v)d3r = ~(21 + 1) faa+f+,k(E)~ f d~~~(1 - 2 ) 2 Pa(C)

27c

	

-1

	

(52)

1x

	

dxcos5xsinkx
2n ~

0

which can be readily evaluated . The resulting general expression looks more
complicated than it is so we list the first few examples :

f x F(r,v)d3r = fi1 (E) ;

f YF~,n)d3r = fZF(i,v)d 3r = 0 ;

f X2 F( r , U )d3r = f02 (E) + }f2 2 (E) ;

	

(53c)

f Y2 F(r,T )d3r = f Z2 F(r,Û )d3r

	

fo 2 (E) - s f22 (E); (53d)

J XYF(,v)d 3r = 0 ;

	

(53e)

f X3 F(i. ,Ti- ) d3r = f13 (E) + 5 f33 (E) ;

	

(53f)

f XY2F (r,Û) d3r = ~f13 (E) - 5f33 (E) ;

	

(53g)

(50)

(51)

(53 a)

(53 b)

etc .
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Again, of course, by adding a number of indices we could easily gen-
eralize these results to the more complex cases of an impurity ion or a

polyatomic medium .

5. Evaluation for Power Cross Sections

LINDHARD et al . (1963b) have shown that moments over the range dis-

tribution can be calculated by exact integration if the power cross sectio n

(5) is used . SANDERS (1968) has shown that the same is true for moments

over the damage distribution, and some numerical results have been pre-
sented in an earlier communication (SIGMUND & SANDERS, 1967). In this

section we first discuss the method and then present some numerical results .

First Order Moments: Equal Mass Cas e

Equation (44) reads, for n = 1 = 1 ,

Fo°(E) + 2F2°(E) = 3N
J

da[Fi1 (E) - cos

	

(E - T) - cosw" Fi l(T)]

or, after inserting the cross section da from (5), the zero order moments
from (45) and the laboratory scattering angle s

cow' = (1 - T/E)1/2 , cos 99" _ (T/E) 1/2 ,

	

(54)

E

E = 3NCE-m
r
I T- 1- m dT [Fi 1 (E) (1 - T/E) 1 / 2 F1 1 (E - T)

	

(55)

0

- ( T/E)1/2F11 ( T)I .

Before solving (55) we investigate the boundary conditions imposed by a

threshold energy W, as introduced in sect. 3 . For planar geometry, and
neglecting the energy loss U for the moment, we hav e

F(x,)) = E8 (x) for E W,

	

(56)

so, by use of (38) and (43) ,

Fin (E) å0å0E for E W,

	

(57)

i .e . F1 1(E) = 0 for E

	

W.
We first treat the case W = O . With the ansaiz
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AllF11(E) = 1 E1+2 m
/ NC

where All is a constant, we obtain from (55 )

1 = 3A1 1 f t- l-m dt[1 - (1 - t)3/2+2m - t3/2+2m ]

0
where now

t = T/E .

	

(59)

The integrals are easily evaluated and yield

1
3A 1 1 = - 1 -B( -m,5/2 +2m)-	 1

rn

	

3/2+ m

B(x,y) is the beta function (ABRAMOWITZ & STEGUN, 1964) ,

Jdttx_1 ( 1

1

	

B(x,J) =

	

- t)v-1 = r(x) 1'0)
r(x + rd)

0

Because of (45) all other moments F1 1(E) are zero so, by use of (43)
and (36), we obtain the "average damage depth "

fx dxF(x,1)

	

3,1 11

	

<x> =
	

(

	

= NC
E2m cos0,

	

(62)

J dxF(x,v)

where Ø is the angle between the beam and the x-axis .
This is to be compared with the average projected range that was firs t

calculated by LINDHARD et al . (1963b) and is, in the present notation,

3A(R) 11 2 m<x> (R) =	 NC E cos 0 ,

where

11 1
3A (R)11 = - 1 - B(- m, 3/2 + 2m)

Jm

Note that, because of the different normalization condition of the range
distribution, we have

(58)

(60)

(61)
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A (R)l 1
F(R)1 1 (E) =	 NCEtm

i .e . an energy dependence that is different from that in (58) .

We now consider the case W > O. It is then no longer possible to cal-

culate the complete F1 1(E) explicitly, but the asymptotic form for E )» W
can be found by Laplace transform, as was shown by ROBINSON (1965e )
on a similar integral equation . Introducing the logarithmic variable u In E/ W
in (55) we obtain, by following Robinson's method, the following expressio n

for the Laplace tr ansform Ft(s) of FI(E(u)) with respect to u :

F1 1 (s)

	

-
mtiVl +2m

	

1

3NC (s - 1 - 2m)(1 2g(s + 1/2)) '
(63)

where

m 1

	

1 T(1 -m) P(s + 1 )
9(s)

	

2 s-m + 2

	

I'(s +1-m)

	

.

It appears difficult to express the inverse Laplace transform of (63) in

terms of elementary functions, but it is easy to evaluate the first two term s
in an asymptotic expansion in powers of E/W . These arise from the two
poles at s = 1 + 2m and s = 1 /2 in (63) . We then obtain

	

1

	

1
I 1 1 (E) Ai_ El + 2m - 1 E1 /2uj1 / 2 +2m

	

NC

	

NC

where All is identical with the expression calculated before, eq. (60), and

3A ,1 1 =	
m(1 - m)

	

1

1/2+2m y (1)-y(1 -m) '

d
y(x) = dx In P(x) . Thus the first correction term for W 0 is smaller wher e

than the main term by a factor of the order of (W/E)1/2+2m . For In > 1/4
this factor goes more rapidly to zero than W/E. This means that W can
usually be neglected when E is in the keV region, and the error made ca n
be estimated from eq . (64) .

A similar calculation shows that the correction in the average projecte d
range due to a threshold W is proportional to E -112, i . e . again smaller b y

a factor of the order of (W/E)1 /2+m than the leading term. Of course th e
numerical factor A ll is different from the one given by (64 a) .

for E »» W,

	

(64)

(64 a)
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Introduction of an energy loss U of the recoiling atoms, as discussed i n

§ 3, has two consequences . First, since energy is not conserved, the left-

hand side of eq . (55) is replaced by E - 4E. Because of eq . (29 a), thi s

means that for E »» U,W, the left-hand side of eq . (55) remains linear i n

E. Hence, because of eq . (62), the average <x> is not affected . Second, the

recoil term F1(T) in eq. (55) is replaced by F1(T - U) . It is, then, possibl e

to establish an asymptotic expansion of F1(E) in powers of U/E, where (62)
is the leading term . Higher terms can be neglected for E »» U.

First Order Moments : Nonequal Mass Cas e

Equation (46) reads, for n = 1 = 1 ,

E = 3Nf da(1)[F(1)11(E) - cosT(1) 'F(1)11(E T) - cos4'(1) "F
il

( T)],

	

(65)

where (47) has been inserted on the left side . The laboratory scattering

angles qß(1) ' and qß(1) " are given by

T
cos T (1) ' = (1 - T/E)1 / 2 + aF (1 - T/E)- 1/2

	

(66a)

COSgI(1) " = Y- 112(TIE)1 /2 (66b)
and

for elastic collisions, where

a = 2(1 - M2/M1).

	

(66c)

The cross section da (1) is given by

da(1) = C(I)E-m(1)
T 1

m (1)dT, 0

	

T

	

yE

	

(67 )

where in general, C(1) and m(1) are different from C and m. We shall assume

in the following that

m a) = m, (68)

i . e . the same power in the cross section for both types of interaction . This

is a gross simplification, the validity of which will be discussed in the fol -

lowing chapter . Accepting (68) for the moment, we can make the ansatz

F(1)11(E) = A(1) 11 E1 -I -2m
NC ( 1 )

and, inserting both (58) and (69) into (65), we obtain

(69)
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f
y

= 3A(1)11J
tldtm

[1 - cosT (1) ' (1 - t) 1 +2m ] . (69 a)

o

The integral is easily evaluated after inserting (66a) and we get

3
1+

3f2+mA11GC

	

m)Yl+m = 3A (1)1 1

	

y - By ( m,5/2 +2m)

- aBy (1 - m, 3/2 -I- 2m)} ,

where By is the incomplete beta function ,

JB(x,d) =

	

dt tx-1(1 - t)y- 1 .

o

Eq. (70) determines A (1)1 1, since Al l , C (1) , and G are known . We note tha t

from (5a)

C(1)

	

(

MM12

m Z1\2m /a12 2(1-m)

C

	

Z2/ \[12 2

or, with the approximation Z2/Z, = M2 /M1 = ,u,

	

G(1)

	

m-3m
/

	

2

	

1-m

	

C

	

\1 + / - 2/3i

It may be appropriate to make a remark on the convergence of the abov e

integrals. Eq . (70) follows directly from (69 a) provided m < 0 so that eac h
term in the integral converges . For 0 < m < 1, it is readily verified that the

integral as a whole converges, while divergences occur in two terms a t

= 0 . The divergence can easily be removed by partial integration, but
this would make (70) look more complicated . Instead we understand (70 )
for 0 < m < 1 as the analytical continuation from the region m < 0 .

First Order Moments: Two Different Power Cross Section s

There is no basic obstacle against treating the case m ~ m (1) , and in fact, the
solutions of (65) can be found by straightforward calculation . However, it is highl y
desirable to make use of the simple power laws of the type of (69), as long as thi s
can be justified. The main advantage is, as has been seen, that all lengths are propor-
tional to Elm/NC (l ) and there is complete similarity of all distributions over th e

1+

	

3	 A11
C (1)

y 1
+ m

3f2 +m

	

C

(7 0

(71 )

(72)
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energy range where the power cross section in question is valid, so that the only
numerical work to be done is the calculation of various factors . In the case m m 11 > ,
(69) is no longer valid .

