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Heat, mass and momentum transfer

Chapter 2 considered radiative energy exchange between plants and their
environment. Other ways in which plants interact with their aerial
environment include the transfer of matter, heat and momentum. The
mechanisms involved in mass transfer processes, such as the exchanges of
COz and water vapour between plant leaves and the atmosphere, and in
heat transfer are very closely related so will be treated together. These can
be broadly divided into those operating at a molecular levei which do not
involve mass movement of the medi um (i.e. diffusion of matter and
conduction of heat) and those processes, generally termed convection,
where the entity is transported by mass movement of the fluid. The forces
exerted on plants by the wind are a manifestation of momentum transfer.

Clear discussion of heat and mass transfer processes may be found in
Campbell (1977) and inMonteith & Unsworth (1990) with more advanced
treatments in Monteith (1975) and Edwards et ai. (1979). The physical
principies underlying these transfer processes and the analogies between
them are outlined in this chapter, and this information is used to analyse
transfer between the atmosphere and both single leaves and whole canopies
Although the principIes described are applicable to transfer in any fluid, the
examples in this chapter will be confined to transfer in air.

Measures of concentration

Before going into details of the different mechanisms of heat and mas;
transfer it is necessary to define what is meant by concentration. In gener a
the spontaneous transfer of mass, or other entities such as heat o:
momentum, occurs from a region of high "concentration ' to one of 10>"

"concentration'. There are, however, many alternative ways in which or.:
can specify the amount or concentration of an entity 'i' in a mixture, eac:
of which may be appropriate for certain purposes, as can be seen in t r.:
following discussion.

Measures of concentration 47

I. Concentration. A widely used measure of composition is the (mass)
concentration (cJ or density (PJ) where

cj = PJ = mass of i per unit volume of mixture (3.1)
Alternativély one can use the molar concentration (c;")

C~l = number of moles of i per unit volume of mixture = cJ M, (3.2)

where MJ is the molecular weight. Although concentration is often used as
a fundamental measure of gas composition, in a closed system con-
centration changes with temperature or pressure as these factors alter the
volume according to the ideal gas laws:

PV = n~T (3.3)

where n is the number of moles present, Tis the absolute temperature, P is
the pressure, Vis the volume and ~ is the universal gas constant. Because
liquids are not as compressible as gases, concentration is much less sensitive
to pressure or temperature in solutions.

2. Mole fraction. A more conservative measure of composition is the
mole fraction (xJ), which is the number of moles of i (nJ as a fraction of the
total number of moles present in the mixture (l:n):
Xi = nJ'i.n (3.4)

I

In this case alterations in temperature, pressure or volume do not affect the
mole fraction as they affect ali components equally. A related measure
appropriate for gases is partial pressure (PJ)' which for any component is
the pressure that it would exert if allowed to occupy the whole volume
available. The equivalence with mole fraction follows from combining the
ideal gas law with Dalton's Law of Partial Pressures which states that, in a
gas mixture of several components, the total pressure equals the sum of the
partial pressures of the components, therefore

\ = pJP (3.5)

Using the above relationships it may easily be shown that gas concentration
is related to partial pressure by

c = massj = nJ Mj = pj MJ (3 6)
1 V V ~T .

3. Mass fraction. Another useful term is the mass fraction (mJ):

111 i = mass of i per unit total mass of mixture = cJ P (3.7)

where P is the density of the mixture. This is also independent of
temperature and pressure. The mass fraction is related to mole fraction by

mi = XJ MJ M (3.8)
where M is the average molecular weight of the mixture.
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4. Volume fraction. For a gas the volume fraction (the volume of i per
unit total volume of mixture) is identical to the mole fraction.

5. Mixing ratio. A term common in the meteorological literature to
describe the composition of air is the mixing ratio (wJ where

wl = mass of i per (total mass - mass of i)

Molecular transport processes

Diffusion - Fick's First Law

The rapid thermal motions of the individual molecules in a fluid lead to
random rearrangement of molecular position and, in an inhomogeneous
fluid, to transfer of mass and heat. This process is called diffusion. For
example, in a motionless fluid, mass transfer occurs as a resuIt of the net
movement of molecules of one species from any area of high concentration
to one of lower concentration. In a one-dimensional system, the flux density
or rate of mass transfer (JJ of an entity i per unit area through a plane is
directly related to the concentration gradient (ocJox) of i across the plane
by a constant called the diffusion coefficient (DI)' This can be written
mathematically as

õc,
JI = -Dlox (3.10)

This is the one-dimensional form of Fick's First Law of Diffusion. The minus
sign is a mathematical convention to show that the flux is in the direction
of decreasing concentration. Corresponding equations can be written for
transfer in more than one dimension, but in what follows only the one-
dimensional case will be treated.

Although it is common to use the concentration gradient as the driving
force for diffusion as in equation 3.10, and this will be done in much of what
follows, it can be inadequate for precise work when other factors are
varying. For example, in solutions that depart significantly from ideal
behaviour one needs to replace concentration by activity (see physical
chemistry texts, e.g. Atkins 1990). Similarly in gases where there is a
temperature gradient between the source and the sink, use of concentration
can lead to significant errors (Cowan 1977). This is because the rate of
diffusion depends on the rate at which the individual molecules move (a
function of temperature) as well as on their concentration. The use of mole
fraction, partial pressure or mass fraction takes this effect into account. By
using the appropriate substitutions for C; (equations 3.7, 3.6 and 3.5)

(3.9)
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equation 3.10 may be rewritten in any of the following forms which are
more appropriate for non-isotherrnal gases:

õm,
J =-Dp-

1 .! OX
(3.11 )

MloPi
Ji = -DifYtTox

(3.12)

ru,»;
J, = -Di fYtT OX

(3.13)

These equations may appear similar to equation 3.10 since, for exarnple,
pm, = CiO However, p Sm, is not necessarily identical to 6.cl (where 6.
represents a finite difference) so they can provide a significant improvement
in non-isothermal systems. Unfortunately even these equations still involve
some simplification.

