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Characteristics of the RL problem
l The agent has a set of sensors to observe the state of its 

environment
l The agent has a set of actions it can perform to alter this 

state
l The agent perceives a reward (or penalty) to indicate the 

desirability of the resulting state

v The task of the agent is to learn from this indirect, delayed
reward, to choose sequences of actions that produce the 
greatest cumulative reward

è it is a sequential decision problem
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Sequential decision problem
At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;
(System evolves to a new state)
3. Observes an immediate 
reinforcement (reward or penalty);
Repeat 1 – 3 

Environment
(or System)

Action

State

Reinforcement

Decision
Maker
(agent)

s0
a0

r0
s1

a1

r1
…
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Sequential decision problem
At each time step the decision maker:

1. Observes the state of the system;
2. Chooses an action and applies it;
(System evolves to a new state)
3. Observes an immediate 
reinforcement;
Repeat 1 – 3 

Decisions are made at points 
of time referred to as 
decision epochs.
The set of decision epochs 
can be finite or infinite: 
T = {0,1,2,…,N}, N £ ¥.

s0
a0

r0
s1

a1
r1

…

Environment
(or System)

Action

State

Reinforcement

Decision
Maker
(agent)

This assumes discrete time.
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Example

§ 4´3 discrete fully-observed environment
§ Actions: Up, Down, Left and Right
§ Initial state: (1,1)
§ Sequence [U, U, R, R, R]: 

(i) goes up around the barrier and reaches 
the goal state (4,3) with probability 
………

+1
goal

-1

start

0,8

0,10,1

Transition model:

action

(ii) there is also a chance of accidentally 
reaching the goal by going (1,1) ® (2,1) 
® (3,1) ® (3,2) ® (3,3) ® (4,3) with 
probability ………
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Example

§ 4´3 discrete fully-observed environment
§ Actions: Up, Down, Left and Right
§ Initial state: (1,1)
§ Sequence [U, U, R, R, R]: 

(i) goes up around the barrier and 
reaches the goal state (3,4) with probability 
…

+1
goal

-1

start

0,8

0,10,1

Transition model:

action

0,85 = 0.32768.
(ii) there is also a chance of accidentally 
reaching the goal by going (1,1) ® (2,1) 
® (3,1) ® (3,2) ® (3,3) ® (4,3) with 
probability

0,14 ´ 0,8 = 0.00008
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Utility function 

l Utility function for the agent depends on 
a sequence of states (environment history)

l In each state s, the agent receives a 
reinforcement r(s), which may be 
positive or negative, but must be 
bounded.

l Utility = sum of the rewards received
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Example
l Utility function for the agent depends on 

a sequence of states (environment history)
l In each state s, the agent receives a 

reinforcement r(s), which may be 
positive or negative, but must be 
bounded.

l Utility = sum of the rewards received
l Here: r(s) = -0.04 "s   except            

r(4,3) = +1   and   r(4,2) = −1  
è reach goal after 10 steps (avoiding (4,2)): 

utility = ……………………….

-0,04 -0,04 -0,04 +1
goal

-0,04 -0,04
-1

-0,04
start

-0,04 -0,04 -0,04

0,8

0,10,1

Transition model:

action

Ex: (1,1),U,(1,2),D,(1,1),U,(1,2),U,(1,3),L,(1,3),R,(2,3),R,(3,3),L,(2,3),R,(3,3),R,(4,3)
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Example
� Utility function for the agent depends on 

a sequence of states (environment history)
� In each state s, the agent receives a 

reinforcement r(s), which may be 
positive or negative, but must be 
bounded.

� Utility = sum of the rewards received
� Here: r(s) = -0.04 "s   except            

r(4,3) = +1   and   r(4,2) = −1  
è reach goal after 10 steps (avoiding (4,2)): 

utility =

-0,04 -0,04 -0,04 +1
goal

-0,04 -0,04
-1

-0,04
start

-0,04 -0,04 -0,04

0,8

0,10,1

Transition model:

action
10 ´ −0,04 + 1 = 0,6

Ex: (1,1),U,(1,2),D,(1,1),U,(1,2),U,(1,3),L,(1,3),R,(2,3),R,(3,3),L,(2,3),R,(3,3),R,(4,3)
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Modeling sequential decision problems 
as Markov Decision Processes
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MDP – Model Formulation 