Let us assume a primary particle 1 with energy E that slows down by a powe r
cross section characterized by ma ) . Recoil atoms have energies T up to T„ 2 = yE .
There is formally no lower limit for T, but for the stopping only recoils with, sa y
T

	

Tm are important . Thus

lôo yE < T <yE

is the energy range of interest for recoiling atoms whose scattering is characterize d
by a power m in the cross section . Whether eq. (68) is a reasonable assumption
depends on the values of T and E in dimensionless units . We introduce two dif-
ferent energy units,

E	 M 2

	

12 12

	

t_ T 1 12 2 2

Ml + M2 Z1Z2e2'

	

2 Z2 2 e 2 '

which both follow from (la), t applying to the equal-mass case . Hence (73) reads

1
ex(µ) < t < e•x(,u), (7 4

where 100

2	 ' /
x(,u) m

µ(1 +F4)
V2(1+µ-213) (74a)

and µ = M2 /Ml Z 2 /Zi. Figure 4 shows that the function x(µ) varies rapidly
with ,u, so that primary and recoil energies can differ by several orders of magnitude
when measured in dimensionless units . Now, let us first assume that M2 /1111 < 1 ,
say M2/Ml = 1/4 so x(µ) = 8.5, according to Fig . 4. Then 0.1 e ~„ t < 8 .5 e .
Hence the distribution oft values centres around e on a logarithmic scale, with a
spread of a factor of 10 to both sides . Thus one seems justified in assuming that
primary and secondary particles obey similar scattering laws, m m( , ) . I . M2/M i
is considerably smaller than 1/4 the ratio tie will be greater . Thus in extreme cases
it may become necessary to assume m > m (l) . Let us now assume 11I2 /M1 > 1 ,
say M 2 /Mi = 4, or x(µ) = 0.083 . Obviously the distribution oft values ranges
from !., 0 .1 e down to - 0 .001 e, i .e . we will have in general m < m (i) for Ml (( M 2 .
However for M l (( M 2 the ranges of recoiling atoms are small, so the recoil ter m
is negligible. This can be seen from the fact that the term containing the facto r
C (1))/C in (69a) goes to zero as

	

1-4m forµ )) 1 .
We conclude that assumption (68) is justified for Ml )) M 2 , while for 114- 1 (( M 2

the choice of rn does not affect the calculated quantities . For Ml M2 neither
argument applies . Therefore we consider the case M1 = M 2 more quantitatively .
Going back to (55), one way to solve the problem would be to assume that the primar y
particle of energy E has a scattering law with m = m 1 , and secondary particles ,
with energy T, have m = m 2 , where m 2 < ml since T < E . This is, however ,
unsatisfactory, because a measurable fraction of all recoil atoms do have energie s
of the order of E. Instead, we assume the following consistent picture : introduce a n
arbitrary energy El and assume that whenever an atom (primary or secondary )

(73 )

(73 a )
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Fig. 4. The function x(u) defined in (74 a), as a function of mass ratio .

has an energy below E l the cross section is given by m m l , while for energie s
> El we have m = m 2 (> ml ) . Then, of course, F l l(E) is given by (58) for E < E l ,
with C = Cl and m = ml in (60). For E > E l , the integrations in (55) have to
be split into the regions E < E l , and F 1 1(E) inserted as a known inhomogeneity
for E < E l . Eq. (55) can then be solved by Laplace transform, just as in the first
chapter of this section, with El substituted for W. The resulting expression contains
(58) as the leading term with the highest power of E with m = m 2 and C = C2 ,
while the first correction term goes as El/2 , i . e . can usually be neglected in com-
parison with E1+2m, . Thus (58) holds both for E < El and E > E l , with the
respective value of m inserted in each energy region . Since this is just what wa s
assumed above we conclude that even in the case M l = M 2 , where the assumption
(68) was least justified, one is indeed allowed to make it . The result of this paragraph
may seem trivial to the reader, but one should be cautious . There are other, similar
integral equations (SIGMUND, 1969a, 1969b) where exactly the opposite result i s
true . The choice of the power m is a major problem that has to be considered wit h
great care whenever power cross sections are used.

Mat .Fys .Medd .Dan .Vid-Øelsk . 37 no . 14.
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Higher Order Moments

Higher order moments (n 2) can be calculated in a similar way as
first order ones . We set W = U = 0 from the beginning-which choic e
could be justified in the same way as for n = 1-and also choose a single
power rn in the cross sections da and dam .

4Fan(E) _ (21 + 1)NCE -2 m f tldlm
[Fa n(E) - Pa (cos g~ ' )Fan(E(1 - t)

) o

	

(75)

- Pa (cos p ") Fi n (Et)] ,
where

4Fan (E) = nlFi r(E) + n(1 + 1)Fi+i (E) •

With the ansatz
(E2mi n

Fa n(E) = AanE
NC /

(45) becomes

Aa° = dao ,
and (75) gives

n =	 4Aan
a

	

(21 -I- 1)Ian '

where

Ian

	

J tldt m [1 - Pa ( V1-t)(1 - t)2mn + 1_ Pa(V t)t2mn+1 ] .

	

(77a)

o

4Aa n is defined in analogy to (75 a) ,

4Aa n = n1Aiit + n ( 1 + 1 )Ai+i .

	

(77 b)

Thus it depends only on the 4-1 . Hence the problem has been reduced
to evaluating the integrals Ia n . As before it is easily verified that Ian as a whole
is convergent for m < 1, so it is legitimate to evaluate Ia n first for nl < 0 ,
where each of the three terms is finite, and then continue the result to th e
region 0

	

m < 1 .
For m < 0 we can writ e

Equal-Mas Case

Equation (44) reads, with the cross section (5) ,

1

(75 a )

(76)

(76a)

(77)
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1

where

Iln ° -

	

- Jan - Kin
m

I.

(78)

S dtJi n

	

V1

	

t)(1 - t) 2m.n + 1,=

and

t1+mPl( V
o

(78a)

1

f tl
dtm P

l(V (78b)
Kln

	

t)t2mn +1 .

o

The two integrals are reduced to readily calculable forms in Appendix A .

It should be mentioned that in a previous communication (SIGMUND &

SANDERS, 1967) we evaluated JO and Kan in " the pedestrian way", i .e. by

inserting Pi , and evaluating the resulting beta functions, first for n < 3 an d

later for n 5 . This is perfectly justified for small n . In the present work

we evaluate A i n up to n = 20 and in this case one has to make the accumula-

tion of errors in the recurrence procedure as small as possible . The metho d

described in Appendix A is one of several procedures that have been tried .
Since it is the simplest one, we have confidence that the results are accurate .

In the most important lower moments (n 3) agreement is found betwee n

the results computed by various methods and our previous results obtaine d

with the desk calculator .

Non-Equal Masses

With the cross section da(1) = C (I)E- m T- 1 - mdT, (46) reads

Y

4F(1)i n(E) _ (21 + 1)NC (1) E-2m f tldtm
[F (1)a n(E) - P i(cosq) (1) ') x

o

x F (1) i n(E(1 - t)) - Pi (cos cp (1) " ) Fin(Et) ]

Inserting (76) in the last term on the right side we obtain, with the ansatz

Elm n

F(1)a n(E) -
A(1)lnE (NC O1 ) '

	

(80)

4A(1)in

	

\C(I)1

n
dinA(I)t H

= 21 + 1
+ A i n C

	

S'i'',

	

(81 )

3 *
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where

din = -

y-m

- in ,
m

Y
dtf in

- f tl+mPi(cOstp(i)')(1 - t

o

Thus, given the A i n, the computation of A (i) i is reduced to evaluating inte -
grals . The /in are evaluated in Appendix A .

Range Calculation s

Moments over the ion range are calculated with the same program, th e
differences being the following :

i) There are no Ki n or "in terms, since the recoil term is absent in (25) .
Hence it is not necessary first to evaluate the equal-mass case .

ii) Because of the different normalization condition (24), the exponents o f
(1 - t) in (78 a) and (81 b) are 2mn, instead of 2mn + 1 . The extra factor
E in (76) and (80) disappears .

Polyatomic Targets

The extension to polyatomic targets is easily done by adding the appropriat e
indices and summing over the various components . Because of the difference in th e
values of s, power cross sections are not applicable when the constituents of the
target have extremely different masses . Consider (28a) . We define

1~Ti = aiN,

	

(84 )

so that ai is the fraction of atoms of type i (i = 2,3 . . .) . Following the procedur e
of the previous sections . we obtain the following expression for the moments over
the function P (i) (r,5) :

and
Y

= f dttm(2n - 1 )P i (cosg) (1) " ) .

o

From (78b) and (81c), (75b) and (79a), we get

m in = y1+m(2n-1)K i n

Also, from (47)

A(1)i o = bio .

2mn+l

(81a)

(81 b)

(81c)

(82)

(83)
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1 .000 1 .000 1 .000 1 .000

4.170,o- 1
1 .68510-1 2 .18810-1 3 .30710- 1

1 .57210-1 2 .87110-1 8 .77710 1 2 .14 9

4.04310-2 6 .56310-2 1 .34910-1 1 .95 8 10" 1

7 .81310-2 1 .83010-1 8 .19510-1 2 .51 7

1 .15310-2 2 .320102 6.27510- 2 1 .01710- 1

1 .485

	

110
9 .91110- 2 3 .203lo- 1 2 .6 8 9

3 .81510- 2 1 .12610-1 6 .85310-1 2,408

3 .66210-3 9 .16210-3 3 .25410-2 5 .88010- 2

3 .979 2 .763101
7 .68610-2 3 .21710 1

1 .85610-2 6 .85710-2 5 .51310-1 2 .14 5

1 .25610-3 3.933l0- 3 1 .852102 3 .765w- 2

A 0 0 1 .000 1 .000 1 .000 1 .000

All 6 .79910- 2 1 .2291o- 1 .99110- 2 .50010- 1

A 02 2 .07210- 2 7 .37410- 2 2 .16810 - 3 .75010- 1

A 22 5 .88110-3 1 .99310- 2 5 .22910- 2 8 .07 7 10- 2

A 13 3 .33910- 3 2 .33110-2 1 .16610- 2 .56110- 1

2 .98410- 2
A33 5 .5591o- I 3 .65010- 3 1 .57410 -

A 04 1 .21 1 îo- 3 1 .75510- 2 1 .6261o - 4.88910- 1

A 24 5 .04410- 4 7 .05110- 3 5 .9861o- 2 1 .64510- 1

A 44 5 .46810-5 7 .16710-4 5 .17610- 3 1 .21110- 2

A 15 2.70610- 4 8.11010- 3 1 .32910- 5 .14510- 1

A35 7 .25810-5 2.07310- 3 3 .01010 - 1 .03010- 1

A 5 5 5 .47610- 0 1 .47210- 4 1 .81810- 3 5.29110- 3

Nr.1 4

TABLE I . Coefficients

	

defined by (76), for MI = M2 and various values

ficients A z

of m. (Note that in case of the range distribution the extra factor E in (76)

has to e dr p ed) .

(la) e I
m_13

	

m1/4

	

m1/8

	

-1(16

m 2)3 \ m = 1)2
D

_

Nonvanishing Coefficients A in for n < 5 .
osited Energy ;

1 .000

	

A00

	

1 .000

	

9 .83110- 2

	

All

	

5 .19910- 2

	

A02

	

1 .29710- 2

	

4.91610- 2

1 .41910- 2

	

A 22

	

3 .9214p- 3

	

A43

	

1 .88010-3

	

1 .41510 - 2

	

Ais

	

3 .40410-4

	

2 .42010- 3

	

,4 04

	

6 .10010-4

	

9 .5831p- 3

	

A24

	

2 .64410-4

	

4 .02110- 3

	

A 44

	

3 .15810-5

	

4 .5301p- 4

	

Ais

	

1 .2751p-4

	

4.16910- 3

	

5

	

3.615 5

	

1 .13210- 3

	

A 55

	

3 .03110-s

	

8,9921p- 5

nishing Coefficients Ain , for n

	

5 .
Ib) Ra e : Nonva I

	

II

	

I
2/3

	

m

	

112

	

m = 1j3

	

m- 1/4

	

m= 1/8

	

m=1/16

1 .000

	

1 .00 0

3 .56210-1

	

4 .33610- 1

1 .031

	

2 .352

1 .51910-1

	

2 .08910- 1

1 .010

	

2.840

7 .25110-2

	

1 .1 01 10- 1

3 .533

	

1 .748101

8 .69810-1

	

2 .77 0

3 .81510-2

	

6 .41510- 2

5 .414

	

3 .333101

7 .12510-1

	

2 .49 7

2 .19010-2

	

4 .12310- 2
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38
defined by (80), as functions of

mass ratio

TABLE II . Coefficients A(1)an,

	

Ma~1~1•

?t 214r

(Ha) Deposited Energy : m - 112.