Heat conduction
Heat transfer by conduction is analogous to diffusion. Conduction is the
transfer of heat along a temperature gradient from a region of higher
temperature (ar kinetic energy) to one of lower temperature, without mass
movement of the medium. In solids this energy transfer occurs as a result
of molecular collisons transferring kinetic energy between molecules that
are not themselves displaced, while in fluids the higher energy molecules
themselves may diffuse.

Conductive heat transfer is described by Fourier's Law, where the rate of
sensible heat transfer per unit area (C, with units of W m " = J rn" s') is
given by

C = _k
oT

OX
(3.14)

where k is the thermal conductívity (W m " K-1). Although the driving force
for heat transfer is the temperature gradient, it is convenient to make a
simple mathematical manipulation so as to obtain the proportionality
constant in the same units as were used for mass transfer (Monteith &
Unsworth 1990). If T is replaced by a "heat concentration ' CH = pCp T,
where c

p
is the specific heat capacity of the fluid (J kg "), one obtains an

equation analogous to 3.10:

oT
C = -DHpcP OX

(3.15)
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where DH is a thermal diffusion coefficient (often called a thermal
diffusivity). Values of DH and k for various fiuids and solids are given in
Appendixes 2 and 5.

Momentum transfer

When a force is applied tangentially to a surface it tends to cause the surface
layer to slide or shear in relation to the underlying material. A rigid solid
transmits such a shearing stress, which is given the symbol t and has units
of force per unit area (kg rn" S-2), without undergoing deformation. In a
fiuid, however, adjacent layers slide relative to each other with any one layer
being relatively ineffective at transmitting a shearing stress to the next layer
of fiuid, so that a velocity gradient develops when a fiuid fiows over a
surface. The viscosity of a fiuid is a measure of the internal frictional forces
that arise from molecular interactions between adjacent layers, with viscous
fiuids being more effective at transmitting a shearing stress than non-
viscous fiuids. This process is described by Newton's Law 01 Viscosity,
which states that the shearing stress at a plane in a fiuid is directiy
proportional to the velocity gradient (oujox):

ou
t = Yf ox (3.16)

where n is called the dynamic viscosity (kg m" S-I).
This equation is similar in form to those already introduced for heat and

mass transfer. In this case the shearing stress has the dimensions
of a momentum flux density, where momentum is mass x velocity
(i.e. MV1 T-2 = MLT-1. L -2. T-1). As for heat transfer, the velocity
gradient can be replaced by a gradient of momentum 'concentration'
(c

M
= mass x velocity jvolume = pu) thus giving a proportionality constant

with the dimensions of a diffusion coefficient (L2 T-1
). This diffusion

coefficient for momentum (DM) is also called the kinematic viscosity (v).
The tangential force exerted on a surface by a fiuid fiowing over it is

termed skin friction. In addition to this transfer of momentum to a body
across the streamlines of fiow, a moving fiuid can also exert a force as a
consequence of form drag (tf) where the pressure exerted on the front of an
object is greater than that on the rear. This is the main force that causes the
bending of trees and other plants in the wind. The magnitude of the form
drag, that is the force per unit cross-sectional area normal to the fiow (A)
for any object is given by

tr = CD%PU2 (3.17)

where C
D

is a drag coefficient that relates the actual drag to the maximum
potential force that could be exerted if all the air movement was completely

Molecular transport processes 51

stopped (%pU2). 'Streamlined ' objects, such as aircraft, will have much lower
drag coefficients than objects without streamlining (e.g. buildings). The
value of cD decreases dramatically if the airfiow is turbulent. Further
discussion of turbulence and its importance may be found in the section on
convective and turbulent transfer (see p. 57), while drag and its significance
is considered further in Chapter lI.

Diffusion coefficients

Choice of an appropriate 'concentration ' gradient enables us to express the
proportionality constant D for a wide range of transfer processes in
common units. For example, dimensional analyses of equations 3.10 to 3.13
for mass transfer and of 3.15 for heat transfer ali give D with dimensions
L2 T:", while the same is true for momentum transfer.

The value of D in a binary mixture (e.g. e02 and air) is called a mutual
diffusion coefficient, where DCA for e02 diffusing into air is the same as D AC

for air diffusing into eo2, with very little effect of altering the proportions
of air and eo2• Values for diffusion coefficients for quantities including
various gases, heat and momentum in both air and in water are listed in
Appendix 2. When a substance is diffusing within itself, D is called a self-
diffusion coefficient; this can be very different from the mutual diffusion
coefficient. For example the self-diffusion coefficient for e02 (Dc) is
5.8 mm" s" compared with DCA of 14.7 mm" s' at 20 "C, Plant physiology
is often concerned with ternary systems of air, e02 and H20, where eo2,

and H20 fiuxes may interfere; rigorous treatment of this effect can modify
equation 3.10 (Jarman 1974).

The relative values of D for different gases are approximately as predicted
by Graham's Law, which states that the diffusion coefficients of gases are
inversely proportional to the square roots of their densities when pure (i.e.
Di o: (Mit~, since density is proportional to M). Effects oftemperature and
pressure on Dare given by
D = DO(Tjr)n (POjP) (3.18)

where the superscript 'o' refers to a reference value which can be taken as
the value at 200e (293.15 K) and apressure of 101.3 kPa (1013 mbar).
Although the exponent n depends on the gas, a value of 1.75 predicts D over
the normal range of environmental temperatures with less than 1% error.
In addition D is modified when diffusion occurs in a confined physical
system where the average distance that a molecule travels between collisions
(the mean free path, which for e02 in air at 20 "C is approximately 54 nm)
is of the same order as the size of the system. An example of a situation
where this effect may be relevant is gaseous diffusion through nearly closed
stomata.
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Fig. 3.1. Diffusion down a concentration gradient showing that where DI is
constant, the flux is constant with distance and concentration drop is
proportionaI to distance.

