
Natural Language Processing
with Deep Learning

CS224N/Ling284

Richard Socher

Lecture 1: Introduction

1.	What	is	Natural	Language	Processing	(NLP)?

• Natural	language	processing	is	a	field	at	the	intersection	of	
• computer	science
• artificial	intelligence
• and	linguistics.	

• Goal: for	computers	to	process	or	“understand”	natural	
language	in	order	to	perform	tasks	that	are	useful,	e.g.,
• Performing	Tasks,	like	making	appointments,	buying	things
• Language	translation
• Question	Answering
• Siri,	Google	Assistant,	Facebook	M,	Cortana	…

• Fully	understanding	and	representing	the	meaning of	language	
(or	even	defining	it)	is	a	difficult	goal.

• Perfect	language	understanding	is	AI-complete	
1/9/183

NLP	Levels

1/9/184

(A	tiny	sample	of)	NLP	Applications	

Applications	range	from	simple	to	complex:

• Spell	checking,	keyword	search,	finding	synonyms

• Extracting	information	from	websites	such	as	
• product	price,	dates,	location,	people	or	company	names

• Classifying:	reading	level	of	school	texts,	positive/negative	
sentiment	of	longer	documents

• Machine	translation
• Spoken	dialog	systems
• Complex	question	answering

1/9/185

2.	What’s	Deep	Learning	(DL)?

• Deep	learning	is	a	subfield	of	machine	learning

• Most	machine	learning	methods	work	
well	because	of	human-designed	
representations	and	input	features
• For	example:	features	for	finding	
named	entities	like	locations	or	
organization	names	(Finkel et	al.,	2010):

• Machine	learning	becomes	just	optimizing
weights	to	best	make	a	final	prediction

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.

1/9/1810

Machine	Learning	vs.	Deep	Learning

Machine Learning in Practice

Describing your data with
features a computer can
understand

Learning
algorithm

Domain	specific,	requires	Ph.D.	
level	expertise

Optimizing	the	
weights	on	features

1/9/1811

What’s	Deep	Learning	(DL)?

• In	contrast	to	standard	machine	learning,

• Representation	learning	attempts	
to	automatically	learn	good	
features	or	representations

• Deep	learning	algorithms	attempt	to	
learn	(multiple	levels	of)	
representations	(here:	h1,h2,h3)	and	an	
output	(h4)

• From	“raw”	inputs	x	
(e.g.	sound,	pixels,	characters,	or	words)

1/9/1812

Reasons	for	Exploring	Deep	Learning

• Manually	designed	features	are	often	over-specified,	
incomplete	and	take	a	long	time	to	design	and	validate

• Learned	Features	are	easy	to	adapt,	fast	to	learn

• Deep	learning	provides	a	very	flexible,	(almost?)	universal,	
learnable	framework	for	representing	world,	visual	and	
linguistic	information.

• Deep	learning	can	learn	unsupervised (from	raw	text)	and	
supervised	(with	specific	labels	like	positive/negative)

1/9/1814

Reasons	for	Exploring	Deep	Learning

• In	~2010	deep learning	techniques	started	outperforming	other	
machine	learning	techniques.	Why	this	decade?

• Large	amounts	of	training	data	favor	deep	learning
• Faster	machines	and	multicore	CPU/GPUs	favor	Deep	Learning
• New	models,	algorithms,	ideas

• Better,	more	flexible	learning	of	intermediate	representations
• Effective	end-to-end	joint	system	learning
• Effective	learning	methods	for	using	contexts	and	transferring	
between	tasks

• Better	regularization	and	optimization	methods
à Improved	performance	(first	in	speech	and	vision,	then	NLP)

1/9/1815

4.	Why	is	NLP	hard?

• Complexity	in	representing,	learning	and	using	
linguistic/situational/contextual/world/visual	knowledge

• But	interpretation	depends	on	these

• Human	languages	are	ambiguous	(unlike	programming	and	
other	formal	languages)

• E.g.	“I	made	her	duck.”