4

	

1 0

1110

	

114

	

1

1 .000

	

1 .000

11 2

	

\

	

1 2

1 .000

	

1 .000

1 .2410-

	

9 .83110- 2

2
4 .91610- 2

1 .000

	

1 .00 0

8 .02010- 2

	

6 .58810

3 .80110- 2

	

3.37610

9 .26610- 3

	

5 .92910 -

9 .38610- 3

	

7 .00110 -

1 .2361o- 3

	

5 .96710- 4

6 .25610-3

	

4 .97610 -

2 .19610-3

	

1,28810-

1 .000

A(1)00

A (1)1

2

	

4 .76110 - 2

2

	

3 .07710- 2

3

	

2 .89010-

a

	

4 .60110-

3

	

3,91 1

3

	

5 .69310-

1 .91110-

3

•3

4

10-3
4

5

2 .30510-1

	

1 .63010- 1

2 .90510-1

	

1 .43410- 1

8.03210- 2

	

4 .00810-

2 .37410-1

	

7 .86410-

3 .52110-2

	

1 .21610- 2

5 .92310-1

	

1 .23110- 1

2 .13710-1

	

4 .59110-

1 .83310- 2

	

4 .25710-

2

	

2 .32810-

2

	

3 .00910-

7 .97810- 2

2

	

1 .41910-A (1)02

2A (1)22
3

A (1)i
5 .18010- s

2 .80210- 2

2

	

1 .14810- 2

3

	

1 .28310-

2

	

1 .41510 2

2 .42010- 3

9 .58310- 3

4 .02110- 3

3

	

4 .5301o- 4

A (1) 3

A

	

3

4
(1)0

4A(1) 2
A(1)44

1 .77610- 4

	

6.34810 5

	

1 .32110-

(IIb) Deposited Energy : m 113 .

4 1 0

M21M1 1110 11 4 112

1 2

1 .00 0

1 .000 1 .000 11000 1 .000 1 .000

8 .05610- 2A(1) 00 1 .000 1 .33810-1 1 .07410 1

2 .67810-1 2 .12310-1 1 .68510-1 1
~ (1)11 3 .7761p-1

1 .14210-1 1 .00210 1 1 .0551p-

3 .573

	

1l0- 2 .38210-1 1 .57210-1
3

A (1)02 6 .3471p-1
6 .46810-2 4.04310-2 2 .529

	

210- 1 .6051p- 2 8 .8421p -

e 2 .0781o- 1 1 .03210- 1 2 2.76410 2A(1)
1 .46810- 1 7 .81310-2 4 .74210- 2 3 .50410

~ (1)13 6 .36410. 1 2 .70110- 1

2 .35910- 2 1 .15310- 2 5 .63210- 3 2 .8051o- a 1 .12710- a

3
1(1)3 1 .38710- 1 4 .79010- 2

5 .75510-2 4 .71310 2 4 .9871p- 2

4A0)04 1 .359 4 .91110- 1 2 .24610- 1 9 .91110- 2
2 1 .11110- 2 6 .32510- s

4
A (1)2 6 .47310-1 2 .04610-1 8 .98310- 2 3 .81 .510- 2

33 .66210-

1 .87810-

1 .39010- 3 5 .4131p- 4 1 .5831p- 4

A(1)44 1 .04810-1 2 .50710- 2 9 .65010- 3

rem n

	

(85)
F(1>i (E)

	

G(s)tnE (NC

where is an average C value defined in some arbitrary way, and the
G(i)an are

found from the following system of equations
:

(85a)
/1G(i)tn

	

Sa C(ik) {(, ,nd(a)bn _ G ( k)tn . (ik)In}

21+1

	

k

	

C
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TABU II (continued) . Coefficients Amin, defined by (8O), as functions o
f

mass ratio ibI 2 jNI1 •

(Ilc) Range, m a 112 •

Ø21Mi

A

	

0
(1)p

A (1)1

I 1110
1

	

2

	

4

	

1 0

114

	

I
112

	

I
1 .0001 .000

1 .00 0

1

	

9 .9041D- 2

6 .16610- 2

1 .2551p- 2

1 .65510

1 .75910- 3

2

	

1 .27 ,- 10- 2~

~

	

1 .99310-2

1 .000

	

1 .000

1 .000

	

1 .000

2 .8051p-1

	

1 .92210- 1

i2 .58210-

	

1 .34 510 -

9 .84010- 2

	

4 .79410-

7 .62310- 2

	

5 .09010- 2

5 .33310-2

	

4 .68410- 2

7 .22610 3

	

3 .15410- 3

L16210- 2

	

7 .109 10- 3

7 .45710-4

	

2 .10610- 4

9 .64910- 3

	

7 .22910- 3

2 .1791p- 3

	

8 .82910- 4

8 .0501p-5

	

1 .46310- 5

11 .51110-

	

1 .22910-

1

	

9 .404 10- 2

	

7 .37410- 2

A (1)02

2A (1)2

A (1)13

A

	

3
(1)3

4<1(1)p

A (1)2 4

A -(1)44

~.. 3 .03110- ~

3 .43310-2

	

2 .33110- 2

6 .9631p- 3

	

3 .65010- 3

2 .6441p-2

	

1 .75510-

1 .23710- 2

	

7 .05110-

1 .73910- 3

	

7 .16710-

1 .45410- i

	

5 .74310- 2

3 .8381p- 2

	

1 .36210- 2

1 .47910- i

	

4 .7691p- 2

2 .443

	

28 .0621p- 2

	

10-

1 .6051p-2

	

4.21210- 3

3

	

4A4410 3

4

	

2 .60210- 4

(IId) Range, in = 113 .

2 4 1 0

111/12 /MI 111 0

1 .000

114 I

1 .000

1/2
I

1 .000

	

1 .000 1 .000 1 .00 0

1 .17010 1

1 .000

8 .38410- 2A (1)00
2 .685

	

1

	

1 .99110- 1lo- 1 .52010- 1

A (1)11 6 .51110- i 3 .82110- 1
1 .653io 1 1 .79510- 1

1 .394 5 .4021p-1 3 .12310-1

	

2 .16810-1 1 .76810-1
9 .31510- 3A (1)0 2

~ -r .2261p- 1 1 .85210 1 9 .38810-2

	

5 .22910-2 3 .04610-2 1 .80510-2

4 .67010- 2A (1)22

1 .795 4 .52310-1 2 .04510-1

	

1 .16610-1 7 .87210-2 5 .94510-2

1 .1941D- 3A (1)13

A(1)33 4.6U910- 1 1 .00010- 1l0- 3 .7471o- 2

	

1 .5741o- 2 6 .99510 3 3 .20010- 3

2 1 .09210- 1

A (1)04 4 .194 7 .55210-1 2 .97810-1

	

1 .62610-1 1 .14610-1

2

9.92610- '

1 .88810- 2 1 .06010- 2

4 2 .250 3 .7351p-1 1 .31410-1

	

5 .98610- 2 3 .20610-

6,22610- 4 1 .68210- 4A(1)2
~ 1 .63110-2

	

5 .17610-3 1 .75810- 3
4 .31810-1 5 .9461p- ~

A (1)44

and (81 c), the pair of indices

The quantities d (ik) in and .Yi (ik) Ln are defined in (81a)

(ik) indicating the projectile
and the target in the specific collision integral . ô

ray G (i) )

is the corresponding constant in the cross section given by (5) .

for any specific pair of values (1,n) must be calculated from a set of inhomogen
eous

linear equations .
equation (27b), representing the distribution of energy deposite

d by an ion (1 )

With the ansatz

in a polyatomic medium (2,3 . . . .) is solved in a similar way.
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F(1)polyl n (E) = G (1)l nE
E2m

~
n

(86)

we obtain

AG ( I )I n

NC

C(1k)

	

n

	

C (1k )

21 + 1

	

= G(1) .
k

a k

	

C

	

d (ik)s

	

-kak

	

C

	

G (k)a n X- (Ik)l n, (86a)

where the notation is the same as in (85 a) .
If the G (k)j ?, are known from (85a) for k = 2,3 . . , then (86a) is easy to solve

recursively.
The ion range equation in a polyatomic target is found from (86a) by discardin g

the last term on the right . Substituting (81), with .ir l n = 0, into (86 a) with X (1k) In
= 0 we obtain

AG (I)I n
Gm In

		

(87)
ak

C (lk) AA (lk) In

k

	

C

	

A (1k)l n

This equation relates the moments over the range distribution in a polyatomic
target t othe moments A(1k)ln over the range distribution of the ion in the constit-
uents. In this case the most natural choice of the constant C is C = ak C (1k) ,
but the result,

	

k

Elm n
F (l)ln (E) = G (1)l n ( N~ ,

	

(87a)

is of course independent of the choice o f

The results of this section allow us to calculate a great variety of moment s
over range and damage distributions, some of which are listed in Table s
I-II . The calculations were done on the CDC G-20/3100 computer system
at Chalk River Nuclear Laboratories .

6. Construction of Distributions

While an infinite set of moments uniquely determines a distributio n
(with certain restrictions ; see below) it is a rather delicate task to construct
a good approximation to a distribution from a finite number of moments .
Various procedures have been used in the slowing-down theory of neu-
trons, electrons, X-rays etc . The present approach is based on the assump-
tion that the depth distribution of ion ranges and deposited energy is clos e
to gaussian when the medium is random and infinite .

An alternative approach, using Chebyshev inequalities (FELLER, 1966 )
to obtain bounds on the integrated density, will be discussed by one of u s
in a subsequent paper (WINTERBON, 1970) .
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We follow customary usage in this field and use the term ` distribution ' in the

following where a statistician would say `density ' . This should not caus e

confusion here because we have no occasion in this work to refer to a

statistician ' s `distribution ' , which is an integrated density.

The gaussian or normal distribution is in many ways the simples t

starting point. For ion ranges there appears to be experimental evidence

that the gaussian is an adequate approximation, in the sense that the distribu -

tion appears to decrease like exp (- x 2 ) at large distances, but for depos-

ited energy distributions there is no sufficiently accurate experimental in -

formation. There are indications from computer simulation work of PAVLO V

et al . (1966) that distributions of vacancies or interstitials are close to gaus-

sian shape, but it is felt that the number of runs made in that work is to o

small to permit definite statements .

Given a set of moments v,, of an unknown distribution f and an initia l
approximation 1l' = yo, there is a well-defined procedure for making suc-

cessive approximations yin to f as follows . Let the polynominals pn be or-

thogonal polynomials associated with the weight function yp . Then

n

1pn =

	

cmpm1p ,

	

(88)
m= 0

where cm is chosen so that the mth moment of yPm (m 5 n) is equal to v. .