Integrated form 01 the transport equation

The elose similarity between the equations describing transport of a wide
range of different entities ineluding water vapour, carbon dioxide, electric
charge, heat and momentum, has led to them being some times referred to
as particular examples of the general transport equation

Flux density (or flux) = proportionality constant x driving force (3.19)

In many practical situations it is more convenient to measure
concentrations at two positions in a system, rather than to determine the
concentration gradient at a point: therefore the transport equation is
commonly applied in an integrated formo Tn the sim pie case where the flux
is constant over the path being considered (i.e. there is no absorption or
evolution of the transported species in that region) and where D does not
change with position (generally true for molecular diffusion), integration of
equation 3.10 between planes at Xl and xz, a distance t apart, gives

J, = Di(clI- ciZ)/t (3.20)

where Cil and CI2 are. the concentrations at Xl and X2 (see Fig. 3. I). In this
equation, the driving force is theconcentration difference across the path.
Therefore the proportionality constant relating any flux density to the
appropriate concentration difference is equal to Dtlt. In plant physiology
this constant is conventionally calIed a conductance (and given the symbol
g for diffusive transfer and for heat transfer). For many purposes, as will be
seen later, it is more convenient to replace the conductance by its reciprocal,
termed a resistance (given the symbol r), so that

ri = l/gi = t'/ Di (3.21)
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Fig. 3.2. The ruIes for simpIifying complex networks of resistors: (a) resistors in
parallel; (b) resistors in series and (c) the Delta-Wye transformo

Another transport process that fits the general transport equation is the
transfer of electric charge as described by Ohm's Law (when a steady
current (I) is flowing through a conductor, the potential difference between
its ends (V) is directly proportional to the current, with the constant of
proportionality being calIed a resistance (R) - i.e. V = IR). The elose
analogy between Ohm's Law and other transport processes has proved
extremely use fui in the analysis of transfer processes in plants. This is
because electrical circuit theory is well developed and is directly applicable
to the analysis of the complex networks that occur in plant systems. As a
simple example, for a leaf losing water by evaporation from both surfaces,
the analogous electrical system is two resistors in parallel with the same
potential difference across them. The rules for simplifying compIex electrical
networks are summarised in Fig. 3.2.

It is often preferable to use conductances rather than resistances in
transport studies because the flux across a path with a given driving force
is directly proportional to its conductance, but inversely related to the
resistance. This inverse relationship to resistance can be misleading in
sim pie systems with only one dominant resistance (see e.g. Chapter 6). It is
readily apparent from Fig. 3.2, however, that when a system is
predominantly composed of resistors in series, it is more convenient to
work with resistances, particularly if one is concerned with the relative
limitation imposed by each component (see Chapter 7). A system of
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Table 3.1. Analogies between different molecular transfer processes

General transport Flux density = (apparent) x conductance
equation driving force

Fick's Law Ji = óCt xDjt(=gi)
(mass transfer) (kg rn" S-1) (kg m") (m S-I)

Jm = óXi xPDjt~ T(=g~)i

(moi m " S-I) (dimensionless) (moI m " s")
Jm = (P/~T)Óxi xDjt(=gi)i

(moi m " S-1) (moI m-3) (m çl)

Fourier's Law C = óT x k/t
(heat conduction) (J m " S-1) (K) (Wm-2K-l)

C = pCpóT( = ÓcH) x DH/t (= gH)
(J m " S-1) (J m-3) (m çl)

Newton's Law of t = Óu x I]/t
Viscosity (kg rn " ç2) (m S-1) (kg m<s'")
(momentum transfer) t = pÓu(= óc,,) xD,,/t(=g.,)

(kg m' ç2) (kg m " çl) (m s')

Poiseuille's Law" Jv =ÓP xrz/UI](= Lp)
(flow in pipes) (m3m-2çl) (kg m " ç2) (rn" s kg::')

Ohm's Law I (flux) =v x l/R
(electric charge) (A) (W A-I) (N W-l)

a For details of Poiseuille's Law see Chapter 4.

resistors in parallel, on the other hand, is most easily treated using
conductances. Either form will be used as appropriate in the following
chapters so it is necessary to be familiar with both type of expression and
their conversion.

The analogies between different transfer processes are summarised in
Table 3.1. It is clear from this that the units for conductance depend on
what is chosen as the driving force, it being to some extent arbitrary which
factors are included in which termo In each case it is possible to manipulate
units to give a conductance in m çl (or mm s"), Note that for electricity
the current is a flux rather than a flux density, so that the analogy is not
complete.

Diffusion coefficients are fundamental properties of the medium and of
the material diffusing rather than of the particular system geometry. This is
in direct contrast to conductances ar resistances that are basically a
property of the whole system in that they vary with geometry (e.g. the
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distance over which the transport occurs) as well as with the mechanism of
transport (e.g. molecular diffusion or the rather more rapid turbulent
transport).

Units for resistance and conductance

Until recently it was normal practice among plant physiologists to express
mass and heat transfer resistances in units of s m" (or s cm ") and
conductances in mm s" (or m s"). These units arise (see equation 3.20) if
the flux is expressed as a mass flux density (e.g. kg m " s') and the driving
force is a concentration difference (kg m"). The same units arise for heat
transfer when treated according to equation 3.15, and for momentum
transfer (see Table 3.1).

It is, however, becoming increasingly common, particularly in the
biochemical literature, to express the flux as a molar flux density (J'",
moi rn" çl), because biochemical reactions concern numbers of molecules
rather than the mass of material. [More correctly .I'" should be termed a
mole ftux density because use of the term molar should strictly be 'limited
to the meaning 'divided by moles'.] Similarly, concentrations (e.g. of water
vapour and COz) are usually measured as partial pressures (or the related
volume fraction), and as the appropriate driving force for diffusion is the
gradient of partial pressure (Pi) or mole fraction (x.) (rather than
concentration), one can write the integrated form of the transport equation
for a molar flux in either of the equivalent forms:

Jm _ DiP
1 - tfYtT(xu - xtz) (3.22)

D.
= tfYt'T(Pil - PiZ)

If one now follows general usage and defines a molar conductance (gm) as
PDjtfYtT, it has dimensions moi L-2 T-\ giving as appropriate units

.(mol m? çl) and the corresponding molar resistance (r'") has units
(rn" s mol-lJ~hese molar units will be used frequently in much of the rest
of this book, especially when considering gas exchange through stomata, so
the superscript 'm' will often be omitted in what follows so as to simplify
presentation of equations, and the type of units will be indicated by the
choice of font (i.e. gm = 9 and r" = r).

