Knowledge Representation

Fabio G. Cozman

Escola Politécnica
Universidade de São Paulo

Al's current success:

 more power, more data, some insights
Al's current success:

more power, more data, some insights
Knowledge Representation \& Reasoning

Decision Making

Machine Learning

Current focus on machine learning

Knowledge Representation \& Reasoning

Machine Learning Statistical Bio-inspired Representation learning

What is knowledge?

Knowledge: true belief with explanation.

[^0]
What is knowledge?

Knowledge: true belief with explanation.

Knowledge representation

- Often we can solve a problem by coding the algorithm that finds the solution.
- To do so we must represent the aspects of the problem that are relevant.
- Sometimes it is better to store the relevant facts and rules and use them as needed.
- The result is a knowledge-based system.

Knowledge representation (Davis et al 1993):

- a model ("surrogate"),
- a set of ontological commitments,
- a basis for reasoning,
- a medium for computation.

What Is a Knowledge Representation?

Randall Davis, Howard Shrobe, and Peter Szolovits

A distinctive feature of Al

- Concern about representation is key to AI.
- In contrast, decision-making in Economics does not worry about the description of problems.

A distinctive feature of Al

- Concern about representation is key to AI.
- In contrast, decision-making in Economics does not worry about the description of problems.
- How can...
- a problem be described concisely and efficiently?
- we guarantee that all features can be expressed?
- we quantify the effect of some modeling choices?

Reasoning

- Once we have a representation for our objects of interest, we can reason about them.
- We can decide how to change them, we can extract some understanding from them.
- The operations are often referred to as "inference".

Common knowledge and common sense

- The shared understanding we have about the "typical" way things are: must be encoded, stored, processed.

Common knowledge and common sense

- The shared understanding we have about the "typical" way things are: must be encoded, stored, processed.
- Consider the Winograd scheme: The trophy did not fit into the suitcase because it was too small. What was small? Why?

A bit of history: early efforts

- General problem solving by search: problem had to be properly represented.
- General Problem Solver. famous effort.
- Separated declarative knowledge (Horn clausers) from search.
- A production system with if-then rules.

A bit of history: expert systems

- Fever of the eights.
- Idea: capture "expert knowledge" into a knowledge-base.
- Formalisms: production systems, frames.

Conceptual graphs

- A graph-based interface to first-order logic.
- A reasoning model based on graphs.

Semantic networks

- Started as graphs in computational linguistics.
- Gradually were formalized using logic.

Expert system shells

- Many systems: PROSPECTOR, CADUCEUS, DENDRAL...
- The famous MYCIN rule-system (shell E-MYCIN): (defrule 52
if (site culture is blood) (gram organism is neg) (morphl organism is rod) (burn patient is serious)
then 0.4
(identity organism is pseudomonas)

Neats and scruffies

Neats look for elegant solutions, typically with mathematical basis.
Scruffies want to build complex systems that work well.

Victory of the neats

- Gradually, most knowledge representation techniques have found a basis on formal languages.
- Most techniques are based on logic (propositional, first-order, modal, etc).
- Serious work on complexity and expressivity.

Two successful formalisms

- Description logics.
- Answer set programming.

Victory of the scruffies

- Today some of the best tools are very complex and built without major consistency guarantees.
- Examples: WordNet, DBpedia, Freebase, NELL.

WordNet

- Giant multilingual lexical database.
- Free at https://wordnet. princeton.edu/.

DBpedia

- Giant database of facts extracted from Wikipedia.
- Free at https://wiki.dbpedia.org/.
- Data stored in OWL.
- Queries in SPARQL.

OWL in DBpedia

<owl:Class rdf:about="http://dbpedia.org/ontology/NationalAnthem">
<rdfs:label xml:lang="en">National anthem</rdfs:label>
<rdfs:label xml:lang="fr">Hymne national</rdfs:label>
<rdfs:label xml:lang="nl">volkslied</rdfs:label>
<rdfs:comment xml:lang="en">Patriotic musical composition which is the offcial national song.</rc <rdfs:subClassOf rdf:resource="http://dbpedia.org/ontology/MusicalWork"/>
<prov:wasDerivedFrom rdf:resource="http://mappings.dbpedia.org/index.php/OntologyClass:NationalAr </owl:Class>

SPARQL in DBpedia

Example: People who were born in Berlin before 1900.
PREFIX dbo: http://dbpedia.org/ontology/ PREFIX xsd: [http://www.w3.org/2001/XMLSchema\#](http://www.w3.org/2001/XMLSchema%5C#) PREFIX foaf: http://xmlns.com/foaf/0.1/ PREFIX : http://dbpedia.org/resource/

SELECT ?name ?birth ?death ?person WHERE \{ ?person dbo:birthPlace :Berlin . ?person dbo:birthDate ?birth .
?person foaf:name ?name . ?person dbo:deathDate ?death . FILTER (?birth < "1900-01-01"~^xsd:date) . \}
ORDER BY ?name

Knowledge graph: NELL

- More than 50M "beliefs" (3M with high confidence). quaker ave is a highway [confidence 92.8]

NELL Architecture

Description logic $\mathcal{A L C}$: basics

- Individuals, concepts, roles.
- Conjunction $(C \sqcap D)$, disjunction $(C \sqcup D)$, negation $(\neg C)$.
- Terminologies (the Tbox): $C \sqsubseteq D$ and $C \equiv D$.