The pm are orthogonal polynomials so the value of cm does not depend on n .
This procedure has the disadvantage that the approximants yp n are not

necessarily everywhere positive. In fact if the interval is (- 00, + 00), as it i s

here, then each odd approximant is negative for sufficiently large (absolute )
values of the argument in one direction or the other .

If yo is a gaussian, the polynominals pm are Hermite polynomials, and

the approximants are partial sums of an Hermite polynomial series . If ipo
has the same mean and variance as f, we deal with a Gram-Charlier series .
If the terms of the Gram-Charlier series are rearranged in a certain way,
we obtain an Edgeworth series . (See, for example, CRAMER, 1945 ; FELLER,

1966 ; KENDALL & STUART, 1958) .

BAROODY (1965) used Edgeworth's expansion to approximate rang e

distributions . SANDERS (1968a, 1968b) used the same procedure, and
SIGMUND (1968, 1969 a) applied it to distributions of deposited energy .
PRINGLE (1968), by analyzing accurate experimental range distributions ,

found that the best gaussian fit to his distributions was not necessarily cen-
tered around the average projected range, nor was the width of it the same
as the straggling. Similar observations were made with calculated distribu-
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tions in the present work. Hence it was decided to examine various othe r
methods for determining the parameters of the gaussian . These are describe d
in this section. Also we consider a class of series with a non-gaussia n
yo exp(- Aix - 03 ) .

At present, we deal exclusively with planar geometry . From (43), (36) ,
and (76) we hav e

00

<xn% = -

	

(21+ 1 ) F
I

n (E)Pa(n)E1= 0

for M1 = M2 , and

E2m n

NC
1(21 + 1)AtnPl(n),

	

(89)

<xn > = 2(21+ 1 )A (1)anPa(n) (89 a)

for Ml M2 . Eq . (89 a) and the last part of (89) hold for both range and
damage distributions, with different values for the A i n and A(I)in . Similar
relations hold for polyatomic targets . Hence, for any value of 7) = cos O, B
being the angle of the beam with the direction in which the depth distribu-

tions are measured, we obtain a set of averages <x n > over these depth dis-
tributions . We define

r/E2m n

<xn
' =vn ` NC

so that vn is dimensionless . C stands for either C, Ca), or C, depending on
the specific problem . Thus the distribution functions depend on energy onl y
in the length unit, E2m/NC . This, again, is a specific feature of power cros s
sections, for W = U = 0. When reconstructing F(x) in the following, x will
also have units of E 2 "'/NC .

Introducing the new variable

$ = a(x -a),

	

(91 )

where a and a are not yet specified, we can write

F(x) = F(x(O) = f(O = y($) em Hem($)

	

(92)
m= 0

where

IKE) = (2m)- 1/2 exp(- $2/2)

	

(92 a )

and Hems) are Hermite polynominals (ABRAMOWITZ & STEGUN, 1964) .

(90)
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A word should be said about convergence . The set of moments need not defin e
the distribution uniquely (see for example, FELLER, 1966) : the moments must satisfy
certain restrictions in the rate of growth for there to be uniqueness . From the foot-
note in FELLER, p . 224, it can be seen that if the density is 0(exp(- AA)) for som e
A > 0, then it is uniquely determined by its moments . Since the mere existen-
ce of the moments suffices for the convergence (in the mean) of the Hermite series ,
and since F(x) is expected to be continuous, it follows that if F(x) = 0(exp
(- 21x)) then the series in (92) converges to F. We expect F(x) = 0(exp(- ).x2 )) ,

so we assume convergence of (92) . Since we have been unable to obtain asymptotic
limits on the vn, we can of course not prove either convergence or the stronge r
estimate F(x) = 0(exp(- )x2 )) .

An expression for the cm in terms of the yr is derived in Appendix B ,

eq. B6,

c,n = «

	

)
arvrHe. -r(- aa)

m ! r_o r

For the Gram-Charlier or Edgeworth series the parameters a and a are

chosen so that
cl = c 2 = 0,

	

(94)

whence
a = vi, a = (v2-(12 )- 1/2 .

	

(94a)

To try to improve apparent convergence, higher order moments wer e
used in determining a and a . The first method tried used second and thir d
or third and fourth moments . Thus we require

C2

	

C3 = 0

	

(95)
or

C3 = C 4 = 0 .

	

(95a)

Appropriate values of a and a in terms of the yr are given in Appendix B .

Such a procedure could in principle be continued indefinitely, but the

amount of labour required increases rapidly. In these two cases we could

consider yo to be a gaussian times a linear or quadratic polynomial, so we
call them "linear" and " quadratic" fits .

Another possible fitting criterion is that the Cn should decrease rapidly .

This may be satisfied by minimizing

N

co- 2 1 Cn2 wn,
n= 0

with the weight con a rapidly increasing function of n. We have used con = n !
and (n!) 2 , and got apparently good results, but have not investigated this

procedure fully.

(93)
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Besides the gaussian base, some fits were tried with a more genera l
form,

yo = N 'exp(- ~~$$l ß ) •

Only one class of fit was tried, that with

Cl = C2 = C4 = 0

(oo is symmetric in , so it is not possible in general to make ci = c3 = 0) .
Details are reported in Appendix B .

7 . Results & Discussion

Table III and Figures 5-7 show up to fourth order moments of th e

damage and range distributions for the case of the point source, where th e
distribution is considered both parallel (X) and perpendicular (Y,Z) to th e
initial velocity v. As a length unit we use either the quantity E lm /NC(l) or

the average path length in the LSS approximation, R(E), as given by eq .
(15). The latter length unit is convenient for comparison with those calcula-
tions of LINDHARD et al . (1963b) that are based on the accurate Thomas-

Fermi cross section . Note that all but first-order moments are given i n

relative units so that the dependence on ion energy is eliminated for n

	

2 .
Table III contains results for the case Ml = M2 for several values o f

the exponent m in the cross section . This table shows how sensitive the dis-

tributions are to the choice of the differential scattering cross section . Table
III a indicates that for the damage distribution there are no large variations
with m over the most important range, m = 3, 2 , 3 and except that the

distribution broadens in the Y,Z plane with decreasing m (decreasing energy) ,

as seen in <Q 2>/<X> 2 , and that the skewness in the X direction, as measured

by <4X3>/<4X2 > 3 /2 has a maximum for m 3 . The average damage dept h

<X> is always smaller than the path length R of the ion . Table III b shows

similar results for the range distribution . Note that both ratios <X')/R and
<4X2>I<X> 2 are slightly more sensitive to changes in m than they are for

the damage distributions .

For Ml � M2 we consider only the most important cases, m and
m = 3 . Fig. 5 shows the various first and second moments as function s
of mass ratio ,u = M2 /Ml . For ,u, z the results appear to be insensitive

to m . This is also true for higher moments (Figs . 6 & 7). The ratio <X>/R
decreases with increasing ,u, since for Ml « M2 ions undergo many large-

(96)

(96 a)
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TABLE III . Moments over the damage and range distribution, M1 = M2 .

X = direction of initial velocity ; Y, Z = directions perpendicular to initia l

velocity ; [12 = Y2 + Z2 ; R = path length =
J

dE/NSn(E) .

o
(IIIa) Damage.

m 2/3 1/2 1/3 1/4 1/8 1/1 6

E2m `
(X)/ 0 .1560 0 .2949 0 .5054 0 .6563 0 .9922 1 .251

NC

(X) /R 0 .6239 0 .5899 0 .5054 0 .4375 0 .2835 0 .166 8

(4X 2 )/(X) 2 0.3388 0 .3807 0.4070 0 .4286 0 .5766 0 .998 9

( P 2)/(x) 2 0 .2601 0 .3146 0.4397 0 .5714 1 .098 2.12 1

(4X3)/(QX2)3/2 0 .4930 0 .7333 0 .8468 0 .8263 0 .5412 0 .226 0

(X92)/((X)(P2)) 1 .394 1 .406 1 .332 1 .261 1 .119 1 .04 1

(dx4)/(dX 2)2 2 .807 3 .373 3 .782 3 .853 3 .623 3.31 0

(X2N2)/((X2)(e2)) 1 .663 1 .723 1 .608 1 .485 1 .234 1 .09 6

( P4)/(e2)2 3.706 3 .773 3 .402 3 .073 2 .478 2 .186

(IIIb) Range .

m

	

I 2/3 1/2 1/3 1/4 1/8 1/1 6

(X)/ (E'' 0 .2040 0 .3687 0 .5973 0 .7500 1 .069 1 .301
NC

(X)/R 0 .8159 0 .7374 0.5973 0 .5000 0 .3053 0 .173 4

(dx2m'02 0 .2050 0 .2756 0 .3405 0 .3846 0 .5682 1 .00 7

(0 2)/(x)2 0 .2895 0 .3519 0 .4825 0 .6154 1 .1410 2.16 3

(dx3 )/(dX2)3/2 0 .2602 0.5456 0 .6868 0 .6800 0 .4522 0.196 2

(X~2)/((x)(~2)) 1 .134 1 .195 1 .196 1 .168 1 .086 1 .03 1

(dX4 )/(dX2 ) 2 2 .733 3 .134 3 .503 3 .597 3 .486 3 .25 8

(X2~2)/((X2)02)) 1 .219 1 .341 1 .357 1 .313 1 .173 1 .07 6

(e4)/(P2 2 .480 2 .729 2 .742 2 .638 2.338 2 .144
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M 2 / M
Fig . 5 . First and second order averages over damage and range distribution as functions o f

Er

mass ratio M 2 /M l ; R = path length = fdE/(NSn(E)) ; X-direction parallel to initial velocity ;
0

AX = X -(X) . Dashed line, m = 1/3 ; solid line m = 1/2 .
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Fig . 6 . Third order averages over damage and range distribution . Definitions as in Fig . 5 .
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Fig. 7 . Fourth order averages over damage and range distributions . DefiniLions as in Fig . 5 .

angle deflections . Similarly, the distributions broaden in each dimensio n
when ,u increases .

The distributions are slightly prolate at all mass ratios considered, most
pronouncedly so for ,u < 1 . For ,u » 1 the distributions are practically
spherical .
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The simple stopping vs . path length argument of (18, 19) gives <X>/li =

0 .5 and 0.4, and <4X2 >/<X> 2 = 0.333 and 0 .429, for m = 2 ands respec-

tively. Comparison with Fig. 5 shows that this approach gives rather poor

results at all mass ratios .

Figure 6 shows third order moments . For a purely gaussian distributio n

the ratio <4X3>/<4X2 >3/2 would be zero and <XY2>/(<X><Y2>) = 1 . The range
distribution appears to be more nearly gaussian than the damage distribu-

tion, especially for ,u 1 . The same conclusion can be drawn from a n

inspection of fourth order moments, Fig . 7 . For a gaussian, one would

obtain <4X4>/<4X2>2 = <y4>/<Y2>2 = 3, and <X2y2>/(<X2>< y2>) 1 . The

most pronounced deviations from these relations occur in the damage densit y
for ,u « 1 and m = 2 .