This alterna tive definition of conductance has some advantages. In the
more usual definition where g = Djt, conductance is approximately
proportional to the square of the temperature and inversely proportional to
P (see equation 3.18). Where, however, 9 = PDjtfYtT, it is relatively
independent of the properties of the ai r, being independent of P and

.[.
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approximately proportional to absolute temperature. The usual for-
mulation is clearly less appropriate if one is considering effects of altitude
(and hence total pressure) on gas exchange. A further advantage of using
partial pressure is that it obviates the need for correcting for changing
temperature and pressure that arises when using concentration. It is
particular1y important to use partial pressures rather than concentration
gradients where the system is non-isothermal (Cowan 1977).

It follows from equations 3.20 and 3.22 that conversion between the two
types of units is by means of

9 = g(PlflAT)

and
(3.23 a)

r = r(flATI P) (3.23b)

At sea levei and 25°C approximate conversions are, for resistance

r(m2 s moi-I) = 2.5 r (s em-I) = 0.025 r (s m") (3.24a)

and for conductance

9 (moi m-2 çl) = 0.04 g (mm s') (3.24b)

Conversions at other temperatures are given in Appendix 3.
In spite of the advantages of using a molar basis for expression of

mass transfer resistances and conductances, the units s m' and mm S-1 will
be retained for some purposes in the following treatment and especially for
the analysis of heat and momentum transfer where there are no obvious
analogies to molar fluxes. In addition, these are still the most commonly
used and appropriate units for most canopy-Ievel studies, especially when
considering evaporation, and will normally be used in that context. Of
course it should be recognised that for any given conditions of temperature
and pressure the two sets of units are directly interconvertible using
equations 3.23 and 3.24 as appropriate.

Fick's Second Law of Diffusion

ln many situations where diffusion takes place the flux is not constant with
distance because some of the material diffusing goes into changing 'the
concentration at any position. Using the principie of conservation, that is
that matter cannot normally be created or destroyed, it is easy to show that,
in a one-dimensional system where J, is increasing with distance in the x
direction, the extra material required must be obtained by decreasing Ci' so
that

ôJi ÔC!

ôx =-ai (3.25)
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This is known as the continuity equation. Substituting for Ji using Fick's
First Law (equation 3.10) leads to

aCj = _ ~ (_ D ôci) = D Ô
2
Ci (3.26)

õt õx ,. i õx 1 ôx2

which is known as Fick's Second Law. This equation describes the time-
distance relationships of concentration when diffusion occurs. The solution
of this equation that is appropriate for any particular problem depends on
lhe initial conditions and on the details of the system geometry. Solutions
of this equation for a wide range of systems and boundary conditions are
presented by Crank (1975). Here I will discuss only one example that can
be used to illustrate the scale of diffusive transport in plant systems. This is
lhe case where a finite amount of material is released at time zero in a plane
al the origin and allowed to spread by diffusion in one dimension. The
shape of the resulting curve relating concentration to distance is that of the
Gaussian or normal distribution. For this curve the distance from the origin
at which the concentration drops to 37 % (= I/e) of that at the origin is
given by

x = v(4Dt) (3.27)

An alterna tive explanation of x is that 16 % of the material initially placed
at the origin will diffuse at least as far as x in time t. The distance over which
diffusive transport occurs increases with the square root oftime. Substituting
a typical value for D in air of 20 mm çl, gives x = 9 mm for t = I s (i.e.
V(4 x 20 x 10-6 X I) =:: 9 x 10-3 m). This illustrates the sort of distance over
which gaseous, diffusion is an effective transport mechanism.

Convective and turbulent transfer
The transfer of mass or heat by diffusion is a consequence of the thermal
movements of individual molecules and is the dominant mechanism in still
fluids such as the air within the intercellular spaces of plant leaves. For
surfaces that are exposed to the atmosphere, such as leaves, air movement
over the surface can speed up heat and mass transfer considerably. There
are two processes involved.

In the first, the air movement continuously replenishes the air close to the
surface with unmodified air, thus maintaining a steep gradient of
concentration (the driving force for diffusion) and therefore more rapid
tranport than obtains in still air. This is only important for isolated surfaces
(such as isolated leaves or plants - see Chapter 5). Where there is an
extensive homogeneous surface an equilibrium is achieved such that the air
flowing close to the surface has already been modified by passage over an
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Fig. 3.3. Profile of windspeed moving over a surface showing the laminar
sublayer where windspeed changes rapidly with height and a turbulent zone with
eddy size increasing with distance .

identical surface upwind. ln this case the concentration gradient is the same
as would occur in still air unless the airstream is turbulent. Turbulence or
random eddies in the airstream provides the second way in which air
movement can speed up transfer processes; in this case, materiaIs are
transported directly in the moving air currents.

The air in the lower atmosphere is never completely still. Not only is there
usually a net horizontal motion or wind, but there are also many random
movements of small packets of air. The actual pattern of air movement
depends on the type of convection regime that exists. This may be free
convection, where the air movements are caused by changes in air density,
as occur where the air adjacent to a heated surface expands and therefore
rises, or where cold air sinks below a cool surface. Or it may be forced
convection, where the air movement is determined by an external pressure
gradient causing wind. Room heating with conventional 'radiators' relies
largely on free convection, while fan-assisted radiators use forced
convection to transfer heat to the room.

