
In the 1983 movie Trading Places, the characters played by Dan Aykroyd and Eddie 
Murphy used inside information on how well Florida oranges had fared over the 

winter to make millions in the orange juice concentrate futures market, a market for 
contracts to buy or sell large quantities of orange juice concentrate at a specified 
price on a future date. In real life, traders in orange juice futures in fact do pay close 
attention to the weather in Florida: Freezes in Florida kill Florida oranges, the source 
of almost all frozen orange juice concentrate made in the United States, so its sup-
ply falls and the price rises. But precisely how much does the price rise when the 
weather in Florida turns sour? Does the price rise all at once, or are there delays; if 
so, for how long? These are questions that real-life traders in orange juice futures 
need to answer if they want to succeed.

This chapter takes up the problem of estimating the effect on Y now and in the 
future of a change in X, that is, the dynamic causal effect on Y of a change in X.
What, for example, is the effect on the path of orange juice prices over time of a 
freezing spell in Florida? The starting point for modeling and estimating dynamic 
causal effects is the so-called distributed lag regression model, in which Yt is 
expressed as a function of current and past values of Xt. Section 15.1 introduces 
the distributed lag model in the context of estimating the effect of cold weather in 
Florida on the price of orange juice concentrate over time. Section 15.2 takes a 
closer look at what, precisely, is meant by a dynamic causal effect.

One way to estimate dynamic causal effects is to estimate the coefficients of 
the distributed lag regression model using OLS. As discussed in Section 15.3, this 
estimator is consistent if the regression error has a conditional mean of zero given 
current and past values of X, a condition that (as in Chapter 12) is referred to as exo-
geneity. Because the omitted determinants of Yt are correlated over time—that is, 
because they are serially correlated—the error term in the distributed lag model 
can be serially correlated. This possibility in turn requires “heteroskedasticity- and 
autocorrelation-consistent” (HAC) standard errors, the topic of Section 15.4.

A second way to estimate dynamic causal effects, discussed in Section 15.5, is to 
model the serial correlation in the error term as an autoregression and then to use 
this autoregressive model to derive an autoregressive distributed lag (ADL) model. 
Alternatively, the coefficients of the original distributed lag model can be estimated 

15 Estimation of Dynamic Causal Effects
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by generalized least squares (GLS). Both the ADL and GLS methods, however, require 
a stronger version of exogeneity than we have used so far: strict exogeneity, under 
which the regression errors have a conditional mean of zero given past, present, and 
future values of X.

Section 15.6 provides a more complete analysis of the relationship between 
orange juice prices and the weather. In this application, the weather is beyond human 
control and thus is exogenous (although, as discussed in Section 15.6, economic 
theory suggests that it is not necessarily strictly exogenous). Because exogeneity is 
necessary for estimating dynamic causal effects, Section 15.7 examines this assumption 
in several applications taken from macroeconomics and finance.

This chapter builds on the material in Sections 14.1 through 14.4 but, with 
the exception of a subsection (that can be skipped) of the empirical analysis in 
Section 15.6, does not require the material in Sections 14.5 through 14.7.

15.1 An Initial Taste of the Orange Juice Data

Orlando, the historical center of Florida’s orange-growing region, is normally 
sunny and warm. But now and then there is a cold snap, and if temperatures drop 
below freezing for too long, the trees drop many of their oranges. If the cold snap 
is severe, the trees freeze. Following a freeze, the supply of orange juice concen-
trate falls and its price rises. The timing of the price increases is rather complicated, 
however. Orange juice concentrate is a “durable,” or storable, commodity; that is, 
it can be stored in its frozen state, albeit at some cost (to run the freezer). Thus the 
price of orange juice concentrate depends not only on current supply but also on 
expectations of future supply. A freeze today means that future supplies of con-
centrate will be low, but because concentrate currently in storage can be used to 
meet either current or future demand, the price of existing concentrate rises today. 
But precisely how much does the price of concentrate rise when there is a freeze? 
The answer to this question is of interest not just to orange juice traders but more 
generally to economists interested in studying the operations of modern commod-
ity markets. To learn how the price of orange juice changes in response to weather 
conditions, we must analyze data on orange juice prices and the weather.

Monthly data on the price of frozen orange juice concentrate, its monthly 
percentage change, and temperatures in the orange-growing region of Florida 
from January 1950 to December 2000 are plotted in Figure 15.1. The price, plot-
ted in Figure 15.1a, is a measure of the average real price of frozen orange juice 
concentrate paid by wholesalers. This price was deflated by the overall producer 
price index for finished goods to eliminate the effects of overall price inflation. 
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The percentage price change plotted in Figure 15.1b is the percent change in the 
price over the month. The temperature data plotted in Figure 15.1c are the 
number of “freezing degree days” at the Orlando, Florida, airport, calculated as 
the sum of the number of degrees Fahrenheit that the minimum temperature 
falls below freezing in a given day over all days in the month; for example, in 
November 1950 the airport temperature dropped below freezing twice, on the 
25th (31°) and on the 29th (29°), for a total of 4 freezing degree days 
3(32 - 31) + (32 - 29) = 44. (The data are described in more detail in Appen-
dix 15.1.) As you can see by comparing the panels in Figure 15.1, the price of 
orange juice concentrate has large swings, some of which appear to be associ-
ated with cold weather in Florida.

FIGURE 15.1 Orange Juice Prices and Florida Weather, 1950–2000

There have been large month-to-month changes in the price of frozen concentrated orange juice. Many of the large 

movements coincide with freezing weather in Orlando, home of many orange groves.
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We begin our quantitative analysis of the relationship between orange juice 
price and the weather by using a regression to estimate the amount by which 
orange juice prices rise when the weather turns cold. The dependent variable is 
the percentage change in the price over that month [%ChgPt, where %ChgPt =
100 * ∆ln(POJ

t ) and POJ
t  is the real price of orange juice]. The regressor is the 

number of freezing degree days during that month (FDDt). This regression is 
estimated using monthly data from January 1950 to December 2000 (as are all 
regressions in this chapter), for a total of T = 612 observations:

%ChgPt = -0.40 + 0.47 FDDt. (15.1)
(0.22) (0.13)

The standard errors reported in this section are not the usual OLS standard 
errors, but rather are heteroskedasticity- and autocorrelation-consistent (HAC) 
standard errors that are appropriate when the error term and regressors are auto-
correlated. HAC standard errors are discussed in Section 15.4, and for now they 
are used without further explanation.

According to this regression, an additional freezing degree day during a month 
increases the price of orange juice concentrate over that month by 0.47%. In a 
month with 4 freezing degree days, such as November 1950, the price of orange 
juice concentrate is estimated to have increased by 1.88% (4 * 0.47% = 1.88%),
relative to a month with no days below freezing.

Because the regression in Equation (15.1) includes only a contemporaneous 
measure of the weather, it does not capture any lingering effects of the cold snap 
on the orange juice price over the coming months. To capture these we need to 
consider the effect on prices of both contemporaneous and lagged values of FDD,
which in turn can be done by augmenting the regression in Equation (15.1) with, 
for example, lagged values of FDD over the previous 6 months:

%ChgPt = - 0.65 + 0.47 FDDt + 0.14 FDDt - 1 + 0.06 FDDt - 2

(0.23)   (0.14)    (0.08)     (0.06)

+ 0.07 FDDt - 3 + 0.03 FDDt - 4 + 0.05 FDDt - 5 + 0.05 FDDt - 6. (15.2)
(0.05)      (0.03)     (0.03)     (0.04)

Equation (15.2) is a distributed lag regression. The coefficient on FDDt in Equa-
tion (15.2) estimates the percentage increase in prices over the course of the 
month in which the freeze occurs; an additional freezing degree day is estimated 
to increase prices that month by 0.47%. The coefficient on the first lag of FDDt,
FDDt - 1, estimates the percentage increase in prices arising from a freezing degree 
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day in the preceding month, the coefficient on the second lag estimates the effect 
of a freezing degree day 2 months ago, and so forth. Equivalently, the coefficient 
on the first lag of FDD estimates the effect of a unit increase in FDD 1 month 
after the freeze occurs. Thus the estimated coefficients in Equation (15.2) are 
estimates of the effect of a unit increase in FDDt on current and future values of 
%ChgP; that is, they are estimates of the dynamic effect of FDDt on %ChgPt. For 
example, the 4 freezing degree days in November 1950 are estimated to have 
increased orange juice prices by 1.88% during November 1950, by an additional 
0.56%(= 4 * 0.14) in December 1950, by an additional 0 .24%(= 4 * 0.06) in 
January 1951, and so forth.

15.2 Dynamic Causal Effects

Before learning more about the tools for estimating dynamic causal effects, we 
should spend a moment thinking about what, precisely, is meant by a dynamic 
causal effect. Having a clear idea about what a dynamic causal effect is leads to a 
clearer understanding of the conditions under which it can be estimated.

Causal Effects and Time Series Data
Section 1.2 defined a causal effect as the outcome of an ideal randomized con-
trolled experiment: When a horticulturalist randomly applies fertilizer to some 
tomato plots but not others and then measures the yield, the expected difference 
in yield between the fertilized and unfertilized plots is the causal effect on tomato 
yield of the fertilizer. This concept of an experiment, however, is one in which 
there are multiple subjects (multiple tomato plots or multiple people), so the data 
are either cross-sectional (the tomato yield at the end of the harvest) or panel data 
(individual incomes before and after an experimental job training program). By 
having multiple subjects, it is possible to have both treatment and control groups 
and thereby to estimate the causal effect of the treatment.

In time series applications, this definition of causal effects in terms of an ideal 
randomized controlled experiment needs to be modified. To be concrete, consider 
an important problem of macroeconomics: estimating the effect of an unanticipated 
change in the short-term interest rate on the current and future economic activity 
in a given country, as measured by GDP. Taken literally, the randomized controlled 
experiment of Section 1.2 would entail randomly assigning different economies to 
treatment and control groups. The central banks in the treatment group would 
apply the treatment of a random interest rate change, while those in the control 
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group would apply no such random changes; for both groups, economic activity (for 
example, GDP) would be measured over the next few years. But what if we are 
interested in estimating this effect for a specific country, say the United States? 
Then this experiment would entail having different “clones” of the United States 
as subjects and assigning some clone economies to the treatment group and some 
to the control group. Obviously, this “parallel universes” experiment is infeasible.

Instead, in time series data it is useful to think of a randomized controlled 
experiment consisting of the same subject (e.g., the U.S. economy) being given dif-
ferent treatments (randomly chosen changes in interest rates) at different points in 
time (the 1970s, the 1980s, and so forth). In this framework, the single subject at 
different times plays the role of both treatment and control group: Sometimes the 
Fed changes the interest rate, while at other times it does not. Because data are 
collected over time, it is possible to estimate the dynamic causal effect, that is, the 
time path of the effect on the outcome of interest of the treatment. For example, a 
surprise increase in the short-term interest rate of two percentage points, sustained 
for one quarter, might initially have a negligible effect on output; after two quarters 
GDP growth might slow, with the greatest slowdown after 11

2 years; then over the 
next 2 years, GDP growth might return to normal. This time path of causal effects 
is the dynamic causal effect on GDP growth of a surprise change in the interest rate.

As a second example, consider the causal effect on orange juice price changes 
of a freezing degree day. It is possible to imagine a variety of hypothetical experi-
ments, each yielding a different causal effect. One experiment would be to change 
the weather in the Florida orange groves, holding weather constant elsewhere—for 
example, holding weather constant in the Texas grapefruit groves and in other 
citrus fruit regions. This experiment would measure a partial effect, holding other 
weather constant. A second experiment might change the weather in all the 
regions, where the “treatment” is application of overall weather patterns. If 
weather is correlated across regions for competing crops, then these two dynamic 
causal effects differ. In this chapter, we consider the causal effect in the latter 
experiment, that is, the causal effect of applying general weather patterns. This 
corresponds to measuring the dynamic effect on prices of a change in Florida 
weather, not holding weather constant in other agricultural regions.

Dynamic effects and the distributed lag model. Because dynamic effects neces-
sarily occur over time, the econometric model used to estimate dynamic causal 
effects needs to incorporate lags. To do so, Yt can be expressed as a distributed 
lag of current and r past values of Xt:

Yt = b0 + b1Xt + b2Xt - 1 + b3Xt - 2 + g + br + 1Xt - r + ut, (15.3)
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where ut is an error term that includes measurement error in Yt and the effect of 
omitted determinants of Yt. The model in Equation (15.3) is called the distributed 
lag model relating Xt, and r of its lags, to Yt.

As an illustration of Equation (15.3), consider a modified version of the 
tomato/fertilizer experiment: Because fertilizer applied today might remain in the 
ground in future years, the horticulturalist wants to determine the effect on tomato 
yield over time of applying fertilizer. Accordingly, she designs a 3-year experiment 
and randomly divides her plots into four groups: The first is fertilized in only the 
first year; the second is fertilized in only the second year; the third is fertilized in 
only the third year; and the fourth, the control group, is never fertilized. Tomatoes 
are grown annually in each plot, and the third-year harvest is weighed. The three 
treatment groups are denoted by the binary variables Xt - 2, Xt - 1, and Xt, where t
represents the third year (the year in which the harvest is weighed), Xt - 2 = 1 if 
the plot is in the first group (fertilized two years earlier), Xt - 1 = 1 if the plot was 
fertilized 1 year earlier, and Xt = 1 if the plot was fertilized in the final year. In the 
context of Equation (15.3) (which applies to a single plot), the effect of being fertil-
ized in the final year is b1, the effect of being fertilized 1 year earlier is b2, and the 
effect of being fertilized 2 years earlier is b3. If the effect of fertilizer is greatest in 
the year it is applied, then b1 would be larger than b2 and b3.

More generally, the coefficient on the contemporaneous value of Xt, b1, is the 
contemporaneous or immediate effect of a unit change in Xt on Yt. The coefficient 
on Xt - 1, b2, is the effect on Yt of a unit change in Xt - 1 or, equivalently, the effect 
on Yt + 1 of a unit change in Xt; that is, b2 is the effect of a unit change in X on Y
one period later. In general, the coefficient on Xt - h is the effect of a unit change 
in X on Y after h periods. The dynamic causal effect is the effect of a change in Xt

on Yt, Yt + 1, Yt + 2, and so forth; that is, it is the sequence of causal effects on cur-
rent and future values of Y. Thus, in the context of the distributed lag model in 
Equation (15.3), the dynamic causal effect is the sequence of coefficients b1,
b2,c, br + 1.

Implications for empirical time series analysis. This formulation of dynamic causal 
effects in time series data as the expected outcome of an experiment in which dif-
ferent treatment levels are repeatedly applied to the same subject has two implica-
tions for empirical attempts to measure the dynamic causal effect with observational 
time series data. The first implication is that the dynamic causal effect should not 
change over the sample on which we have data. This in turn is implied by the data 
being jointly stationary (Key Concept 14.5). As discussed in Section 14.7, the 
hypothesis that a population regression function is stable over time can be tested 
using the QLR test for a break, and it is possible to estimate the dynamic causal 
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effect in different subsamples. The second implication is that X must be uncorre-
lated with the error term, and it is to this implication that we now turn.

Two Types of Exogeneity
Section 12.1 defined an “exogenous” variable as a variable that is uncorrelated 
with the regression error term and an “endogenous” variable as a variable that is 
correlated with the error term. This terminology traces to models with multiple 
equations, in which an “endogenous” variable is determined within the model 
while an “exogenous” variable is determined outside the model. Loosely speak-
ing, if we are to estimate dynamic causal effects using the distributed lag model in 
Equation (15.3), the regressors (the X’s) must be uncorrelated with the error 
term. Thus X must be exogenous. Because we are working with time series data, 
however, we need to refine the definitions of exogeneity. In fact, there are two 
different concepts of exogeneity that we use here.

The first concept of exogeneity is that the error term has a conditional mean 
of zero given current and all past values of Xt, that is, that E(ut 0Xt, Xt - 1,
Xt - 2,c) = 0. This modifies the standard conditional mean assumption for mul-
tiple regression with cross-sectional data (Assumption #1 in Key Concept 6.4), 
which requires only that ut has a conditional mean of zero given the included 
regressors, that is, E(ut 0Xt, Xt - 1,c, Xt - r) = 0. Including all lagged values of Xt

in the conditional expectation implies that all the more distant causal effects—all 
the causal effects beyond lag r—are zero. Thus, under this assumption, the r dis-
tributed lag coefficients in Equation (15.3) constitute all the nonzero dynamic 
causal effects. We can refer to this assumption—that E(ut 0Xt, Xt - 1,c) = 0—as 
past and present exogeneity, but because of the similarity of this definition and the 
definition of exogeneity in Chapter 12, we just use the term exogeneity.

The second concept of exogeneity is that the error term has mean zero, given 
all past, present, and future values of Xt, that is, that E(ut 0c, Xt + 2, Xt + 1, Xt, Xt - 1,
Xt - 2,c) = 0. This is called strict exogeneity; for clarity, we also call it past, 
present, and future exogeneity. The reason for introducing the concept of strict 
exogeneity is that, when X is strictly exogenous, there are more efficient estima-
tors of dynamic causal effects than the OLS estimators of the coefficients of the 
distributed lag regression in Equation (15.3).

The difference between exogeneity (past and present) and strict exogeneity 
(past, present, and future) is that strict exogeneity includes future values of X in the 
conditional expectation. Thus strict exogeneity implies exogeneity, but not the 
reverse. One way to understand the difference between the two concepts is to con-
sider the implications of these definitions for correlations between X and u. If X is 
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(past and present) exogenous, then ut is uncorrelated with current and past values of 
Xt. If X is strictly exogenous, then in addition ut is uncorrelated with future values of 
Xt. For example, if a change in Yt causes future values of Xt to change, then Xt is not 
strictly exogenous even though it might be (past and present) exogenous.

As an illustration, consider the hypothetical multiyear tomato/fertilizer 
experiment described following Equation (15.3). Because the fertilizer is ran-
domly applied in the hypothetical experiment, it is exogenous. Because tomato 
yield today does not depend on the amount of fertilizer applied in the future, the 
fertilizer time series is also strictly exogenous.

As a second illustration, consider the orange juice price example, in which Yt

is the monthly percentage change in orange juice prices and Xt is the number of 
freezing degree days in that month. From the perspective of orange juice markets, 
we can think of the weather—the number of freezing degree days—as if it were 
randomly assigned, in the sense that the weather is outside human control. If the 
effect of FDD is linear and if it has no effect on prices after r months, then it fol-
lows that the weather is exogenous. But is the weather strictly exogenous? If the 
conditional mean of ut given future FDD is nonzero, then FDD is not strictly 
exogenous. Answering this question requires thinking carefully about what, pre-
cisely, is contained in ut. In particular, if OJ market participants use forecasts of 
FDD when they decide how much they will buy or sell at a given price, then OJ 
prices, and thus the error term ut, could incorporate information about future 
FDD that would make ut a useful predictor of FDD. This means that ut will be 
correlated with future values of FDDt. According to this logic, because ut includes 
forecasts of future Florida weather, FDD would be (past and present) exogenous 
but not strictly exogenous. The difference between this and the tomato/fertilizer 
example is that, while tomato plants are unaffected by future fertilization, OJ 
market participants are influenced by forecasts of future Florida weather. We 
return to the question of whether FDD is strictly exogenous when we analyze the 
orange juice price data in more detail in Section 15.6.

The two definitions of exogeneity are summarized in Key Concept 15.1.

15.3 Estimation of Dynamic Causal Effects 
with Exogenous Regressors

If X is exogenous, then its dynamic causal effect on Y can be estimated by OLS 
estimation of the distributed lag regression in Equation (15.4). This section sum-
marizes the conditions under which these OLS estimators lead to valid statistical 
inferences and introduces dynamic multipliers and cumulative dynamic multipliers.
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The Distributed Lag Model Assumptions
The four assumptions of the distributed lag regression model are similar to the four 
assumptions for the cross-sectional multiple regression model (Key Concept 6.4), 
modified for time series data.

