

Aula 13: A Radiação Cósmica de Fundo

- * Revisão sobre o "desacoplamento" da radiação c/ matéria ("recombinação")
- * RCF como "fotografia" das condições iniciais do universo
- * Física da radiação e matéria durante o desacoplamento

-> Ryder, Cap. 10

Desacomplamento ("recombinação")

A transição entre um universo ionizado e opaco para um **neutro e transparente** é governada pelo processo:

 $p + e^- \rightarrow H + \gamma$, $B = 13.6 \,\mathrm{eV}$

Vimos nas aulas anteriores que, quando essas reações ocorrem frequentemente (ou seja, a uma taxa alta comparada à taxa de expansão), a fração ionizada $X_e = n_e/n_b$ é dada pela **Equação de Saha**, e obtivemos:

$$\frac{n_p n_e}{n_H n_b} = \frac{X_e^2}{1 - X_e} = \frac{1}{n_b} \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-B/T} = \frac{\pi^{1/2}}{2^{5/2} \eta_{b\gamma} \zeta(3)} \left(\frac{m_e c^2}{k_B T}\right)^{3/2} e^{-B/k_B T}$$
Vivemos num
universo com poucos
baryons!

Fração ionizada

Corrigindo p/ ⁴He: $n_e = (1 - Y)X_e n_b = x_e \times 1.12 \times 10^{-5} \Omega_b h^2 (1 + z)^3 \text{cm}^{-3}$

O número de e⁻ livres (que são as fontes de espalhamento Thomson/Compton) decai rapidamente quando a temperatura cai abaixo de T ~ 1 eV , ou depois de z ~ 1100:

E como esses e^- livres afetam os fótons da RCF durante e depois da recombinação?

A seção de choque relevante é a do espalhamento Thomson/Compton:

$$\sigma_T = \frac{8\pi\alpha^2}{3m_e^2} = 6.65 \times 10^{-25} \,\mathrm{cm}^2$$

O caminho livre médio ("mean free path") é dado por:

$$\lambda_{phys}^{mfp} = \frac{1}{n_e \sigma_T} = \frac{1}{X_e n_b \sigma_T} \quad \Rightarrow \lambda_c^{mfp} = \frac{1}{X_e n_b \sigma_T a}$$

A **probabilidade normalizada** de que um fóton será espalhado por um e- livre, entre os instantes t_s e t_s + dt_s , e **nunca mais depois desse instante**, é :

$$dP = \frac{dt_s}{\lambda(t_s)} \left(1 - \frac{dt_1}{\lambda(t_1)} \right) \left(1 - \frac{dt_2}{\lambda(t_2)} \right) \dots \left(1 - \frac{dt_N}{\lambda(t_N)} \right)$$

$$N \to \infty \downarrow$$

$$\Rightarrow dP = \mu'(\eta_s) d\eta_s \times e^{-\mu(\eta_s)} \quad , \quad \mu(\eta) \equiv \int_{\eta}^{\eta_f} d\eta' \, X_e(\eta') n_b(\eta') \sigma_T$$

$$P = \int_{0}^{\infty} d\mu \, e^{-\mu} = 1$$
Profundidade óptica p/
espalh. Thomson

Essa **probabilidade por unidade de comprimento** de que um fóton **será espalhado** em um instante **t**, mas não depois, é chamada **função de visibilidade:**

 $g(\eta) = \mu'(\eta)e^{-\mu(\eta)} = \sigma_T X_e(\eta)n_b(\eta)a(\eta) \times \exp\left[\int_0^{\eta} d\eta' \,\sigma_T X_e(\eta')n_b(\eta')a(\eta')\right]$

Hu 2005

Máxima probabilidade:

Espessura da Superfície de Último Espalhamento (SUE) observada hoje:

• A RCF **realmente** nos dá uma foto de uma época muito bem determinada, uma casca esférica muito fina, de raio R_{SUE} !

Física

1

Uma visão causal do nosso universo

Simulação Illustris

Radiação de fundo: condições iniciais para a rede de estruturas do universo

WMAP: 2003-2012

Temperatura

Polarização

PLANCK

Hu & White

PLANCK canais de frequência

LFI Low-Frenquency Instrument Radiômetros: 30, 44 & 70 GHz

HFI High-Frenquency Instrument Bolômetros: 100, ... GHz

545 GHz

Espectro angular: decomposição em "multipolos"

m=0

=3

m=1

m=l

m=2

m=3

 $\left|\delta T(\theta,\varphi) = \sum_{\ell} a_{\ell m} Y_{\ell}^{m}(\theta,\varphi)\right|$

 $C_{\ell} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\infty} \left| a_{\ell m} \right|^2$

1) Efeito Sachs-Wolfe

2) Efeito Sachs-Wolfe Integrado

$$\frac{\Delta T(\vec{n})}{T} = 2 \int_{\vec{n}} d\eta \frac{\partial \Phi(\vec{n} \cdot \eta, \eta)}{\partial \eta}$$

3) Efeito Sunyaev-Zel'dovich (SZ)

 $\frac{\Delta T(\vec{n}_c, nu)}{T} \approx f(\nu) \Delta \tau_T(\vec{n}_c)$

4) Lentes gravitacionais

$$n^a \to \tilde{n}^a = M_b^a n^b$$

4) Ondas gravitacionais

40 anos de pesquisas em RCF

WMAP @ 2003

WMAP @ 2009

PLANCK @ 2013

Teoria v. dados (temperatura)

Multipole *l*

Estado-da-arte em 2014

Radiação cósmica de fundo: "Cosmologia de precisão"

Parameter	Planck (CMB+lensing)		Planck+WP+highL+BAO	
	Best fit	68 % limits	Best fit	68 % limits
$\Omega_{ m b}h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024
$\Omega_{ m c} h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017
$100\theta_{\rm MC}$	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056
τ	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013
$n_{\rm S}$	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054
$\ln(10^{10}A_s)$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025
$\overline{\Omega_{\Lambda}$	0.6964	0.693 ± 0.019	0.6914	0.692 ± 0.010
σ_8	0.8285	0.823 ± 0.018	0.8288	0.826 ± 0.012
$z_{\rm re}$	11.45	$10.8^{+3.1}_{-2.5}$	11.52	11.3 ± 1.1
H_0	68.14	67.9 ± 1.5	67.77	67.80 ± 0.77
Age/Gyr	13.784	13.796 ± 0.058	13.7965	13.798 ± 0.037
$100\theta_*$	1.04164	1.04156 ± 0.00066	1.04163	1.04162 ± 0.00056
$r_{\rm drag}$	147.74	147.70 ± 0.63	147.611	147.68 ± 0.45
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07207	0.0719 ± 0.0011		

Origem física da RCF: ondas de pressão ("ondas acústicas")