Forced convection may lead to the generation of eddies or turbulence as
a resuIt of the frictional forces acting between the wind and the surfaces
over which it flows. The size and velocity of the individual eddies depend
on a number of factors but they tend to decrease in magnitude as the
surface is approached (Fig. 3.3). Evidence for the random spatial
distribution and the persistence of these eddies may easily be seen if one
looks at the patterns on a field ofwaving barley. On a smaller scale they can
be detected by instruments such as hot-wire anemometers that respond
rapidly to changes in air velocity (see Chapter 11). Because the size of eddies
in an airstream tends to be similar to the scale of surface irregularities, they
are therefore severa I orders of magnitude larger than the average molecular
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movements giving rise to diffusion. For this reason turbulent transfer tends
to be much faster than diffusion, typically by between three and seven
orders of magnitude.

The relative importance of free and forced convection in heat and mass
transfer depends on the balance between the buoyancy forces arising from
temperature gradients and the inertial forces arising from air movements
that cause turbulence. ln most plant environments, heat and mass transfer
are rarely deterroined by free convection alone, though it may be an
important component of the transfer mechanism in very light wind.

Boundary layers

It was pointed out earlier that when a fluid flows over a surface the flow
velocity decreases towards that surface as a consequence of the friction
between the surface and the fluid and of the viscous forces within the fluid.
The zone adjacent to a surface, where the mean velocity is reduced
significantly below that of the free stream, is termed the boundary layer. ln
what follows, the transfer conductances and resistances in the boundary
layer will be distinguished by the use of the subscript 'a', so that the
boundary layer conductance for heat transfer would be gaH' One common
arbitrary definition of the boundary layer defines its Iimit as that streamline
where the velocity reaches 99 % of that in the free airstream. Because the
depth of the boundary layer in air tends to be about two orders of
magnitude less than the size of the object, mass and heat transfer can be
regarded as one-dimensional processes at right angles to the surface.

The pattern of fluid movement within a boundary layer may be either
laminar, where ali the fluid movement is parallel to the surface, or it may
be turbulent. ln a turbulent boundary layer the movements of individual
molecules rather resemble the movements of commuters going to or from
work in a large city: although the individual particles may be moving in a
very irregular pattern, the overall motion is regular and predictable.
Whether or not a particular boundary layer is laminar or turbulent
depends on the balance between inertial forces in the fluid (because of its
velocity) and the viscous forces that tend to produce stability and a laminar
flow pattern.

Experimentally it has been found that, for a smooth plate, the transition
from a laminar to a turbulent boundary layer generally occurs when the
value of a group of terms called the Reynolds number exceeds a value
between 104 and 105• The Reynolds number is a dimensionless group given
by ud]v, where u is the free fluid velocity, dis a characteristic dimension of
the object and v is the kinematic viscosity (= DM). For parallel-sided flat
plates (approximately equivalent to grass leaves), d is the downwind width,

c.
L
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Fig. 3.4. Diagrammatic representation (with much exaggerated vertical scale) of
the development of the boundary layer over a smooth flat plate in a laminar
airstream, showing the windspeed profiles, the initial laminar zone and the onset
of turbulence.

while for circular plates (appropriate for certain other leaves) d is
0.9 x diameter. For irregular plates d is the average downwind width, while
for spheres or cylinders with their long axis normal to the ftow d is equal
to the dia meter.

The build-up of a boundary layer in an airstream ftowing over a ftat plate
such as a leaf is illustrated in Fig. 3.4. Initially there is a laminar zone that
gradually increases in thickness with increasing distance from the leading
edge. The laminar layer may then break down to form a turbulent zone
when d increases enough to make the local Reynolds number larger than
the critica I value. There is good evidence that this critical Reynolds number
is achieved at values well below 104 (i.e. 400-3000: Grace 1981) for plant
leaves, because of the tendency of their surface irregularities, such as veins
and hairs, to induce turbulence. Turbulence in the boundary layer is also
encouraged by any turbulence in the free stream that might be caused by
objects such as leaves and stems upwind (see Haseba 1973). Even where the
majority of the boundary layer is turbulent there remains a thin zone dose
to the surface called the laminar sublayer where the ftow is laminar, though
this may be only a few tens of micrometres thick. As an indication of the
sort of conditions under which turbulence may occur with realleaves, a leaf
only 1 em wide would achieve a possibly critical Reynolds number of 500
at a windspeed of only 0.76 m s' (i.e. 500 x 15.1 X 10-6/0.0 I).

Mass and heat transfer through a boundary layer can be described by the
general transport equation in the form already used for molecular diffusion
in stilJ air:

JI = gl(CiI- cj2)

or for heat:

(3.28)

c = gHflCp(T;. - 7;) (3.29)

As transport within a laminar boundary layer is by diffusion, the
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conductance of a laminar layer with a mean thickness Ó is given by DJ Ó (see
equation 3.21). The thickness of a laminar boundary layer over a ftat
surface increases in proportion to the square root of the distance from the
leading edge and in proportion to the reciproca I of the square root of the
free ftuid velocity. The thickness, 15, is also weakly dependent on DI, being
approximately proportional to D?33, so that the boundary layer thickness
is different for heat, mass and momentum.

Where the ftow regime in the boundary layer is turbulent or mixed, the
same formof equation applies but mass transfer is more rapid because of
the eddies. In this case the boundary layer conductance is increased because
D, the molecular diffusion coefficient, is replaced by a larger eddy transfer
coefficient, K. The value of this transfer coefficient varies with the size of the
eddies and tends to increase with distance from the surface (Fig. 3.3). The
value of K may increase from around 10-5 m" çl near the leaves where the
eddies are small to about 10-1 m2 çl at the top of a plant canopy, reaching
as much as 102 m2 çl well above the canopy.

It has already been noted that the integration of Fick's First Law
(equation 3.10) to obtain the integrated form (e.g. equation 3.29) is easiest
where the transfer coefficient does not alter with distance. Where it does
vary, as in a turbulent boundary layer, the definitions of conductance and
resistance in equation 3.21 must be replaced by

J
X2dX

ri = g~1 = xl KI (3.30)

Figure 3.5 illustrates how the transfer coefficient and concentration
gradient might vary across a typical mixed boundary layer having a laminar
sublayer and a turbulent zone.