1/9/1825

Why	NLP	is	difficult:
Real	newspaper	headlines/tweets

1. The	Pope’s	baby	steps	on	gays

2. Boy	paralyzed	after	tumor	fights	back	to	gain	black	belt

3. Enraged	cow	injures	farmer	with	axe

4. Juvenile	Court	to	Try	Shooting	Defendant

1/9/1826

5.	Deep	NLP	=	Deep	Learning	+	NLP

Combine	ideas	and	goals	of	NLP	with	using	representation	learning	
and	deep	learning	methods	to	solve	them

Several	big	improvements	in	recent	years	in	NLP
• Linguistic	levels:	(speech),	words,	syntax,	semantics
• Intermediate	tasks/tools:	parts-of-speech,	entities,	parsing
• Full	applications:	sentiment	analysis, question	answering,	
dialogue	agents,	machine	translation

1/9/1827

Word	meaning	as	a	neural	word	vector	– visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect		=

1/9/1828

Nearest	words	to frog:

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

Word	similarities

litoria leptodactylidae

rana eleutherodactylus
http://nlp.stanford.edu/projects/glove/ 1/9/1829

Representations	of	NLP	Levels:	Morphology

• Traditional:	Words		are prefix	 stem	 suffix
made	of	morphemes un	 interest		 ed

• DL:	
• every	morpheme	is	a	vector
• a	neural	network	combines	
two	vectors	into	one	vector

• Luong	et	al.	2013

!"
!"#

#$%&!"'&(
$%&

)*
$'(

!"#$%&!"'&()*
$%&

!
!
! "

!

!
!
! "

!

!"#$%&!"'&(
$%&

Figure 1: Morphological Recursive Neural Net-
work. A vector representation for the word “un-
fortunately” is constructed from morphemic vec-
tors: unpre, fortunatestm, lysuf. Dotted nodes are
computed on-the-fly and not in the lexicon.

3 Morphological RNNs

Our morphological Recursive Neural Network
(morphoRNN) is similar to (Socher et al., 2011b),
but operates at the morpheme level instead of at
the word level. Specifically, morphemes, the mini-
mum meaning-bearing unit in languages, are mod-
eled as real-valued vectors of parameters, and are
used to build up more complex words. We assume
access to a dictionary of morphemic analyses of
words, which will be detailed in Section 4.

Following (Collobert and Weston, 2008), dis-
tinct morphemes are encoded by column vectors
in a morphemic embedding matrix We ∈ Rd×|M|,
where d is the vector dimension and M is an or-
dered set of all morphemes in a language.

As illustrated in Figure 1, vectors of morpho-
logically complex words are gradually built up
from their morphemic representations. At any lo-
cal decision (a dotted node), a new parent word
vector (p) is constructed by combining a stem vec-
tor (xstem) and an affix vector (xaffix) as follow:

p = f(Wm[xstem;xaffix] + bm) (1)

Here, Wm ∈ Rd×2d is a matrix of morphemic pa-
rameters while bm ∈ Rd×1 is an intercept vector.
We denote an element-wise activation function as
f , such as tanh. This forms the basis of our mor-
phoRNN models with θ = {We,Wm, bm} being
the parameters to be learned.

3.1 Context-insensitive Morphological RNN
Our first model examines how well morphoRNNs
could construct word vectors simply from the mor-
phemic representation without referring to any
context information. Input to the model is a refer-
ence embedding matrix, i.e. word vectors trained
by an NLM such as (Collobert and Weston, 2008)

and (Huang et al., 2012). By assuming that these
reference vectors are right, the goal of the model
is to construct new representations for morpholog-
ically complex words from their morphemes that
closely match the corresponding reference ones.