The first assumption is that X is exogenous, which extends the zero condi-
tional mean assumption for cross-sectional data to include all lagged values of X.
As discussed in Section 15.2, this assumption implies that the r distributed lag 
coefficients in Equation (15.3) constitute all the nonzero dynamic causal effects. 
In this sense, the population regression function summarizes the entire dynamic 
effect on Y of a change in X.

The second assumption has two parts: Part (a) requires that the variables 
have a stationary distribution, and part (b) requires that they become indepen-
dently distributed when the amount of time separating them becomes large. This 
assumption is the same as the corresponding assumption for the ADL model (the 
second assumption in Key Concept 14.6), and the discussion of this assumption in 
Section 14.4 applies here as well.

The third assumption is that large outliers are unlikely, made mathematically 
precise by assuming that the variables have more than eight nonzero, finite moments. 

The Distributed Lag Model and Exogeneity

In the distributed lag model

Yt = b0 + b1Xt + b2Xt - 1 + b3Xt - 2 + g + br + 1Xt - r + ut, (15.4)

there are two different types of exogeneity, that is, two different exogeneity conditions:
Past and present exogeneity (exogeneity):

E(ut 0Xt, Xt - 1, Xt - 2,c) = 0; (15.5)

Past, present, and future exogeneity (strict exogeneity):

E(ut 0c, Xt + 2, Xt + 1, Xt, Xt - 1, Xt - 2,c) = 0. (15.6)

If X is strictly exogenous, it is exogenous, but exogeneity does not imply strict
exogeneity.

KEY CONCEPT

15.1
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This is stronger than the assumption of four finite moments that is used elsewhere 
in this book. As discussed in Section 15.4, this stronger assumption is used in the 
mathematics behind the HAC variance estimator.

The fourth assumption, which is the same as in the cross-sectional multiple 
regression model, is that there is no perfect multicollinearity.

The distributed lag regression model and assumptions are summarized in Key 
Concept 15.2.

Extension to additional X’s. The distributed lag model extends directly to multi-
ple X’s: The additional X’s and their lags are simply included as regressors in the 
distributed lag regression, and the assumptions in Key Concept 15.2 are modified 
to include these additional regressors. Although the extension to multiple X’s is 
conceptually straightforward, it complicates the notation, obscuring the main 
ideas of estimation and inference in the distributed lag model. For this reason, the 
case of multiple X’s is not treated explicitly in this chapter but is left as a straight-
forward extension of the distributed lag model with a single X.

Autocorrelated ut, Standard Errors, and Inference
In the distributed lag regression model, the error term ut can be autocorrelated; that 
is, ut can be correlated with its lagged values. This autocorrelation arises because, 
in time series data, the omitted factors included in ut can themselves be serially 
correlated. For example, suppose that the demand for orange juice also depends 
on income, so one factor that influences the price of orange juice is income, spe-
cifically, the aggregate income of potential orange juice consumers. Then aggre-
gate income is an omitted variable in the distributed lag regression of orange juice 

The Distributed Lag Model Assumptions

The distributed lag model is given in Key Concept 15.1 [Equation (15.4)], where

1. X is exogenous, that is, E(ut 0Xt, Xt - 1, Xt - 2,c) = 0;

2. (a) The random variables Yt and Xt have a stationary distribution, and

  (b) (Yt, Xt) and (Yt - j, Xt - j) become independent as j gets large;

3. Large outliers are unlikely: Yt and Xt have more than eight nonzero, finite 
moments; and

4. There is no perfect multicollinearity.

KEY CONCEPT

15.2
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price changes against freezing degree days. Aggregate income, however, is serially 
correlated: Income tends to fall in recessions and rise in expansions. Thus, income is 
serially correlated, and, because it is part of the error term, ut will be serially corre-
lated. This example is typical: Because omitted determinants of Y are themselves 
serially correlated, in general ut in the distributed lag model will be serially correlated.

The autocorrelation of ut does not affect the consistency of OLS, nor does it 
introduce bias. If, however, the errors are autocorrelated, then in general the 
usual OLS standard errors are inconsistent and a different formula must be used. 
Thus serial correlation of the errors is analogous to heteroskedasticity: The 
homoskedasticity-only standard errors are “wrong” when the errors are in fact 
heteroskedastic, in the sense that using homoskedasticity-only standard errors 
results in misleading statistical inferences when the errors are heteroskedastic. 
Similarly, when the errors are serially correlated, standard errors predicated upon 
i.i.d. errors are “wrong” in the sense that they result in misleading statistical infer-
ences. The solution to this problem is to use heteroskedasticity- and autocorrelation-
consistent (HAC) standard errors, the topic of Section 15.4.

Dynamic Multipliers and Cumulative 
Dynamic Multipliers
Another name for the dynamic causal effect is the dynamic multiplier. The cumulative 
dynamic multipliers are the cumulative causal effects, up to a given lag; thus the cumu-
lative dynamic multipliers measure the cumulative effect on Y of a change in X.

Dynamic multipliers. The effect of a unit change in X on Y after h periods, which 
is bh + 1 in Equation (15.4), is called the h-period dynamic multiplier. Thus the 
dynamic multipliers relating X to Y are the coefficients on Xt and its lags in Equa-
tion (15.4). For example, b2 is the one-period dynamic multiplier, b3 is the two-
period dynamic multiplier, and so forth. In this terminology, the zero-period (or 
contemporaneous) dynamic multiplier, or impact effect, is b1, the effect on Y of a 
change in X in the same period.

Because the dynamic multipliers are estimated by the OLS regression coef-
ficients, their standard errors are the HAC standard errors of the OLS regression 
coefficients.

Cumulative dynamic multipliers. The h-period cumulative dynamic multiplier
is the cumulative effect of a unit change in X on Y over the next h periods. Thus the 
cumulative dynamic multipliers are the cumulative sum of the dynamic multipliers. 
In terms of the coefficients of the distributed lag regression in Equation (15.4), 
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the zero-period cumulative multiplier is b1, the one-period cumulative multiplier 
is b1 + b2, and the h-period cumulative dynamic multiplier is b1 + b2 + g +
bh + 1. The sum of all the individual dynamic multipliers, b1 + b2 +g + br + 1, is 
the cumulative long-run effect on Y of a change in X and is called the long-run 
cumulative dynamic multiplier.

For example, consider the regression in Equation (15.2). The immediate 
effect of an additional freezing degree day is that the price of orange juice con-
centrate rises by 0.47%. The cumulative effect of a price change over the next 
month is the sum of the impact effect and the dynamic effect one month ahead; 
thus the cumulative effect on prices is the initial increase of 0.47% plus the sub-
sequent smaller increase of 0.14% for a total of 0.61%. Similarly, the cumulative 
dynamic multiplier over 2 months is 0 .47% + 0.14% + 0.06% = 0.67%.

The cumulative dynamic multipliers can be estimated directly using a modifica-
tion of the distributed lag regression in Equation (15.4). This modified regression is

Yt = d0 + d1∆Xt + d2∆Xt - 1 + d3∆Xt - 2 +g + dr∆Xt - r + 1 + dr + 1Xt - r + ut .
(15.7)

The coefficients in Equation (15.7), d1, d2,c, dr + 1, are in fact the cumulative 
dynamic multipliers. This can be shown by a bit of algebra (Exercise 15.5), which 
demonstrates that the population regressions in Equations (15.7) and (15.4) are equiv-
alent, where d0 = b0, d1 = b1, d2 = b1 + b2, d3 = b1 + b2 + b3, and so forth. The 
coefficient on Xt - r, dr + 1, is the long-run cumulative dynamic multiplier; that is, 
dr + 1 = b1 + b2 + b3 +g + br + 1. Moreover, the OLS estimators of the coeffi-
cients in Equation (15.7) are the same as the corresponding cumulative sum of the 
OLS estimators in Equation (15.4). For example, dn2 = bn1 + bn2. The main benefit of 
estimating the cumulative dynamic multipliers using the specification in Equation 
(15.7) is that, because the OLS estimators of the regression coefficients are estimators 
of the cumulative dynamic multipliers, the HAC standard errors of the coefficients in 
Equation (15.7) are the HAC standard errors of the cumulative dynamic multipliers.

15.4 Heteroskedasticity- and Autocorrelation-
Consistent Standard Errors

If the error term ut is autocorrelated, then OLS coefficient estimators are consistent, 
but in general the usual OLS standard errors for cross-sectional data are not. This 
means that conventional statistical inferences—hypothesis tests and confidence 
intervals—based on the usual OLS standard errors will, in general, be misleading. 
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For example, confidence intervals constructed as the OLS estimator {1.96 conven-
tional standard errors need not contain the true value in 95% of repeated samples, 
even if the sample size is large. This section begins with a derivation of the correct 
formula for the variance of the OLS estimator with autocorrelated errors, then 
turns to heteroskedasticity- and autocorrelation-consistent (HAC) standard errors.

This section covers HAC standard errors for regression with time series data. 
Chapter 10 introduced a type of HAC standard errors, clustered standard errors, 
which are appropriate for panel data. Although clustered standard errors for 
panel data and HAC standard errors for time series data have the same goal, the 
different data structures lead to different formulas. This section is self-contained, 
and Chapter 10 is not a prerequisite.

Distribution of the OLS Estimator 
with Autocorrelated Errors
To keep things simple, consider the OLS estimator bn1 in the distributed lag regres-
sion model with no lags, that is, the linear regression model with a single regressorXt:

Yt = b0 + b1Xt + ut, (15.8)

where the assumptions of Key Concept 15.2 are satisfied. This section shows that the 
variance of bn1 can be written as the product of two terms: the expression for var(bn1), 
applicable if ut is not serially correlated, multiplied by a correction factor that arises 
from the autocorrelation in ut or, more precisely, the autocorrelation in (Xt - mX)ut.

As shown in Appendix 4.3, the formula for the OLS estimator bn1 in Key Con-
cept 4.2 can be rewritten as

bn1 = b1 +

1
T a

T

t= 1
(Xt - X)ut

1
T a

T

t= 1
(Xt - X)2

, (15.9)

where Equation (15.9) is Equation (4.30) with a change of notation so that i and 
n are replaced by t and T. Because X ¡p

mX and 1
T g

T
t=1 (Xt - X)2 ¡p

s2
X, in 

large samples bn1 - b1 is approximately given by

bn1 - b1 ≅

1
Ta

T

t=1
(Xt - mX)ut

s2
X

=

1
Ta

T

t=1
vt

s2
X
=

v

s2
X

, (15.10)
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where vt = (Xt - mX)ut and v = 1
Tg

T
t= 1vt. Thus

var(bn1) = vara
v

s2
X
b =

var(v)

(s2
X)2 . (15.11)

If vt is i.i.d.—as assumed for cross-sectional data in Key Concept 4.3—then 
var(v) = var(vt)>T and the formula for the variance of bn1 from Key Concept 4.4 
applies. If, however, ut and Xt are not independently distributed over time, 
then in general vt will be serially correlated, so var(v) ≠ var(vt)>T  and Key 
Concept 4.4 does not apply. Instead, if vt is serially correlated, the variance of v is 
given by

var(v) = var [(v1 + v2 +g+ vT)>T]

= [var(v1) + cov(v1, v2) + g + cov(v1, vT)

+ cov(v2, v1) + var(v2) + g + var(vT)]>T 2

= [Tvar(vt) + 2(T - 1)cov(vt, vt - 1)

+ 2(T - 2)cov(vt, vt - 2) + g + 2cov(vt, vt -T + 1)]>T 2

=
s2

v

T
fT, (15.12)

where

fT = 1 + 2a
T - 1

j=1
a

T - j

T
brj, (15.13)

where rj = corr(vt, vt - j). In large samples, fT tends to the limit, fT¡ f∞ =
1 + 2g ∞j=1rj.

Combining the expressions in Equation (15.10) for bn1 and Equation (15.12) 
for var(v) gives the formula for the variance of bn1 when vt is autocorrelated:

var(bn1) = c
1
T

s2
v

(s2
X)2 d fT, (15.14)

where fT is given in Equation (15.13).
Equation (15.14) expresses the variance of bn1 as the product of two terms. The 

first, in square brackets, is the formula for the variance of bn1 given in Key Concept 
4.4, which applies in the absence of serial correlation. The second is the factor fT,
which adjusts this formula for serial correlation. Because of this additional factor 
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fT in Equation (15.14), the usual OLS standard error computed using Equation 
(5.4) is incorrect if the errors are serially correlated: If vt = (Xt - mX)ut is serially 
correlated, the estimator of the variance is off by the factor fT.

HAC Standard Errors
If the factor fT, defined in Equation (15.13), was known, then the variance of bn1
could be estimated by multiplying the usual cross-sectional estimator of the vari-
ance by fT. This factor, however, depends on the unknown autocorrelations of vt, so 
it must be estimated. The estimator of the variance of bn1 that incorporates this 
adjustment is consistent whether or not there is heteroskedasticity and whether or 
not vt is autocorrelated. Accordingly, this estimator is called the heteroskedasticity- 
and autocorrelation-consistent (HAC) estimator of the variance of bn1, and the 
square root of the HAC variance estimator is the HAC standard error of bn1.

The HAC variance formula. The heteroskedasticity- and autocorrelation-consistent 
estimator of the variance of bn1 is

s∼2
bn1
= sn 2

bn1 fnT, (15.15)

where sn 2
bn1 is the estimator of the variance of bn1 in the absence of serial correlation, 

given in Equation (5.4), and where fnT is an estimator of the factor fT in Equation 
(15.13).

The task of constructing a consistent estimator fnT is challenging. To see why, 
consider two extremes. At one extreme, given the formula in Equation (15.13), it 
might seem natural to replace the population autocorrelations rj with the sample 
autocorrelations rn j [defined in Equation (14.6)], yielding the estimator 
1 + 2gT - 1

j= 1 (
T - j

T )rn j. But this estimator contains so many estimated autocorrelations 
that it is inconsistent. Intuitively, because each of the estimated autocorrelations con-
tains an estimation error, by estimating so many autocorrelations the estimation 
error in this estimator of fT remains large even in large samples. At the other extreme, 
one could imagine using only a few sample autocorrelations, for example, only the first 
sample autocorrelation, and ignoring all the higher autocorrelations. Although this 
estimator eliminates the problem of estimating too many autocorrelations, it has a 
different problem: It is inconsistent because it ignores the additional autocorrelations 
that appear in Equation (15.13). In short, using too many sample autocorrelations 
makes the estimator have a large variance, but using too few autocorrelations ignores the 
autocorrelations at higher lags, so in either of these extreme cases the estimator 
is inconsistent.
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Estimators of fT used in practice strike a balance between these two extreme 
cases by choosing the number of autocorrelations to include in a way that depends 
on the sample size T. If the sample size is small, only a few autocorrelations are 
used, but if the sample size is large, more autocorrelations are included (but still 
far fewer than T ). Specifically, let fnT be given by

fnT = 1 + 2a
m - 1

j=1
a

m - j
m br∼j, (15.16)

where r∼j = g
T
t=j+1 vn tvnt-j>g

T
t=1vn2t , where vnt = (Xt - X)un t (as in the definition of 

sn 2
bn1

). The parameter m in Equation (15.16) is called the truncation parameter of 
the HAC estimator because the sum of autocorrelations is shortened, or truncated, 
to include only m - 1 autocorrelations instead of the T - 1 autocorrelations 
appearing in the population formula in Equation (15.13).

For fnT to be consistent, m must be chosen so that it is large in large samples, 
although still much less than T. One guideline for choosing m in practice is to use 
the formula

m = 0.75T 1>3, (15.17)

rounded to an integer. This formula, which is based on the assumption that there 
is a moderate amount of autocorrelation in vt, gives a benchmark rule for deter-
mining m as a function of the number of observations in the regression.1

The value of the truncation parameter m resulting from Equation (15.17) can 
be modified using your knowledge of the series at hand. On the one hand, if there 
is a great deal of serial correlation in vt, then you could increase m beyond the 
value from Equation (15.17). On the other hand, if vt has little serial correlation, 
you could decrease m. Because of the ambiguity associated with the choice of m,
it is good practice to try one or two alternative values of m for at least one speci-
fication to make sure your results are not sensitive to m.

The HAC estimator in Equation (15.15), with fnT given in Equation (15.16), 
is called the Newey–West variance estimator, after the econometricians Whitney 
Newey and Kenneth West, who proposed it. They showed that, when used along 
with a rule like that in Equation (15.17), under general assumptions this estimator 
is a consistent estimator of the variance of bn1 (Newey and West, 1987). Their 

1Equation (15.17) gives the “best” choice of m if ut and Xt are first-order autoregressive processes with 
first autocorrelation coefficients 0.5, where “best” means the estimator that minimizes E(s∼2

bn1
- s2

bn1  )
2.

Equation (15.17) is based on a more general formula derived by Andrews [1991, Equation (5.3)].
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proofs (and those in Andrews, 1991) assume that vt has more than four moments, 
which in turn is implied by Xt and ut having more than eight moments, and this is 
the reason that the third assumption in Key Concept 15.2 is that Xt and ut have 
more than eight moments.

Other HAC estimators. The Newey–West variance estimator is not the only HAC 
estimator. For example, the weights (m - j)>m in Equation (15.16) can be 
replaced by different weights. If different weights are used, then the rule for 
choosing the truncation parameter in Equation (15.17) no longer applies and a 
different rule, developed for those weights, should be used instead. Discussion of 
HAC estimators using other weights goes beyond the scope of this book. For 
more information on this topic, see Hayashi (2000, Section 6.6).

Extension to multiple regression. All the issues discussed in this section general-
ize to the distributed lag regression model in Key Concept 15.1 with multiple lags 
and, more generally, to the multiple regression model with serially correlated 
errors. In particular, if the error term is serially correlated, then the usual OLS 
standard errors are an unreliable basis for inference and HAC standard errors 
should be used instead. If the HAC variance estimator used is the Newey–West 
estimator [the HAC variance estimator based on the weights (m - j)>m4, then 
the truncation parameter m can be chosen according to the rule in Equation 
(15.17) whether there is a single regressor or multiple regressors. The formula for 
HAC standard errors in multiple regression is incorporated into modern regres-
sion software designed for use with time series data. Because this formula involves 
matrix algebra, we omit it here and instead refer the reader to Hayashi (2000, 
Section 6.6) for the mathematical details.

HAC standard errors are summarized in Key Concept 15.3.

15.5 Estimation of Dynamic Causal Effects 
with Strictly Exogenous Regressors

When Xt is strictly exogenous, two alternative estimators of dynamic causal effects 
are available. The first such estimator involves estimating an autoregressive dis-
tributed lag (ADL) model instead of a distributed lag model and calculating the 
dynamic multipliers from the estimated ADL coefficients. This method can entail 
estimating fewer coefficients than OLS estimation of the distributed lag model, 
thus potentially reducing estimation error. The second method is to estimate the 
coefficients of the distributed lag model, using generalized least squares (GLS)
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instead of OLS. Although the same number of coefficients in the distributed lag 
model are estimated by GLS as by OLS, the GLS estimator has a smaller variance. 
To keep the exposition simple, these two estimation methods are initially laid out 
and discussed in the context of a distributed lag model with a single lag and AR(1) 
errors. The potential advantages of these two estimators are greatest, however, when 
many lags appear in the distributed lag model, so these estimators are then extended 
to the general distributed lag model with higher-order autoregressive errors.

The Distributed Lag Model with AR(1) Errors
Suppose that the causal effect on Y of a change in X lasts for only two periods; 
that is, it has an initial impact effect b1 and an effect in the next period of b2, but 
no effect thereafter. Then the appropriate distributed lag regression model is the 
distributed lag model with only current and past values of Xt - 1:

Yt = b0 + b1Xt + b2Xt - 1 + ut . (15.18)

As discussed in Section 15.2, in general the error term ut in Equation (15.18) is 
serially correlated. One consequence of this serial correlation is that, if the distrib-
uted lag coefficients are estimated by OLS, then inference based on the usual 
OLS standard errors can be misleading. For this reason, Sections 15.3 and 15.4 

HAC Standard Errors

The problem: The error term ut in the distributed lag regression model in 
Key Concept 15.1 can be serially correlated. If so, the OLS coefficient estimators 
are consistent but in general the usual OLS standard errors are not, resulting in 
misleading hypothesis tests and confidence intervals.
The solution: Standard errors should be computed using a heteroskedasticity- and 
autocorrelation-consistent (HAC) estimator of the variance. The HAC estimator 
involves estimates of m - 1 autocovariances as well as the variance; in the case of 
a single regressor, the relevant formulas are given in Equations (15.15) and (15.16).