In Figs . 8 a-c we compare range moments with the corresponding damag e

moments . Fig. 8a shows that the mean damage depth is consistently smalle r

than the mean projected range . The difference is small except for p << 1

and m = 3 where it is a factor of - 2 . In this case heavy damage i s

created all over the ion path, so that despite energy transport of recoiling
atoms the ion comes to rest essentially at the far end of the damage cloud ,

while <X> is in the center . This picture is consistent with Fig . 8 b that shows

that the damage distribution is much broader than the range distribution
for p « 1 . It may be surprising to see that the opposite is true for p 1 .

This is obviously because we are considering the damage distribution o f

many events . For p Z 1, the ion undergoes large deflections, but mainly

those in the beginning, where the ion still has much energy to share with

its collision partners, determine the region where the energy is located ,

while those collisions undergone by the ion toward the end of its slowin g

down still may contribute to range straggling, but not to a broadening o f
the damage distribution . Note that the effect is not very pronounced, about

a factor of 1 .3 in the linear dimensions at the highest mass ratios considered .

Fig. 8c shows the same qualitative effect for the transverse extension <Y 2 > ,

except that <172>4< Y2 >D goes through a maximum near p = 2.
Some approximate damage and range distributions are plotted in Figs .

9-11 . Fig. 9 (damage, m = 13-, ,a = 1) compares various methods of fitting.

Case 1 is the Edgeworth expansion, cases 2 and 3 the linear and quadrati c

fits, and case 4 the non-gaussian . (In this case the exponent /3 = 1 .49) .
For the Edgeworth and non-gaussian cases the heavy line is yo, the initial

approximation.-In the other two it includes the linear or quadratic poly-
nomial as well. The two to four lightly drawn lines include the first cor -
rection terms. The Gram-Charlier expansion is not shown . In it the density

Mat.Fys .Medd.Dan.Vid.Selsk. 37, no. 14 .
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Fig. 8a .
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M 2 /M I
Fig . 8 b .
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Fig. 8 c .

Fig . 8 . Ratio between averages over range and damage distributions as a function of mass ratio .
Dashed line, m = 1/3 ; Solid line, m = 1/2 .
a) First order averages . (X>R = average projected range ; (X>D = average damage depth.
b) Second order averages . (4X 2 ) R = straggling of projected range ; (4X 2 >D = width of the

damage depth distribution .
c) Second order averages . (Y 2 ) R = transverse straggling of range distribution ; Y2 > D =

transverse width of damage distribution .

had pronounced oscillations, indicating that the fit was poor . In the Edge -
worth expansion the minimum outside the surface deepens and approaches
the surface as the order of approximation increases, and the tail withi n

the target is not well fitted . In the linear and quadratic fits the tail does not

appear to change with the order of approximation and the minimum out -
side the surface is farther out . Again this minimum moves in with increasin g
order. The non-gaussian curve, case 4, has a narrower peak because wit h
ß = 1 .49, the tails have greater weight .

Range distributions were all fitted well with the Edgeworth expansion ,

and the exponents ß of case 4 were close to 2 .

Figure 10 compares damage and range distributions (m = 2) . The
Edgeworth expansion for damage in 10a (It = 4) converges reasonably

4*



Fig . 9 . Damage distribution as a function of depth . In units of R.(E) . m = , µ = 1 . Heavy
line, initial approximation Light lines, higher approximations .
1) Edgeworth series .
2) yo = Gaussian times linear function .
3) yo = Gaussian times quadratic .
4) Non-gaussian, y, = N'exp(-)1 1ß), ß = 1 .49.

ï
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well ; for ,u = (Fig . 10b) the Edgeworth expansion gave no signs of con -

vergence. The gaussian parameters plotted here were obtained by minimizin g

2 0

co-2

	

ca 2 (n!) 1 .
n= 0

Approximants yo (the heavy line), y l , Y2 , and y2o are plotted .

Figure 11 shows isodensity contours (contour interval 10 0 /0 of max- .

imum density) in the X-Y plane of range and damage for m = z , ,u = 1 ,

The distributions were constructed using the formalism of Appendix C

with parameters chosen to minimiz e
2 0

coo
-2

(
1 Cm0 2 (ml) 2 +

	

Cpn 2 (2n) !) .
m=0

	

n= 0

At high densities both distribution functions narrow toward the rear ,
but at low densities they appear to broaden . The maximum of both distri-

butions occurs closer to the surface than the maximum of the correspondin g

depth distributions, especially in case of the range plot . This is consistent

with increasing lateral spread with increasing depth, as evident from fig . 11 .

8. Comparison with Experiment & Computer Simulation

Radiation Damage Measurements

In a previous communication (SIGMUND & SANDERS, 1967) we attempted

to compare some results of the theory with experimental radiation damag e
distributions. Sufficient evidence was found to support one of the mai n

results of the theory, namely that the average damage depth does not diffe r

very much from the average projected ion range (Fig . 8 a) . There are a s
yet few experimental results on damage distributions, and several problem s

occur when these are compared with theory.

a) Some experimental techniques, such as those based on the orientatio n

dependence of Rutherford scattering (BØGH, 1968), the change in optical

reflection (HINES et al ., 1960), and the dependence of the sputtering
yield on prebombardment (MACDONALD et al., 1966a, b) can be used

only on single crystals . Therefore low-dose bombardment may lead to

damage distributions that are more or less influenced by channelin g
effects . High-dose bombardment, on the other hand, leads to saturatio n

effects of bombardment damage and, in some cases, the distributions

* Note added in proof : Substantial progress has been made since the submission of thi s
paper . The reader is referred to the Proceedings of an Int . Conf. on Ion Implantation in Semi-
conductors, Thousand Oaks, Calif., 1970, to be published in Radiation Effects .
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M= .5000, M 2 /M 1 = 1/4 ' CASE I

o 2
Fig . 10 b .

Fig. 10 . Damage and Range Distributions . Depth in units of ß(E) . m = Z . Heavy line, initial
approximation. Edgeworth series, except 10b, damage

Gaussian parameters for damage density in Fig. 10b chosen by minimizing weigh-
ted sum of squares of the en . Base density y o , yl, F2 and F20 shown .
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might change because of radiation-enhanced diffusion . Therefore ex-
periments on single crystals can be used for quantitative compariso n
only when done at sufficiently low doses to prevent saturation effects
and when the ion beam has not been aligned with a channeling direc-
tion.

b) Physical properties that are affected by ion bombardment damage ma y
also be affected by implanted ions . The distinction between the ion
range and damage distributions appears most direct with the orientatio n
dependence of Rutherford scattering (DAvIEs et al ., 1967) .

1 . 5

I .0

0.5

0
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c) Electron microscopy of large defects (PARSONS et al ., 1964 ; MERKLE,
1966 ; THOMAS et al ., 1969) leads to results that are not necessarily
comparable with the present theory. First, not all deposited energy

leads to visible damage . There may be a threshold energy for creating

visible damage clusters, the value of which is probably in the ke V
region but is not accurately known (MERKLE, 1966 ; THOMAS et al ., 1969 ;

HÖGBERG et al ., 1969 a, b) . Consequently, the region where visible dam -

age is created need not coincide with the actually damaged region .

Second, even when polycrystalline samples are irradiated the part o f
the target that is investigated under the microscope is often a crystallit e
of definite (low index) orientation, so that channeling may play a role .
Third, image-size distributions of damage clusters, which are measure d
more easily than depth distributions (PARSONS et al ., 1964 ; THOMAS et

al ., 1969), are not comparable to the quantities discussed in the presen t

paper, since they concern properties of single collision cascades . *

With these reservations in mind, we find that none of the existing ex-
perimental data can be used for quantitative comparison with our theory .

However, depth distribution measurements by use of Rutherford scattering

are being performed currently by several groups .** For a more qualitative

comparison, we discuss the work of HINES et al . (1960) ; MACDONALD et al .

(1966a, b), and NORRIS (1969) .

HINES et al . bombarded quartz, with keV heavy rare gas ions at dose s

around 10 14 ions/cm2. The effective thickness of the damaged layer was

determined from optical reflexion measurements and turned out to be largel y

independent of ion dose . One would expect, therefore, that neither satura-
tion effects nor diffusion played a significant role . Table IV shows experi-

mental results and several calculated range and damage quantities . The

effective layer depth can be estimated from the sum {<x> -I- a<4x 2 > 1/2 }damage ,
where a is a number of the order of 1 to 2 . There is good agreement between

measured and calculated depths for Ne+ and A+ bombardment, while th e

calculated depths are much smaller than the measured ones for Kr + and

Xe+ bombardment . This discrepancy is probably caused by channeling o f

* Note added in proof : Average cluster size is discussed in a forthcoming paper by J . E .
WESTMORELAND & P . SIGMUND (Radiation Effects, 1970) .

** Note added in proof. In three recent papers on damage-depth distributions measured b y
Rutherford-scattering, comparison is made with results of the present paper (E . BøGH, P. He -
GILD, & I. STENSGAARD, Rad . Ell . 1970 ; L . C . FELDMAN & J . W . RODGERS, J . Appl . Phys . 1970 ;
F. H . EISEN, B . WELCH, J . E . WESTMORELAND, & J . W . MAYER ; Atomic Collision Phenomena in
Solids (ed. by D. W . PALMER et al.) North Holland 1970 p . 111) . We also refer to a forthcomin g
paper on depth distributions in the electronic-stopping region by P . SIGMUND, M. T . MATTHIES ,
& D . L . PHILLIPS .
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TABLE IV . Range and Damage Quantities for Quartz Bombarded with Rar e
Gas Ions . Measured Layer Depth from Measurements of HINES and ARND T
(1960). In the calculations, SiO 2 has been approximated by a monatomic

target with the same density, atomic number 10 and atomic weight 20 .

Ion
E

keV

s (X )
Damage

A

(4X 2 ) 1 12
Damage

A

<X >
Rang e

A

(A x2>1/2

Rang e

A

Measured
Layer
Depth

A

Ne+ 38 .3 1 .14 372 229 450 236 74 0
(m = 112) 43 .9 1 .31 428 264 518 272 85 0

51 .8 1 .55 504 310 610 320 95 0
A+ 22 .9 0 .422 215 150 259 114 60 0

(m = 1/2) 38 .4 0 .706 360 251 434 191 70 0
59 .0 1 .087 554 386 666 293 100 0

Kr i- 20 .3 0 .094 84 50 123 41 50 0
(m = 113) 39 .7 0 .183 131 78 193 64 60 0

59 .0 0 .272 171 101 251 83 67 0
Xe+ 20 .3 0 .039 75 43 119 32 47 0

(m = 1/3) 39 .4 0 .075 117 67 185 50 53 0
59 .0 0 .113 154 88 243 65 580

the ions. Note, however, that in pure silicon a dose of 10 14 Xe+ ions would
be sufficient to suppress channeling almost completely (DAVIES et al ., 1964) .