Semantics

- Concept C : set of elements of domain.
- $C \sqcap D$: elements in C and in D.
- $C \sqcup D$: elements in C or in D.
- $\neg C$: elements not in C.

Examples

- Mother \sqsubseteq Parent.
- Person \equiv Human.
- Mother \equiv Female \sqcap Parent.
- SchoolPerson \sqsubseteq Student \sqcup Professor.

$\mathcal{A L C}$ quantification:

- existential restriction ($\exists r . C$), and
- value restriction ($\forall r . C$).

Semantics

- $\exists r . C=\{x: \exists y: r(x, y) \wedge C(y)\}$.
- $\forall r . C=\{x: \forall y: r(x, y) \rightarrow C(y)\}$.

Examples

- Concept \equiv Female $\sqcap \forall$ parentOf.Brazilian.
- Concept \sqsubseteq Brazilian $\sqcup \exists$ buyFrom.Brazilian.

Assertions: the Abox

- Fruit(appleFromJohn),
- buyFrom(Bob, John).

Ontologies

- A set of "axioms" is an ontology (terminology).
- The TBox stores the axioms.
- Assertions are stored in ABox.

Protege system (TBox)

Protege system（ABox）

- The language OWL, based on description logics, is now the standard for data storage in the Semantic Web.
- OWL is based on fragments of $\mathcal{A L C}$; in particular DL-Lite and $\mathcal{E L}$.

Logic programming

- Venerable Prolog language.
- Rules:
$\operatorname{pass}(X, Y):-\operatorname{student}(X), \operatorname{adept}(X), \operatorname{course}(Y)$, easy (Y).

Propositional Horn clauses

- A Horn clause is a rule without negation and a single atom in the head.

$$
A:-B_{1}, B_{2}, \ldots, B_{n} .
$$

Propositional Horn clauses

- A Horn clause is a rule without negation and a single atom in the head.

$$
A:-B_{1}, B_{2}, \ldots, B_{n} .
$$

- Read as:

$$
B_{1} \wedge B_{2} \wedge \cdots \wedge B_{n} \rightarrow A
$$

- Then transform to clause:

$$
\neg B_{1} \vee \neg B_{2} \vee \cdots \vee \neg B_{n} \vee A .
$$

Stratified programs: paths

$$
\begin{aligned}
& \operatorname{edge}(X, Y):-\operatorname{edge}(Y, X) . \\
& \text { path }(X, Y):- \text { edge }(X, Y) . \\
& \text { path }(X, Y):-\operatorname{edge}(X, Z), \operatorname{path}(Z, Y) .
\end{aligned}
$$

Stratified programs: paths

$$
\begin{aligned}
& \text { edge }(X, Y):-\operatorname{edge}(Y, X) . \\
& \text { path }(X, Y):-\operatorname{edge}(X, Y) . \\
& \text { path }(X, Y):-\operatorname{edge}(X, Z), \operatorname{path}(Z, Y) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { edge }(1,2) \text {. } \\
& \text { edge }(1,3) \text {. } \\
& \text { edge }(2,5) . \\
& \text { edge }(2,6) . \\
& \text { edge }(3,4) \text {. } \\
& \text { edge }(4,5) . \\
& \text { edge }(5,6) .
\end{aligned}
$$

Stratified programs: paths

$$
\begin{aligned}
& \text { edge }(X, Y):-\operatorname{edge}(Y, X) . \\
& \text { path }(X, Y):-\operatorname{edge}(X, Y) . \\
& \text { path }(X, Y):-\operatorname{edge}(X, Z), \operatorname{path}(Z, Y) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { edge }(1,2) \text {. } \\
& \text { edge }(1,3) \text {. } \\
& \text { edge }(2,5) \text {. } \\
& \text { edge }(2,6) \text {. } \\
& \text { edge }(3,4) \text {. } \\
& \text { edge }(4,5) .
\end{aligned}
$$

Answer Set Programming

$\operatorname{red}(X) \vee \operatorname{green}(X) \vee$ blue $(X):-\operatorname{node}(X)$. edge (X, Y) :- edge (Y, X).
$:-\operatorname{edge}(X, Y), \operatorname{red}(X), \operatorname{red}(Y)$.
$:-\operatorname{edge}(X, Y)$, green (X), green (Y).
:- edge (X, Y), blue (X), blue (Y).

$$
\text { red(1)., } \quad \operatorname{green}(4) ., \quad \operatorname{green}(6) . .
$$

Three additional issues

- Defaults...
- Non-monotonic reasoning...
- Revisions...
... and another topic: KR in planning...