In practice, using HAC standard errors entails choosing the truncation 
parameter m. To do so, use the formula in Equation (15.17) as a benchmark, then 
increase or decrease m depending on whether your regressors and errors have 
high or low serial correlation.

KEY CONCEPT

15.3
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emphasized the use of HAC standard errors when b1 and b2 in Equation (15.18) 
are estimated by OLS.

In this section, we take a different approach toward the serial correlation in ut.
This approach, which is possible if Xt is strictly exogenous, involves adopting an 
autoregressive model for the serial correlation in ut, then using this AR model to 
derive some estimators that can be more efficient than the OLS estimator in the 
distributed lag model.

Specifically, suppose that ut follows the AR(1) model

ut = f1ut - 1 + u∼t, (15.19)

wheref1 is the autoregressive parameter, u∼t is serially uncorrelated, and no intercept 
is needed because E(ut) = 0. Equations (15.18) and (15.19) imply that the distributed 
lag model with a serially correlated error can be rewritten as an autoregressive 
distributed lag model with a serially uncorrelated error. To do so, lag each side of 
Equation (15.18) and subtract f1 multiplied by this lag from each side:

Yt - f1Yt - 1 = (b0 + b1Xt + b2Xt - 1 + ut) - f1(b0 + b1Xt - 1 + b2Xt - 2 + ut - 1)

= b0 + b1Xt + b2Xt-1 - f1b0 - f1b1Xt - 1 - f1b2Xt-2 + u∼t, (15.20)

where the second equality uses u∼t = ut - f1ut - 1. Collecting terms in Equation 
(15.20), we have that

Yt = a0 + f1Yt - 1 + d0Xt + d1Xt - 1 + d2Xt - 2 + u∼t, (15.21)

where

a0 = b0(1 - f1), d0 = b1, d1 = b2 - f1b1, and d2 = -f1b2, (15.22)

where b0, b1, and b2 are the coefficients in Equation (15.18) and f1 is the autocor-
relation coefficient in Equation (15.19).

Equation (15.21) is an ADL model that includes a contemporaneous value of 
X and two of its lags. We will refer to Equation (15.21) as the ADL representation 
of the distributed lag model with autoregressive errors given in Equations (15.18) 
and (15.19).

The terms in Equation (15.20) can be reorganized differently to obtain an 
expression that is equivalent to Equations (15.21) and (15.22). Let Y∼t = Yt - f1Yt - 1

be the quasi-difference of Yt (“quasi” because it is not the first difference, the 
difference between Yt and Yt - 1; rather, it is the difference between Yt and f1Yt - 1). 
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Similarly, let X
∼

t = Xt - f1Xt - 1 be the quasi-difference of Xt. Then Equation 
(15.20) can be written

Y
∼

t = a0 + b1X
∼

t + b2X
∼

t - 1 + u∼t . (15.23)

We will refer to Equation (15.23) as the quasi-difference representation of the dis-
tributed lag model with autoregressive errors given in Equations (15.18) and (15.19).

The ADL model Equation (15.21) [with the parameter restrictions in 
Equation (15.22)] and the quasi-difference model in Equation (15.23) are 
equivalent. In both models, the error term, u∼t, is serially uncorrelated. The two 
representations, however, suggest different estimation strategies. But before 
discussing those strategies, we turn to the assumptions under which they yield 
consistent estimators of the dynamic multipliers, b1 and b2.

The conditional mean zero assumption in the ADL(1,2) and quasi-difference 
models. Because Equations (15.21) [with the restrictions in Equation (15.22)] 
and (15.23) are equivalent, the conditions for their estimation are the same, so for 
convenience we consider Equation (15.23).

The quasi-difference model in Equation (15.23) is a distributed lag model 
involving the quasi-differenced variables with a serially uncorrelated error. Accord-
ingly, the conditions for OLS estimation of the coefficients in Equation (15.23) are 
the least squares assumptions for the distributed lag model in Key Concept 15.2, 
expressed in terms of u∼t and X∼t. The critical assumption here is the first assumption, 
which, applied to Equation (15.23), is that X∼t is exogenous; that is,

E(u∼t 0X∼t, X
∼

t-1,c) = 0, (15.24)

where letting the conditional expectation depend on distant lags of X∼t ensures that 
no additional lags of X∼t, other than those appearing in Equation (15.23), enter the 
population regression function.

Because X
∼

t = Xt - f1Xt - 1, so Xt = X
∼

t + f1Xt - 1, conditioning on X∼t and all 
of its lags is equivalent to conditioning on Xt and all of its lags. Thus the conditional 
expectation condition in Equation (15.24) is equivalent to the condition that 
E(u∼t 0Xt, Xt - 1,c) = 0. Furthermore, because u∼t = ut - f1ut - 1, this condition in 
turn implies that

0 = E(u∼t 0Xt, Xt - 1,c)
= E(ut - f1ut - 1 0Xt, Xt - 1,c)
= E(ut 0Xt, Xt - 1,c) - f1E(ut - 1 0Xt, Xt - 1,c). (15.25)
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For the equality in Equation (15.25) to hold for general values of f1, it must 
be the case that both E(ut 0Xt, Xt - 1,c) = 0 and E(ut - 1 0Xt, Xt - 1,c) = 0. By 
shifting the time subscripts forward one time period, the condition that 
E(ut - 1 0Xt, Xt - 1,c) = 0 can be rewritten as

E(ut 0Xt + 1, Xt, Xt - 1,c) = 0, (15.26)

which (by the law of iterated expectations) implies that E(ut 0Xt, Xt - 1,c) = 0.
In summary, having the zero conditional mean assumption in Equation (15.24) 
hold for general values of f1 is equivalent to having the condition in Equation 
(15.26) hold.

The condition in Equation (15.26) is implied by Xt being strictly exogenous, 
but it is not implied by Xt being (past and present) exogenous. Thus the least 
squares assumptions for estimation of the distributed lag model in Equation 
(15.23) hold if Xt is strictly exogenous, but it is not enough that Xt be (past and 
present) exogenous.

Because the ADL representation [Equations (15.21) and (15.22)] is equivalent 
to the quasi-differenced representation [Equation (15.23)], the conditional mean 
assumption needed to estimate the coefficients of the quasi-differenced represen-
tation [that E(ut 0Xt + 1, Xt, Xt - 1,c) = 0] is also the conditional mean assumption 
for consistent estimation of the coefficients of the ADL representation.

We now turn to the two estimation strategies suggested by these two repre-
sentations: estimation of the ADL coefficients and estimation of the coefficients 
of the quasi-difference model.

OLS Estimation of the ADL Model
The first strategy is to use OLS to estimate the coefficients in the ADL model in 
Equation (15.21). As the derivation leading to Equation (15.21) shows, including 
the lag of Y and the extra lag of X as regressors makes the error term serially 
uncorrelated (under the assumption that the error follows a first order autoregression). 
Thus the usual OLS standard errors can be used; that is, HAC standard errors are 
not needed when the ADL model coefficients in Equation (15.21) are estimated 
by OLS.

The estimated ADL coefficients are not themselves estimates of the dynamic 
multipliers, but the dynamic multipliers can be computed from the ADL coeffi-
cients. A general way to compute the dynamic multipliers is to express the esti-
mated regression function as a function of current and past values of Xt, that is, to 
eliminate Yt from the estimated regression function. To do so, repeatedly substitute 
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expressions for lagged values of Yt into the estimated regression function. Specifi-
cally, consider the estimated regression function

Yn t = fn1Yt - 1 + dn0Xt + dn1Xt - 1 + dn2Xt - 2, (15.27)

where the estimated intercept has been omitted because it does not enter any 
expression for the dynamic multipliers. Lagging both sides of Equation (15.27) 
yields Yn t - 1 = fn 1Yt - 2 + dn0Xt - 1 + dn1Xt - 2 + dn2Xt - 3, so replacing Yn t - 1 in Equa-
tion (15.27) by this expression for Yn t - 1 and collecting terms yields

Yn t = fn1(fn 1Yt - 2 + dn0Xt - 1 + dn1Xt - 2 + dn2Xt - 3) + dn0Xt + dn1Xt - 1 + dn2Xt - 2

= dn0Xt + (dn1 + fn 1d
n

0)Xt - 1 + (dn2 + fn1d
n

1)Xt - 2 + fn 1d
n

2Xt - 3 + fn1
2Yt-2. (15.28)

Repeating this process by repeatedly substituting expressions for Yt - 2, Yt - 3, and 
so forth yields

Yn t = dn0Xt + (dn1 + fn 1d
n

0)Xt - 1 + (dn2 + fn 1d
n

1 + fn 1
2dn0)Xt - 2

+ fn1(dn2 + fn1d
n

1 + fn1
2dn0)Xt - 3 + fn1

2(dn2 + fn1d
n

1 + fn1
2dn0)Xt - 4 +g . (15.29)

The coefficients in Equation (15.29) are the estimators of the dynamic multipliers, 
computed from the OLS estimators of the coefficients in the ADL model in Equa-
tion (15.21). If the restrictions on the coefficients in Equation (15.22) were to hold 
exactly for the estimated coefficients, then the dynamic multipliers beyond the 
second (that is, the coefficients on Xt - 2, Xt - 3, and so forth) would all be zero.2

However, under this estimation strategy those restrictions will not hold exactly, 
so the estimated multipliers beyond the second in Equation (15.29) will generally 
be nonzero.

GLS Estimation
The second strategy for estimating the dynamic multipliers when Xt is strictly exog-
enous is to use generalized least squares (GLS), which entails estimating Equation 
(15.23). To describe the GLS estimator, we initially assume that f1 is known. 
Because in practice it is unknown, this estimator is infeasible, so it is called the 
infeasible GLS estimator. The infeasible GLS estimator, however, can be modified 
using an estimator of f1, which yields a feasible version of the GLS estimator.

2Substitute the equalities in Equation (15.22) to show that, if those equalities hold, then d2 + f1d1

+ f1
2d0 = 0.
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Infeasible GLS. Suppose that f1 were known; then the quasi-differenced variables 
X
∼

t and Y∼t could be computed directly. As discussed in the context of Equations 
(15.24) and (15.26), if Xt is strictly exogenous, then E(u∼t 0X∼t, X

∼
t-1,c) = 0. Thus, 

if Xt is strictly exogenous and if f1 is known, the coefficients a0, b1, and b2 in 
Equation (15.23) can be estimated by the OLS regression of Y∼t on X∼t and X∼t - 1

(including an intercept). The resulting estimator of b1 and b2—that is, the OLS 
estimator of the slope coefficients in Equation (15.23) when f1 is known—is the 
infeasible GLS estimator. This estimator is infeasible because f1 is unknown, so 
X
∼

t and Y∼t cannot be computed and thus these OLS estimators cannot actually be 
computed.

Feasible GLS. The feasible GLS estimator modifies the infeasible GLS estimator 
by using a preliminary estimator of f1, fn 1, to compute the estimated quasi-
differences. Specifically, the feasible GLS estimators of b1 and b2 are the OLS 
estimators of b1 and b2 in Equation (15.23), computed by regressing Y

∼n
t  on X∼n t

and X
∼n

t-1 (with an intercept), where X∼n t = Xt - fn1Xt - 1 and Y∼nt = Yt - fn1Yt - 1.
The preliminary estimator, fn1, can be computed by first estimating the dis-

tributed lag regression in Equation (15.18) by OLS, then using OLS to estimate 
f1 in Equation (15.19) with the OLS residuals un t replacing the unobserved regres-
sion errors ut. This version of the GLS estimator is called the Cochrane–Orcutt 
(1949) estimator.

An extension of the Cochrane–Orcutt method is to continue this process 
iteratively: Use the GLS estimator of b1 and b2 to compute revised estimators 
of ut; use these new residuals to re-estimate f1; use this revised estimator of f1

to compute revised estimated quasi-differences; use these revised estimated 
quasi-differences to re-estimate b1 and b2; and continue this process until the 
estimators of b1 and b2 converge. This is referred to as the iterated Cochrane– 
Orcutt estimator.

A nonlinear least squares interpretation of the GLS estimator. An equivalent 
interpretation of the GLS estimator is that it estimates the ADL model in Equa-
tion (15.21), imposing the parameter restrictions in Equation (15.22). These 
restrictions are nonlinear functions of the original parameters b0, b1, b2, and f1,
so this estimation cannot be performed using OLS. Instead, the parameters can 
be estimated by nonlinear least squares (NLLS). As discussed in Appendix 8.1, 
NLLS minimizes the sum of squared mistakes made by the estimated regression 
function, recognizing that the regression function is a nonlinear function of the 
parameters being estimated. In general, NLLS estimation can require sophisti-
cated algorithms for minimizing nonlinear functions of unknown parameters. 
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In the special case at hand, however, those sophisticated algorithms are not 
needed; rather, the NLLS estimator can be computed using the algorithm 
described previously for the iterated Cochrane–Orcutt estimator. Thus the iter-
ated Cochrane–Orcutt GLS estimator is in fact the NLLS estimator of the ADL 
coefficients, subject to the nonlinear constraints in Equation (15.22).

Efficiency of GLS. The virtue of the GLS estimator is that when X is strictly exog-
enous and the transformed errors u∼t are homoskedastic, it is efficient among lin-
ear estimators, at least in large samples. To see this, first consider the infeasible 
GLS estimator. If u∼t is homoskedastic, if f1 is known (so that X∼t and Y∼t can be 
treated as if they are observed), and if Xt is strictly exogenous, then the Gauss– 
Markov theorem implies that the OLS estimator of a0, b1, and b2 in Equation 
(15.23) is efficient among all linear conditionally unbiased estimators based on X∼t

and Y
∼

t, for t = 2, c, T, where the first observation (t = 1) is lost because of quasi-
differencing. That is, the OLS estimator of the coefficients in Equation (15.23) is the 
best linear unbiased estimator, or BLUE (Section 5.5). Because the OLS estimator 
of Equation (15.23) is the infeasible GLS estimator, this means that the infeasible 
GLS estimator is BLUE. The feasible GLS estimator is similar to the infeasible GLS 
estimator, except that f1 is estimated. Because the estimator of f1 is consistent and 
its variance is inversely proportional to T, the feasible and infeasible GLS estimators 
have the same variances in large samples, and the loss of information from the first 
observation (t = 1) is negligible when T is large. In this sense, if X is strictly exoge-
nous, then the feasible GLS estimator is BLUE in large samples. In particular, if X
is strictly exogenous, then GLS is more efficient than the OLS estimator of the dis-
tributed lag coefficients discussed in Section 15.3.

The Cochrane–Orcutt and iterated Cochrane–Orcutt estimators presented here 
are special cases of GLS estimation. In general, GLS estimation involves transform-
ing the regression model so that the errors are homoskedastic and serially uncorre-
lated, then estimating the coefficients of the transformed regression model by OLS. 
In general, the GLS estimator is consistent and BLUE in large samples if X is strictly 
exogenous, but is not consistent if X is only (past and present) exogenous. The math-
ematics of GLS involve matrix algebra, so they are postponed to Section 18.6.

The Distributed Lag Model with Additional 
Lags and AR(p) Errors
The foregoing discussion of the distributed lag model in Equations (15.18) and 
(15.19), which has a single lag of Xt and an AR(1) error term, carries over to the 
general distributed lag model with multiple lags and an AR(p) error term.
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The general distributed lag model with autoregressive errors. The general 
distributed lag model with r lags and an AR(p) error term is

Yt = b0 + b1Xt + b2Xt - 1 + g + br + 1Xt - r + ut, (15.30)

ut = f1ut - 1 + f2ut - 2 + g + fput - p + u∼t, (15.31)

where b1,c, br + 1 are the dynamic multipliers and f1,c, fp are the autoregressive 
coefficients of the error term. Under the AR(p) model for the errors, u∼t is serially 
uncorrelated.

Algebra of the sort that led to the ADL model in Equation (15.21) shows that 
Equations (15.30) and (15.31) imply that Yt can be written in ADL form:

Yt = a0 + f1Yt-1 + g + fpYt-p + d0Xt + d1Xt - 1 + g+ dqXt-q + u∼t, (15.32)

where q = r + p and d0,c, dq are functions of the b’s and f’s in Equations 
(15.30) and (15.31). Equivalently, the model of Equations (15.30) and (15.31) can 
be written in quasi-difference form as

Y
∼

t = a0 + b1X
∼

t + b2X
∼

t - 1 +g + br + 1X
∼

t - r + u∼t, (15.33)

where Y
∼

t = Yt - f1Yt - 1 -g -fpYt - p and X∼t = Xt - f1Xt - 1 -g -fpXt - p .

Conditions for estimation of the ADL coefficients. The foregoing discussion of the 
conditions for consistent estimation of the ADL coefficients in the AR(1) case 
extends to the general model with AR(p) errors. The conditional mean zero 
assumption for Equation (15.33) is that

E(u∼t 0 X∼t, X
∼

t-1,c) = 0. (15.34)

Because u∼t = ut - f1ut - 1 - f2ut - 2 -g -fput-p and X∼t = Xt - f1Xt - 1 -g -
fpXt - p, this condition is equivalent to

E(ut 0Xt, Xt - 1,c) - f1E(ut - 1 0Xt, Xt - 1,c)
- g - fpE(ut - p 0Xt, Xt - 1,c) = 0. (15.35)

For Equation (15.35) to hold for general values of f1,c, fp, it must be the case 
that each of the conditional expectations in Equation (15.35) is zero; equivalently, 
it must be the case that

E(ut 0Xt + p, Xt + p - 1, Xt + p - 2,c) = 0. (15.36)
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This condition is not implied by Xt being (past and present) exogenous, but it is 
implied by Xt being strictly exogenous. In fact, in the limit when p is infinite (so that 
the error term in the distributed lag model follows an infinite-order autoregression), 
the condition in Equation (15.36) becomes the condition in Key Concept 15.1 for 
strict exogeneity.

Estimation of the ADL model by OLS. As in the distributed lag model with a single 
lag and an AR(1) error term, the dynamic multipliers can be estimated from the 
OLS estimators of the ADL coefficients in Equation (15.32). The general formu-
las are similar to, but more complicated than, those in Equation (15.29) and are best 
expressed using lag multiplier notation; these formulas are given in Appendix 15.2. 
In practice, modern regression software designed for time series regression analysis 
does these computations for you.

Estimation by GLS. Alternatively, the dynamic multipliers can be estimated 
by (feasible) GLS. This entails OLS estimation of the coefficients of the quasi-
differenced specification in Equation (15.33), using estimated quasi-differences. 
The estimated quasi-differences can be computed using preliminary estimators of 
the autoregressive coefficients f1,c,fp, as in the AR(1) case. The GLS estimator 
is asymptotically BLUE, in the sense discussed earlier for the AR(1) case.

Estimation of dynamic multipliers under strict exogeneity is summarized in 
Key Concept 15.4.

Which to use: ADL or GLS? The two estimation options, OLS estimation of the 
ADL coefficients and GLS estimation of the distributed lag coefficients, have 
both advantages and disadvantages.

The advantage of the ADL approach is that it can reduce the number of 
parameters needed for estimating the dynamic multipliers, compared to OLS esti-
mation of the distributed lag model. For example, the estimated ADL model in 
Equation (15.27) led to the infinitely long estimated distributed lag representation 
in Equation (15.29). To the extent that a distributed lag model with only r lags is 
really an approximation to a longer-lagged distributed lag model, the ADL model 
can provide a simple way to estimate those many longer lags using only a few 
unknown parameters. Thus in practice it might be possible to estimate the ADL 
model in Equation (15.39) with values of p and q much smaller than the value of 
r needed for OLS estimation of the distributed lag coefficients in Equation 
(15.37). In other words, the ADL specification can provide a compact, or parsi-
monious, summary of a long and complex distributed lag (see Appendix 15.2 for 
additional discussion).
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The advantage of the GLS estimator is that, for a given lag length r in the 
distributed lag model, the GLS estimator of the distributed lag coefficients is 
more efficient than the ADL estimator, at least in large samples. In practice, then, 
the advantage of using the ADL approach arises because the ADL specification 
can permit estimating fewer parameters than are estimated by GLS.