An MDP is defined as áS, A, p, r ñ:

l S is the set of possible system states 
(arbitrary finite set);

l A is the set of allowable actions (arbitrary 
finite set);

l p: S´A´S ® [0,1] is the transition 
probability function;

l r: S´A ®Â is the reinforcement function; 
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MDP  

l The set A of allowable actions:
uA = ÈsÎS As where As is the set of allowable 

actions in state sÎS
uOr we might restrict the model: A = As for all sÎS

l The transition probability function p:
up(j | s, a) --- or p(s, a, j) --- denotes the probability 

that the system is in state jÎS at time t+1, when the 
decision maker performs action aÎAs in state sÎS 
at time t.

uåjÎS p(j | s, a) = 1
s

ja
p(s,a,j)
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MDP

l The reinforcement function r:
ur(s,a), denotes the value of the reward (or 

reinforcement or cost) received when performing 
aÎAs in sÎS at time t.

uWhen positive, r(s,a) is an income, and when 
negative it is a cost.

uCan be: 
r(s); 
r(s,a);  
r(s,a,j)  with r(s,a) = åjÎS r(s,a,j) p(j | s, a)
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Why “Markov”?

l The qualifier Markov is used because the transition 
probability function p and the reinforcement function r
depend on the past through the current state of the 
system and the action selected by the decision maker in 
that state.

Notation: Xa:b = Xa, Xa+1, . . . , Xb-1, Xb

Markov assumption: Xt depends on bounded subset of X0:t-1

l First-order Markov process: p(Xt|X0:t-1) = p(Xt|Xt-1)
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Example of an MDP

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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Example of an MDP
l A = {move(r1,l1,l2), move(r1,l2,l1), move(r1,l4,l1), move(r1,l1,l4), 

move(r1,l3,l2), move(r1,l2,l3), move(r1,l5,l2), move(r1,l4,l3), 
move(r1,l3,l4), move(r1,l5,l4), move(r1,l4,l5), wait}

l S = {s1, s2, s3, s4, s5}
l p(s1,move(r1,l1,l4),s4)=0.5; p(s1,move(r1,l1,l4),s1)=0.5; 

p(s2,move(r1,l2,l3),s3)=0.8; p(s2,move(r1,l2,l3),s5)=0.2;             
All others p(.) have a value of 1.

l r(s1,wait) = r(s2,wait) = -1; r(s4,wait)=0; r(s5,wait)= -100; 
r(s1,move(r1,l1,l2))=r(s2,move(r1,l2,l1))= -100; 
r(s3,move(r1,l3,l4))=r(s4,move(r1,l4,l3))= -100; 
r(s4,move(r1,l4,l5))=r(s5,move(r1,l5,l4))= -100; 
r(s1,move(r1,l1,l4))=r(s4,move(r1,l4,l1))= -1; 
r(s2,move(r1,l2,l3))=r(s3,move(r1,l3,l2))= -1;         
r(s5,move(r1,l5,l2))= -1; r(s1)=r(s2)=r(s3)=r(s5)=0; r(s4)=100
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What is a Solution?

l What does a solution to the problem look like?
uAny fixed action sequence will not solve the 

problem!
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l Robot r1 starts
at location l1
u State s1 in

the diagram
l Objective is to

get r1 to location l4
u State s4 in

the diagram
GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Example

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Is there a plan that will guarantee the solution?

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

l Robot r1 starts
at location l1
u State s1 in

the diagram
l Objective is to

get r1 to location l4
u State s4 in

the diagram
l No fixed sequence of actions can be a solution, because we can not

guarantee we will be in a state where the next action is applicable
u e.g.,

ámove(r1,l1,l2), move(r1,l2,l3), move(r1,l3,l4)ñ

Example

Plan 1:

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

l Robot r1 starts
at location l1
u State s1 in

the diagram
l Objective is to

get r1 to location l4
u State s4 in

the diagram
l No fixed sequence of actions can be a solution, because we can not

guarantee we will be in a state where the next action is applicable
u e.g.,

ámove(r1,l1,l2), move(r1,l2,l3), move(r1,l5,l4)ñ

Example

Plan 2:

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

l Robot r1 starts
at location l1
u State s1 in

the diagram
l Objective is to

get r1 to location l4
u State s4 in

the diagram
l No fixed sequence of actions can be a solution, because we can not

guarantee we will be in a state where the next action is applicable
u e.g.,

ámove(r1,l1,l4)ñ

Example

Plan 3:

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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What is a Solution?

l A solution must specify what the agent should 
do for any state that the agent might reach     
è policy p