Specifically, the structure of the context-
insensitive morphoRNN (cimRNN) is the same as
the basic morphoRNN. For learning, we first de-
fine a cost function s for each word xi as the
squared Euclidean distance between the newly-
constructed representation pc(xi) and its refer-
ence vector pr(xi): s (xi) = ∥pc(xi)− pr(xi)∥22.

The objective function is then simply the sum of
all individual costs over N training examples, plus
a regularization term, which we try to minimize:

J(θ) =
N∑

i=1

s (xi) +
λ

2
∥θ∥22 (2)

3.2 Context-sensitive Morphological RNN

The cimRNN model, though simple, is interesting
to attest if morphemic semantics could be learned
solely from an embedding. However, it is lim-
ited in several aspects. Firstly, the model has
no chance of improving representations for rare
words which might have been poorly estimated.
For example, “distinctness” and “unconcerned”
are very rare, occurring only 141 and 340 times
in Wikipedia documents, even though their corre-
sponding stems “distinct” and “concern” are very
frequent (35323 and 26080 respectively). Trying
to construct exactly those poorly-estimated word
vectors might result in a bad model with parame-
ters being pushed in wrong directions.

Secondly, though word embeddings learned
from an NLM could, in general, blend well both
the semantic and syntactic information, it would
be useful to explicitly model another kind of syn-
tactic information, the word structure, as we train
our embeddings. Motivated by these limitations,
we propose a context-sensitive morphoRNN (csm-
RNN) which integrates RNN structures into NLM
training, allowing for contextual information be-
ing taken into account in learning morphemic
compositionality. Specifically, we adopt the NLM
training approach proposed in (Collobert et al.,
2011) to learn word embeddings, but build rep-
resentations for complex words from their mor-
phemes. During learning, updates at the top level
of the neural network will be back-propagated all
the way till the morphemic layer.

1/9/1830

Representations	of	NLP	Levels:	Semantics

• Traditional:	Lambda	calculus
• Carefully	engineered	functions
• Take	as	inputs	specific	other
functions

• No	notion	of	similarity	or
fuzziness	of	language

• DL:	
• Every	word	and	every	phrase
and	every	logical	expression	
is	a	vector

• a	neural	network	combines	
two	vectors	into	one	vector

• Bowman	et	al.	2014

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that
TreeRNTN models are adequate for typical cases

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimension n. A learned
composition function maps pairs of them to single
phrase vectors of dimension n, which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the
standard NN layer function (1) and those with the

1/9/1832

NLP	Applications:	Sentiment	Analysis

• Traditional:	Treat	sentence	as	a	bag-of-words	(ignore	word	order);	
consult	a	curated	list	of	"positive"	and	"negative"	words	to	
determine	sentiment	of	sentence.	Need	hand-designed	features	to	
capture	negation!	-->	Ain’t gonna capture	everything

• Same	deep	learning	model	that	could	be	used	for	morphology,	
syntax	and	logical	semantics	à RecursiveNN (aka	TreeRNNs)

1/9/1833

Question	Answering

• Traditional:	A	lot	of	feature	engineering	to	capture	world	and	
other	knowledge,		e.g.,	regular	expressions,	Berant et	al.	(2014)

• DL:	Again,	a	deep	learning	architecture	can	be	used!
• Facts	are	stored	in	vectors

Type Example # (%)
Dependency Q: What can the splitting of water lead to? 407 (69.57%)

a: Light absorption
b: Transfer of ions

Temporal Q: What is the correct order of events? 57 (9.74%)
a: PDGF binds to tyrosine kinases, then cells divide, then wound healing
b: Cells divide, then PDGF binds to tyrosine kinases, then wound healing

True-False Q: Cdk associates with MPF to become cyclin 121 (20.68%)
a: True
b: False

Table 3: Examples and statistics for each of the three coarse types of questions.

Is main verb trigger?