!..
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Because of the difficulties in integrating the transport equation in
situations where the transfer coefficient varies, it is convenient to define an
equivalent boundary layer of thickness Jeq. This is the thickness of still air
that would have the same conductance or resistance as the turbulent
boundary layer of thickness t (see Fig. 3.5). Thus for a turbulent boundary
layer where the value of the transfer coefficient, K, is say 103 x D, the
thickness of the equivalent boundary layer (JeQ) is 10-3 X t.Note that both
J and Jeq are average thicknesses, since the actual thickness ofthe boundary
layer is less near the leading than the trailing edge.

As it is often difficult to determine the boundary layer thickness it has
been found convenient to express heat and mass transfer in terms of the
characteristic dimension (d). The ratio dlJeq is often called the Nusselt
number when studying heat transfer or the Sherwood number when
referring to mass transfer. These two dimensionless groups are among those
widely used in the fluid dynamics literature to summarise information on
heat and mass transfer. For our purposes it is more convenient to express
this information directly in terms of the dependence of boundary layer
conductance or resistance on windspeed and leaf dimensions. The
application of dimensionless groups is discussed by Monteith & Unsworth
(1990) and in textbooks on heat and mass transfer (e.g. Kreith 1973).

Conductance 01 leal boundary layers

The conversions between conductances for different entities depend on the
nature of the boundary layer. Both when the air surrounding a plant organ
is still and within the intercellular spaces of lea ves transfer of heat or mass
depends on molecular diffusion. Conductances for different entities (e.g.
CO2, water vapour or heat) through such a layer of still air would be in the
ratio of their molecular diffusion coefficients (Appendix 2). In a laminar
boundary layer transport is still by diffusion so that one might expect the
conductances to be in the same ratio, but as the effective boundary layer
thicknesses for mass and heat transfer are proportional to Di, it follows that
conductances are approximately in the ratio of the ~ power of the diffusion
coefficients. As turbulence increases, transport in eddies becomes rapid in
relation to molecular diffusion, so that in a fully turbulent boundary layer
above a canopy, heat, water vapour and carbon dioxide are ali transported
equally efficiently and therefore the conductances approach equality.
Appropriate factors for converting between conductances for other entities
are given in Table 3.2.

The value of the boundary layer conductance for a leaf or other object
depends mainly on its shape and size and on the windspeed. It is best
determined empirically for leaves of any given dimensions by measuring
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Table 3.2. Factors for conuerting conductances for different entities in
different boundary layers relative to lhe heat transfer conductance (g.H)

Relationship g.H g.w s.: g.M

Still air (DjDH) 1.0 1.12 0.68 0.73
Laminar (DjDHt67 1.0 1.08 0.76 0.80
Turbulent (DH) 1.0 1.0 1.0 1.0

water loss from wet surfaces (e.g. blotting paper) of the same size with the
same external conditions, or by energy balance measurements. These
methods are outlined in Appendix 8. It has been found that conductance
may be estimated with adequa te precision for many purposes from the wind
velocity (u) and the characteristic dimension (d), by making use of
relationships that have been derived from a range of experiments and from
heat transfer theory (see Monteith 1981b; Monteith & Unsworth 1990). For
flat plates in laminar forced convection conditions, the value of the
boundary layer conductance to heat transfer (mm çl) is given by

g.H = r;~ = 6.62 tu] d)0.5 (3.31)

where d is the characteristic dimension (m) and u is the wind velocity
(m s'), Note that this conductance refers to unit projected area ofleaf(that
is the area of one side) but includes heat transfer from both surfaces in
parallel. Since mean boundary layer thickness is inversely related to g (i.e.
J = DH/gH) it is easy to calculate the corresponding boundary layer
thickness as J = 2 DH(ul dt05 16.62, where the factor 2 converts the
conductance to that appropriate for exchange from one side of a leaf. For
a I em leaf in a wind of I m çl, therefore, J = 0.65 mm (i.e.
2 x 0.215 X 10-4 x (1/0.01)-05/6.62 X 10-3 m).

Corresponding expressions for conductances of other shaped objects are:

for cylinders with their long axis normal to the ftow

g.H = r;~= 4.03 (U06 I dO.4) (3.32)

and for spheres

g.H = r;~= 5.71 (U06 I d04) (3.33)

where d is the diameter of the cylinder or sphere. Equations 3.32 and 3.33
both refer to unit surface area.

Although equations 3.31-3.33 are really only applicable to smooth
isothermal plates or other shapes in laminar ftow, they are commonly used
to estimate conductances for realleaves and other plant organs. In practice,

..
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however, surface temperatures are not uniform and some degree of
turbulence in the leaf boundary layer is common. Where turbulence occurs,
equations 3.31-3.33, which apply to laminar conditions, tend to under-
estimate the true conductance usually by a factor of between 1 and 2,
though perhaps by as much as 3 in certain circumstances (see Monteith
1981 b and Grace 1981). In addition to factors such as leaf size and
windspeed, the turbulent regime in the airstream can be important: Haseba
(1973), for example, has shown that the altered turbulence pattern within
dense plant canopies can increase the conductance of rigid leaf models
independently of windspeed.

The presence of leaf hairs also affects transfer in the leaf boundary layer
(see Johnson 1975). Sparse hairs may increase surface roughness and the
tendency for turbulence. On the other hand, a dense mat of hairs is likely
to increase the effective depth of the boundary layer (certainly for water
vapour or e02 transfer) by up to the depth of the hair mat. A layer of still
air trapped by hairs I mm long would have a resistance to water vapour
diffusion of t/D.; = I X 10-3/0.242 X 10-4 = 41 s m ". For momentum,
however, the hairs would move the effective sink for momentum from the
leaf surface to the surface of the hair mat, so hairs would affect the ratio
between conductances for heat, mass and momentum.

