Aula 3 — As plantas e a radiação solar II: Interação com copas vegetais Prof. Fábio Marin

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" Departamento de Engenharia de Biossistemas LEB 5036 - Clima e Agricultura II: Relações Planta-Atmosfera

Lei de Beer

• Quando um feixe monocromático de radiação solar *I* atravessa um meio absorvente, ele pode ser atenuado em função da distância percorrida no meio, de modo que a proporcionalidade torna-se válida:

$$\frac{dI_{\lambda}}{db} \alpha - I_{o\lambda} \tag{1}$$

dI é a variação infinitesimal da radiação incidente ($I_{o,\lambda}$, W m⁻²) com comprimento de onda λ ao atravessar o meio ao longo da distância db (m).

Para transformar essa proporcionalidade em uma igualdade, pode-se inserir um coeficiente k, obtendo-se:

$$\frac{dI_{\lambda}}{db} = -k I_{o\lambda} \qquad \rightarrow \qquad \frac{db}{dI_{\lambda}} = \frac{1}{k I_{o\lambda}}$$
 (2)

Em que k é um coeficiente adimensional que descreve a habilidade do meio em atenuar a radiação.

• Integrando-se a Eq. 2 para a distância b, tem-se:

$$-b = \int_0^b \frac{1}{k I_o \lambda} dI \quad (3)$$

Lei de Beer

• Obtendo-se então:

$$-b = \frac{\ln I}{k} + C \tag{4}$$

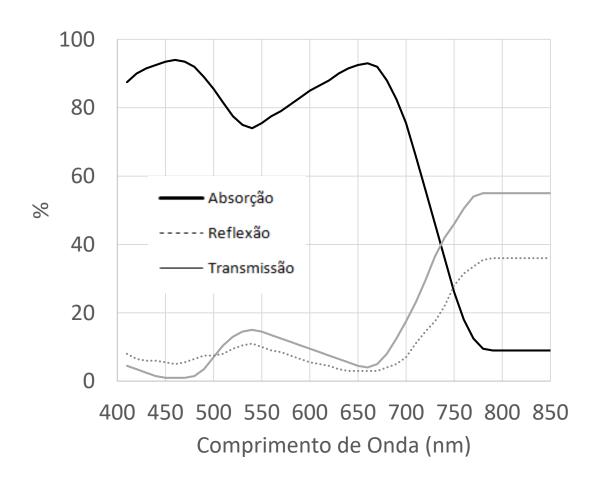
• Em que C é a constante de integração que pode ser determinada fazendo-se b=0 (assumindo que o meio tem espessura=0) e neste caso I=Io, obtendo-se então:

$$0 = \frac{\ln I}{k} + C \quad \to C = -\frac{\ln I_o}{k} \tag{5}$$

• Substituindo (5) em (4):

$$-b = \frac{\ln I}{k} - \frac{\ln I_o}{k} \tag{6}$$

$$-b = \frac{1}{k} \ln \frac{I}{I_o} \tag{7}$$


• Isolando-se I tem-se que:

$$I = I_0 e^{-k b} \tag{8}$$

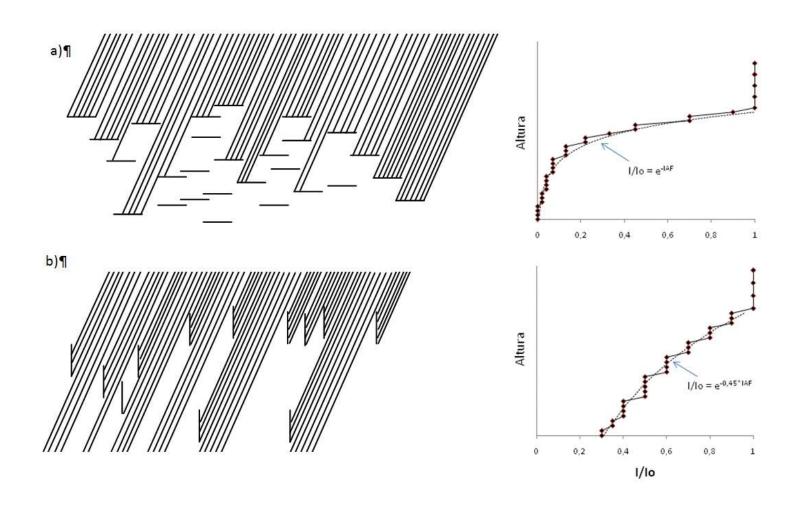
Lei de Beer (adaptada por Monsi & Saeki)