Condition Regular Exp.
Wh- word subjective? AGENT
Wh- word object? THEME

Condition Regular Exp.
default (ENABLE|SUPER)+
DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)⇤PREVENT(ENABLE|SUPER)⇤

Yes No

Figure 3: Rules for determining the regular expressions for queries concerning two triggers. In each table, the condition
column decides the regular expression to be chosen. In the left table, we make the choice based on the path from the root to
the Wh- word in the question. In the right table, if the word directly modifies the main trigger, the DIRECT regular expression
is chosen. If the main verb in the question is in the synset of prevent, inhibit, stop or prohibit, we select the PREVENT regular
expression. Otherwise, the default one is chosen. We omit the relation label SAME from the expressions, but allow going
through any number of edges labeled by SAME when matching expressions to the structure.

that we expand using WordNet.

The final step in constructing the query is to
identify the regular expression for the path con-
necting the source and the target. Due to paucity
of data, we do not map a question and an answer
to arbitrary regular expressions. Instead, we con-
struct a small set of regular expressions, and build
a rule-based system that selects one. We used the
training set to construct the regular expressions
and we found that they answer most questions (see
Section 6.4). We determine the regular expression
based on whether the main verb in the sentence is
a trigger and whether the source and target of the
path are triggers or arguments. Figure 3 shows the
possible regular expressions and the procedure for
choosing one when both the source and target are
triggers. If either of them are argument nodes, we
append the appropriate semantic role to the regu-
lar expression, based on whether the argument is
the source or the target of the path (or both).

True-false questions are treated similarly, ex-
cept that both source and target are chosen from
the question. For temporal questions, we seek to
identify the ordering of events in the answers. We
use the keywords first, then, or simultaneously to
identify the implied order in the answer. We use
the regular expression SUPER+ for questions ask-
ing about simultaneous events and ENABLE+ for
those asking about sequential events.

5.3 Answering Questions

We match the query of an answer to the process
structure to identify the answer. In case of a match,
the corresponding answer is chosen. The matching
path can be thought of as a proof for the answer.

If neither query matches the graph (or both do),
we check if either answer contradicts the struc-
ture. To do so, we find an undirected path from
the source to the target. In the event of a match, if
the matching path traverses any ENABLE edge in
the incorrect direction, we treat this as a refutation
for the corresponding answer and select the other
one. In our running example, in addition to the
valid path for the second query, for the first query
we see that there is an undirected path from split
to absorb through transfer that matches the first
query. This tells us that light absorption cannot
be the answer because it is not along a causal path
from split.

Finally, if none of the queries results in a match,
we look for any unlabeled path between the source
and the target, before backing off to a dependency-
based proximity baseline described in Section 6.
When there are multiple aligning nodes in the
question and answer, we look for any proof or
refutation before backing off to the baselines.

1/9/1834

Dialogue	agents	/	Response	Generation

• A	simple,	successful	example	is	the	auto-replies	
available	in	the	Google	Inbox	app

• An	application	of	the	powerful,	general	technique	of	
Neural	Language	Models,	which	are	an	instance	of	
Recurrent	Neural	Networks

1/9/1835

Machine	Translation

• Many	levels	of	translation	
have	been	tried	in	the	past:

• Traditional	MT	systems	are	
very	large	complex	systems	

• What	do	you	think	is	the	interlingua	for	the	DL	approach	to	
translation?

1/9/1836

Die					 Proteste				waren am		Wochenende	eskaliert <EOS>		 The						protests			escalated			over								the					weekend

0.2
0.6
-0.1
-0.7
0.1

0.4
-0.6
0.2
-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1
-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.1
0.3
-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5
-0.5
0.4
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6
-0.1
-0.7
0.1