Because of these complexities it is clear that it is difficult to estimate leaf
conductance accurately. Perhaps the best available generalisation is to
increase the conductances calculated from equations 3.31-3.33 by a factor
of 1.5, giving the dependence of leaf conductance on windspeed and
dimensions shown in Fig. 3.6. The characteristic dimensions used in these
caIculations range from I mm (as for narrow-Ieaved grasses and pine
needles) to 30 em corresponding to very large leaves such as bananas.
Variation of leaf size over this range changes ga by more than an order of
magnitude. Windspeeds at the top of plant canopies can often exceed
I m s", but at times (e.g. at night) and deep in the canopy values may fali
to 0.1 m çl or less.

Although forced convection is Iikely to dominate heat and mass transfer
from leaves in natural environments, when large leaf-to-air temperature
differentials occur, as with large leaves and high irradiances, there may be
a significant contribution by free convection. With a looe leaf-air
temperature differential, the free convection conductance for heat is likely
to be about 3.2 mm çl (Monteith 1981b), so that it is comparable to that
arising from forced convection only for the largest leaves at windspeeds less
than 0.3 m s'.
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Fig. 3.6. Estimated dependence of gH or r.H on characteristic dimension (d) and
windspeed for fiat leaves or cylindrical leaves or stems in natural environments.
The dashed lines give the value of g.H predicted by equations 3.31 or 3.32 for
laminar fiow, the solid \ines (g.1i = 1.5 x value predicted by these equations) are
for more typical fiow conditions.

Transfer processes within and above plant canopies

Many of the principies that have been applied to heat and mass transfer of
individual leaves are also applicable to exchange by large areas of
vegetation, but there are a number of important differences and
complicating factors. First, the analysis is complicated by the fact that the
. surface' of a plant canopy (i.e. the sources or sinks of heat, water, e02 and
momentum) is usually distributed over a significant depth of canopy and
also the distribution with depth is different for each entity. A second feature
that has been ofparticular value in the development ofmicrometeorological
techniques for the study of transfer processes between vegetation and the
atmosphere is the difference in scale, with the boundary layer above a
canopy being much deeper than that for a single leaf, so that it is possible
to make measurements within the boundary layer and these have been used
to infer ftuxes. The third feature of transfer within and above canopies is
that the crop boundary layer is generally turbulent so that the transfer
coefficients (K) for heat and mass transfer are usualIy assumed equal,
though there can be great spatial and temporal heterogeneity. This
similarity assumption forms the basis of several of the micrometeorological
methods used to study canopy exchange processes.
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Transfer above plant canopies

The theory of transfer processes above plant canopies is outlined by Thom
(1975) and well summarised by Monteith & Unsworth (1990). Many
examples are presented in Monteith (1976). The analysis of micro-
meteorological measurements within the crop boundary layer requires that
there is no convergence or divergence of ftux (i.e. there are no sources or
sinks within the boundary layer for the entity being transported) and no
advection. In other words, the conservation equation applies and a one-
dimensional vertical ftux is assumed, the ftux being constant at different
heights, but the transfer coefficient at any height z, Kj(z), varies. The ftux of
mass or momentum above the crop, therefore, can be described by the
standard gradient-diffusion assumption where the ftux is proportional to
the transfer coefficient multiplied by the driving concentration gradient:

Jj = - Kj(z)(ocJ oz) (3.34)

For this equation to hold, measurements must be made entirely within the
crop boundary layer that has developed from the 'leading edge' of the field
or area of vegetation being studied. The depth of the boundary layer
increases with distance or 'fetch ' from the leading edge. In general it is
assumed that measurements may be made with adequa te precision up to a
height above the canopy equal to about 0.0 I x fetch. It is also found that
measurements need to be made well above the underlying canopy because
the erratic turbulence structure near and within canopies leads to such great
variability in K that equation 3.34 has little practical value in this zone (see
Raupach, 1989). It follows that micrometeorological studies of ftuxes
through the crop boundary layer require large areas of homogeneous
vegetation, the size of which depend on the height above the canopy at
which sensors are placed.

Wind profiles and estimation of conductance

Windspeed increases with height above open ground or above plant
communities, with the rate of increase being greatest near the ground, as
shown in Fig. 3.7. The shape ofthis windspeed profile is such that over open
ground the logarithm of height (ln z) is linearly related to the windspeed at
that height (uz). Expressing Uz in terms of ln z gives

Uz = A (ln z-ln zo) = A ln (z/zo) (3.35)

The intercept on the ln z axis is In zo, where Zo is called the roughness length,
and is a measure of the aerodynamic roughness of the surface. The slope,
A, is usually replaced by the term u*/,f, where u* is called the friction
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Fig. 3.7. Hypothetical mean profiles of windspeed when windspeed at 4 m equals
3.5 m S-I for (a) bare ground and (b) a cereal crop together with (c)
corresponding linearising logarithmic transformations.

velocity (having dimensions of veIocity) and characterises the turbulent
regime, and ,f is a dimensionless constant (= 0.41) named after von
Karman.

Over vegetation, unlike over open ground, the windspeed profile is no
longer linear when u is related to ln z, Instead u is linearly related to
ln (z - d), where d is an apparent reference height, the zero plane
displacement (Fig. 3.7). As shown in Fig. 3.7 windspeed extrapolates to
zero at a height of d + Zo (though actual windspeed at this height is still
finite). Substituting (z - d) for z in equation 3.35 gives

11, = (u*/,f) ln [(z-d)/zol (3.36)

as describing a windspeed profile above vegetation. The plane at a height
d-v z; may be regarded as an apparent sink for momentum.

It has been found that reasonable approximations to d and Zo for a range
of relatively dense vegetation types are (Campbell 1977)

d = 0.64 h . (3.37)

and

Zo = 0.13 h (3.38)

where h is the crop height. More appropriate values for coniferous forest
are given by the following equations (Jarvis et aI. 1976):

d=0.78h
Zo = 0.075 h

(3.37 a)
(3.38 a)
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In practice d and Zo vary with windspeed and canopy structure in a fairly
complex manner (see Monteith 1976; Monteith & Unsworth 1990).