MACDONALD et al . (1964 a, b) measured the sputtering yield of germanium
for low energy A+ ions (100-200 eV) as a function of the sputtered laye r
thickness . The targets were pre-bombarded with 500-1000 eV rare gas ions ,
and the sputtering yield was enhanced over the layer thicknesses that cor -
responded to the penetration depths of the pre-bombarded ions . Typical
pre-bombardment doses were 10 16 to 1017 ions/cm2, enough to make th e
target surface amorphous (PARSONS, 1965 ; MAYER et al ., 1968). Also, with
a range of about 20 A. the (calculated) dopant concentration is of the order
of 1 dopant ion/atom within the penetration depth and, finally, the laye r
thickness sputtered by the pre-bombardment may well be greater than the
range of the ions . All these factors indicate that the measurements can pro -
vide only a very rough estimate of the damage and penetration depth of
the pre-bombarded ions, and the good agreement with the calculated depths
(SIGMUND et al ., 1967) confirms this . A distinction between range and damage
distributions does not appear feasible .

NoRRIs (1969) measured depth distributions of vacancy clusters observe d
by stereo electron microscopy in gold and nickel bombarded with 80 t o
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150 keV gold and mercury ions at doses of the order of 10 15 ions/cm 2 .

Channeling of the ions plays a role but does not appear to be dominant ,

at least not in the target of (112) orientation . The results were compared t o

measured and calculated ion range distributions (for random slowing down )

and it was found that the average depth of vacancy clusters was smalle r

than one would expect from our Fig . 7 a. The difference is not very pro-

nounced, possibly still within the experimental accuracy. Note that less

than one cluster is observed per incident ion, and that the average cluster

diameter is of the order of the average damage depth .

A similar investigation has been carried out by TH0MAS et al . (1969)
at lower ion energies (5 to 40 keV) and much smaller ion doses (10 9 to

10 12 ions/cm 2 ) . The measured depth distributions appear to be dominate d

by channeling and dechanneling of the bombarding ions. A comparison

with these results is, therefore, outside the scope of this paper .

Range Measurements

Although a considerable amount of information on range distribution s

is contained in Tables I-III we do not make a comparison with measure d
range distributions in this paper . There are several reasons for this . First ,
ion ranges are not a main subject of this paper . Second, it has been well

documented that random-slowing-down theory with the Thomas-Ferm i

cross section predicts ion ranges accurately (LINDHARD et al ., 1963 b ; SCIiIØTT ,

1966, 1968). Third, contrary to radiation damage distributions, range dis-
tributions can be measured very accurately (for recent reviews see MAYE R

& MARSH, 1969 ; MAYER et al ., 1969), and for a quantitative compariso n

an accuracy of at least 10 0 / 0 in calculated average range and straggling i s
required. Fig. 4b shows that the difference betweem the two representative
cases In = 2 and s is usually larger than this limit and, more important ,

electronic stopping is usually not negligible at energies where measurements
of high relative accuracy can be made . Some results, however, mainly o n
very heavy ions in the elastic stopping region, will be compared with ex-

perimental results elsewhere (`VINTERBON, 1970) .

Computer Simulation

Computer simulation has been used occasionally to calculate ion range s
and collision cascades . In the present context we are mainly concerned wit h
Monte-Carlo-type computer codes, where collisions are governed by a cross

section . These calculations are essentially equivalent to ours, provide d
that the cross sections are similar .
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TABLE V. Comparison Between Range Quantities Found from Computer
Simulation (OEN et al ., 1964) and Analytic Calculation (present work) .

a) Straggling in Projected Range, <4x2 i 1I2 /(X ) .

Ion-Target M2/Mi
Energ y

Range (keV)
Computed

From
Fig . 5

From
Fig. 5Straggling

m = 1/2 m = 1/3

Xe+ - Al 0 .20 5 -250 0 .25-0 .30 0 .33 0 .3 0
K+ - Al 0 .64 5 -100 0 .42-0 .47 0 .47 0 .5 0
Cu+ - Cu 1 .0 1 .75-250 0 .47-0 .54 0 .52 0 .5 9
Kr- - W 2 .16 4 .5 -250 0 .57-0 .63 0 .66 0 .7 8

b) Transverse Spread (i 2 )/(X2 )

Ion-Target Mass Ratio Computed
From Fig . 5

m = 1/2
From Fig. 5

m = 1/3

Xe+ - Al 0 .20 0 .08 0 .07 0 .0 9
K+ - Al 0 .64 0 .18-0 .23 0 .18 0 .2 4
Cu+ - Cu 1 .0 0 .28-0 .34 0 .27 0 .3 6
Kr + - W 2 .16 0 .50-0 .56 0 .48 0 .65

The most extensive study of this type has been done by OEN et al . (1963 ,
1964), but only range distributions were investigated . It was already pointed
out in these papers that average ranges calculated for purely elastic scat -
tering agree well with experimental results at sufficiently low ion energies ,
and also with the range-energy formula of LINDHARD et al . (1963b), in
those cases where good agreement is expected . Table V shows a comparison
between computed straggling data (both longitudinal and transverse) with
our analytical results . The computer data are based on Thomas-Fermi in-
teraction with neglect of electronic stopping . Most of the computed stragglin g
parameters depend slightly on energy, because they are not based on a
power cross section . One recognizes that this variation with ion energy has
about the same magnitude as the difference between our results for m =
and and the general agreement is excellent . We made this comparison
only to give an indication of the accuracy with which analytical and Monte -
Carlo range calculations can agree with each other, provided the inpu t
parameters are in close enough agreement. Note that a slight difference i s
always expected, especially at low energies, since the interaction potentia l
has to be truncated at some finite distance in a Monte-Carlo simulation o f
binary collision events .
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Quite recently, PAVLOV et al . (1967) made a series of Monte-Carlo simula -
tions to get both range and damage depth distributions for several ions
implanted in silicon, for applications in ion-implanted semi-conductors .

Ion doses were about the same (400-1000 ions for each energy and ion -

target combination) as those of OEN et al . Mostly light ions were used in
the medium and upper keV region, so that electronic stopping (which wa s

taken into account) dominated . While some runs have been made simulating

arsenic ions bombarding silicon, where electronic stopping is only a mino r

correction at E 50 keV, damage distributions were not recorded in jus t
these runs . Hence, only a qualitative comparison is possible for the Al+ - Si
bombardments, where the ratio between the median ion range and the media n
damage depth turned out to decrease from 1 .52 to 1 .44 from E = 25 to
150 keV. This is to be compared with our calculated ratio <x>R/<x>D = 1 .25
for ,a 1 and m = 2 (Fig. 8 a) . The difference may be caused by the dif-

ference between median and average penetration depths and/or the fact
that hard-sphere scattering was assumed in the computations to simulat e

low-energy collisions . The difference between vacancy and interstitial dis-

tributions is considered to be insignificant (SIGMUND et al ., 1968) .

Backscattering of Ions

A very sensitive check on the validity of calculated range distribution s
is the backscattering coefficient a of the implanted ions . Preliminary calcula -

tions (SIGMUND, 1968) show that a depends very sensitively on the mas s

ratio ,u . The results are in qualitative agreement with experimental data o f

BROWN et al . (1963) . A joint experimental and theoretical effort to establish
back-scattering coefficients for a number of ion-target combinations has
been started .

Sputtering Measurements

The distribution of deposited energy is a key quantity in the theory o f
sputtering. First, the amount of energy deposited outside a target surfac e

determines the sputtered energy (SIGMUND, 1968) and can be measure d
thermometrically (ANDERSEN, 1968) . Second, the energy deposited in th e
target surface is converted into kinetic energy of a number of slowly movin g

atoms, part of which can get sputtered . The general formula for the sput-
tering yield is (SIGMUND, 1969a)

S(x, E, ~7) = AF( x, E, 71) ,

Mat .Fys.Medd.Dan .vid .Selsk . 37, no . 14 .

(97)
5
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where A is a material constant, x the distance between the bombarded an d
the sputtered surface (for backsputtering x - 0), E the ion energy and
the cosine of the angle of incidence of the beam . F(x,E,r2) is the deposited
energy distribution for either equal or unequal masses, in the notation of
eq. (38) .

It was shown that eq . (97) can be used successfully to predict sputterin g
ratios for a great number of ion-target combinations and to obtain goo d
agreement with experimental results . While extensive use has been mad e
of the results of the present paper in the sputtering work, there is no nee d
for repeating the results here .

In view of recent thermometric measurements of ANDERSEN (1968, 1970) ,
a detailed discussion of the sputtered energy would be desirable. While
several qualitative predictions of the theory (SIGMUND, 1968) were confirmed
by the experiments, the quantitative agreement is satisfactory for only a
limited range of mass ratios . More accurate estimates of the sputtering
efficiency on the basis of the results of the present paper will be reporte d
elsewhere (WINTERBON, 1970) .
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APPENDIX A

Moment Integral s

The first integral in eq . (78) in the equal mass case, has the form

JdIt_ 1 + a ( 1

1

I(a,b,1) =

	

- 0-l+bPl((1 - 1) 1 1 2)

	

(A1)

o

so that I(a,b,O) = B(a,b), the beta function and I(a,b,l) = B(a,b + Z) . Using the
Legendre polynominal recurrence relation we find

(1 + 1)I(a,b,1 + 1) = (21 + 1)I(a,b + 1,l) - 11(a,b,1 - 1) .

	

(A2)

To evaluate the I's from this, the beta functions B(a,b) and B(a,b +2) are calculated,
and from these the quantities B(a,b + 1), B(a,b + 2), B(a,b + 2), . . . are obtained
using the recursion relation

B(a,b + 1) = a	 +b B(a,b) .

	

(A3)

In the unequal-mass case, the first integral i s

y

Iy(a,b,1) _ J dt1- 1 +(l t)-' +bP 1 ((l - 1)1/2 + ŒL(1 - 1)-1/2 )

0

Now Iy(a,b,o) = By(a,b), the incomplete beta function. From the Legendre poly-
nominal recurrence relation, and the obvious relatio n

Iy (a, b, l) = Iy (a, b -1,1) - Iy (a + 1, b -1,1),

	

(A5)

(1 + 1) Iy (a, b, 1 + 1) - (21+1)[(1-a)Iy(a,b+g,1) +

aIy(a,b - 1)] - 1Iy(a,b,l - 1) .

	

J}

	

(A6)

The required values of the incomplete beta function are generated from the initia l
values By (a, b), By (a, b + 2) with the recursion relation

By (a, b + 1) = ya (1 - y) b /(a + b) + bBy (a, b) f(a + b) l
t (A 7 )

(b

	

0) J

(this may be derived by integration by parts and using B(a,b + 1) = B(a,b) -

By (a + 1, b) and, if necessary, By (a, o) = a F (1,a ; a + 1 ;y), where F is the hy-
pergeometric function .

(A4 )

we find

5 *
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The second integral in eq . (78) is essentially the same in both equal-mass an d
unequal-mass cases :

Kln(a)

	

J
dlla-1P a( 1112 ) = 2

f
1

dxx2a-1P a(x)•

	

(A8)
0

FxDELYi et al . (1954), p . 313, we hav e

27E1 1 2P(2a)
Ki =

1
22ar(a ,f	 2

-
11 F (a -I- 1-f- 1/2)

We use the duplication formula for Ffunctions, (ABRAMOWITZ & STEGUN, 1964) ,

22a-17r 1/ 2 F(a)F(a + 2) ,
to get

K 1 (a) =	
F(a)F(a

	

(A10)
Fla+	 2 IF(a+1+1/2 )

from which
Ko(a) = 1/a

Kl(a) = 1/(a -f -

a-(1+1)/ 2
K i +2(a ) = a + 1+ 1/2

Ki(a) .