0.1
0.3
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
0.3
0.1

-0.1
0.6
-0.1
0.3
0.1

0.2
0.4
-0.1
0.2
0.1

0.3
0.6
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1
-0.4
0.2

0.2
0.6
-0.1
-0.7
0.1

0.4
0.4
0.3
-0.2
-0.3

0.5
0.5
0.9
-0.3
-0.2

0.2
0.6
-0.1
-0.5
0.1

-0.1
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.3
0.6
-0.1
-0.7
0.1

0.4
0.4
-0.1
-0.7
0.1

-0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

-0.3
0.5
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

The						protests		escalated				over									the						weekend			<EOS>

Neural	Machine	Translation
Source	sentence	is	mapped	to	vector,	then	output	sentence	generated	
[Sutskever	et	al.	2014,	Bahdanau	et	al.	2014,	Luong	and	Manning	2016]

Sentence	
meaning	
is	built	up

Source	
sentence

Translation	
generated

Feeding	in	
last	word

Now	live	for	some	languages	in	Google	
Translate	(etc.),	with	big	error	reductions!1/9/1837

Conclusion:	Representation	for	all	levels? Vectors

We	will	study	in	the	next	lecture	how	we	can	learn	vector	
representations	for	words	and	what	they	actually	represent.

Next	week:	how	neural	networks	work	and	how	they	can	use	these	
vectors	for	all	NLP	levels	and	many	different	applications

1/9/1838

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – a localist representation

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000)

Means one 1, the rest 0s

14

Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we
would like to match documents containing “Seattle hotel”.

But:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal.
There is no natural notion of similarity for one-hot vectors!

Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.
• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

15

Representing words by their context

• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by
• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking16

3. But why not capture co-occurrence counts directly?

With a co-occurrence matrix X

• 2 options: windows vs. full document

• Window: Similar to word2vec, use window around
each word à captures both syntactic (POS) and
semantic information

• Word-document co-occurrence matrix will give
general topics (all sports terms will have similar
entries) leading to “Latent Semantic Analysis”

15

Example: Window based co-occurrence matrix

• Window length 1 (more common: 5–10)

• Symmetric (irrelevant whether left or right context)

• Example corpus:
• I like deep learning.

• I like NLP.

• I enjoy flying.

16

Window based co-occurrence matrix
• Example corpus:

• I like deep learning.

• I like NLP.

• I enjoy flying.

counts I like enjoy deep learning NLP flying .
I 0 2 1 0 0 0 0 0
like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0
learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1
. 0 0 0 0 1 1 1 0

17

Problems with simple co-occurrence vectors

Increase in size with vocabulary

Very high dimensional: requires a lot of storage

Subsequent classification models have sparsity issues

à Models are less robust

18

Solution: Low dimensional vectors

• Idea: store “most” of the important information in a fixed, small
number of dimensions: a dense vector

• Usually 25–1000 dimensions, similar to word2vec

• How to reduce the dimensionality?

19

Method 1: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UΣVT, where U and V are orthonormal

Retain only k singular values, in order to generalize.
!" is the best rank k approximation to X , in terms of least squares.
Classic linear algebra result. Expensive to compute for large matrices.20

kX

Simple SVD word vectors in Python
Corpus:
I like deep learning. I like NLP. I enjoy flying.

21

Simple SVD word vectors in Python
Corpus: I like deep learning. I like NLP. I enjoy flying.
Printing first two columns of U corresponding to the 2 biggest singular values

22

Hacks to X (several used in Rohde et al. 2005)

Scaling the counts in the cells can help a lot

• Problem: function words (the, he, has) are too
frequent à syntax has too much impact. Some fixes:

• min(X,t), with t ≈ 100

• Ignore them all

• Ramped windows that count closer words more

• Use Pearson correlations instead of counts, then set
negative values to 0

• Etc.
23

Interesting syntactic patterns emerge in the vectors

COALS model from
An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. ms., 2005

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

READ

CALLED

TOLD

HEARD

ASKED

CUT

FELT

NOTICED

EXPLAINED

KICKED

JUMPED

DETECTED

EMAILED

QUESTIONED

SHOUTED

TASTED

PUNCHED

SHOVED

STABBED

SMELLED
SENSED

BASHED

TACKLED

DISCERNED

Figure 10: Multidimensional scaling of three verb semantic classes.