It is possible to use the windspeed profile to estimate transfer coefficients
and conductances in the crop boundary layer. As momentum transfer is
analogous to other transport processes, it is possible to define a conductance
for momentum transfer between height z and the reference plane (z = d + zo)
using the usual transport equation

t = gAMP[UZ-U(d+Z) = gAMPuz (3.39)

where gAM is the canopy boundary layer conductance for momentum
(= r~~). It can also be shown (see Monteith & Unsworth 1990) that

t = pu; (3.40)

Combining these two equations gives

gAM = u!/uz
(3.41 )

which can be expressed in terms of the parameters of the wind profile
equation (equation 3.36) to give

i2uZ

gAM = {ln[(z-d)/zoW
(3.42)

Not only does this equation imply that gAM increases with windspeed, but
it also indicates that conductance tends to increase with crop height (as d
and Zoboth increase with height). Substituting, for example, values of u, d
and z; from Fig. 3.7 into equation 3.42 gives, for a windspeed of 3.5 m çl

at 4 m, gAM = 9 mm çl for the bare ground (d ~ O, ZO= 0.0015) and
gAM = 62 mm çl for the cereal crop (d = 0.7, Zo= 0.15).

Because the apparent sink for momentum in a canopy is above those for
heat or mass exchange, there is a small extra resistance required when
converting from r AM to the corresponding resistances for heat or mass
transfer. This extra resistance refers to transfer between the levei of the
momentum sink (d + zo) and the alternate sink (Thom 1975).

Making use of the similarity assumption for the turbulent transfer of
different entities in the boundary layer, equation 3.42 can be used as an
estimate for the crop boundary layer conductances for other entities such
as heat, CO2 and water vapour. This forms the basis for an important
method for estimating fluxes of these quantities. Once the conductance is
known (from the wind profile), fluxes may be obtained from measurements
of the appropriate concentration dilferences using equations 3.28 or 3.29.
Alternatively fluxes may be estimated directly from equation 3.34 if the
concentration gradient and K, at any height are known.
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A problem with equations 3.36 and 3.42 is that they hold only when the
temperature profile in the atmosphere is elose to neutrality. At neutrality
the temperature decreases with height according to the dry adiabatic lapse
rate (0.01 °C m -1 - see Chapter 11). If temperature decreases more rapidly
with height there is a tendency for free convection to occur as a result of
'buoyancy' elfects. This makes the atmosphere unstable and turbulent
transfer is enhanced. Conversely, when temperature increases with height (a
temperature inversion), the atmosphere is stable and transfer is suppressed
because the less dense air is above the cooler denser air. In either case the
normal profile equations need modification (see Thom 1975; Monteith &
U nsworth 1990).

Transfer within plant canopies

The erratic turbulence structure within plant canopies and the com-
plexities introduced by the distribution of sources and sinks for heat, mass
and momentum make the application of the gradient-dilfusion analogue to
transfer processes within the canopy extremely difficult. Examples of the
range of within-canopy wind profiles for different types of plant stand are
shown in Fig. 3.8. In some canopies windspeed may be highest near the
ground, particularly in forests that have little understorey vegetation.

The microclimate within a canopy depends on the source distributions
and concentration fields of heat, water vapour and CO2. The variation in
source density for an entity i with height (the source density profile, St(z),
where a sink is a nega tive S), depends on physical and physiological
processes particularly at the leaves, while the concentration profile ct(z)
depends on the turbulent wind flow and the way this distributes the entity
under consideration. Since the law of conservation must apply, the source
density in any horizontal plane is related to the change in flux across that
plane:

St(z) = dJ1/dz (3.43)

similarly the flux across the plane at height z is given by the integral from
the ground to height z:

Jj(z) = Jj(O) +J: St(z) dz (3.44)

where J1(0) is the flux density from the ground at z = O.
Analysis of the turbulence structure within and above canopies has

demonstrated that the strongest turbulent events in a wide range of canopy
types are gusts: energetic, downward incursions of air into the canopy space
from the faster moving air above (see Raupach, 1989). These gusts tend to
be very intermittent but are responsible for most of the momentum transfer
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(data from Lemon 1967) and (----) a logarithmic profile (equation 3.35) with
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(more than 50 % of energy may be transferred in events occupying less than
5 % of the time). The resulting variability of K means that gradient
analogies are not helpful, with counter gradient fluxes (and hence
apparently nega tive K values) having been observed for heat, water vapour
and CO2 fluxes within a pine forest (Denmead & Bradley, 1987). The typical
canopy eddies are coherent structures of similar dimensions to the canopy
height that persist for long periods: the wind waves across cereal fields
provide familiar visual evidence for the persistence of turbulent motions of
this scale.

As a result of the common failure of the normal gradient diffusion
analogue in plant canopies there has been considerable effort aimed at
developing an approach to the analysis of turbulent dispersion in canopies
which is applicable to the non-diffusive flow that is found in the presence
of persistent, large-scale eddies. One approach is to consider ali the
individual canopy elements as independent point sources releasing material
(for example water vapour) into small parcels of air as they pass and to
estimate the statistical probability of independent parcels released into the
airstream from ali these sources reaching a specific point at a particular time
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(see Raupach 1989). It follows that transport depends on the turbulence
structure of the airflow.

Sample problems
3.1 Water vapour is diffusing down a 10 em isothermal tube at 20°C from a wet

surface (cw = 17.3 g m") to a sink consisting of saturated salt solution
(equilibrium cw = 11 g m"). Calculate (i) Jw' (ii) gw; and the equivalent molar
values (iii) J~ and (iv) g~.

3.2 For a 2 em diameter circular leaf exposed in a laminar airstream moving at
1 m çl, (i) what are (a) galP (b) gaW' (c) gaM' (d) the mean boundary layer
thickness for momentum? (ii) What would be the values for these conductances
if the leaf was covered in a mat of hairs 1 mm deep? (iii) Is the assumption of
a laminar boundary layer likely to be valid?

3.3 If the windspeed at 2 m is 4 m s" when blowing over a wheat canopy 80 em
tall, what are (i) u•••, (ii) the windspeed at the top of the canopy, (iii) t and (iv)
gAM between the reference plane and 2 m?