Representing uncertainty

- At first, probabilities were considered inadequate for Al.
- Situation changed with
- the appearance of graph-theoretical models (exploit independence to produce compact representations);
- the use of decision processes in planning under uncertainty;
- the availability of data and the success of statistical and neural methods.
- Today, probabilities pervade many areas of AI. Other formalisms: belief functions, fuzzy logic.

Bayesian networks

- The language of Bayesian networks (at first KR , then ML...)

Bayesian networks

- The language of Bayesian networks (at first KR, then ML...)

Bayesian networks

- The language of Bayesian networks (at first $K R$, then ML...)

The dog problem (Charniak 1991)

$$
\begin{array}{cc}
\mathbb{P}(f)=0.5 & \mathbb{P}(b)=0.5 \\
\mathbb{P}(|\mid f)=0.6 & \mathbb{P}\left(\left|\mid f^{c}\right)=0.05\right. \\
\mathbb{P}(d \mid f, b)=0.8 & \mathbb{P}\left(d \mid f, b^{c}\right)=0.1 \\
\mathbb{P}\left(d \mid f^{c}, b\right)=0.1 & \mathbb{P}\left(d \mid f^{c}, b^{c}\right)=0.7 \\
\mathbb{P}(h \mid d)=0.6 & \mathbb{P}\left(h \mid d^{c}\right)=0.3
\end{array}
$$

Semantics

- Markov condition: Every variable is independent of its nondescendants nonparents given its parents.
- The Markov condition implies that any Bayesian network represents a unique joint probability density that factorizes as:

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod \mathbb{P}\left(X_{i}=x_{i} \mid \operatorname{pa}\left(X_{i}\right)=\pi_{i}\right)
$$

Probabilistic Expert Systems

- Expert Systems tried to address the fact that human understanding depends on stored facts.
- Difficulties in handling uncertainty: the famous MYCIN system, based on rules and certainty factors.

The debate around certainty factors

- Certainty factors were once popular due to the influence of the MYCIN project.
- Interpretation based on Dempster-Shafer theory was once very popular.
- Possible to give probabilistic interpretation (but this was not the point).
- In the end, all of this was very ad hoc.
- Bayesian networks appeared as a reaction to this situation.

The Alarm network

The I \/-failure netwnork

Others...

- Pathfinder
- MUCIN (and then Hugin)
- Hailfinder

Related systems in Economics, Management, Operations Research, ...

The Hل_network

Netz started

Elicitation

- Start identifying variables.
- Discussion: better to use 4 binary variables or a variable with 16 categories?
- Discussion: better to group 3 binary variables with only 3 possible joint categories into a single variable?
- Discussion: possible to discretize a variable into a coarse set of categories?
- Then build the graph.
- Use causality.
- Avoid cycles! Example: sedentary life causes weak heart causes heart disease causes sedentary life.
- Then elicit the numbers.

Getting the numbers

1. From the literature.
2. From an expert (or panel of experts).

This often takes long; there are several support tools in the literature.

Eliciting numbers

Ideas:

1. Draw a scale: linear or pie chart.
2. Use lotteries: would you rate the chance that this patient gets lung infection as the same that he wins this (specified separately) lottery?
3. Use words, then translate to numbers: never - rare - improbable - about half - more than half

- often - commonplace - almost always - always.

Modeling tools: Noisy OR

1. If node has many parents, too many parameters to specify.
2. But relationship may be simple (few actual parameters).
3. Most famous case is Noisy OR.
4. Basic idea: "any member of a set of conditions is likely to cause a certain event and this likelihood does not diminish when several of these conditions prevail simultaneously."

The structure of Noisy OR

$$
\begin{array}{r}
Z_{i}=Y_{i} \text { AND } Y_{i}^{\prime} \\
X=Z_{1} \text { OR } Z_{2} \ldots \text { OR } Z_{n}
\end{array}
$$

Noisy OR

1. p_{k} : probability that the k th inhibitor is FALSE:

$$
\mathbb{P}\left(X=\text { TRUE } \mid \text { all FALSE but } Y_{k}=\text { TRUE }\right)=1-p_{k} .
$$

The p_{k} are called link probabilities.
2. Denote by T the subset of indexes of parents of X that are TRUE in a given configuration; then:

$$
\mathbb{P}\left(X=\operatorname{TRUE} \mid Y_{1}, \ldots, Y_{n}\right)=1-\prod_{i \in T} p_{i}
$$

Advantages of Noisy OR

- Scheme leads to great simplifications!
- Less numbers to elicit.
- The OR node can be decomposed into several OR nodes with two inputs each (simplifying inference).
- Variant: leak probability that X is TRUE even when all Y_{k} are FALSE.
- There are many generalizations and variants (max, sum, etc).

[^0]: Platão, Theaetetus