TAKE

SHOW

TOOK
TAKINGTAKEN

SPEAK

EAT

CHOOSE

SPEAKING

GROW

GROWING

THROW

SHOWN

SHOWING

SHOWED

EATING

CHOSEN

SPOKE

CHOSE

GROWN

GREW

SPOKEN

THROWNTHROWING

STEAL

ATE

THREW

STOLEN

STEALING

CHOOSING

STOLE

EATEN

Figure 11: Multidimensional scaling of present, past, progressive, and past participle forms for eight verb families.

22

24

Interesting semantic patterns emerge in the vectors
Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

DRIVE

LEARN

DOCTOR

CLEAN

DRIVER

STUDENT

TEACH

TEACHER

TREAT PRAY

PRIEST

MARRY

SWIM
BRIDE

JANITOR
SWIMMER

Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon

24

25

COALS model from
An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. ms., 2005

Count based vs. direct prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde

et al, Lebret & Collobert)

• Fast training
• Efficient usage of statistics

• Primarily used to capture word
similarity

• Disproportionate importance
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et

al; Collobert & Weston; Huang et al; Mnih
& Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Can capture complex patterns
beyond word similarity

• Generate improved performance
on other tasks

26

Ratios of co-occurrence probabilities can encode
meaning components

Crucial insight:

x = solid x = water

large

x = gas

small

x = random

smalllarge

small large large small

~1 ~1large small

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

Ratios of co-occurrence probabilities can encode
meaning components

Crucial insight:

x = solid x = water

1.9 x 10-4

x = gas x = fashion

2.2 x 10-5

1.36 0.96

Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

8.9

7.8 x 10-4 2.2 x 10-3

3.0 x 10-3 1.7 x 10-5

1.8 x 10-5

6.6 x 10-5

8.5 x 10-2

A: Log-bilinear model:

with vector differences

Encoding meaning in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

Combining the best of both worlds
GloVe [Pennington et al., EMNLP 2014]

• Fast training
• Scalable to huge corpora
• Good performance even with

small corpus and small vectors

GloVe results

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

litoria leptodactylidae

rana eleutherodactylus

Nearest words to
frog:

31

How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs extrinsic
• Intrinsic:

• Evaluation on a specific/intermediate subtask
• Fast to compute
• Helps to understand that system
• Not clear if really helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task
• Can take a long time to compute accuracy
• Unclear if the subsystem is the problem or its interaction or other

subsystems
• If replacing exactly one subsystem with another improves accuracy à

Winning!

32

Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well
their cosine distance after addition
captures intuitive semantic and
syntactic analogy questions

• Discarding the input words from the
search!

• Problem: What if the information is
there but not linear?

man:woman :: king:?

a:b :: c:?

king

man
woman

33

Glove Visualizations

34

Glove Visualizations: Company - CEO

35

Glove Visualizations: Superlatives

36

Details of intrinsic word vector evaluation

• Word Vector Analogies: Syntactic and Semantic examples from
http://code.google.com/p/word2vec/source/browse/trunk/questions-
words.txt

: city-in-state problem: different cities
Chicago Illinois Houston Texas may have same name
Chicago Illinois Philadelphia Pennsylvania
Chicago Illinois Phoenix Arizona
Chicago Illinois Dallas Texas
Chicago Illinois Jacksonville Florida
Chicago Illinois Indianapolis Indiana
Chicago Illinois Austin Texas
Chicago Illinois Detroit Michigan
Chicago Illinois Memphis Tennessee
Chicago Illinois Boston Massachusetts

37

http://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

Details of intrinsic word vector evaluation

• Word Vector Analogies: Syntactic and Semantic examples from

: gram4-superlative
bad worst big biggest
bad worst bright brightest
bad worst cold coldest
bad worst cool coolest
bad worst dark darkest
bad worst easy easiest
bad worst fast fastest
bad worst good best
bad worst great greatest

38