P: S ® A,   p(s) = a Î A
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l Policy: a function that maps states into actions
l Write it as a set of state-action pairs

GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Policies

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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p1 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

p 2 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, move(r1,l5,l4))}

p 3 = {(s1, move(r1,l1,l4)),
(s2, move(r1,l2,l1)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, move(r1,l5,l4)}

l Policy: a function that maps states into actions
l Write it as a set of state-action pairs

GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Policies

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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l For every state s,
there will be a
probability P(s)
that the system begins
in the state s
uWe assume

the system starts
in a unique
initial state s0

» P(s0) = 1
» P(si) = 0 for i ≠ 0

l In the example, P(s1) = 1, and P(s) = 0 for all other states

GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

Initial States

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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Histories

l Each time a given policy is executed starting 
from the initial state, the stochastic nature of 
the environment will lead to a different 
environment history.

l Each policy induces a probability distribution over histories
uIf h = ás0, s1, … ñ then   

P(h |p) = P(s0) Õi ³0 pp(si) (si+1 | si , ai)
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

goal

p1 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

h1 = ás1, s2, s3, s4, s4, … ñ P(h1 | p1) = 1 ´ 1 ´ 0.8 ´ 1 ´ … = 0.8
h2 = ás1, s2, s5, s5 … ñ P(h2 | p1) = 1 ´ 1 ´ 0.2 ´ 1 ´ … = 0.2

P(h | p1) = 0 for all other h

Example

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

goal

p2 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, move(r1,l5,l4))}

h1 = ás1, s2, s3, s4, s4, … ñ P(h1 | p2) = 1 ´ 0.8 ´ 1 ´ … = 0.8
h3 = ás1, s2, s5, s4, s4, … ñ P(h3 | p2) = 1 ´ 0.2 ´ 1 ´ … = 0.2

P(h | p2) = 0 for all other h

Example (continued)

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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GoalStart

m
ove(r1,l2,l1)

wait

wait

wait

wait

2

goal

p3 = {(s1, move(r1,l1,l4)),
(s2, move(r1,l2,l1)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, move(r1,l5,l4)}

h4 = ás1, s4,  s4, … ñ P(h4 | p3) = 1 ´ 0.5 ´ 1 ´ 1 ´ 1 ´ … = 0.5
h5 = ás1, s1, s4, s4, … ñ P(h5 | p3) = 1 ´ 0.5 ´ 0.5 ´ 1 ´ 1 ´ … = 0.25
h6 = ás1, s1, s1, s4, s4, … ñ P(h6 | p3) = 1 ´ 0.5 ´ 0.5 ´ 0.5 ´ 1 ´ … = 0.125

• • •

h7 = ás1, s1, s1, s1, s1, s1, … ñ P(h7 | p3) = 1 ´ 0.5 ´ 0.5 ´ 0.5 ´ 0.5 ´ … = 0

Example (continued)
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Quality of a policy
l The quality of the policy is measured by the expected utility (or

value) of the possible environment histories generated by that 
policy:

E[Vπ(h)] = å h P(h| p) Vπ(h)

l An optimal policy p* is a policy that yields the highest 
expected utility.

Discounted reinforcements: 

Vπ(h) = r(s0) + g r(s1) + g 2r(s2) + g 3r(s3) + . . . 

l A discount factor g:     0 £ g £ 1
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l Reinforcement r(s)
for each state s:
u – : cost C(s,a)
u + : reward R(s)

l Example:
u C(s,a) = 1 for each
“horizontal” action

u C(s,a) = 100 for
each “vertical” action

u C(s1,wait) = 1; C(s2,wait) = 1; C(s4,wait) = 0; C(s5,wait) = 100

u R as shown: r(s1)=r(s2)=r(s3)=r(s5)= 0;  r(s4) = 100

l Utility function: generalization of a goal (additive rewards)

u If h = ás0, s1, … ñ, then Vπ(h) = åi ≥ 0 g i (R(si) – C(si, p(si)))

Utility Functions r = 0

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

c = 100
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r = 0

Start

wait

wait

wait

wait

c = 1

c = 0

c = 100

Start

wait

wait

wait

wait

c = 1

c=1
c = 0

Example

p1 = {(s1, move(r1,l1,l2)),
(s2, move(r1,l2,l3)),
(s3, move(r1,l3,l4)),
(s4, wait),
(s5, wait)}

g = 0.9

h1 = ás1, s2, s3, s4, s4, … ñ
Vπ1(h1) = .90(0 –100) + .91(0 –1) + .92(0 –100) + .93 100 + .94 100 + … = 547.9

h2 = ás1, s2, s5, s5 … ñ
Vπ1(h2) = .90(0 –100) + .91(0 – 1) + .92(–100) + .93(–100) + … = –910.1

