Thermodynamic Equations of State

 Thermodynamic equations of state will lead to an
understanding of concepts such as surface tension,
etc.

» Leads to a knowledge of how to predict the
physical property or at least relations between
physical properties.

Fundamentals of Thermodynamics:

 Variablesinthelab: P, V, T

» First law: dE =dw + dq

* Energy is state function; any combination of heat
and work possible

» Microscopic scale: energy is sum of rotational,
vibrational, translational and electronic energy
levels.

« Remember w = - PdV, negatvie sign indicates
system energy increases when work done on
system.

« Assume only PdV work and defining entropy as

dq,., /T ° dS

» Leads to first law: dE =-PdV + TdS

 Gibbs Free Energy: G=H -TS

 Helmholtz Energy: F=E - TS



Relationship between E and Volume in
termsof P, V, T

Take partial of First Law: dE = - PdV + TdS with
respect to V at constant T:

FEO - p,rES0
&V or &1V or
Equations should be expressed in terms of P, V, T.

Helmholz free energy: F©° E- TS

Differentiate: dF ° dE - TdS - AT
Substitute from first law. dF © - PdV +TdS - TdS- ST
=-PdV - &dT
Total Differential of F:  dF = adEg dv +aé£9 dT
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Pressure Dependence of Enthalpy

Enthalpy is defined in terms of energy, pressure and
volume: H°E + PV.

Differentiating: dH = dE + PdV + VdP.
From the first law: dE = - PdV + TdS;

Substituting: dH =PdV +VdP- PdV + TdS
=VdP+TdS
Divide by dP and hold T constant: &H 0 _,, , ;&S9
gﬂP ar gﬂPgr

Use Gibbs Free Energy: G=H - TS or
dG =dH- TdS- SdT
Substitute for dH: dG=VdP+TdS- TdS- SdT=VdP- SdT

Write total differential for free energy, G(T,P):
AGo adiGo

dG=¢_ —+ dP+¢—=+ dT
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Substitute for enthalpy equation: ¢z~ =V- Tee—=




Equations of State:Temperature
Dependence
Recall 3 variables to be used are P, V, T.

Knowledge of two of the variables allows
determination of the energy state of the system.

Two polynomial equations of state used here.
— V =1(P) and
— P=1(V)

V=V,]1+a,T)—-a(T)P + a,(T)P? + ...] where
— coefficients g are functions of temperature.
— V, = volume at absolute zero.

Differentiate with respect to T and neglect higher

terms: AVo _ aé1aoo

ST oo " OSHT o

When using only the first two terms of the series

expansion, we have: V =V [1 + a (T)].

Substitute for V,: V, = V/[1+a_(T)].

1ad1V 0 _ 1 aé[ao 9

VeﬂT s [1+ao(T)]eﬂT s

When ao << 1, the equations reduces to:

a6 _1AaVo _
Cor . vy Ser. —Aa
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where a = volume expansivity, relative change in
volume with temperature; related to temperature

variation of a,,.




Equations of State: Pressure Dependence

Found by taking derivative of equation of state with
respect to pressure:

Sé]VO :—VoalU—igdﬂQ :hal
eﬂP VelPgr V

where higher pressure terms are ignored (only first
order considered significant).
ButV =V [1+ a]; so that
18Vo _ a1

V&P g 1+a,

» al

since a,<<a,<<1
c = isothermal compressibility.
Pressure as a function of T, V:
&V, Vu &V, Vu
P= PO(T)+P1(T)e v +P (T)e Ve Q-+
o U a

P. = material dependent coefficients; determined
experimentally.

P, = pressure required to decrease the volume of the
solid at higher temperature to what it would be at 0 K
and no pressure.

P,<<P,orP,



Relationship between P; and a,

Recall: V=V[1+a,(T) —a,(T)P + a,(T)P2 + ...]
Solve for Volume: \\// =1+ay(T) - ay(T)P +ay (T)P?

0]
V. 1=ay(T)- a(T)P +ay(T)P2
0

Yoo ¥ o ag(T)+ay(T)P - ap(T)P?
We use this in the earlier equation:
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P=Po(M+PiMe=, —+P2Mg s, — g *
0 u u

To get P=Fk (T)+P1(T)( aO(T)+a1P P +..)+
P2 (T)(' ao(T) +a1P- a2P2 +.,_)2 +

Expand the second term

Neglect squaregd and higher terms in teyms of a, and
Po P=Fo+P - ag+&P- a2P + e)

P, ( 2801 P +aoa2P2 +a12P2 + )2 +....

This can only be true when the following happens:
- Rag =0,
Ray - 2Paga =1

- Ray +2Pagay + Paf =0



Relationship between P, and a (cont.)

Solve for a from Fo- P8 =0,

Ra - 2Pagy =1,
- Rap +2Pagay + Paf =0
Gives: P
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P.can also be expressed in terms of a,,

Figure shows that compressibility increases
with atomic number.

Slopes at high pressures are similar for all.

Coefficients of expansion nearly constant at
absolute zero (see figure), but increase at
higher temperatures .



Pressure Dependence of Heat Capacity

Recall the definition of heat capacity: ¢, zééﬂg
1T op

Take its derivative with respect to P at constant T
aéICpo ﬂ%éIHoU ‘HQaéIHoU
e; P o ﬂPeee;‘HT zpuT qT eeﬂPzruP

But earlier we showed: aéﬂQ —yv. TEVO
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Substitute: 2P 1 %[HQ u _le\/ Vo u
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We can now use the equation of state to determine

an equation for calculating heat capacity under
various conditions.