APPENDIX B

Expansions of the Distributions

In this paragraph we derive the coefficients for expansion of depth distributio n
functions in terms of Hermite or more general orthogonal polynomials. Let the
(unknown) distribution function be F(x), and introduce the new variabl e

a(.x - a),

	

(B1 )
so we can write

F(x) = f (s~) = ?p()

	

c mHe m(O ,
m= 0

where
_ (2z) 1/ 2 exp(-2/ 2) ,

We still have the freedom of choosing the parameters a and a in (B 1) .

From

(A9 )

F(2a)

and

(All)

(B 2)

(B 3)
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We wish to express the cm in terms of the moments yr of F,

y r = J dxxr F(x) .

	

(B4 )

Using the orthogonality of the Hermite polynomials we hav e

n ! en

	

J
d$Hen () f ( )

a
J

dxHen(a(x - a))F(x )

[ n/ 2 1 n1(-)man-2m n-2m
n-2m

	

f dxx F(x)

	

m=0m!2m(n-2m)1 r=0

	

r

The integral is vr . Interchanging the order of summation and recognizing the inne r
sum as a Hermite polynomial, we hav e

n
Cn =

	

2

	

arvrHen_r(- aa) .

	

(B6 )
nl r= 0

The conditions ci = 0 reduce to the following :

cl : a -vi = 0

c2 : (a 2 - 2avi + v2) a 2 - 1 = 0

e3 : (a 3 - 3a2vi + 3av2 - v3)a 2 - 3(a - v1) = 0

c4 : a 4(a4 - 4a3 v 1 + 6a2 v 2 - 4av 3 + v4) - 6a 2(a 2 - tav l + v2 ) + 3 = 0.

In the usual Gram-Charlier expansion one chooses c 1 = c 2 = 0 and therefore a = v i
and a = b-11 2, where b = v2 - v1 2 . In the e 2 = C 3 = 0 case ,

a = v1 + (d/2) 1 / 3 , and

a- 2 = b + (d/2) 21 3 ,
where

d = v1 3 + 3bv1 =V3 .

In the C3 = C4 = O case,
a = vi + (d/2) 1 /3 - z, and

c c- 2 = b + (d/2) 213 + e, say ,

e = z2 ((d/2) 1/3 + z/3)/((d/2)1/3 + z )
and z is a root of

h(1 + z) 2 2z 3 (d/2) 4 1 3 (4 -I- 5z + 2z 2 + z 3/3) = 0

with h = v4 - 4v3v1 - 3v 2 2 + 12v 2v 1 2 - 6v 1 4 +6(d/2)4/3 .

There are two real roots of (B7a), only one of which is useful .

(5B )

where

(B7a)
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Consider now a non-gaussian distribution :
Let

y() = N' exp(- RIOß) .

The moments of ' are (v = (2n + 1)/ß)

(B8 )

2N' F(v)f=
J

d2n ..1p =	 ß
A
v

-

M2n = 0 .

M2n

CO

We take N ' = ßA1 /ß/2I'(1/ß), so that M 0 = 1. We can again write the density a s

f( $)

	

e nHn( ) 2V ,
m= 0

where the Hn() are a set of polynomials orthogonal on ( - , ) , co

	

with the weight
function y (), chosen so that

Ho = 1 ,

The recurrence coefficients rn are equal to quotients of Gram determinants, as dis -
cussed in ERDELYX et al ., 1963.

The norm of the polynomials Hn is (ERDELYI et al ., 1963)

n
f d“1n2 )'?V(O = ~ r if ds~iP($) = H ri .

	

(B11)
i=1

	

=

[n/2 ]
Hn () _ 2 hmn -2m ;

m= 0
from (B 10) we have

h,nn 0, m < 0 or m > n/2

hon

	

1

h
m
n + 1 hmn - r hn 1n m -l '

so that
n-1

	

im-2

	

i2- 2
hmn =

(-)m

	

2

	

rim .
im, =2m-1 i„y_1=2m-3

	

i1= 1

The expression for the en cannot be expressed as concisely as in the gaussian case .
Proceeding as before, we obtain

n

	

[n/2 ]
( 7T ril e n - «

	

hmn an -2m Yn -2m,

	

(B13)
i1=11 /

	

m= 0

Hl =

	

(B 10 )

Hn +1 = &Hn, -rnHn _1 .

	

11

Write

(B 12). . . . ri l .
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where
n

y n = ~ (n) (- a)n -Zv i •i
i= 0

We now have three parameters, a, ß, and 20. A may without loss of generality
be chosen to satisfy some criterion of computational ease, but should reduce t o
A = 9 for ß = 2 ; in all the calculations done here, A was chosen so that r l = 1 .

The distribution y o is unskewed, so we can not demand that cl = c3 = 0, or ,
more generally, that any two odd coefficients vanish simultaneously .

The only fitting that has been done is the simplest case ,

Cl = C2 = C4 = O .
These conditions ar e

e1 : Ji = 0

	

(B15a)

c 2 : e 2y 2 - ri = 0

	

(B 15 b )

c4 : ce4y4 - (rl + r 2 + r3) a2y2 + rlr3 = 0,

	

(B 15 c)
so that

(B 14)

with

r2 =
y4

1 ,ri

	

y2 2

r 21 r 1 = l'(1/ß)Ir(5/ß)Il'3(3/ß),

(B 16)

from (B14) .

	

(B16 a )

We want also the integral of f outside the target :

0
r

J
dx f (x)

-ace1

	

00

	

1

	

00

	

[n/2]

f ds~ ~ e n Fln()v

	

cn

	

hmnln -2m

	

(B17 )
n=0

	

no m= 0
_00

	

_00

a

In = f dWI N'e- A Ise l O _ (- 1)nr(n +1/ß,2(a«)ß)

_ ø 2P(1 /ß) Anlß
(B17a)

wher e

and the P in the numerator is the incomplete gamma function (ABRAMOWITZ &
STEGUN, 1964) .

APPENDIX C

Point-Source distributions
For a point source the distribution function can be studied in three dimensions .

We begin by comparing moments of the distribution in various co-ordinate systems
(Fig . 12) . We have been calculating the moment s

vn = f dxdydzxn F(r ),

	

(Cl)
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r
Fig . 12 . Plane-source and Point-source coordinates (see text) .

dropping the velocity variable -1i- for the moment. We have written (Cl) as a Legendr e
polynomial series in the angle 0 between beam and surface normal :

[n/2 ]

v n = vn( © ) = (21 + 1)Ai P l (cos 0) = 2 (2n - 4m + 1 ) An-2mPn.-2m (cos 0) (C2)
m= 0

Moments in the following beam-centred coordinate systems are also used :
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1) rectangular coordinates X YZ :

In, 2m, 21 = fdXdYdZXn y2m Z 21F(r)

	

(C3 )

2) cylindrical coordinates X,e,5 :

	

r
wn,2m = 2n

J
dXdooXno 2mF(

	

(C4)

3) spherical coordinates r,61p ,7p :

fm n = 2nf drr 2 d(cos 99)r nPm(cos(p)F(r) .

	

(C5 )

One relation is trivial :
(l // ll
	 m)l 11 )	

fn,2m,21 = 22m+21 `mm 1\ wn,2m+21•

	

(C6 )

Another is given by BERGER and SPENCER (1959) ; in our notation ,

fn -2m, 2m,0 ° n \\

	

(2n - 41 + 1 )An_2ißnml •
~2m1 l = 0

By similar methods one can show

1 [n/ 2 ]
(G7 )

nA n -2m

[n/2]

Gi
\\
Jfn-21,21,0 anml ,

1=0
(C8)

wn-2m, 2m =
[n/2 ]
~ fn 21 ( 2n - 41 +1) an.i m

Z=0

[n/2 ]
n

fn-2m

	

wn-21,2lßnlm ,
l= 0

[n/2]

	

[n/2 ]
A: 2m =

	

(2n - 41 + 1)f21 1 anmk anik~

	

(C11 )
l=0

	

k= 0

where we have written

= 2n-2m

	

(kl( -) l	 k(n - 2k)! (n - m k) !

k=o

u)
(m- k)i(2n -2m-2k+1)1

(C10 )

and

anm l

and

(C 12 )

1

	

[n/2]

(k)

	

(-)k-1(2n - 21 - 2k) !
2n-21 k ko m (k- I)1(n 1- k)1(n - 2k) 1

finml = (C 13 )

with k0 equal to the larger, and kl the smaller, of m and 1.
From these moments, for example the wn,2/ , we can construct the density i n

three dimensions, as in Fig . 11, in much the same way as was done in one dimension .



70

	

Nr.1 4

References

M. ABRAMOWITZ & I . A. STEGUN, 1964 . Handbook of Mathematical Functions .
Nat . Bur. Stand., Washington, D .C .

H. H. ANDERSEN, 1968 . The Energy Efficiency of Lead Self-Sputtering, Appl .
Phys . Letters, 13, 85 .

H. H. ANDERSEN, 1970 . The Sputtering Efficiency of Polycrystalline Solids . Rad . Eff .
3, 51 ,

E. M. BAROODY, 1964 . Stopping by Elastic Collisions of Particles from a Unidirec-
tional Plane Source. J . Appl . Phys . 35, 2074 .

E . M. BAROODY, 1965 . Influence of Anisotropic Scattering on Stopping by Elasti c
Collisions . J . Appl. Phys . 36, 3565 .

E. M. BAROODY, 1969 . Stopping by Elastic Collisions of Kilovolt Ions in Gaseous
Mixtures and Amorphous Compounds . J . Appl . Phys . 40, 2555 .

M. J . BERGER & L. V. SPENCER, 1959 . General Relation Between Fluxes from Col-
limated Point and Plane Sources of Radiation . Phys . Rev. 113, 408 .

E. BøGH, 1968 . Defect Studies by Means of Channeling . Can. J . Phys . 46, 653 .
N. BOHR, 1948. The Penetration of Atomic Particles Through Matter . Mat . Fys .

Medd . Dan . Vid . Selsk . 18, No . 8 .
D. K. BRIGE, 1969 . Implantation Depth Distributions : Energy Deposition int o

Atomic Processes and Ion Locations . Appl . Phys . Lett . . 16, 103 .
F. BRowN & J . A. DAVIES, 1963 . The Effect of Energy and Integrated Flux o n

the Retention and Range of Inert Gas Ions Injected at keV Energies in Metals .
Can. J . Phys . 41, 844 .

A. ConclovEl, G . GHIKA, & D . GRECU, 1962. La Fonction de Distribution des
Atomes Déplacés dans un Solide Produits par des Irradiations . Rev. de Physique
((Bucharest) 7, 227 .