E[Vπ1(h)] = 0.8 ´ 547.9 + 0.2 ´ (–910.1) = 256.3

Dana Nau: Lecture slides for  Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 
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Optimal Policy
l Utility of a state – defined in terms of the utility of state 

sequences:

Vπ s( ) = E γ tr st( )
t=0

∞

∑ π, s0 = s
#

$
%

&

'
(

The true utility of a state, V(s), is just Vπ*(s), which 
allows the agent to choose the action that maximizes
the expected utility of the subsequent state:

π * s( ) = argmax
a

p(s ' | s,a)V *(s ')
s '
∑

If we know V*, then it’s easy to find the optimal policy.
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Computing V* Approaches

l Value iteration
l Policy iteration
l Linear programming
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Value Iteration
1. Initialize V0(s) = 0, for all s.
2. Loop until a stop criterion is met:

uLoop for all s:

V t+1 s( )← r(s)+max
a

γ p(s ' | s,a)V t (s ')
s '
∑

This algorithm is guaranteed to converge to V*.
The influence of r and p, which we know, drives the 
successive Vs to get closer and closer to V*.
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Função Valor: exemplo

l Ambiente discreto 4x4, com obstáculos.
l Agente deve alcançar posição destino  D a partir 

de qualquer lugar do ambiente.
l D é um estado absorvente: V*(D) = 0
l Ações que o agente pode realizar: N, S, L, O
l Penalidade por executar uma ação (qualquer) = −1

uMelhor política => caminho mais curto
l Exemplo para g = 1 e MDP determinístico (p=1)
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Exemplo: algoritmo de iteração de valor para 
MDP determinístico

l Cálculo iterativo da função valor ótima.
V(s) ¬ rs,a + maxa (V(s’))

Repetir até V(s) estabilizar.

Sendo: 
s – estado atual, s’ – próximo estado,
rs,a – reforço recebido por executar a em s
V(.) – valor do estado
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Exemplo de cálculo de V(s)

-1    

D

0      0      0      0

0      0      0 0

0      0      0      0
0      0

ss’1

s’2 

s’3

s’4

V(s) = maxa ( (r(s, O) + V(s’1)),

(r(s, N) + V(s’2)), 

(r(s, L) + V(s’3)), 

(r(s, S) + V(s’4)) )

= maxa ((-1+0), (-1+0), (-1+0), (-1+0)) 
= -1

D0                 
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Exemplo de cálculo de V(s)

-1    

D

0      0      0      0

0      0      0      0

0      0 0      0
0      0ss’1 s’2 

V(s) = maxa ( (r(s, O) + V(s’1)),

(r(s, L) + V(s’3)) ) 

= maxa ((-1+0), (-1+0)) = -1

D0      -1            
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Exemplo de cálculo de V(s)

-1    

D

0      0      0      0

0      0      0      0

0      0      0      0
0      0

D

-1      -1      -1      -1

-1      -1             -1

0      -1      -1      -1

-1      -1

Ao final da 1a. iteração do “Loop for all s:” do algoritmo VI



43

Função valor: exemplo

D

Ambiente exemplo

D

-7 -6 -5 -6

-6 -5 -4 -5

0 -1 -2 -3

-3 -4

Função valor ótima: 
indica as penalidades 
esperadas até atingir 
o destino, seguindo 
uma política ótima.

D

Políticas ótimas
obtidas a partir da 
função valor ótima 
(melhores ações, 
para cada estado).
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VI: Discussion

l VI computes new values in each iteration, and 
chooses a policy based on those values

l This algorithm converges in a polynomial number 
of iterations
uBut the variable in the polynomial is the number of states
uThe number of states is usually huge

l Need to examine the entire state space in each 
iteration
uThus, this algorithm takes huge amounts of time and 

space
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MDP and RL

In Reinforcement Learning (RL), 
we would like an agent to learn to 
behave well in an MDP world, but 
without knowing anything about 
r or p when it starts out

What do you do when you do not know how the 
world works? 

Estimate a value function directly
è We’ll investigate an algorithm for doing that.
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RL and the learning agent

l How the agent should choose its actions?
u There are two, possibly opposing reasons for 

the agent to choose an action:
1. because it thinks the action will have a good 

result in the world (exploitation), or 
2. because it thinks the action will give it more 

information about how the world works 
(exploration).