15.6 Orange Juice Prices and Cold Weather

This section uses the tools of time series regression to squeeze additional 
insights from our data on Florida temperatures and orange juice prices. First, 
how long lasting is the effect of a freeze on the price? Second, has this dynamic 
effect been stable or has it changed over the 51 years spanned by the data and, 
if so, how?

We begin this analysis by estimating the dynamic causal effects using the 
method of Section 15.3, that is, by OLS estimation of the coefficients of a distributed 
lag regression of the percentage change in prices (%ChgPt) on the number of freez-
ing degree days in that month (FDDt) and its lagged values. For the distributed lag 

Estimation of Dynamic Multipliers Under Strict Exogeneity

The general distributed lag model with r lags and AR(p) error term is

Yt = b0 + b1Xt + b2Xt - 1 +g + br + 1Xt - r + ut (15.37)

ut = f1ut - 1 + f2ut - 2 +g + fput - p + u∼t . (15.38)

If Xt is strictly exogenous, then the dynamic multipliers b1,c, br + 1 can be 
estimated by first using OLS to estimate the coefficients of the ADL model

Yt = a0 + f1Yt - 1 +g + fpYt - p + d0Xt + d1Xt - 1 + g + dqXt - q + u∼t,
(15.39)

where q = r + p, and then computing the dynamic multipliers using regression 
software. Alternatively, the dynamic multipliers can be estimated by estimating 
the distributed lag coefficients in Equation (15.37) by GLS.

KEY CONCEPT

15.4
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estimator to be consistent, FDD must be (past and present) exogenous. As dis-
cussed in Section 15.2, this assumption is reasonable here. Humans cannot influence 
the weather, so treating the weather as if it were randomly assigned experimentally 
is appropriate. Because FDD is exogenous, we can estimate the dynamic causal 
effects by OLS estimation of the coefficients in the distributed lag model of 
Equation (15.4) in Key Concept 15.1.

As discussed in Sections 15.3 and 15.4, the error term can be serially corre-
lated in distributed lag regressions, so it is important to use HAC standard errors, 
which adjust for this serial correlation. For the initial results, the truncation 
parameter for the Newey–West standard errors (m in the notation of Section 15.4) 
was chosen using the rule in Equation (15.17): Because there are 612 monthly 
observations, according to that rule m = 0.75 T 1>3 = 0.75 * 6121>3 = 6.37, but 
because m must be an integer, this was rounded up to m = 7; the sensitivity of 
the standard errors to this choice of truncation parameter is investigated 
below.

The results of OLS estimation of the distributed lag regression of %ChgPt

on FDDt, FDDt - 1,c, FDDt - 18 are summarized in column (1) of Table 15.1. 
The coefficients of this regression (only some of which are reported in the table) 
are estimates of the dynamic causal effect on orange juice price changes (in percent) 
for the first 18 months following a unit increase in the number of freezing degree 
days in a month. For example, a single freezing degree day is estimated to 
increase prices by 0.50% over the month in which the freezing degree day 
occurs. The subsequent effect on price in later months of a freezing degree day 
is less: After 1 month the estimated effect is to increase the price by a further 
0.17%, and after 2 months the estimated effect is to increase the price by an 
additional 0.07%. The R2 from this regression is 0.12, indicating that much of 
the monthly variation in orange juice prices is not explained by current and past 
values of FDD.

Plots of dynamic multipliers can convey information more effectively than 
tables such as Table 15.1. The dynamic multipliers from column (1) of Table 15.1 
are plotted in Figure 15.2a along with their 95% confidence intervals, computed 
as the estimated coefficient {1.96 HAC standard errors. After the initial sharp 
price rise, subsequent price rises are less, although prices are estimated to rise 
slightly in each of the first 6 months after the freeze. As can be seen from Figure 
15.2a, for months other than the first the dynamic multipliers are not statistically 
significantly different from zero at the 5% significance level, although they are 
estimated to be positive through the seventh month.

Column (2) of Table 15.1 contains the cumulative dynamic multipliers for this 
specification, that is, the cumulative sum of the dynamic multipliers reported in 
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TABLE 15.1  The Dynamic Effect of a Freezing Degree Day (FDD) on the Price of Orange Juice: 
Selected Estimated Dynamic Multipliers and Cumulative Dynamic Multipliers

(1) (2) (3) (4)

Lag Number Dynamic Multipliers Cumulative Multipliers Cumulative Multipliers Cumulative Multipliers

0 0.50
(0.14)

0.50
(0.14)

0.50
(0.14)

0.51
(0.15)

1 0.17
(0.09)

0.67
(0.14)

0.67
(0.13)

0.70
(0.15)

2 0.07
(0.06)

0.74
(0.17)

0.74
(0.16)

0.76
(0.18)

3 0.07
(0.04)

0.81
(0.18)

0.81
(0.18)

0.84
(0.19)

4 0.02
(0.03)

0.84
(0.19)

0.84
(0.19)

0.87
(0.20)

5 0.03
(0.03)

0.87
(0.19)

0.87
(0.19)

0.89
(0.20)

6
.
.
.

0.03
(0.05)

0.90
(0.20)

0.90
(0.21)

0.91
(0.21)

12
.
.
.

- 0.14
(0.08)

0.54
(0.27)

0.54
(0.28)

0.54
(0.28)

18 0.00
(0.02)

0.37
(0.30)

0.37
(0.31)

0.37
(0.30)

Monthly indicators? No No No Yes
F = 1.01

(p = 0.43)

HAC standard 
error truncation 
parameter (m)

7 7 14 7

All regressions were estimated by OLS using monthly data (described in Appendix 15.1) from January 1950 to December 2000, 
for a total of T = 612 monthly observations. The dependent variable is the monthly percentage change in the price of orange 
juice (%ChgPt). Regression (1) is the distributed lag regression with the monthly number of freezing degree days and 18 of its 
lagged values, that is, FDDt, FDDt - 1,c, FDDt - 18, and the reported coefficients are the OLS estimates of the dynamic multipli-
ers. The cumulative multipliers are the cumulative sum of estimated dynamic multipliers. All regressions include an intercept, 
which is not reported. Newey–West HAC standard errors, computed using the truncation number given in the final row, are 
reported in parentheses.
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FIGURE 15.2  The Dynamic Effect of a Freezing Degree Day (FDD) on the Price of Orange Juice

The estimated dynamic multipliers show that a freeze leads to an immediate increase in prices. Future price rises are 

much smaller than the initial impact. The cumulative multiplier shows that freezes have a persistent effect on the level 

of orange juice prices, with prices peaking seven months after the freeze.

Lag (in months)
(a) Estimated Dynamic Multipliers and 95% Confidence Interval

(b) Estimated Cumulative Dynamic Multipliers and 95% Confidence Interval

Multiplier

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

Estimated multiplier
95% Confidence interval

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Estimated multiplier 95% Confidence interval

Lag (in months)

Multiplier



620 CHAPTER 15 Estimation of Dynamic Causal Effects

column (1). These dynamic multipliers are plotted in Figure 15.2b along with their 
95% confidence intervals. After 1 month, the cumulative effect of the freezing 
degree day is to increase prices by 0.67%, after 2 months the price is estimated to 
have risen by 0.74%, and after 6 months the price is estimated to have risen by 
0.90%. As can be seen in Figure 15.2b, these cumulative multipliers increase 
through the seventh month, because the individual dynamic multipliers are posi-
tive for the first 7 months. In the eighth month, the dynamic multiplier is negative, 
so the price of orange juice begins to fall slowly from its peak. After 18 months, 
the cumulative increase in prices is only 0.37%; that is, the long-run cumulative 
dynamic multiplier is only 0.37%. This long-run cumulative dynamic multiplier is 
not statistically significantly different from zero at the 10% significance level 
(t = 0.37>0.30 = 1.23).

Sensitivity analysis. As in any empirical analysis, it is important to check whether 
these results are sensitive to changes in the details of the empirical analysis. 
We therefore examine three aspects of this analysis: sensitivity to the computation 
of the HAC standard errors; an alternative specification that investigates poten-
tial omitted variable bias; and an analysis of the stability over time of the esti-
mated multipliers.

First, we investigate whether the standard errors reported in the second col-
umn of Table 15.1 are sensitive to different choices of the HAC truncation param-
eter m. In column (3), results are reported for m = 14, twice the value used in 
column (2). The regression specification is the same as in column (2), so the esti-
mated coefficients and dynamic multipliers are identical; only the standard errors 
differ but, as it happens, not by much. We conclude that the results are insensitive 
to changes in the HAC truncation parameter.

Second, we investigate a possible source of omitted variable bias. Freezes in 
Florida are not randomly assigned throughout the year, but rather occur in the 
winter (of course). If demand for orange juice is seasonal (is demand for orange 
juice greater in the winter than the summer?), then the seasonal patterns in orange 
juice demand could be correlated with FDD, resulting in omitted variable bias. 
The quantity of oranges sold for juice is endogenous: Prices and quantities are 
simultaneously determined by the forces of supply and demand. Thus, as dis-
cussed in Section 9.2, including quantity would lead to simultaneity bias. Never-
theless, the seasonal component of demand can be captured by including seasonal 
variables as regressors. The specification in column (4) of Table 15.1 therefore 
includes 11 monthly binary variables, one indicating whether the month is Janu-
ary, one indicating February, and so forth (as usual one binary variable must be 
omitted to prevent perfect multicollinearity with the intercept). These monthly 
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indicator variables are not jointly statistically significant at the 10% level 
(p = 0.43), and the estimated cumulative dynamic multipliers are essentially the 
same as for the specifications excluding the monthly indicators. In summary, sea-
sonal fluctuations in demand are not an important source of omitted variable bias.

Have the dynamic multipliers been stable over time?3 To assess the stability of 
the dynamic multipliers, we need to check whether the distributed lag regression 
coefficients have been stable over time. Because we do not have a specific break 
date in mind, we test for instability in the regression coefficients using the Quandt 
likelihood ratio (QLR) statistic (Key Concept 14.9). The QLR statistic (with 15% 
trimming and HAC variance estimator), computed for the regression of column (1) 
with all coefficients interacted, has a value of 21.19, with q = 20 degrees of 
freedom (the coefficients on FDDt, its 18 lags, and the intercept). The 1% critical 
value in Table 14.5 is 2.43, so the QLR statistic rejects at the 1% significance level. 
These QLR regressions have 40 regressors, a large number; recomputing them for 
six lags only (so that there are 16 regressors and q = 8) also results in rejection at 
the 1% level. Thus the hypothesis that the dynamic multipliers are stable is 
rejected at the 1% significance level.

One way to see how the dynamic multipliers have changed over time is to 
compute them for different parts of the sample. Figure 15.3 plots the estimated 
cumulative dynamic multipliers for the first third (1950–1966), middle third 
(1967–1983), and final third (1984–2000) of the sample, computed by running 
separate regressions on each subsample. These estimates show an interesting and 
noticeable pattern. In the 1950s and early 1960s, a freezing degree day had a large 
and persistent effect on the price. The magnitude of the effect on price of a freez-
ing degree day diminished in the 1970s, although it remained highly persistent. In 
the late 1980s and 1990s, the short-run effect of a freezing degree day was the 
same as in the 1970s, but it became much less persistent and was essentially elim-
inated after a year. These estimates suggest that the dynamic causal effect on 
orange juice prices of a Florida freeze became smaller and less persistent over the 
second half of the twentieth century. The box “Orange Trees on the March” dis-
cusses one possible explanation for the instability of the dynamic causal effects.

ADL and GLS estimates. As discussed in Section 15.5, if the error term in the 
distributed lag regression is serially correlated and FDD is strictly exogenous, it 
is possible to estimate the dynamic multipliers more efficiently than by OLS 

3The discussion of stability in this subsection draws on material from Section 14.7 and can be skipped 
if that material has not been covered.
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estimation of the distributed lag coefficients. Before using either the GLS esti-
mator or the estimator based on the ADL model, however, we need to consider 
whether FDD is in fact strictly exogenous. True, humans cannot affect the daily 
weather, but does that mean that the weather is strictly exogenous? Does the 
error term ut in the distributed lag regression have conditional mean zero, given 
past, present, and future values of FDD?

The error term in the population counterpart of the distributed lag regression 
in column (1) of Table 15.1 is the discrepancy between the price and its population 
prediction based on the past 18 months of weather. This discrepancy might arise 
for many reasons, one of which is that traders use forecasts of the weather in 
Orlando. For example, if an especially cold winter is forecasted, then traders 
would incorporate this into the price, so the price would be above its predicted 
value based on the population regression; that is, the error term would be positive. 
If this forecast is accurate, then in fact future weather would turn out to be cold. 
Thus future freezing degree days would be positive (Xt + 1 7 0) when the current 
price is unusually high (ut 7 0), so corr(Xt + 1, ut) is positive. Stated more simply, 
although orange juice traders cannot influence the weather, they can—and do—
predict it (see the box). Consequently, the error term in the price/weather regression 

FIGURE 15.3 Estimated Cumulative Dynamic Multipliers from Different Sample Periods
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Orange Trees on the March

1993. With the groves farther south, northern frosts 

damage a smaller fraction of the crop, and—as indi-

cated by the dynamic multipliers in Figure 15.3—

price becomes less sensitive to temperatures in the 

more northern city of Orlando.

OK, the orange trees themselves might not have 

been on the march—that can be left to MacBeth—

but southern migration of the orange groves does 

give new meaning to the term “nonstationarity.”4

4We are grateful to Professor James Cobbe of Florida State 
University for telling us about the southern movement of 
the orange groves.

W hy do the dynamic multipliers in Figure 15.3 

vary over time? One possible explanation 

is changes in markets, but another is that the trees 

moved south.

According to the Florida Department of Citrus, 

the severe freezes in the 1980s, which are visible 

in Figure 15.1(c), spurred citrus growers to seek a 

warmer climate. As shown in Figure 15.4, the num-

ber of acres of orange trees in the more frost-prone 

northern and western counties fell from 232,000 

acres in 1981 to 53,000 acres in 1985, and orange 

acreage in southern and central counties subse-

quently increased from 413,000 in 1985 to 588,000 in 

FIGURE 15.4 Orange Grove Acreage in Regions of Florida
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is correlated with future weather. In other words, FDD is exogenous, but if this 
reasoning is true, it is not strictly exogenous, and the GLS and ADL estimators 
will not be consistent estimators of the dynamic multipliers. These estimators 
therefore are not used in this application.

15.7 Is Exogeneity Plausible? Some Examples

As in regression with cross-sectional data, the interpretation of the coefficients in 
a distributed lag regression as causal dynamic effects hinges on the assumption that 
X is exogenous. If Xt or its lagged values are correlated with ut, then the conditional 
mean of ut will depend on Xt or its lags, in which case X is not (past and present) 
exogenous. Regressors can be correlated with the error term for several reasons, 
but with economic time series data a particularly important concern is that there 
could be simultaneous causality, which (as discussed in Sections 9.2 and 12.1) 
results in endogenous regressors. In Section 15.6, we discussed the assumptions of 
exogeneity and strict exogeneity of freezing degree days in detail. In this section, 
we examine the assumption of exogeneity in four other economic applications.

U.S. Income and Australian Exports
The United States is an important source of demand for Australian exports. Pre-
cisely how sensitive Australian exports are to fluctuations in U.S. aggregate income 
could be investigated by regressing Australian exports to the United States against 
a measure of U.S. income. Strictly speaking, because the world economy is inte-
grated, there is simultaneous causality in this relationship: A decline in Australian 
exports reduces Australian income, which reduces demand for imports from the 
United States, which reduces U.S. income. As a practical matter, however, this effect 
is very small because the Australian economy is much smaller than the U.S. econ-
omy. Thus U.S. income plausibly can be treated as exogenous in this regression.

In contrast, in a regression of European Union exports to the United States 
against U.S. income, the argument for treating U.S. income as exogenous is less 
convincing because demand by residents of the European Union for U.S. exports 
constitutes a substantial fraction of the total demand for U.S. exports. Thus a 
decline in U.S. demand for EU exports would decrease EU income, which in turn 
would decrease demand for U.S. exports and thus decrease U.S. income. Because 
of these linkages through international trade, EU exports to the United States and 
U.S. income are simultaneously determined, so in this regression U.S. income 
arguably is not exogenous. This example illustrates a more general point that 



15.7  Is Exogeneity Plausible? Some Examples 625

whether a variable is exogenous depends on the context: U.S. income is plausibly 
exogenous in a regression explaining Australian exports, but not in a regression 
explaining EU exports.

Oil Prices and Inflation
Ever since the oil price increases of the 1970s, macroeconomists have been inter-
ested in estimating the dynamic effect of an increase in the international price of 
crude oil on the U.S. rate of inflation. Because oil prices are set in world markets 
in large part by foreign oil-producing countries, initially one might think that oil 

NEWS FLASH: Commodity Traders Send Shivers Through Disney World

in predicting cold weather in Florida that a price 

rise during the trading day actually predicted fore-

cast errors in the official U.S. government weather 

forecasts for that night.

Roll’s study is also interesting for what he did not

find: Although his detailed weather data explained 

some of the variation in daily OJ futures prices, most 

of the daily movements in OJ prices remained unex-

plained. He therefore suggested that the OJ futures 

market exhibits “excess volatility,” that is, more vol-

atility than can be attributed to movements in funda-

mentals. Understanding why (and if) there is excess 

volatility in financial markets is now an important 

area of research in financial economics.

Roll’s finding also illustrates the difference 

between forecasting and estimating dynamic causal 

effects. Price changes on the OJ futures market are 

a useful predictor of cold weather, but that does not 

mean that commodity traders are so powerful that 

they can cause the temperature to fall. Visitors to 

Disney World might shiver after an OJ futures con-

tract price rise, but they are not shivering because of 

the price rise—unless, of course, they went short in 

the OJ futures market.

A lthough the weather at Disney World in 

Orlando, Florida, is usually pleasant, now and 

then a cold spell can settle in. If you are visiting 

Disney World on a winter evening, should you bring 

a warm coat? Some people might check the weather 

forecast on TV, but those in the know can do better: 

They can check that day’s closing price on the New 

York orange juice futures market!

The financial economist Richard Roll under-

took a detailed study of the relationship between 

orange juice prices and the weather. Roll (1984) 

examined the effect on prices of cold weather 

in Orlando, but he also studied the “effect” of 

changes in the price of an orange juice futures con-

tract (a contract to buy frozen orange juice con-

centrate at a specified date in the future) on the 

weather. Roll used daily data from 1975 to 1981 

on the prices of OJ futures contracts traded at 

the New York Cotton Exchange and on daily and 

overnight temperatures in Orlando. He found that 

a rise in the price of the futures contract during the 

trading day in New York predicted cold weather, 

in particular a freezing spell, in Orlando over the 

following night. In fact, the market was so effective 
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prices are exogenous. But oil prices are not like the weather: Members of OPEC 
set oil production levels strategically, taking many factors, including the state of 
the world economy, into account. To the extent that oil prices (or quantities) are 
set based on an assessment of current and future world economic conditions, 
including inflation in the United States, oil prices are endogenous.

Monetary Policy and Inflation
The central bankers in charge of monetary policy need to know the effect on infla-
tion of monetary policy. Because an important tool of monetary policy is the 
short-term interest rate (the “short rate”), they need to know the dynamic causal 
effect on inflation of a change in the short rate. Although the short rate is deter-
mined by the central bank, it is not set by the central bankers at random (as it 
would be in an ideal randomized experiment) but rather is set endogenously: The 
central bank determines the short rate based on an assessment of the current and 
future states of the economy, especially including the current and future rates of 
inflation. The rate of inflation in turn depends on the interest rate (higher interest 
rates reduce aggregate demand), but the interest rate depends on the rate of infla-
tion, its past value, and its (expected) future value. Thus the short rate is endog-
enous, and the causal dynamic effect of a change in the short rate on future 
inflation cannot be consistently estimated by an OLS regression of the rate of 
inflation on current and past interest rates.