A. CoRCiovEl, A. BARCENKO, & D . GRECU, 1963 . Fonction de Distribution des
Atomes Interstitiels et des Lacunes d'une Cascade de Déplacements produite
par Irradiation . Rev. de Physique (Bucharest) 8, 445 .

A. CoRCIOVE*_ & M. CROITORU, 1966 . Integral Equation for the Distribution o f
Interstitial Atoms of a Cascade Produced by Irradiation . Rev. Roum . Phys .
11, 317 .

H . CRAMER, 1945 . Mathematical Methods of Statistics, Princeton, University Press .
J . A. DAVIES, G . C . BALL, F . BROWN, & B. DoMEIJ, 1964 . Range of Energetic

125Xe Ions in Monocrystalline Silicon . Can. J . Phys . 42, 1070 .
J . A. DAVIES, J . DENHARTOG, L . ERIKSSON, & J . W. MAYER, 1967 . Ion Implanta-

tion of Silicon. I . Atom Location on Lattice Disorder by Means of 1 .0 MeV
Helium Ion Scattering . Can. J . Phys . 45, 4053 .

P. H . DEDERICHS, 1965 . Die räumliche Struktur einer Defektkaskade im Gasmodell .
Phys . Stat . Sol . 10, 303 .

P. H. DEDERICHS, G. LEIRFRIED, & K . MIKA, 1966 . Näherungslösungen einer
Boltzmann-Gleichung für Primäratome und Defekte . Nukleonik 8, 80 .

A. ERDELYI, W . MAGNUS, F. ORERHETTINGER, & F . G. TRICOMI, 1953 . Higher
Transcendental Functions, Vol. II, Chapter X, McGraw-Hill, New York .



Nr . 14

	

7 1

A. ERDELYI, W . MAGNUS, F. OBERHETTINGER, & F . G. TRICoMI, 1954 . Tables of
Integral Transforms, Vol . II, McGraw-Hill, New York .

R. M . FELDER & M. D. KosTIN, 1966 . Energy Distribution of Energetic Atoms in
an Irradiated Medium. II. Single Species Case : Application to Radiation
Damage Calculations. J. Appl . Phys . 37, 791 .

W. FELLER, 1966 . An Introduction to Probability Theory and its Applications ,
Vol . II, Wiley, New York .

R. L. HINES & R . ARNDT, 1960 . Radiation Effects of Bombardement of Quartz
& Vitreous Silica by 7 .5 keV to 59 keV Positive Ions, Phys . Rev. 119, 623 .

G. I-IÖGBERG & H . NORDEN, 1969a. Damage in Gold Bombarded with Mediu m
Mass Ions . Forskningsrådens Laboratorium, Studsvik, Sweden . Unpublished
Report LF-24 .

G. HÖGBERG & H. NORDEN, 1969b . The Energy Dependence of Krypton Ion
Damage in Gold . Phys . Stat . Sol . 33, K71 .

D. K. HOLMES & G. LEIBFRIED, 1960 . Range of Radiation Induced Primary Knock-
ons in the Hard Core Approximation . J. Appl . Phys . 31, 1046 .

R . V . JAN, 1964. Defektverteilung in Verlagerungskaskaden . I . Phys . Stat . Sol . 6 ,
925 .

M. G. KENDALL & A. STUART, 1958 . The Advanced Theory of Statistics, Vol. I,
Griffin, London .

M. D. KosTIN, 1965. Energy Distribution of Energetic Atoms in an Irradiate d
Medium. J. Appl . Phys . 36, 850 .

C . LEHMANN, 1961 . Zur Bildung von Defektkaskaden in Kristallen beim Beschus s
mit energiereichen Teilchen . Nukleonik 3, 1 .

G . LEIBFRIED, 1962 . Calculation of Averages for Primary Recoil Distributions .
J . Appl . Phys . 33, 1933 .

G. LEIBFRIED, 1963. Higher Order Averages of Primary Recoil Distributions .
Z . Physik 171, 1 .

G. LEIBFRIED & K . MIKA, 1 .965 . Boltzmann-Gleichungen für die Verteilung von
Primäratomen . Nukleonik 7, 309 .

J . LINDHARD & M . SCHARFF, 1961 . Energy Dissipation by Ions in the keV Region ,
Phys . Rev. 124, 128 .

J . LINDHARD, V. NIELSEN, M . SCHARFF, & P. V . THOMSEN, 1963a. Integral Equa-
tions Governing Radiation Effects (Notes on Atomic Collisions III) . Mat . Fys .
Medd . Dan . Vid . Selsk . 33, No. 10 .

J . LINDHARD, M . SCIIARFF, & H . E . SCHIØTT, 1963b . Range Concepts & Heav y
Ion Ranges (Notes on Atomic Collisions II) . Mat . Fys . Medd . Dan . Vid . Selsk .
33, No. 14 .

J . LINDHARD, V . NIELSEN, & M . SCHARFF, 1968. Approximation Method in Clas-
sical Scattering by Screened Coulomb Fields (Notes on Atomic Collisions I) .
Mat . Fys . Medd . Dan . Vid . Selsk . 36, No . 10 .

R. J. MACDONALD & D . HANEMAN, 1966a. Depths of Low-Energy Ion Bombard -
ment Damage in Germanium . J. Appl . Phys . 37, 1609 .

R. J . MACDONALD & D . HANEMAN, 1966b . Low-Energy-Ion-Bombardment Damag e
in Germanium. J. Appl . Phys . 37, 3048 .

J . W. MAYER, L. ERIKSSON, S . T . PICRAUX, & J . A. DAVIES, 1968. Ion Implanta-
tion of Silicon & Germanium at Room Temperature . Analysis by Means o f
1 .0 - MeV Helium Ion Scattering . Can. J . Phys . 46, 663 .



72

	

Nr.1 4

J. W . MAYER, L. ERIKSSON, & J . A. DAVIES, 1969 . Ion Implantation of Semi-
conductors ; Academic Press, New York

J. W. MAYER & O. J . MARSH, 1969 . Ion Implantation in Semiconductors, Applie d
Solid State Science 1, 239 .

K. L. MERKLE, 1966 . Radiation-Induced Point Defect Clusters in Copper & Gold .
I . Clusters Produced in Energetic Displacement Cascades, Phys . Stat . Sol . 1S ,
173 .

K. O . NIELSEN, 1956. The Range of Atomic Particles with Energies about 50 keV ,
in "Electromagnetically Enriched Isotopes & Mass Spectrometry", Acad . Press ,
New York, p . 68 .

D. I . R . NoRRIs, 1969. Depth Distributions of Vacancy Clusters in Ion Bombarde d
Gold & Nickel . Phil . Mag . 19, 653 .

O . S . OEN, D . K . HOLMES, & M . T . ROBINSON, 1963. Ranges of Energetic Atoms
in Solids, J . Appl. Phys . 34, 302 .

O. S . OEN & M . T . ROBINSON, 1964 . Monte Carlo Range Calculations for a Thomas -
Fermi Potential, J . Appl . Phys . 35, 2515 .

J . R. PARSONS, 1965 . Conversion of Crystalline Germanium to Amorphous Ger-
manium by Ion Bombardment . Phil . Mag . 12, 1159 .

J . R. PARSONS & R . W. BALLUFFI, 1964 . Displacement Spike Crystallization o f
Amorphous Germanium during Irradiation . J. Phys . Chem. Solids 25, 263 .

P. V . PAVLOV, D. I . TETE L 'BAUM, E. I . ZORIN, & V . I . ALEKSEEV, 1966 . Distribution
of Implanted Atoms and Radiation Defects in the Ion Bombardment of Silico n
(Monte Carlo Method) . Fizika Tverdogo Tela 8, 2679 (Engl . Transi . in Sov .
Phys . Solid State 8, 2141 (1967)) .

J . S . PRINGLE, 1968 . Private Communication .
M. T . ROBINSON, 1965 a . The Influence of the Scattering Law on the Radiatio n

Damage Displacement Cascade . Phil . Mag . 12, 741 .
M. T . ROBINSON, 1965b. The Energy Spectra of Atoms Slowing Down in Structure-

less Media. Phil . Mag . 12, 145 .
J . B . SANDERS, 1966 . Recoil Numbers in Crystalline Structures . Physica 32, 2197.
J . B . SANDERS, 1968 a . Ranges of Projectiles in Amorphous Materials . Can. J . Phys .

46, 455 .
J . B . SANDERS, 1968b . On Penetration Depths & Collision Cascades in Solid Ma-

terials . Thesis, University of Leiden .
J . B . SANDERS, 1969 . On the Spatial Distribution of Recoil Atoms, Created in a

Collision Cascade in Crystalline Material. Physica 41, 353 .
L. I . SCHIFF, 1955. Quantum Mechanics, McGraw-Hill, New York .
H. E . SCIIIØTT, 1966. Range-Energy Relations for Low-Energy Ions . Mat . Fys .

Medd . Dan . Vid . Selsk . 35, No. 9 .
H. E. SCHIOTT, 1968 . Projected Ranges of Light Ions in Heavy Substances . Can .

J . Phys . 46, 449 .
P . SIGMUND & J. B . SANDERS, 1967 . Spatial Distribution of Energy Deposited b y

Ionic Bombardment. Proc. Int . Conf . on Application of Ion Beams to Semi-
conductor Technology, ed . P. GLOTIN, Editions Ophrys, p . 215 .

P . SIGMUND, G. P. SCHEIDLER, & G . ROTH, 1968. Spatial Distribution of Defect s
in Cascades . Black Spot Defects in Electron-Bombarded Copper . Proc. Cont .
on "Solid State Research with Accelerators", ed . A. N. GOLAND, BNL-5008 3
(C-52), p . 374 .

P . SIGMUND, 1968. Sputtering Efficiency of Amorphous Substances . Can. J . Phys .
46, 731 .



Nr.14

	

7 3

P . SIGMUND, 1969a. Theory of Sputtering I. Sputtering Yield of Amorphous &
Polycrystalline Targets . Phys . Rev. 184, 383 .

P . SIGMUND, 1969b . A Note on Integral Equations of the Kinchin-Pease Type .
Rad . Ell . 1,

	

15 .
P . SIGMUND, 1969 c . On the Number of Atoms Displaced by Implanted Ions or

Energetic Recoil Atoms . Appl . Phys . Letters, 14, 114 .
L. E . THOMAS, T . SCHOBER, & R. W. BALLUFFI, 1969 . Defects Observed by Elec-

tron Microscopy in Gold Bombarded with Gold Ions . I-III . Rad . Ell. 1, 257 ,
269, & 279 .

K. B . WINTERBON, 1970. To be published .

K. B . WINTERBON *
Chalk River Nuclear Laboratories

Chalk River, Ontario, Canada.

PETER SIGMUND *
Argonne National Laboratory

Argonne, Illinois, U.S .A .

J . B . SANDERS *
F.O.M. Institute for Atomic & Molecular Physics

Amsterdam, Netherlands.

j- Work performed under the auspices of the U .S . Atomic Energy Commission .
* Present address : Institute of Physics, University of Aarhus, Denmark .

Indleveret til Selskabet den 2 . december 1969.

Færdig fra trykkeriet deu 3 . september 1970.