è an example: k-armed bandit
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k-Armed Bandit

l Every time you pull an arm on a 
machine, it either pays off a 
dollar or nothing. 

l Assume that each machine has a 
hidden probability of paying 
off, and that whenever you pull 
an arm, the outcome is 
independent of previous 
outcomes and is determined by 
the hidden payoff probability

è What should you do to make as 
much money as possible during 
a given time?k machines
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k-Armed Bandit: Strategies
l Behave at random
l Switch on a loser: pick one arm; as long as it keeps 

paying off, you should keep pulling it; as soon as it loses, 
go to the next arm, and so on. è better than random, but 
it’s not optimal!

l Always choose the apparent best: keep estimates of the 
payoff probabilities of each arm (by counting). Then, 
always choose the arm with the highest estimated 
probability of paying off è greedy

l Combined: choose the apparent best 90% of the time; 
choose randomly the other 10% … etc….
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k-Armed Bandit: Strategies

l Ultimately, the best strategies spend
u some time exploring: trying all the arms to see 

what their probabilities are like, and
u some time exploiting: doing the apparently 

best action to try to get reward. 
In general, the longer you expect to live, the more 
time you should devote to exploration.

è e-greedy strategy e: Exploration
1- e: Exploitation
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MDP
l Cumulative value Vp(st) achieved by following an 

arbitrary policy p from an arbitrary initial state st

Vp(st)  = r(st) + g r(st+1) + g 2r(st+2) + g 3r(st+3) + . . .

= åi=0 .. ¥ g ir(st+i)

l Optimal policy:

p = arg maxp Vp(s) , "s Î S

p* = arg maxa [r(s,a) + g V*(s’)] , "s, s’ÎS, "aÎA

Notation: Vp*(s) = V*(s)

Q*(s,a)
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Example

G
100

100 = r(s,a)
r(s,a)=0 otherwise

G: absorbing state
g = 0.9

90 100 0 

81 90 100 

V*(s) values

G

One optimal policy

G
90
81

81

81

8181 90 90
72

72

100

100

0

Q(s,a) values

max(72,90) actions ¯ and ®, choose  ®

actions
rewards

Optimal policy: Right, Up => 0+�100+�20+�30+…=90  



52

Q values

l Q(s,a) is the expected discounted future reward 
for starting in state s, taking a as our first action, 
and then continuing optimally.

uThe agent only needs to consider each available 
action a in its current state s and chooses the action 
that maximizes Q(s,a).

uQ(s,a) summarizes all the information needed to 
determine the discounted cumulative reward that 
will be gained in the future if a is selected in s. 

p* = arg maxa Q*(s,a)
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Requirements for an RL algorithm

We need:
l Decision on what constitutes an internal state (e.g. Q 

values, etc)
l Decision on what constitutes a world state
l Sensing of a world state
l Action-choice mechanism (policy) based usually on 

an evaluation function (of internal and world state)
l A means of executing the action
l A way of updating the internal state
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Q-learning Algorithm

l Estimates the Q* function directly, without estimating 
the transition probabilities

Initialize Q(s,a) arbitrarily
Observe the current state st
do forever

select an action at and execute it in st
receive immediate reward r(st,at)
observe the new state st+1
update Q(s,a) as follows:

Qt+1(st,at) ¬ (1-a) Qt(st,at) + a [r(st,at) + g maxa Qt (st+1,a)]
st ¬ st+1

a: learning rate
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Learning rate

l The basic form of the update looks like this:
Xt+1 ¬ (1 − a) Xt + a Newt

a is a learning rate; usually it is something like 0.1 or 0.2. 
uSo, we are updating our estimate of X to be mostly like our old 

value of X, but adding in a new term New
» This kind of update is essentially a running average of the 

new terms received on each step. 
uThe smaller alpha is, the longer term the average is. With a 

small alpha, the system will be slow to converge, but the 
estimates will not fluctuate very much.

u It is quite typical (and, in fact, required for convergence), to 
start with a large alpha, and then decrease it over time.
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Q-learning Algorithm

l There are two iterative processes going on:
1. One is the usual kind of averaging we do, 

when we collect a lot of samples and try to 
estimate their mean (using the learning rate)

2. The other is the dynamic programming 
iteration done by value iteration, updating 
the value of a state based on the estimated 
values of its successors. 
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Q-learning – notes 

l Session: at the beginning of each session, start the 
Q-table with zeros or random values

l Episode: each learning restart, without restarting 
the Q-table (it stops when reaching the target or 
timeout).
uTypically, one presents the result as the average 

of sessions (each session comprising a number 
of episodes) in different iterations.
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Q-learning Algorithm

l Guaranteed to converge to Q*
uThe optimal Q function is achieved if the world is 

really an MDP, if we manage the learning rate 
correctly, and if we explore the world in such a way 
that we never completely ignore some actions and 
states.