The Growth Rate of GDP and the Term Spread
In Chapter 14 lagged values of the term spread were used to forecast future values 
of the growth rate of GDP. Because lags of the term spread happened in the past, 
one might initially think that there cannot be feedback from current growth rates 
of GDP to past values of the term spread, so past values of the term spread can 
be treated as exogenous. But past values of the term spread were not randomly 
assigned in an experiment; instead, the past term spread was simultaneously 
determined with past values of the growth rate of GDP. Because GDP and the 
interest rates making up the term spread are simultaneously determined, the 
other factors that determine the growth rate of GDP contained in ut are corre-
lated with past values of the term spread; that is, the term spread is not exogenous. 
It follows that the term spread is not strictly exogenous, so the dynamic multipli-
ers computed using an ADL model [for example, the ADL model in Equation 
(14.17)] are not consistent estimates of the dynamic causal effect on the growth 
rate of GDP of a change in the term spread.
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15.8 Conclusion

Time series data provide the opportunity to estimate the time path of the effect on 
Y of a change in X, that is, the dynamic causal effect on Y of a change in X. To 
estimate dynamic causal effects using a distributed lag regression, however, X must 
be exogenous, as it would be if it were set randomly in an ideal randomized exper-
iment. If X is not just exogenous but is strictly exogenous, then the dynamic causal 
effects can be estimated using an autoregressive distributed lag model or by GLS.

In some applications, such as estimating the dynamic causal effect on the 
price of orange juice of freezing weather in Florida, a convincing case can be 
made that the regressor (freezing degree days) is exogenous; thus the dynamic 
causal effect can be estimated by OLS estimation of the distributed lag coeffi-
cients. Even in this application, however, economic theory suggests that the 
weather is not strictly exogenous, so the ADL or GLS methods are inappropri-
ate. Moreover, in many relations of interest to econometricians, there is simulta-
neous causality, so the regressor in these specifications are not exogenous, strictly 
or otherwise. Ascertaining whether the regressor is exogenous (or strictly exog-
enous) ultimately requires combining economic theory, institutional knowledge, 
and careful judgment.

Summary

1. Dynamic causal effects in time series are defined in the context of a random-
ized experiment, where the same subject (entity) receives different randomly 
assigned treatments at different times. The coefficients in a distributed lag 
regression of Y on X and its lags can be interpreted as the dynamic causal 
effects when the time path of X is determined randomly and independently 
of other factors that influence Y.

2. The variable X is (past and present) exogenous if the conditional mean of 
the error ut in the distributed lag regression of Y on current and past values 
of X does not depend on current and past values of X. If in addition the con-
ditional mean of ut does not depend on future values of X, then X is strictly 
exogenous.

3. If X is exogenous, then the OLS estimators of the coefficients in a distributed 
lag regression of Y on current and past values of X are consistent estima-
tors of the dynamic causal effects. In general, the error ut in this regression 
is serially correlated, so conventional standard errors are misleading, and 
HAC standard errors must be used instead.



628 CHAPTER 15 Estimation of Dynamic Causal Effects

4. If X is strictly exogenous, then the dynamic multipliers can be estimated 
using OLS estimation of an ADL model or using GLS.

5. Exogeneity is a strong assumption that often fails to hold in economic time 
series data because of simultaneous causality, and the assumption of strict
exogeneity is even stronger.

Key Terms

dynamic causal effect (589)
distributed lag model (595)
exogeneity (596)
strict exogeneity (596)
dynamic multiplier (600)
impact effect (600)
cumulative dynamic multiplier (600)
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multiplier (601)
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(604)
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Newey–West variance estimator (605)
generalized least squares (GLS) (606)
quasi-difference (608)
infeasible GLS estimator (612)
feasible GLS estimator (612)

Review the Concepts

15.1 In the 1970s a common practice was to estimate a distributed lag model
relating changes in nominal gross domestic product (Y) to current and 
past changes in the money supply (X). Under what assumptions will this 
regression estimate the causal effects of money on nominal GDP? Are 
these assumptions likely to be satisfied in a modern economy like that of 
the United States?

15.2 Suppose that X is strictly exogenous. A researcher estimates an ADL(1,1) 
model, calculates the regression residual, and finds the residual to be highly 
serially correlated. Should the researcher estimate a new ADL model with 

MyEconLab Can Help You Get a Better Grade

MyEconLab If your exam were tomorrow, would you be ready? For each chapter,  
MyEconLab Practice Tests and Study Plan help you prepare for your exams. 
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For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
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additional lags or simply use HAC standard errors for the ADL(1,1) esti-
mated coefficients?

15.3 Suppose that a distributed lag regression is estimated, where the dependent 
variable is ∆Yt instead of Yt. Explain how you would compute the dynamic 
multipliers of Xt on Yt.

15.4 Suppose that you added FDDt + 1 as an additional regressor in Equation 
(15.2). If FDD is strictly exogenous, would you expect the coefficient on 
FDDt + 1 to be zero or nonzero? Would your answer change if FDD is exog-
enous but not strictly exogenous?

Exercises

15.1 Increases in oil prices have been blamed for several recessions in developed 
countries. To quantify the effect of oil prices on real economic activity, 
researchers have run regressions like those discussed in this chapter. Let 
GDPt denote the value of quarterly gross domestic product in the United 
States and let Yt = 100ln(GDPt>GDPt - 1) be the quarterly percentage 
change in GDP. James Hamilton, an econometrician and macroeconomist, 
has suggested that oil prices adversely affect that economy only when they 
jump above their values in the recent past. Specifically, let Ot equal the 
greater of zero or the percentage point difference between oil prices at 
date t and their maximum value during the past 3 years. A distributed lag 
regression relating Yt and Ot, estimated over 1960:Q1–2013:Q4, is

Yn t = 1.0 - 0.007Ot - 0.015Ot - 1 - 0.019Ot - 2 - 0.024Ot - 3 - 0.037Ot - 4

(0.1) (0.013)  (0.011)   (0.011) (0.010)   (0.012)

-0.012Ot - 5 + 0.005Ot - 6 - 0.008Ot - 7 + 0.006Ot - 8.
(0.008)  (0.010)   (0.008)  (0.008)

a. Suppose that oil prices jump 25% above their previous peak value 
and stay at this new higher level (so that Ot = 25 and Ot + 1 = Ot + 2 =
g = 0). What is the predicted effect on output growth for each 
quarter over the next 2 years?

b. Construct a 95% confidence interval for your answers in (a).

c. What is the predicted cumulative change in GDP growth over 8 quarters?

d. The HAC F-statistic testing whether the coefficients on Ot and its lags 
are zero is 5.79. Are the coefficients significantly different from zero?



630 CHAPTER 15 Estimation of Dynamic Causal Effects

15.2 Macroeconomists have also noticed that interest rates change following oil 
price jumps. Let Rt denote the interest rate on 3-month Treasury bills (in 
percentage points at an annual rate). The distributed lag regression relat-
ing the change in Rt (∆Rt) to Ot estimated over 1960:Q1–2013:Q4 is

∆Rt = 0.03 + 0.013Ot + 0.013Ot - 1 - 0.004Ot - 2 - 0.024Ot - 3 - 0.000Ot - 4

(0.05) (0.010) (0.010)  (0.008) (0.015) (0.010)

+ 0.006Ot - 5 - 0.005Ot - 6 - 0.018Ot - 7 - 0.004Ot - 8.
(0.015) (0.015) (0.010)   (0.006)

a. Suppose that oil prices jump 25% above their previous peak value 
and stay at this new higher level (so that Ot = 25 and Ot + 1 =
Ot + 2 =g = 0). What is the predicted change in interest rates for 
each quarter over the next 2 years?

b. Construct 95% confidence intervals for your answers to (a).

c. What is the effect of this change in oil prices on the level of interest rates 
in period t + 8? How is your answer related to the cumulative multiplier?

d. The HAC F-statistic testing whether the coefficients on Ot and its lags 
are zero is 1.93. Are the coefficients significantly different from zero?

15.3 Consider two different randomized experiments. In experiment A, oil prices 
are set randomly, and the central bank reacts according to its usual policy 
rules in response to economic conditions, including changes in the oil price. In 
experiment B, oil prices are set randomly, and the central bank holds interest 
rates constant and in particular does not respond to the oil price changes. In 
both experiments, GDP growth is observed. Now suppose that oil prices are 
exogenous in the regression in Exercise 15.1. To which experiment, A or B, 
does the dynamic causal effect estimated in Exercise 15.1 correspond?

15.4 Suppose that oil prices are strictly exogenous. Discuss how you could 
improve on the estimates of the dynamic multipliers in Exercise 15.1.

15.5 Derive Equation (15.7) from Equation (15.4) and show that d0 = b0,
d1 = b1, d2 = b1 + b2, d3 = b1 + b2 + b3 (etc.). (Hint: Note that Xt =
∆Xt + ∆Xt - 1 + g + ∆Xt - p + 1 + Xt - p .)

15.6 Consider the regression model Yt = b0 + b1Xt + ut, where ut follows the 
stationary AR(1) model ut = f1ut - 1 + u∼t with u∼t i.i.d. with mean 0 and 
variance s2

u∼ and 0f1 0 6 1; the regressorXt follows the stationary AR(1) 
model Xt = g1Xt - 1 + et with et i.i.d. with mean 0 and variance s2

e and 
0g 0 6 1; and et is independent of u∼i for all t and i.
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a. Show that var(ut) =
s 2

u∼

1 - f2
1

 and var(Xt) =
s2

e

1 - g2
1

.

b. Show that cov(ut, ut - j) = f j
1var(ut) and cov(Xt, Xt - j) = gj

1var(Xt).

c. Show that corr(ut, ut - j) = f j
1 and corr(Xt, Xt - j) = gj

1.

d. Consider the terms s2
v and ƒT in Equation (15.14).

i. Show that s2
v = s2

Xs
2
u, where s2

X is the variance of X and s2
u is the 

variance of u.

ii. Derive an expression for f ∞ .

15.7 Consider the regression model Yt = b0 + b1Xt + ut, where ut follows the 
stationary AR(1) model ut = f1ut - 1 + u∼t with u∼t i.i.d. with mean 0 and 
variance s2

u∼ and 0f1 0 6 1.

a. Suppose that Xt is independent of u∼j for all t and j. Is Xt exogenous 
(past and present)? Is Xt strictly exogenous (past, present, and future)?

b. Suppose that Xt = u∼t + 1. Is Xt exogenous? Is Xt strictly exogenous?

15.8 Consider the model in Exercise 15.7 with Xt = u∼t + 1.

a. Is the OLS estimator of b1 consistent? Explain.

b. Explain why the GLS estimator of b1 is not consistent.

c. Show that the infeasible GLS estimator bnGLS
1 ¡p

b1 -
f1

1 + f2
1
.

[Hint: Use the omitted variable formula (6.1) applied to the quasi-
differenced regression in Equation (15.23)].

15.9 Consider the “constant-term-only” regression model Yt = b0 + ut, where 
ut follows the stationary AR(1) model ut = f1ut - 1 + u∼t with u∼t i.i.d. with 
mean 0 and variance s2

u∼ and 0f1 0 6 1.

a. Show that the OLS estimator is bn0 = T -1gT
t= 1Yt.

b. Show that the (infeasible) GLS estimator is bnGLS
0 =

(1 - f1)
- 1(T - 1) - 1gT

t= 2(Yt - f1Yt - 1). [Hint: The GLS estimator 
of b0 is (1 - f1)

-1 multiplied by the OLS estimator of a0 in Equation 
(15.23). Why?]

c. Show that bnGLS
0  can be written as bnGLS

0 = (T - 1)-1gT - 1
t= 2 Yt +

(1 - f1)
-1(T - 1)-1(YT - f1Y1). [Hint: Rearrange the formula 

in (b).]

d. Derive the difference bn0 - bnGLS
0  and discuss why it is likely to be 

small when T is large.
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15.10 Consider the ADL model Yt = 3.1 + 0.4Yt - 1 + 2.0Xt - 0.8Xt - 1 + u∼t,
where Xt is strictly exogenous.

a. Derive the impact effect of X on Y.

b. Derive the first five dynamic multipliers.

c. Derive the first five cumulative multipliers.

d. Derive the long-run cumulative dynamic multiplier.

15.11 Suppose that a(L) = (1 - fL), with 0f1 0 6 1, and b(L) = 1 + fL +
f2L2 + f3L3c.

a. Show that the product b(L)a(L) = 1, so that b(L) = a(L) - 1.

b. Why is the restriction 0f1 0 6 1 important?

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website, http://www.pearsonhighered.com/stock_watson/.)

E15.1 In this exercise you will estimate the effect of oil prices on macroeconomic 
activity, using monthly data on the Index of Industrial Production (IP) and 
the monthly measure of Ot described in Exercise 15.1. The data can be 
found on the textbook website, http://www.pearsonhighered.com/stock_
watson, in the file USMacro_Monthly.

a. Compute the monthly growth rate in IP, expressed in percentage 
points, ip_growtht = 100 * ln(IPt>IPt - 1). What are the mean and 
standard deviation of ip_growth over the 1960:M1–2012:M12 sample 
period? What are the units for ip_growth (percent, percent per 
annum, percent per month, or something else)?

b. Plot the value of Ot. Why are so many values of Ot equal to zero? 
Why aren’t some values of Ot negative?

c. Estimate a distributed lag model by regressing ip_growth onto the cur-
rent value and 18 lagged values of Ot , including an intercept. What value 
of the HAC standard truncation parameter m did you choose? Why?

d. Taken as a group, are the coefficients on Ot statistically significantly 
different from zero?

e. Construct graphs like those in Figure 15.2, showing the estimated 
dynamic multipliers, cumulative multipliers, and 95% confidence 
intervals. Comment on the real-world size of the multipliers.
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f. Suppose that high demand in the United States (evidenced by large 
values of ip_growth) leads to increases in oil prices. Is Ot exogenous? 
Are the estimated multipliers shown in the graphs in (e) reliable? 
Explain.

E15.2 In the data file USMacro_Quarterly, you will find data on two aggregate 
price series for the United States: the price index for personal consump-
tion expenditures (PCEP) that you used in Empirical Exercise 14.1 and 
the Consumer Price Index (CPI). These series are alternative measures 
of consumer prices in the United States. The CPI prices a basket of 
goods whose composition is updated every 5–10 years. PCEP uses chain-
weighting to price a basket of goods whose composition changes from month 
to month. Economists have argued that the CPI will overstate inflation 
because it does not take into account the substitution that occurs when rel-
ative prices change. If this substitution bias is important, then average CPI 
inflation should be systematically higher than PCEP inflation. Let pCPI

t =
400 × [ln(CPIt) − ln(CPIt−1)], and pPCEP

t  = 400 × [ln(PCEPt) − ln(PCEPt−1)], 
and Yt = pCPI

t  − pPCEP
t , so pCPI

t  is the quarterly rate of price inflation (mea-
sured in percentage points at an annual rate) based on the CPI, pPCEP

t  is 
the quarterly rate of price inflation from the PCEP, and Yt is their differ-
ence. Using data from 1963:Q1 through 2012:Q4, carry out the following 
exercises.

a. Compute the sample means of pCPI
t  and pPCED

t . Are these point 
estimates consistent with the presence of economically significant 
substitution bias in the CPI?

b. Compute the sample mean of Yt. Explain why it is numerically equal 
to the difference in the means computed in (a).

c. Show that the population mean of Y is equal to the difference of the 
population means of the two inflation rates.

d. Consider the “constant-term-only” regression: Yt = b0 + ut. Show 
that b0 = E(Y). Do you think that ut is serially correlated? Explain.

e. Construct a 95% confidence interval for b0. What value of the HAC 
standard truncation parameter m did you choose? Why?

f. Is there statistically significant evidence that the mean inflation rate 
for the CPI is greater than the rate for the PCEP?

g. Is there evidence of instability in b0? Carry out a QLR test. (Hint:
Make sure you use HAC standard errors for the regressions in the 
QLR procedure.)
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A P P E N D I X

15.1 The Orange Juice Data Set

The orange juice price data are the frozen orange juice component of processed foods and 

feeds group of the Producer Price Index (PPI), collected by the U.S. Bureau of Labor 

Statistics (BLS series wpu02420301). The orange juice price series was divided by the over-

all PPI for finished goods to adjust for general price inflation. The freezing degree days 

series was constructed from daily minimum temperatures recorded at Orlando-area air-

ports, obtained from the National Oceanic and Atmospheric Administration (NOAA) of 

the U.S. Department of Commerce. The FDD series was constructed so that its timing and 

the timing of the orange juice price data were approximately aligned. Specifically, the 

frozen orange juice price data are collected by surveying a sample of producers in the 

middle of every month, although the exact date varies from month to month. Accordingly, 

the FDD series was constructed to be the number of freezing degree days from the 11th of 

one month to the 10th of the next month; that is, FDD is the maximum of zero and 32 minus 

the minimum daily temperature, summed over all days from the 11th to the 10th. Thus 

%ChgPt for February is the percentage change in real orange juice prices from mid-

January to mid-February, and FDDt for February is the number of freezing degree days 

from January 11 to February 10.

A P P E N D I X

15.2 The ADL Model and Generalized Least 
Squares in Lag Operator Notation

This appendix presents the distributed lag model in lag operator notation, derives the ADL 

and quasi-differenced representations of the distributed lag model, and discusses the condi-

tions under which the ADL model can have fewer parameters than the original distributed 

lag model.

The Distributed Lag, ADL, and Quasi-Difference 
Models, in Lag Operator Notation
As defined in Appendix 14.3, the lag operator, L, has the property that LjXt = Xt - j, and 

the distributed lag b1Xt + b2Xt - 1 + g +br + 1Xt - r can be expressed as b(L)Xt, where 

b(L) = g r
j= 0bj+ 1L

j, where L0 = 1. Thus the distributed lag model in Key Concept 15.1 

[Equation (15.4)] can be written in lag operator notation as
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Yt = b0 + b(L)Xt + ut . (15.40)

In addition, if the error term ut follows an AR(p), then it can be written as

f(L)ut = u∼t, (15.41)

where f(L) = gp
j= 0fj

Lj, where f0 = 1 and u∼t is serially uncorrelated [note that f1,c,

fp as defined here are the negatives of f1,c, fp in the notation of Equation (15.31)].

To derive the ADL model, premultiply each side of Equation (15.40) by f(L) so that

f(L)Yt = f(L)3b0 + b(L)Xt + ut4 = a0 + d(L)Xt + u∼t, (15.42)

where

a0 = f(1)b0 and d(L) = f(L)b(L), where f(1) = a
p

j= 0
fj . (15.43)

To derive the quasi-differenced model, note that f(L)b(L)Xt = b(L)f(L)Xt = b(L)X∼t,

where X
∼

t = f(L)Xt. Thus rearranging Equation (15.42) yields

Y∼t = a0 + b(L)X∼t + u∼t, (15.44)

where Y
∼

t is the quasi-difference of Yt; that is, Y∼t = f(L)Yt.

The Inverse of a Lag Polynomial
Let a(x) = gp

j= 0ajx
j denote a polynomial of order p. The inverse of a(x), say b(x), is a 

function that satisfies b(x)a(x) = 1. If the roots of the polynomial a(x) are greater than 1 in 

absolute value, then b(x) is a polynomial in nonnegative powers of x: b(x) = g ∞j= 0bj x
j.

Because b(x) is the inverse of a(x), it is denoted as a(x)−1 or as 1>a(x).

The inverse of a lag polynomial a(L) is defined analogously: a(L) - 1 = 1>a(L) =
b(L) = g ∞j= 0bjL

j, where b(L)a(L) = 1. For example, if a(L) = (1 - fL), with 0f 0 6 1,

you can verify that a(L)-1 = 1 + fL + f2L2 + f3L3c = g ∞j= 0f
jLj. (See Exercise 15.11.)

The ADL and GLS Estimators
The OLS estimator of the ADL coefficients is obtained by OLS estimation of Equation 

(15.42). The original distributed lag coefficients are b(L), which, in terms of the estimated 

coefficients, is b(L) = f(L)-1d(L); that is, the coefficients in b(L) satisfy the restrictions 
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implied by f(L)b(L) = d(L). Thus the estimator of the dynamic multipliers based on the 

OLS estimators of the coefficients of the ADL model, dn(L) and fn(L), is

bnADL(L) = fn(L)-1dn(L). (15.45)

The expressions for the coefficients in Equation (15.29) in the text are obtained as a special 

case of Equation (15.45) when r = 1 and p = 1.