$$I = I_o e^{-k IAF}$$

Variação espectral da refletância, transmitância e absorbância para uma vegetação hipotética

Absorção (A) = (Io-I)/Io

Transmissão (T) = I/Io

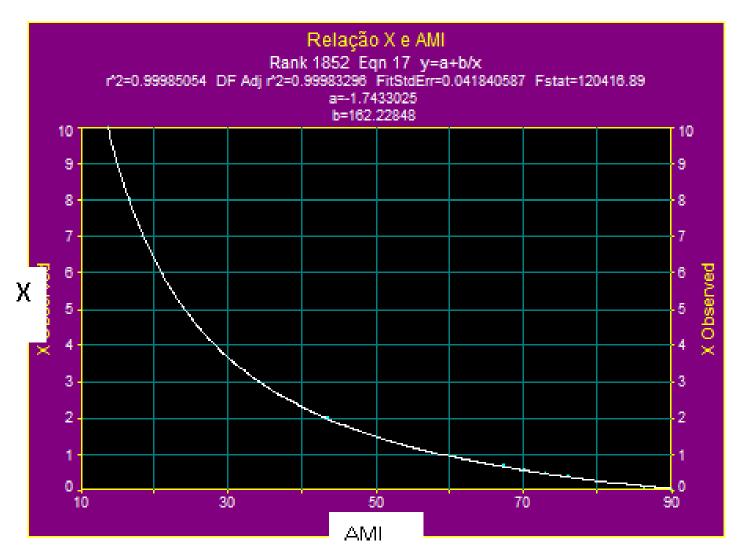

Reflexão (r) = Io (1-r)

Índice de área foliar

$$\lim_{\frac{a}{A} \to 0} \left(1 - \frac{a}{A} \right) \cong e^{\left(-\frac{N \cdot a}{A} \right)}$$

é o índice de área foliar, uma vez que N é o número de folhas, a é a área de cada folha e A é a área da superfície do solo.

Penetração da radiação para uma elevação solar de 66º admitindo disposição horizontal das folhas (a) e vertical (b)


Coeficiente de Extinção

Distribuição do Ângulo Foliar	Coeficiente de Extinção (k)
Horizontal	k = 1
Vertical	$k = \frac{(2 \cdot \cot z)}{\pi}$
Esférico	$k = \frac{(2 \cdot \sin z)}{\pi}$
Elipsoidal ¹	$k = \frac{\sqrt{x^2 + (\tan z)^2}}{x + 1,774 \cdot (x + 1,182)^{-0.733}}$
Heliotrópica	$k = \frac{1}{\sin z}$

Valores de X

Cultura	X
Azevém	0,67-2,47
Milho	0,76-2,52
Centeio	0,8-1,27
Trigo	0,96
Cevada	1,20
Sorgo	1,43
Colza	1,92-2,13
Pepino	2,17
Tabaco	1,29-2,22
Batata	1,70-2,47
Girassol	1,81-4,1
Morango	3,03
Soja	0,81

Relação X e AMI

Estimando o IAF (Miller, 1967)

$$I = I_o \cdot e^{-\mu \cdot S(\theta) \cdot G(\theta)}$$

$$\mu \cdot G(\theta) = \frac{-\ln[T(\theta)]}{S(\theta)} = V(\theta)$$

$$IAF = \sum_{i=1}^{i=n} -\ln[T_i] \cdot \cos_i \cdot W_i$$