☺
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Applications
uTD Gammon: starts out not knowing anything about 

backgammon. It plays more than 2 million games of 
backgammon against itself. It can now draw the human world-
champion backgammon player.

uElevator scheduling: in a building with many floors and 
many elevators, there is a serious control problem in deciding 
which elevators to send to which floors next. The input to the 
system is the locations of the elevators and the set of all buttons 
that have been pressed. The output is a direction for each 
elevator so that the throughput of people could be maximized. 
The learned policies are considerably more effective that the 
ones that are standardly built in by the elevator companies.

uAtari, AlphaGo
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Applications
l Resources management in computer clusters 

u H.Mao, Alizadeh, M. Alizadeh, Menache, I.Menache, and S.Kandula. Resource 
Management With deep Reinforcement Learning. In ACM Workshop on Hot Topics 
in Networks, 2016.

l Traffic Light Control
u I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-basedmulti-agent 

system for network traffic signal control,”IET IntelligentTransport Systems, 2010.

l Robotics
u J. Kober, J. A. D. Bagnell, J. Peters. Reinforcement Learning in Robotics: A 

survey. Int. J. Robot. Res. Jul. 2013.

l Personalized Recommendations
u G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, Ni. J. Yuan, X. Xie, and Z. Li. DRN: A 

Deep Reinforcement Learning Frameworkfor News Recommendation. 2018.

l etc, etc…
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RL and Planning
l Planning vs. Learning: planning uses a model
l Planning in RL interleaves cycles of learning based on 

experience in the world and experience gained via using 
the model to predict what will happen.

Model

Value/Policy

model learning

acting
direct RL

planning

Experience
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Q-learning Algorithm: Problems

l Large or continuous state spaces
uIt requires that S and A be drawn from a small 

enough set that we can store the Q function in a 
table.

uPossible solutions: use of function approximations 
E.g. neural network (DL), regression trees, 
factored representations (represent p(s’|s,a) using 
Bayes net), etc to store the Q function. 
Such approaches are no longer theoretically 
guaranteed to work, and they can be a bit tricky, 
but sometimes they work very well.



63

Q-learning Algorithm: Problems

� Slow convergence
� Because of this, most of the applications of Q 

learning have been in very large domains for 
which we actually know a model: 

1. we use the known model to build a simulation.
2. then, using Q learning plus a function 

approximation technique, we learn to behave in 
the simulated environment, which yields a good 
control policy for the original problem

uHot topics: batch-RL, transfer learning!



64

Q-learning Algorithm: Problems

l MDPs assume complete observability (can always 
tell what state the agent is in)
uPOMDP (Partially Observable MDP)
uObservation: Pr(O|s,a) [O is observation]

Memory
Updates

Policy
o

a
Mental
state

Optimal solution: intractable computationally. 
Current research topic: how to approximately solve POMDPs
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Conclusion

lReinforcement learning is a promising 
technology!

lThere are a lot of possible refinements that 
are being made to have a truly widespread 
application of RL.

l References:
http://www.cs.ualberta.ca/~sutton/book/ebook/index.html
http://ocw.mit.edu/ (course 6.825) 
Chapter 13: Machine Learning, Tom Mitchell

http://www.cs.ualberta.ca/~sutton/book/ebook/index.html
http://ocw.mit.edu/
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Q-learning: exercício

l Ambiente 2x2, MDP determinístico
l Meta: estado 0.
l Ações: A={ N, S, L, O}
l Estados: S={0, 1, 2, 3}
l Reforços:  +10 – atingir meta

-10 – bater nas bordas
0 – outros casos

Considerar a = 1, g = 0,9. Zerar a tabela Q no início da 
sessão. Efetuar 2 episódios: 
1. s0 = 3, ações: <SNNO>
2. s0 = 2, ações: <LNNLO>

0 1

2 3

Fornecer a tabela Q após 
o término do 1º. Episódio 
e a política aprendida até 
então.