The feasible GLS estimator is computed by obtaining a preliminary estimator of f(L),

computing estimated quasi-differences, estimating b(L) in Equation (15.44) using these 

estimated quasi-differences, and (if desired) iterating until convergence. The iterated GLS 

estimator is the NLLS estimator computed by NLLS estimation of the ADL model in 

Equation (15.42), subject to the nonlinear restrictions on the parameters contained in 

Equation (15.43).

As stressed in the discussion surrounding Equation (15.36) in the text, it is not enough 

for Xt to be (past and present) exogenous to use either of these estimation methods, for 

exogeneity alone does not ensure that Equation (15.36) holds. If, however, X is strictly 

exogenous, then Equation (15.36) does hold, and assuming that Assumptions 2 through 4 

of Key Concept 14.6 hold, these estimators are consistent and asymptotically normal. 

Moreover, the usual (cross-sectional heteroskedasticity-robust) OLS standard errors pro-

vide a valid basis for statistical inference.

Parameter reduction using the ADL model. Suppose that the distributed lag polynomial 

b(L) can be written as a ratio of lag polynomials, u2(L)-1u1(L), where u1(L) and u2(L) are 

both lag polynomials of a low degree. Then f(L)b(L) in Equation (15.43) is 

f(L)b(L) = f(L)3u2(L)-1u1(L)4 = 3f(L)u2(L)-14u1(L). If it so happens that f(L) = u2(L),

then d(L) = f(L)b(L) = u1(L). If the degree of u1(L) is low, then q, the number of lags of 

Xt in the ADL model, can be much less than r. Thus, under these assumptions, estimation 

of the ADL model entails estimating potentially many fewer parameters than the original 

distributed lag model. It is in this sense that the ADL model can achieve more parsimoni-

ous parameterizations (that is, use fewer unknown parameters) than the distributed lag 

model.

As developed here, the assumption that f(L) and u2(L) happen to be the same seems 

like a coincidence that would not occur in an application. However, the ADL model is able 

to capture a large number of shapes of dynamic multipliers with only a few coefficients.

ADL or GLS: Bias versus variance. A good way to think about whether to estimate 

dynamic multipliers by first estimating an ADL model and then computing the dynamic 

multipliers from the ADL coefficients or, alternatively, by estimating the distributed lag 

model directly using GLS is to view the decision in terms of a trade-off between bias 

and variance. Estimating the dynamic multipliers using an approximate ADL model 
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introduces bias; however, because there are few coefficients, the variance of the estima-

tor of the dynamic multipliers can be small. In contrast, estimating a long distributed lag 

model using GLS produces less bias in the multipliers; however, because there are so 

many coefficients, their variance can be large. If the ADL approximation to the dynamic 

multipliers is a good one, then the bias of the implied dynamic multipliers will be small, 

so the ADL approach will have a smaller variance than the GLS approach with only a 

small increase in the bias. For this reason, unrestricted estimation of an ADL model 

with small number of lags of Y and X is an attractive way to approximate a long distrib-

uted lag when X is strictly exogenous.



T his chapter takes up some further topics in time series regression, starting with 
forecasting. Chapter 14 considered forecasting a single variable. In practice, 

however, you might want to forecast two or more variables, such as the growth rate 
of GDP and the rate of inflation. Section 16.1 introduces a model for forecasting 
multiple variables, vector autoregressions (VARs), in which lagged values of two or 
more variables are used to forecast future values of those variables. Chapter 14 also 
focused on making forecasts one period (e.g., one quarter) into the future, but 
 making forecasts two, three, or more periods into the future is important as well. 
Methods for making multiperiod forecasts are discussed in Section 16.2.

Sections 16.3 and 16.4 return to the topic of Section 14.6, stochastic trends. Section 
16.3 introduces additional models of stochastic trends and an alternative test for a unit 
autoregressive root. Section 16.4 introduces the concept of cointegration, which arises 
when two variables share a common stochastic trend—that is, when each variable 
contains a stochastic trend, but a weighted difference of the two variables does not.

In some time series data, especially financial data, the variance changes over 
time: Sometimes the series exhibits high volatility, while at other times the volatility 
is low, so the data exhibit clusters of volatility. Section 16.5 discusses volatility cluster-
ing and introduces models in which the variance of the forecast error changes over 
time, that is, models in which the forecast error is conditionally heteroskedastic. Mod-
els of conditional heteroskedasticity have several applications. One application is 
computing forecast intervals, where the width of the interval changes over time to 
reflect periods of high or low uncertainty. Another application is forecasting the 
uncertainty of returns on an asset, such as a stock, which in turn can be useful in 
assessing the risk of owning that asset.

 16.1 Vector Autoregressions

Chapter 14 focused on forecasting the growth rate of GDP, but in reality eco-
nomic forecasters are in the business of forecasting other key macroeconomic 
variables as well, such as the rate of inflation, the unemployment rate, and interest 
rates. One approach is to develop a separate forecasting model for each variable, 
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using the methods of Section 14.4. Another approach is to develop a single model 
that can forecast all the variables, which can help to make the forecasts mutually 
consistent. One way to forecast several variables with a single model is to use a 
vector autoregression (VAR). A VAR extends the univariate autoregression to 
multiple time series variables, that is, it extends the univariate autoregression to 
a “vector” of time series variables.

The VAR Model
A vector autoregression (VAR) with two time series variables, Yt and Xt, consists 
of two equations: In one, the dependent variable is Yt; in the other, the dependent 
variable is Xt. The regressors in both equations are lagged values of both vari-
ables. More generally, a VAR with k time series variables consists of k equations, 
one for each of the variables, where the regressors in all equations are lagged 
values of all the variables. The coefficients of the VAR are estimated by estimat-
ing each of the equations by OLS.

VARs are summarized in Key Concept 16.1.

V2ctor Autor2gr2ssions

A vector autoregression (VAR) is a set of k time series regressions, in which 
the regressors are lagged values of all k series. A VAR extends the univariate 
autoregression to a list, or “vector,” of time series variables. When the number of 
lags in each of the equations is the same and is equal to p, the system of equations 
is called a VAR(p).

In the case of two time series variables, Yt and Xt, the VAR(p) consists of the 
two equations

Yt = b 10 + b 11Yt - 1 + g + b 1pYt - p + g11Xt - 1 + g+ g1pXt - p + u1t  (16.1)

Xt = b 20 + b 21Yt - 1 +g+ b 2pYt - p + g21Xt - 1 +g+ g2p Xt - p + u2t, (16.2)

where the b’s and the g’s are unknown coefficients and u1t and u2t are error terms.
The VAR assumptions are the time series regression assumptions of Key 

Concept 14.6, applied to each equation. The coefficients of a VAR are estimated 
by estimating each equation by OLS.

Key ConCept

16.1
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Inference in VARs. Under the VAR assumptions, the OLS estimators are consis-
tent and have a joint normal distribution in large samples. Accordingly, statistical 
inference proceeds in the usual manner; for example, 95% confidence intervals 
on coefficients can be constructed as the estimated coefficient {1.96 standard 
errors.

One new aspect of hypothesis testing arises in VARs because a VAR with k 
variables is a collection, or system, of k equations. Thus it is possible to test joint 
hypotheses that involve restrictions across multiple equations.

For example, in the two-variable VAR(p) in Equations (16.1) and (16.2), you 
could ask whether the correct lag length is p or p - 1; that is, you could ask 
whether the coefficients on Yt - p and Xt−p are zero in these two equations. The 
null hypothesis that these coefficients are zero is

 H0 : b1p = 0, b2p = 0, g1p = 0, and g2p = 0. (16.3)

The alternative hypothesis is that at least one of these four coefficients is nonzero. 
Thus the null hypothesis involves coefficients from both of the equations, two 
from each equation.

Because the estimated coefficients have a jointly normal distribution in large 
samples, it is possible to test restrictions on these coefficients by computing an 
F-statistic. The precise formula for this statistic is complicated because the nota-
tion must handle multiple equations, so we omit it. In practice, most modern 
software packages have automated procedures for testing hypotheses on coeffi-
cients in systems of multiple equations.

How many variables should be included in a VAR? The number of coefficients in 
each equation of a VAR is proportional to the number of variables in the VAR. 
For example, a VAR with 5 variables and 4 lags will have 21 coefficients (4 lags 
each of 5 variables, plus the intercept) in each of the 5 equations, for a total of 105 
coefficients! Estimating all these coefficients increases the amount of estimation 
error entering a forecast, which can result in deterioration of the accuracy of the 
forecast.

The practical implication is that one needs to keep the number of variables in 
a VAR small and, especially, to make sure the variables are plausibly related to 
each other so that they will be useful for forecasting one another. For example, 
we know from a combination of empirical evidence (such as that discussed in 
Chapter 14) and economic theory that the growth rate of GDP, the term spread, 
and the rate of inflation are related to one another, suggesting that these variables 
could help forecast one another in a VAR. Including an unrelated variable in a 
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VAR, however, introduces estimation error without adding predictive content, 
thereby reducing forecast accuracy.

Determining lag lengths in VARs. Lag lengths in a VAR can be determined using 
either F-tests or information criteria.

The information criterion for a system of equations extends the single-equation 
information criterion in Section 14.5. To define this information criterion, we 
need to adopt matrix notation. Let Σu be the k * k covariance matrix of the VAR 
errors and let Σu be the estimate of the covariance matrix where the i, j element 
of Σu is 1

Tg
T
t= 1 un it un jt, where un it is the OLS residual from the ith equation and un jt is 

the OLS residual from the jth equation. The BIC for the VAR is

 BIC(p) = ln[det(Σn u)] + k(kp + 1)
ln(T )

T
, (16.4)

where det(Σu) is the determinant of the matrix Σu. The AIC is computed using 
Equation (16.4), modified by replacing the term “ln(T)” with “2.”

The expression for the BIC for the k equations in the VAR in Equation (16.4) 
extends the expression for a single equation given in Section 14.5. When there is 
a single equation, the first term simplifies to ln[SSR(p)>T]. The second term in 
Equation (16.4) is the penalty for adding additional regressors; k(kp + 1) is the 
total number of regression coefficients in the VAR. (There are k equations, each 
of which has an intercept and p lags of each of the k time series variables.)

Lag length estimation in a VAR using the BIC proceeds analogously to the 
single equation case: Among a set of candidate values of p, the estimated lag 
length pn  is the value of p that minimizes BIC(p).

Using VARs for causal analysis. The discussion so far has focused on using VARs for 
forecasting. Another use of VAR models is for analyzing causal relationships among 
economic time series variables; indeed, it was for this purpose that VARs were first 
introduced to economics by the econometrician and macroeconomist Christopher 
Sims (1980). (See the box “Nobel Laureates in Time Series Econometrics” at the end 
of this chapter.) The use of VARs for causal inference is known as structural VAR 
modeling, “structural” because in this application VARs are used to model the 
underlying structure of the economy. Structural VAR analysis uses the techniques 
introduced in this section in the context of forecasting, plus some additional tools. 
The biggest conceptual difference between using VARs for forecasting and using 
them for structural modeling, however, is that structural modeling requires very 

n
n

n n
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specific assumptions, derived from economic theory and institutional knowledge, of 
what is exogenous and what is not. The discussion of structural VARs is best under-
taken in the context of estimation of systems of simultaneous equations, which goes 
beyond the scope of this book. For an introduction to using VARs for forecasting 
and policy analysis, see Stock and Watson (2001). For additional mathematical 
detail on structural VAR modeling, see Hamilton (1994) or Watson (1994).

A VAR Model of the Growth Rate  
of GDP and the Term Spread
As an illustration, consider a two-variable VAR for the growth rate of GDP, 
GDPGRt, and the term spread, TSpreadt. The VAR for GDPGRt and TSpreadt 
consists of two equations: one in which GDPGRt is the dependent variable and 
one in which TSpreadt is the dependent variable. The regressors in both equations 
are lagged values of GDPGRt and TSpreadt. Because of the apparent break in the 
relation in the early 1980s found in Section 14.7 using the QLR test, the VAR is 
estimated using data from 1981:Q1 to 2012:Q4.

The first equation of the VAR is the GDP growth rate equation:

 GDPGRt = 0.52 + 0.29 GDPGRt - 1 + 0.22 GDPGRt - 2 
 (0.52) (0.11) (0.09)

 -0.90 TSpreadt - 1 + 1.33 TSpreadt - 2. (16.5)
 (0.36) (0.39)

The adjusted R2 is  R 2 =  0.29.
The second equation of the VAR is the term spread equation, in which the 

regressors are the same as in the GDPGR equation, but the dependent variable 
is the term spread:

 TSpreadt = 0.46 + 0.01 GDPGRt - 1 - 0.06 GDPGRt - 2 
 (0.12) (0.02) (0.03)

 + 1.06 TSpreadt - 1 - 0.22 TSpreadt - 2. (16.6)
 (0.10) (0.11)

The adjusted R2 is  R 2 =  0.83.
Equations (16.5) and (16.6), taken together, are a VAR(2) model of the 

growth rate of GDP, GDPGRt, and the term spread, TSpreadt.
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These VAR equations can be used to perform Granger causality tests. The 
F-statistic testing the null hypothesis that the coefficients on TSpreadt−1 and 
TSpreadt−2 are zero in the GDP growth rate equation [Equation (16.5)] is 5.91, 
which has a p-value less than 0.001. Thus the null hypothesis is rejected, so we can 
conclude that the term spread is a useful predictor of the growth rate of GDP, 
given lags in the growth rate of GDP (that is, the term spread rate Granger-causes 
the growth rate of GDP). The F-statistic testing the hypothesis that the coeffi-
cients on the two lags of GDPGRt are zero in the term spread equation [Equation 
(16.6)] is 3.48, which has a p-value of 0.03. Thus the growth rate of GDP Granger-
causes the term spread at the 5% significance level.

Forecasts of the growth rate of GDP and the term spread one period ahead are 
obtained exactly as discussed in Section 14.4. The forecast of the growth rate of 
GDP for 2013:Q1, based on Equation (16.5), is GDP2013:Q1 02012:Q4 = 1.7 percentage 
point. A similar calculation using Equation (16.6) gives a forecast of the term spread 
2013:Q1, based on data through 2012:Q4 of TSpread2013:Q1 02012:Q4 = 1.7%. The 
actual values for 2013:Q1 are GDPGR2013:Q1 = 1.1% and TSpread2013:Q1 = 1.9%.

 16.2 Multiperiod Forecasts

The discussion of forecasting so far has focused on making forecasts one period 
in advance. Often, however, forecasters are called upon to make forecasts further 
into the future. This section describes two methods for making multiperiod fore-
casts. The usual method is to construct “iterated” forecasts, in which a one-period-
ahead model is iterated forward one period at a time, in a way that is made precise 
in this section. The second method is to make “direct” forecasts by using a regres-
sion in which the dependent variable is the multiperiod variable that one wants to 
forecast. For reasons discussed at the end of this section, in most applications, the 
iterated method is recommended over the direct method.

Iterated Multiperiod Forecasts
The essential idea of an iterated forecast is that a forecasting model is used to 
make a forecast one period ahead, for period T + 1, using data through period T. 
The model then is used to make a forecast for date T + 2, given the data through 
date T, where the forecasted value for date T + 1 is treated as data for the pur-
pose of making the forecast for period T + 2. Thus the one-period-ahead forecast 
(which is also referred to as a one-step-ahead forecast) is used as an intermediate 
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step to make the two-period-ahead forecast. This process repeats, or iterates, until 
the forecast is made for the desired forecast horizon h.

The iterated AR forecast method: AR(1). An iterated AR(1) forecast uses an 
AR(1) for the one-period-ahead model. For example, consider the first-order 
autoregression for GDPGR [Equation (14.7)]:

 GDPGRt = 1.99 + 0.34 GDPGRt - 1. (16.7)
 (0.35) (0.08)

The first step in computing the two-quarter-ahead forecast of GDPGR2013:Q2 
based on Equation (16.7) using data through 2012:Q4 is to compute the one-
quarter-ahead forecast of GDPGR2013:Q1 based on data through 2012:Q4: 
GDPGR2013:Q1 02012:Q4 = 1.99 + 0.34 GDPGR2012:Q4 = 1.99 + 0.34 * 0.15 = 2.0. 
The second step is to substitute this forecast into Equation (16.7) so that 
GDPGR2013:Q2 02012:Q4 = 1.99 + 0.34 GDPGR2013:Q1 02012:Q4 = 1.99 + 0.34 * 2.0 = 
2.7. Thus, based on information through the fourth quarter of 2012, this forecast 
states that the growth rate of GDP will be 2.7% in the second quarter of 2013.

The iterated AR forecast method: AR(p). The iterated AR(1) strategy is extended 
to an AR(p) by replacing YT + 1 with its forecast, YnT + 1 0T, and then treating that 
forecast as data for the AR(p) forecast of YT + 2. For example, consider the iter-
ated two-period-ahead forecast of the growth rate of GDP based on the AR(2) 
model from Section 14.3 [Equation (14.13)]:

 GDPGRt = 1.63 + 0.28 GDPGRt - 1 + 0.18 GDPGRt - 2. (16.8)
 (0.40) (0.08) (0.08)

The forecast of GDPGR2013:Q1 based on data through 2012:Q4 using this AR(2), 
computed in Section 14.3, is GDPGR2013:Q1 02012:Q4 =  2.1. Thus the two-quarter-
ahead iterated forecast based on the AR(2) is GDPGR2013:Q2 02012:Q4 = 
1.63 + 0.28 GDPGR2013:Q1 02012:Q4 + 0.18 GDPGR2012:Q4 = 1.63 + 0.28 * 2.1 +  0.18 
× 0.15 = 2.2. According to this iterated AR(2) forecast, based on data through 
the fourth quarter of 2012, the growth rate of GDP is predicted to be 2.2 percent-
age points in the second quarter of 2013.

Iterated multivariate forecasts using an iterated VAR. Iterated multivariate fore-
casts can be computed using a VAR in much the same way as iterated univariate 
forecasts are computed using an autoregression. The main new feature of an 
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 iterated multivariate forecast is that the two-step-ahead (period T + 2) forecast 
of one variable depends on the forecasts of all variables in the VAR in period 
T + 1. For example, to compute the forecast of the growth rate of GDP in period 
T + 2 using a VAR with the variables GDPGRt and TSpreadt, one must forecast 
both GDPGRT+1 and TSpreadT+1, using data through period T as an intermediate 
step in forecasting GDPGRT+2. More generally, to compute multiperiod iterated 
VAR forecasts h periods ahead, it is necessary to compute forecasts of all vari-
ables for all intervening periods between T and T + h.

As an example, we will compute the iterated VAR forecast of GDPGR2013:Q2 
based on data through 2012:Q4, using the VAR(2) for GDPGRt and TSpreadt in 
Section 16.1 [Equations (16.5) and (16.6)]. The first step is to compute the one-

quarter-ahead forecasts GDPGR2013:Q1∙2012:Q4 and TSpread2013:Q1∙2012:Q4 from that 
VAR. These one-period-ahead forecasts were computed in Section 16.1 based on 
Equations (16.5) and (16.6). The forecasts were GDPGR2013:Q1∙2012:Q4 = 1.7 and 
TSpread2013:Q1∙2012:Q4 = 1.7. In the second step, these forecasts are substituted 
into Equations (16.5) and (16.6) to produce the two-quarter-ahead forecast:

GDPGR2013:Q2∙2012:Q4 = 0.52 + 0.29 GDPGR2013:Q1∙2012:Q4 + 0.22GDPGR2012:Q4 

 - 0.90 TSpread2013:Q1∙2012:Q4 + 1.33TSpread2012:Q4

 = 0.52 + 0.30 * 1.7 + 0.22 * 0.15
 - 0.90 * 1.7 + 1.33 * 1.6 = 1.7. (16.9)

Thus the iterated VAR(2) forecast, based on data through the fourth quarter of 
2012, is that the growth rate of GDP will be 1.7% in the second quarter of 2013.