Recall: V=V [1+a(T)—a,(T)P + a,(T)P? + ...]
Substitute:
ACpo __, Ff+an(m) +ayT)P+ap(M)P?|d
o K 2 o
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Cp Vs P(cont)

Integration gives the pressure dependence of C.

2
§PICe =-TV, Qﬁ’aﬂ (M) 1 al(T)P+ﬂ az(T)P _dP

& me g m 5
CP:Cg_WEQTZaOCF)PgﬂZal(T) 02, 11 az(T) 532
me 2 @ 3 m* 7

= heat capacity at zero pressure.

The first second derivative term is dominant at high
temperature and heat capacity is expected to decrease
with increasing pressure in this temperature regime
(see negative sign in equation).

Recall that alpha is the volume expansitivity: a = ?EQ

The first term is the temperature coefficient of thermal
expansion.

This term nearly linear at high temperatures.



C,Vvs P

Earlier we showed: &E$ _ , ;&P0

&V o &7 oy
Take derivative of both sides with respect to T:
1°E _1°E __ P ITIP _1°P
TV vIT T T IT q72

: HAEO
But: =c—=
N 811Tzv
: . 2
Substitute: géTCvg _7I°P
eV g  qT2
Earlier we used the equation of state:
. . ] 2
&V, - VU &V, - VU
P:PO(T)+P1(T)é°V—Q+P2(T)e Ov q+
e o u e o u

Take second derivative:

1P _IR(T)  IRE(T) &vp- VU TRE(T) & - Vi
2~ >t > € gt > € (.
1T 1T qm< é Vo 0 T7T° é Vo 0

Substitute into above equ%tjgn, rearrange, and
integrate: %/ﬂcv =T<$,’ — 1V
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0] Oﬂc\/ _TQ/ 2 + 2 e L<I+ 2 e u +...;dV
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Cv

T

C, vs P(cont)

o-VO_ dv

But d so that
Vo o Vo
0
/10y =-vory, ST TR 8- VD RE(T) & - Vi, SV
ogﬂT ‘I]TZeVoH m? & VOH ;

which becomes

RRg () ev, - VU 11tpl(T)ev Vu 111P2(T)ev Vu+

e
QﬂTZeVoHZﬂT VoH3ﬂT & Vo 0

Theoretical calculations using heat capacity can be
done with constant volume;

Experimental evaluation of heat capacities are usually
at constant pressure.

A relationship between the two needed.
The total derivatives for S(T,V) and S(T,P) multiplied by

T are: )
AlS o S o AISo dT+Taé[So

TdS=TE=X dT+T T dvUTdS=TE==
STa | SV ST 0 P

First term flrst reaction: C odT
First term second reaction: C,dT

We also note the following Maxwell reactions
HSo _adPo yodSo _

SV o ST 2, STPor Sﬂ_T‘
Substitute into above equatlons and subtract from each
other to get:
AP o AV o
Cp - dT =T T dv-T * dP
(o T =T Y T o
11
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Cy vs P(cont2)

At either constant volume or temperature we get:

APo AV
Cp-Cy)=T¢c =+ ¢~
(Ce - Cv) 8ﬂT Q/gﬂ—rﬂp
We now find the two partials using the equations of
state:

Mo &MMa EMzE Vo & & Mogr
Assume: V =V, and third term is zero since it is at
constant volume: APo  aflag/a)o_a

9 &9 9l
T, 6 T o &
Taking the derivative at constant pressure of the other
equation of state to obtain the other partial:

AV _, Fl+ag(T)- al)P+ap(M)P? 0

Mo °K T 5
_a8l8o(T)  faa(T) 5, Tap(T) 520 _aap(T) 6
& M o & T oo
=aV,
Substitute intg equation at top of gage to get:
co.co ="
P \Y N
:Tvoaz
C

which allows us to determine one heat capacity for the
other, if molar volume and a is known. 12



S, E,GvsP

Pressure’s effect on these variables determined as we
did with heat capacity.

For Entropy recall that: g- (\g&dT
T

Substitute for C,, from earlier relationships:

_TCv
_@—
V TEIRS(T) v - VI, 1IRA(T) &V Vil LI & Vu 0
:(g&d'r VogPO(z)eo i+ Fi(z) o Vo P2(2)e0 § o+ T
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Energy is determined from the relat|onsh|p we
developed earlier: HE ¢ AP 6

=-P+T
&1V or & o
We use the equation of state to determine an

expression for this:
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S, E, G vs P(cont)

 Now we rearrange and integrate:
& JE=E- Ey=

u 7
Voo! eTEd[Q_POQ - Pol]"'gr(;_
jeellay "o &

NS .2

aé[Pg ) udv,- VU le qRo UV, - Vu 1e aéIFbo pW\-Vu

=S Vo B R Rl 0T, R, e b P Y o
 Free Energy, G =1(P,V, T): dG =-SdT + VdP.

 Replace each term
G

&, dG= ‘T(So+‘TCVOdInT)JIT+‘PV b+ao+a1P+a2P JdP

G=Ego- @ (Q) Cyod |nT)dT +PV, gl+ ag + 1a1P + ;aZPZE

 Equations of state used with standard thermodynamlc
relationships to determine values of thermodynamic
guantities from a set of data.
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