Iterated multiperiod forecasts are summarized in Key Concept 16.2.

Direct Multiperiod Forecasts
Direct multiperiod forecasts are computed without iterating by using a single 
regression in which the dependent variable is the multiperiod-ahead variable to 
be forecasted and the regressors are the predictor variables. Forecasts computed 
this way are called direct forecasts because the regression coefficients can be used 
directly to make the multiperiod forecast.

The direct multiperiod forecasting method. Suppose that you want to make a 
forecast of YT + 2 using data through time T. The direct multivariate method takes 
the ADL model as its starting point but lags the predictor variables by an addi-
tional time period. For example, if two lags of the predictors are used, then the 
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It2rat2d Multi<2riod For2casts

The iterated multiperiod AR forecast is computed in steps: First compute the 
one-period-ahead forecast, then use that to compute the two-period-ahead fore-
cast, and so forth. The two- and three-period-ahead iterated forecasts based on 
an AR(p) are

 YnT + 2∙T = bn0 + bn1YnT + 1∙T + bn2YT + bn3YT - 1 + g + bnpYT - p + 2 (16.10)

 YnT + 3∙T = bn0 + bn1YnT + 2∙T + bn2YnT+1∙T + bn3YT +g + bnpYT - p + 3, (16.11)

where the bn’s are the OLS estimates of the AR(p) coefficients. Continuing this 
process (“iterating”) produces forecasts further into the future.

The iterated multiperiod VAR forecast is also computed in steps: First com-
pute the one-period-ahead forecast of all the variables in the VAR, then use those 
forecasts to compute the two-period-ahead forecasts, and continue this process 
iteratively to the desired forecast horizon. The two-period-ahead iterated forecast 
of YT + 2, based on the two-variable VAR(p) in Key Concept 16.1, is

YnT + 2∙T = bn10 + bn11YnT + 1∙T + bn12YT + bn13YT - 1 +g + bn1pYT - p + 2

 + gn11XnT + 1∙T + gn12XT + gn13XT - 1 + g + gn1pXT - p + 2, (16.12)

where the coefficients in Equation (16.12) are the OLS estimates of the VAR 
coefficients. Iterating produces forecasts further into the future.

Key ConCept

16.2

dependent variable is Yt and the regressors are Yt - 2, Yt - 3, Xt−2, and Xt−3. The 
coefficients from this regression can be used directly to compute the forecast of 
YT + 2 using data on YT, YT - 1, XT, and XT−1, without the need for any iteration. 
More generally, in a direct h-period-ahead forecasting regression, all predictors 
are lagged h periods to produce the h-period-ahead forecast.

For example, the forecast of GDPGRt two quarters ahead using two lags each 
of GDPGRt−2 and TSpreadt−2 is computed by first estimating the regression:

GDPGRt∙t - 2 = 0.57 + 0.34GDPGRt - 2 + 0.03GDPGRt - 3

 (0.67) (0.07) (0.10)

 +  0.62TSpreadt - 2 - 0.01TSpreadt - 3. (16.13)
 (0.47) (0.46)
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The two-quarter-ahead forecast of the growth rate of GDP in 2013:Q2 based 
on data through 2012:Q4 is computed by substituting the values of GDPGR2012:Q4, 
GDPGR2012:Q3, TSpread2012:Q4, and TSpread2012:Q3 into Equation (16.13); this yields

GDPGR2013:Q2∙2012:Q4 = 0.57 + 0.34GDPGR2012:Q4 + 0.03GDPGR2012:Q3

 + 0.62TSpread2012:Q4-  0.01TSpread2012:Q3 = 1.68. 
 (16.14)

The three-quarter-ahead direct forecast ofGDPGRT+3 is computed by lagging all 
the regressors in Equation (16.13) by one additional quarter, estimating that 
regression, and then computing the forecast. The h-quarter-ahead direct forecast 
of GDPGRT+h is computed by using GPDGRt as the dependent variable and the 
regressors GPDGRt−h and TSpreadt−h, plus additional lags of GPDGRt−h and 
TSpreadt−h, as desired.

Standard errors in direct multiperiod regressions. Because the dependent vari-
able in a multiperiod regression occurs two or more periods into the future, the 
error term in a multiperiod regression is serially correlated. To see this, consider 
the two-period-ahead forecast of the growth rate of GDP and suppose that a 
surprise jump in oil prices occurs in the next quarter. Today’s two-period-ahead 
forecast of the growth rate of GDP will be too low because it does not incorporate 
this unexpected event. Because the oil price rise was also unknown in the previous 
quarter, the two-period-ahead forecast made last quarter will also be too low. 
Thus the surprise oil price jump next quarter means that both last quarter’s and 
this quarter’s two-period-ahead forecasts are too low. Because of such intervening 
events, the error term in a multiperiod regression is serially correlated.

As discussed in Section 15.4, if the error term is serially correlated, the usual 
OLS standard errors are incorrect or, more precisely, they are not a reliable basis 
for inference. Therefore, heteroskedasticity- and autocorrelation-consistent 
(HAC) standard errors must be used with direct multiperiod regressions. The 
standard errors reported in Equation (16.13) for direct multiperiod regressions 
therefore are Newey–West HAC standard errors, where the truncation parameter 
m is set according to Equation (15.17); for these data (for which T = 128), Equa-
tion (15.17) yields m = 4. For longer forecast horizons, the amount of overlap—
and thus the degree of serial correlation in the error—increases: In general, the 
first h - 1 autocorrelation coefficients of the errors in an h-period-ahead regres-
sion are nonzero. Thus larger values of m than indicated by Equation (15.17) are 
appropriate for multiperiod regressions with long forecast horizons.

Direct multiperiod forecasts are summarized in Key Concept 16.3.
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Which Method Should You Use?
In most applications, the iterated method is the recommended procedure for 
multiperiod forecasting, for two reasons. First, from a theoretical perspective, 
if the underlying one-period-ahead model (the AR or VAR that is used to 
compute the iterated forecast) is specified correctly, then the coefficients are 
estimated more efficiently if they are estimated by a one-period-ahead regres-
sion (and then iterated) than by a multiperiod-ahead regression. Second, from 
a practical perspective, forecasters are usually interested in forecasts not just 
at a single horizon but at multiple horizons. Because they are produced using 
the same model, iterated forecasts tend to have time paths that are less erratic 
across horizons than do direct forecasts. Because a different model is used at 
every horizon for direct forecasts, sampling error in the estimated coefficients 
can add random fluctuations to the time paths of a sequence of direct multi-
period forecasts.

Under some circumstances, however, direct forecasts are preferable to iter-
ated forecasts. One such circumstance is when you have reason to believe that the 
one-period-ahead model (the AR or VAR) is not specified correctly. For exam-
ple, you might believe that the equation for the variable you are trying to forecast 
in a VAR is specified correctly, but that one or more of the other equations in the 
VAR is specified incorrectly, perhaps because of neglected nonlinear terms. If the 
one-step-ahead model is specified incorrectly, then in general the iterated multi-
period forecast will be biased, and the MSFE of the iterated forecast can exceed 
the MSFE of the direct forecast, even though the direct forecast has a larger vari-
ance. A second circumstance in which a direct forecast might be desirable arises 

Dir2ct Multi<2riod For2casts

The direct multiperiod forecast h periods into the future based on p lags each of 
Yt and an additional predictor Xt is computed by first estimating the regression

 Yt = d0 + d1Yt - h +g + dpYt - p - h + 1 + dp + 1Xt - h 

 + g + d2pXt - p - h + 1 + ut, (16.15)

and then using the estimated coefficients directly to make the forecast of YT + h 
using data through period T.

Key ConCept

16.3
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in multivariate forecasting models with many predictors, in which case a VAR 
specified in terms of all the variables could be unreliable because it would have 
very many estimated coefficients.

 16.3 Orders of Integration and the DF-GLS  
Unit Root Test

This section extends the treatment of stochastic trends in Section 14.6 by address-
ing two further topics. First, the trends of some time series are not well described 
by the random walk model, so we introduce an extension of that model and dis-
cuss its implications for regression modeling of such series. Second, we continue 
the discussion of testing for a unit root in time series data and, among other things, 
introduce a second test for a unit root, the DF-GLS test.

Other Models of Trends and Orders of Integration
Recall that the random walk model for a trend, introduced in Section 14.6, speci-
fies that the trend at date t equals the trend at date t - 1, plus a random error 
term. If Yt follows a random walk with drift b0, then

 Yt = b0 + Yt - 1 + ut, (16.16)

where ut is serially uncorrelated. Also recall from Section 14.6 that, if a series has 
a random walk trend, then it has an autoregressive root that equals 1.

Although the random walk model of a trend describes the long-run move-
ments of many economic time series, some economic time series have trends that 
are smoother—that is, vary less from one period to the next—than is implied by 
Equation (16.16). A different model is needed to describe the trends of such 
series.

One model of a smooth trend makes the first difference of the trend follow a 
random walk—that is,

 ∆Yt = b0 + ∆Yt - 1 + ut, (16.17)

where ut is serially uncorrelated. Thus, if Yt follows Equation (16.17), ∆Yt follows a 
random walk, so ∆Yt - ∆Yt - 1 is stationary. The difference of the first differences, 
∆Yt - ∆Yt - 1, is called the second difference of Yt and is denoted ∆2Yt =
∆Yt - ∆Yt - 1. In this terminology, if Yt follows Equation (16.17), then its second 
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difference is stationary. If a series has a trend of the form in Equation (16.17), then 
the first difference of the series has an autoregressive root that equals 1.

“Orders of integration” terminology. Some additional terminology is useful for 
distinguishing between these two models of trends. A series that has a random 
walk trend is said to be integrated of order one, or I(1). A series that has a trend 
of the form in Equation (16.17) is said to be integrated of order two, or I(2). A 
series that does not have a stochastic trend and is stationary is said to be inte-
grated of order zero, or I(0).

The order of integration in the I(1) and I(2) terminology is the number of 
times that the series needs to be differenced for it to be stationary: If Yt is I(1), 
then the first difference of Yt, ∆Yt, is stationary, and if Yt is I(2), then the second 
difference of Yt, ∆2Yt, is stationary. If Yt is I(0), then Yt is stationary.

Orders of integration are summarized in Key Concept 16.4.

How to test whether a series is I(2) or I(1). If Yt is I(2), then ∆Yt is I(1), so ∆Yt has 
an autoregressive root that equals 1. If, however, Yt is I(1), then ∆Yt is stationary. 
Thus the null hypothesis that Yt is I(2) can be tested against the alternative 
hypothesis that Yt is I(1) by testing whether ∆Yt has a unit autoregressive root. If 
the hypothesis that ∆Yt has a unit autoregressive root is rejected, then the hypoth-
esis that Yt is I(2) is rejected in favor of the alternative that Yt is I(1).

Examples of I(2) and I(1) series: The price level and the rate of inflation. The rate 
of inflation is the growth rate of the price level. Recall from Section 14.2 that the 
growth rate of a time series Xt can be computed as the first difference of the loga-
rithm of Xt; that is Δln(Xt) is the growth rate of Xt (expressed as fraction). If Pt is 

Ord2rs of Int2gration, Diff2r2ncing, and Stationarity

• If Yt is integrated of order one—that is, if Yt is I(1)—then Yt has a unit autoregressive 
root and its first difference, ∆Yt, is stationary.

• If Yt is integrated of order two—that is, if Yt is I(2)—then ∆Yt has a unit 
autoregressive root and its second difference, ∆2Yt, is stationary.

• If Yt is integrated of order d—that is, if Yt is I(d )—then Yt must be differ-
enced d times to eliminate its stochastic trend; that is, ∆dYt is stationary.

Key ConCept

16.4
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a time series for the price level measured quarterly, then Δln(Pt) is its growth rate, 
and Inflt = 400 × Δln(Pt) is the quarterly rate of inflation, measured in percentage 
points at an annual rate. As in the expression for the growth of GDP, GDPGR in 
Equation (14.2), the factor 400 arises from converting fractional changes to per-
centage changes (multiplying by 100) and converting quarterly percentages to an 
annual rate (multiplying by 4).

In Empirical Exercise 14.1, you analyzed the rate of inflation, Inflt, computed 
using the price index for personal consumption expenditures in the United States 
as Pt. In that exercise you concluded that the rate of inflation in the United States 
plausibly has a random walk stochastic trend—that is, that the rate of inflation is 
I(1). If inflation is I(1), then its stochastic trend is removed by first differencing, 
so ∆Inft is stationary. But treating inflation as I(1) is equivalent to treating Δln(Pt) 
as I(1), but this in turn is equivalent to treating the logarithm of the price level, 
ln(Pt), as I(2).

The logarithm of the price level and the rate of inflation are plotted in Fig-
ure 16.1. The long-run trend of the logarithm of the price level (Figure 16.1a) 
varies more smoothly than the long-run trend in the rate of inflation (Fig-
ure 16.1b). The smoothly varying trend in the logarithm of the price level is 
typical of I(2) series.

The DF-GLS Test for a Unit Root
This section continues the discussion of Section 14.6 regarding testing for a unit 
autoregressive root. We first describe another test for a unit autoregressive 
root, the so-called DF-GLS test. Next, in an optional mathematical section, we 
discuss why unit root test statistics do not have normal distributions, even in 
large samples.

The DF-GLS test. The ADF test was the first test developed for testing the null 
hypothesis of a unit root and is the most commonly used test in practice. Other 
tests subsequently have been proposed, however, many of which have higher 
power (Key Concept 3.5) than the ADF test. A test with higher power than the 
ADF test is more likely to reject the null hypothesis of a unit root against the sta-
tionary alternative when the alternative is true; thus a more powerful test is better 
able to distinguish between a unit AR root and a root that is large but less than 1.

This section discusses one such test, the DF-GLS test developed by Elliott, 
Rothenberg, and Stock (1996). The test is introduced for the case that, under the 
null hypothesis, Yt has a random walk trend, possibly with drift, and under the 
alternative Yt is stationary around a linear time trend.
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Figure 16.1  T52 Logarit5m of t52 pric2 L2v2l and t52 Inflation Rat2 in t52 Unit2d Stat2s,  
1960–2012
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The trend in the logarithm of prices (Figure 16.1a) is much smoother than the trend in inflation (Figure 16.1b).
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The DF-GLS test is computed in two steps. In the first step, the intercept and 
trend are estimated by generalized least squares (GLS; see Section 15.5). The 
GLS estimation is performed by computing three new variables, Vt, X1t, and X2t, 
where V1 = Y1 and Vt = Yt - a*Yt - 1, t = 2, c, T, X11 = 1 and X1t = 1 - a*,
 t = 2, c, T, and X21 = 1 and X2t = t - a*1t - 12, where a* is computed using 
the formula a* = 1 - 13.5>T. Then Vt is regressed against X1t and X2t; that is, 
OLS is used to estimate the coefficients of the population regression equation

 Vt = d0X1t + d1X2t + et, (16.18)

using the observations t = 1, c, T, where et is the error term. Note that there is 
no intercept in the regression in Equation (16.18). The OLS estimators dn0 and dn1 
are then used to compute a “detrended” version of Yt, Y

d
t = Yt - 1dn0 + dn1t2.

In the second step, the Dickey–Fuller test is used to test for a unit autoregressive 
root in Ydt , where the Dickey–Fuller regression does not include an intercept 
or a time trend. That is, ∆Ydt  is regressed against Ydt - 1 and ∆Ydt - 1, c, ∆Ydt - p, 
where the number of lags p is determined, as usual, either by expert knowl-
edge or by using a data-based method such as the AIC or BIC, as discussed in 
Section 14.5.

If the alternative hypothesis is that Yt is stationary with a mean that might be 
nonzero but without a time trend, the preceding steps are modified. Specifically, 
a* is computed using the formula a* = 1 - 7>T, X2t is omitted from the regres-
sion in Equation (16.18), and the series Ydt  is computed as Ydt = Yt - dn0.

The GLS regression in the first step of the DF-GLS test makes this test more 
complicated than the conventional ADF test, but it is also what improves its abil-
ity to discriminate between the null hypothesis of a unit autoregressive root and 
the alternative that Yt is stationary. This improvement can be substantial. For 
example, suppose that Yt is in fact a stationary AR(1) with autoregressive coef-
ficient b1 = 0.95, that there are T = 200 observations, and that the unit root tests 
are computed without a time trend [that is, t is excluded from the Dickey–Fuller 
regression, and X2t is omitted from Equation (16.18)]. Then the probability that 
the ADF test correctly rejects the null hypothesis at the 5% significance level is 
approximately 31% compared to 75% for the DF-GLS test.

Critical values for DF-GLS test. Because the coefficients on the deterministic terms 
are estimated differently in the ADF and DF-GLS tests, the tests have different 
critical values. The critical values for the DF-GLS test are given in Table 16.1. If 
the DF-GLS test statistic (the t-statistic on Ydt - 1 in the regression in the second 
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step) is less than the critical value (that is, it is more negative than the critical 
value), then the null hypothesis that Yt has a unit root is rejected. Like the critical 
values for the Dickey–Fuller test, the appropriate critical value depends on which 
version of the test is used—that is, on whether or not a time trend is included 
[whether or not X2t is included in Equation (16.18)].

Application to the logarithm of GDP. The DF-GLS statistic, computed for the 
logarithm of GDP, ln(GDPt), over the period 1962:Q1 to 2012:Q4 with an inter-
cept and time trend, is −2.85 when two lags of ∆Ydt  are included in the Dickey–
Fuller regression in the second stage, where the choice of two lags was based on 
the AIC (out of a maximum of six lags). This value is greater than the 5% critical 
value in Table 16.1, −2.89, so the DF-GLS test does not reject the null hypothesis 
of a unit root at the 5% significance level.

Why Do Unit Root Tests Have  
Nonnormal  Distributions?
In Section 14.6, it was stressed that the large-sample normal distribution on which 
regression analysis relies so heavily does not apply if the regressors are nonstationary. 
Under the null hypothesis that the regression contains a unit root, the regressor 
Yt - 1 in the Dickey–Fuller regression (and the regressor Ydt - 1 in the modified Dickey–
Fuller regression in the second step of the DF-GLS test) is nonstationary. The non-
normal distribution of the unit root test statistics is a consequence of this 
nonstationarity.

To gain some mathematical insight into this nonnormality, consider the sim-
plest possible Dickey–Fuller regression, in which ∆Yt is regressed against the 
single regressor Yt - 1 and the intercept is excluded. In the notation of Key Concept 
14.8, the OLS estimator in this regression is dn = gTt= 1Yt - 1∆Yt>g

T
t= 1Y

2
t - 1, so

taBLe 16.1  Critical Valu2s of t52 DF-GLS T2st

D:H:Fm>B>sH>c r:<F:ssCFs  

[r:<F:ssCFs >B eqI6H>CB (16.18)]

 

10%

 

5%

 

1%

Intercept only (X1t only) −1.62 −1.95 −2.58

Intercept and time trend (X1t and X2t) −2.57 −2.89 −3.48

Source: Fuller (1976) and Elliott, Rothenberg, and Stock (1996, Table 1).
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 Tdn =

1
Ta
T

t= 1
Yt - 1∆Yt

1
T 2a

T

t= 1
Y 2
t - 1

. (16.19)

Consider the numerator in Equation (16.19). Under the additional assumption 
that Y0 = 0, a bit of algebra (Exercise 16.5) shows that
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t= 1
Yt - 1∆Yt =

1
2
c a
YT

2T
b

2

-
1
T

 a
T

t= 1
1∆Yt22 d . (16.20)

Under the null hypothesis, ∆Yt = ut, which is serially uncorrelated and has a 
finite variance, so the second term in Equation (16.20) has the probability limit 
1
Tg

T
t= 1(∆Yt)2 ¡p s2

u. Under the assumption that Y0 = 0, the first term in Equa-
tion (16.20) can be written YT  >  2T = 21

Tg
T
t= 1 ∆Yt = 21

Tg
T
t= 1 ut, which in turn 

obeys the central limit theorem; that is, YT  >  2T¡d N10, s2
u2 . Thus 

1YT  >  2T22 - 1
Tg

T
t= 1 1∆Yt22 ¡d s2

u(Z
2 - 1), where Z is a standard normal 

random variable. Recall, however, that the square of a standard normal distribu-
tion has a chi-squared distribution with 1 degree of freedom. It therefore follows 
from Equation (16.20) that, under the null hypothesis, the numerator in Equation 
(16.19) has the limiting distribution

 
1
Ta
T

t= 1
Yt - 1∆Yt ¡d

s2
u

2
1x2

1 - 12. (16.21)

The large-sample distribution in Equation (16.21) is different than the usual large-
sample normal distribution when the regressor is stationary. Instead, the numera-
tor of the OLS estimator of the coefficient on Yt in this Dickey–Fuller regression 
has a distribution that is proportional to a chi-squared distribution with 1 degree 
of freedom minus 1.

This discussion has considered only the numerator of Tdn. The denominator 
also behaves unusually under the null hypothesis: Because Yt follows a random 
walk under the null hypothesis, 1

Tg
T
t= 1Y

2
t - 1 does not converge in probability to a 

constant. Instead, the denominator in Equation (16.19) is a random variable, even 
in large samples: Under the null hypothesis, 1

T 2g
T
t= 1Y

2
t - 1 converges in distribution 

jointly with the numerator. The unusual distributions of the numerator and 
denominator in Equation (16.19) are the source of the nonstandard distribution 
of the Dickey–Fuller test statistic and the reason that the ADF statistic has its own 
special table of critical values.
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 16.4 Cointegration

Sometimes two or more series have the same stochastic trend in common. In this 
special case, referred to as cointegration, regression analysis can reveal long-run 
relationships among time series variables, but some new methods are needed.

Cointegration and Error Correction
Two or more time series with stochastic trends can move together so closely over 
the long run that they appear to have the same trend component; that is, they 
appear to have a common trend. For example, Figure 16.2 reproduces the plot of 
the 10-year and 3-month interest rates from Figure 14.3. The interest rates exhibit 
the same long-run tendencies or trends: Both were low in the 1960s, both rose 
through the 1970s to peaks in the early 1980s, then both fell through the 1990s. 
However, the difference between the long-term and short-term interest rates, the 
term spread, does not appear to have a trend. That is, subtracting the short-term 
rate from the long-term rate appears to eliminate the trends in both of the 

Figure 16.2  10-Y2.> In@2>2s@ r.@2, 3-Mon@5 In@2>2s@ r.@2, .nd @52 t2>m S<>2.d
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 individual rates. Said differently, although the two interest rates differ, they 
appear to share a common stochastic trend: Because the trend in each individual 
series is eliminated by subtracting one series from the other, the two series must 
have the same trend; that is, they must have a common stochastic trend.

Two or more series that have a common stochastic trend are said to be coin-
tegrated. The formal definition of cointegration (due to the econometrician Clive 
Granger, 1983; see the box “Nobel Laureates in Time Series Econometrics”) is 
given in Key Concept 16.5. In this section, we introduce a test for whether cointe-
gration is present, discuss estimation of the coefficients of regressions relating 
cointegrated variables, and illustrate the use of the cointegrating relationship for 
forecasting. The discussion initially focuses on the case that there are only two 
variables, Xt and Yt.

Vector error correction model. Until now, we have eliminated the stochastic trend 
in an I(1) variable Yt by computing its first difference, ∆Yt; the problems created 
by stochastic trends were then avoided by using ∆Yt instead of Yt in time series 
regressions. If Xt and Yt are cointegrated, however, another way to eliminate the 
trend is to compute Yt - uXt, where u is chosen to eliminate the common trend 
from the difference. Because the term Yt - uXt is stationary, it too can be used in 
regression analysis.

In fact, if Xt and Yt are cointegrated, the first differences of Xt and Yt can be mod-
eled using a VAR, augmented by including Yt - 1 - uXt - 1 as an additional regressor:

 ∆Yt = b10 + b11∆Yt - 1 +g + b1p∆Yt - p + g11∆Xt - 1 

 + g + g1p∆Xt - p + a11Yt - 1 - uXt - 12 + u1t (16.22)

 ∆Xt = b20 + b21∆Yt - 1 + g + b2p∆Yt - p + g21∆Xt - 1 

 + g + g2p∆Xt - p + a21Yt - 1 - uXt - 12 + u2t. (16.23)

Coint2gration

Suppose that Xt and Yt are integrated of order one. If, for some coefficient 
u, Yt - uXt is integrated of order zero, then Xt and Yt are said to be cointegrated. 
The coefficient u is called the cointegrating coefficient.

If Xt and Yt are cointegrated, then they have the same, or common, stochastic 
trend. Computing the difference Yt - uXt eliminates this common stochastic trend.

Key ConCept

16.5
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The term Yt - uXt is called the error correction term. The combined model in 
Equations (16.22) and (16.23) is called a vector error correction model (VECM). In 
a VECM, past values of Yt - uXt help to predict future values of ∆Yt and/or ∆Xt.

How Can You Tell Whether Two Variables  
Are  Cointegrated?
There are three ways to determine whether two variables can plausibly be mod-
eled as cointegrated: Use expert knowledge and economic theory, graph the series 
and see whether they appear to have a common stochastic trend, and perform 
statistical tests for cointegration. All three methods should be used in practice.

First, you must use your expert knowledge of these variables to decide 
whether cointegration is in fact plausible. For example, the two interest rates in 
Figure 16.2 are linked together by the so-called expectations theory of the term 
structure of interest rates. According to this theory, the interest rate on January 1 
on the 10-year Treasury bond is the average of the interest rate on a 3-month 
Treasury bill for the first quarter of the year and the expected interest rates on 
future 3-month Treasury bills issued in the subsequent 39 quarters, for total of 
40 quarters, or 10 years. If this was not the case, then investors could expect to 
make money by holding either the 10-year Treasury note or a sequence of forty 
3-month Treasury bills, and they would bid up prices until the expected returns 
were equalized. If the 3-month interest rate has a random walk stochastic trend, 
this theory implies that this stochastic trend is inherited by the 10-year interest 
rate and that the difference between the two rates—that is, the term spread—is 
stationary. Thus the expectations theory of the term structure implies that if the 
interest rates are I(1), then they will be cointegrated with a cointegrating coeffi-
cient of u = 1 (Exercise 16.2).

Second, visual inspection of the series helps to identify cases in which cointe-
gration is plausible. For example, the graph of the two interest rates in Figure 16.2 
shows that each of the series appears to be I(1) but that the term spread appears 
to be I(0), so the two series appear to be cointegrated.

Third, the unit root testing procedures introduced so far can be extended to 
tests for cointegration. The insight on which these tests are based is that if Yt and 
Xt are cointegrated with cointegrating coefficient u, then Yt - uXt is stationary; 
otherwise, Yt - uXt is nonstationary [is I(1)]. The hypothesis that Yt and Xt are 
not cointegrated [that is, that Yt - uXt is I(1)] therefore can be tested by testing 
the null hypothesis that Yt - uXt has a unit root; if this hypothesis is rejected, then 
Yt and Xt can be modeled as cointegrated. The details of this test depend on 
whether the cointegrating coefficient u is known.
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Testing for cointegration when θ is known. In many cases expert knowledge or 
economic theory suggests a value for u. When u is known, the Dickey–Fuller and 
DF-GLS unit root tests can be used to test for cointegration by first constructing 
the series zt = Yt - uXt and then testing the null hypothesis that zt has a unit 
autoregressive root.

Testing for cointegration when θ is unknown. If the cointegrating coefficient u is 
unknown, then it must be estimated prior to testing for a unit root in the error 
correction term. This preliminary step makes it necessary to use different critical 
values for the subsequent unit root test.

Specifically, in the first step the cointegrating coefficient u is estimated by 
OLS estimation of the regression

 Yt = a + uXt + zt. (16.24)

In the second step, a Dickey–Fuller t-test (with an intercept but no time trend) is 
used to test for a unit root in the residual from this regression, znt. This two-step 
procedure is called the Engle–Granger Augmented Dickey–Fuller test for coin-
tegration, or EG-ADF test (Engle and Granger, 1987).

Critical values of the EG-ADF statistic are given in Table 16.2.1 The critical 
values in the first row apply when there is a single regressor in Equation (16.26), so 
there are two cointegrated variables (Xt and Yt). The subsequent rows apply to the 
case of multiple cointegrated variables, which is discussed at the end of this section.

Estimation of Cointegrating Coefficients
If Xt and Yt are cointegrated, then the OLS estimator of the coefficient in the coin-
tegrating regression in Equation (16.24) is consistent. However, in general the OLS 

1The critical values in Table 16.2 are taken from Fuller (1976) and Phillips and Ouliaris (1990). Fol-
lowing a suggestion by Hansen (1992), the critical values in Table 16.2 are chosen so that they apply 
whether or not Xt and Yt have drift components.

taBLe 16.2  Critical Valu2s for t52 engl2–Grang2r ADF Statistic

nImb:F Cf X’s >B eqI6H>CB (16.24) 10% 5% 1%

1 -3.12 -3.41 -3.96

2 -3.52 -3.80 -4.36

3 -3.84 -4.16 -4.73

4 -4.20 -4.49 -5.07
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estimator has a nonnormal distribution, and inferences based on its t-statistics can 
be misleading whether or not those t-statistics are computed using HAC standard 
errors. Because of these drawbacks of the OLS estimator of u, econometricians 
have developed a number of other estimators of the cointegrating coefficient.

One such estimator of u that is simple to use in practice is the dynamic OLS 
(DOLS) estimator (Stock and Watson, 1993). The DOLS estimator is based on a 
modified version of Equation (16.24) that includes past, present, and future values 
of the change in Xt:

 Yt = b0 + uXt + a
p

j= -p
dj∆Xt - j + ut. (16.25)

Thus, in Equation (16.25), the regressors are Xt, ∆Xt + p, c, ∆Xt - p. The DOLS 
estimator of u is the OLS estimator of u in the regression of Equation (16.25).

If Xt and Yt are cointegrated, then the DOLS estimator is efficient in large 
samples. Moreover, statistical inferences about u and the d’s in Equation (16.25) 
based on HAC standard errors are valid. For example, the t-statistic constructed 
using the DOLS estimator with HAC standard errors has a standard normal dis-
tribution in large samples.

One way to interpret Equation (16.25) is to recall from Section 15.3 that cumula-
tive dynamic multipliers can be computed by modifying the distributed lag regression 
of Yt on Xt and its lags. Specifically, in Equation (15.7), the cumulative dynamic 
multipliers were computed by regressing Yt on ∆Xt, lags of ∆Xt, and Xt - r; the coef-
ficient on Xt - r in that specification is the long-run cumulative dynamic multiplier. 
Similarly, if Xt were strictly exogenous, then in Equation (16.25) the coefficient on 
Xt, u would be the long-run cumulative multiplier—that is, the long-run effect on Y 
of a change in X. If Xt is not strictly exogenous, then the coefficients do not have this 
interpretation. Nevertheless, because Xt and Yt have a common stochastic trend if 
they are cointegrated, the DOLS estimator is consistent even if Xt is endogenous.

The DOLS estimator is not the only efficient estimator of the cointegrating 
coefficient. The first such estimator was developed by Søren Johansen (Johansen, 
1988). For a discussion of Johansen’s method and of other ways to estimate the 
cointegrating coefficient, see Hamilton (1994, Chapter 20).

Even if economic theory does not suggest a specific value of the cointegrating 
coefficient, it is important to check whether the estimated cointegrating relation-
ship makes sense in practice. Because cointegration tests can be misleading (they 
can improperly reject the null hypothesis of no cointegration more frequently 
than they should, and frequently they improperly fail to reject the null hypothe-
sis), it is especially important to rely on economic theory, institutional knowledge, 
and common sense when estimating and using cointegrating relationships.
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Extension to Multiple Cointegrated Variables
The concepts, tests, and estimators discussed here extend to more than two vari-
ables. For example, if there are three variables, Yt, X1t, and X2t, each of which is 
I(1), then they are cointegrated with cointegrating coefficients u1 and u2 if 
Yt - u1X1t - u2X2t is stationary. When there are three or more variables, there 
can be multiple cointegrating relationships. For example, consider modeling the 
relationship among three interest rates: the 3-month rate (R3m), the 1-year (R1y) 
rate, and the 10-year rate (R10y). If they are I(1), then the expectations theory of 
the term structure of interest rates suggests that they will all be cointegrated. One 
cointegrating relationship suggested by the theory is R10yt − R3mt, and a second 
relationship is R1yt − R3mt. (The relationship R10yt − R1yt is also a cointegrat-
ing relationship, but it contains no additional information beyond that in the other 
relationships because it is perfectly multicollinear with the other two cointegrat-
ing relationships.)

The EG-ADF procedure for testing for a single cointegrating relationship 
among multiple variables is the same as for the case of two variables, except that 
the regression in Equation (16.24) is modified so that both X1t and X2t are regres-
sors; the critical values for the EG-ADF test are given in Table 16.2, where the 
appropriate row depends on the number of regressors in the first-stage OLS 
cointegrating regression. The DOLS estimator of a single cointegrating relation-
ship among multiple X’s involves including the level of each X along with leads 
and lags of the first difference of each X. Tests for multiple cointegrating rela-
tionships can be performed using system methods, such as Johansen’s (1988) 
method, and the DOLS estimator can be extended to multiple cointegrating rela-
tionships by estimating multiple equations, one for each cointegrating relation-
ship. For additional discussion of cointegration methods for multiple variables, 
see Hamilton (1994).

A cautionary note. If two or more variables are cointegrated, then the error 
correction term can help to forecast these variables and, possibly, other related 
variables. However, cointegration requires the variables to have the same sto-
chastic trends. Trends in economic variables typically arise from complex inter-
actions of disparate forces, and closely related series can have different trends 
for subtle reasons. If variables that are not cointegrated are incorrectly modeled 
using a VECM, then the error correction term will be I(1); this introduces a 
trend into the forecast that can result in poor out-of-sample forecast perfor-
mance. Thus forecasting using a VECM must be based on a combination of 
compelling theoretical arguments in favor of cointegration and careful empirical 
analysis.
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Application to Interest Rates
As discussed earlier, the expectations theory of the term structure of interest rates 
implies that if two interest rates of different maturities are I(1), then they will be 
cointegrated with a cointegrating coefficient of u = 1; that is, the spread between 
the two rates will be stationary. Inspection of Figure 16.2 provides qualitative 
support for the hypothesis that the 10-year and 3-month interest rates are cointe-
grated. We first use unit root and cointegration test statistics to provide more 
formal evidence on this hypothesis, then estimate a vector error correction model 
for these two interest rates.

Unit root and cointegration tests. Various unit root and cointegration test sta-
tistics for these two series are reported in Table 16.3. The unit root test statistics 
in the first two rows examine the hypothesis that the two interest rates, the 
3-month rate (R3m) and the 10-year rate (R10y), individually have a unit root. 
The ADF and DF-GLS test statistics are larger than the 10% critical values, so 
the null hypothesis of a unit root is not rejected for either series at the 10% 
significance level. Thus, these results suggest that the interest rates are plausibly 
modeled as I(1).

The unit root statistics for the term spread, R10yt − R3mt, test the further 
hypothesis that these variables are not cointegrated against the alternative 
hypothesis that they are. The null hypothesis that the term spread contains a unit 
root is rejected at the 1% level, using both unit root tests. Thus we reject the 
hypothesis that the series are not cointegrated against the alternative that they 
are, with a cointegrating coefficient u = 1. Taken together, the evidence in the 
first three rows of Table 16.3 suggests that these variables plausibly can be mod-
eled as cointegrated with u = 1.

taBLe 16.3  Unit Root and Coint2gration T2st Statistics for Two Int2r2st Rat2s

S:F>:s aDF SH6H>sH>c DF-gLS SH6H>sH>c

R3m -2.17 -1.84

R10y -1.03 -0.96

R10y − R3m -3.97** -3.92**

R10y − 0.814 × R3m -3.15 —

R3m is the interest rate on 3-month U.S. Treasury bills, and R10y is the interest rate on 10-year U.S. 
Treasury bonds. Regressions were estimated using quarterly data over the period 1962:Q1–2012:Q4. 
The number of lags in the unit root test statistic regressions were chosen by AIC (six lags maximum). 
Unit root test statistics are significant at the *5% or **1% significance level.
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Because in this application economic theory suggests a value for u (the 
expectations theory of the term structure suggests that u = 1) and because the 
error correction term is I(0) when this value is imposed (the spread is station-
ary), in principle it is not necessary to use the EG-ADF test, in which u is 
estimated. Nevertheless, we compute the test as an illustration. The first step 
in the EG-ADF test is to estimate u by the OLS regression of one variable on 
the other; the result is

 R10yt = 2.46 + 0.81R3mt, R 2 = 0.83. (16.26)

The second step is to compute the ADF statistic for the residual from this 
regression, znt. The result, given in the final row of Table 16.3, is −3.15. This 
value is smaller than the 10% critical value (which is -3.12) but not smaller 
than the 5% critical value (−3.41), so the null hypothesis of no cointegration is 
rejected at the 10% significance level but not the 5% significance level. An 
interpretation of this result is that the EG-ADF test, which uses an estimated 
value of u, is less powerful than the test that uses what is arguably the correct 
value of u = 1.

A vector error correction model of the two interest rates. If Yt and Xt are cointe-
grated, then forecasts of ∆Yt and ∆Xt can be improved by augmenting a VAR of 
∆Yt and ∆Xt by the lagged value of the error correction term—that is, by comput-
ing forecasts using the VECM in Equations (16.22) and (16.23). If u is known, then 
the unknown coefficients of the VECM can be estimated by OLS, including 
zt - 1 = Yt - 1 - uXt - 1 as an additional regressor. If u is unknown, then the VECM 
can be estimated using znt - 1 as a regressor, where znt = Yt - unXt, and where un  is 
an estimator of u.

In the application to the two interest rates, theory suggests that u = 1, and 
the unit root tests support modeling the two interest rates as cointegrated with a 
cointegrating coefficient of 1. We therefore specify the VECM using the theo-
retically suggested value of u = 1—that is, by adding the lagged value of the term 
spread, R10y −R3m, to a VAR in ∆R10yt and ∆R3mt. Specified with two lags of 
first differences, the resulting VECM is

 ∆R3mt = -0.06 + 0.24∆R3mt - 1 - 0.16∆R3mt - 2 + 0.11∆R10yt - 1 
 (0.12) (0.13) (0.18) (0.20)

 -0.15∆R10yt - 2 + 0.03(R10yt - 1 - R3mt - 1) (16.27)
 (0.15) (0.05)



664 ChApTeR 16  Additional Topics in Time Series Regression

 ∆R10yt = 0.12 - 0.00∆R3mt - 1 - 0.07∆R3mt - 2 + 0.22∆R10yt - 1 
 (0.06) (0.09) (0.07) (0.11)

 -0.07∆R10yt - 2 - 0.09(R10yt - 1 - R3mt - 1). (16.28)
 (0.09) (0.03)

In Equation (16.27), none of the coefficients is individually significant at the 5% 
level, and the coefficients on the lagged first differences of the interest rates are 
not jointly significant at the 5% level. In Equation (16.28), the coefficients on the 
lagged first differences are not jointly significant, but the coefficient on the lagged 
spread (the error correction term), which is estimated to be −0.09, has a t-statistic 
of −2.74, so it is statistically significant at the 1% level. Although lagged values 
of the first difference of the interest rates are not useful for predicting future inter-
est rates, the lagged spread does help predict the change in the 10-year Treasury 
bond rate. When the 10-year rate exceeds the 3-month rate, the 10-year rate is 
forecasted to fall in the future.

 16.5 Volatility Clustering and  Autoregressive 
Conditional  Heteroskedasticity

The phenomenon that some times are tranquil while others are not—that is, that 
volatility comes in clusters—shows up in many economic time series. This section 
presents a pair of models for quantifying volatility clustering or, as it is also 
known, conditional heteroskedasticity.

Volatility Clustering
The volatility of many financial and macroeconomic variables changes over time. 
For example, daily percentage changes in the Wilshire 5000 stock price index, 
shown in Figure 16.3, exhibit periods of high volatility, such as in 2001 and 2008, 
and other periods of low volatility, such as in 2004. A series with some periods of 
low volatility and some periods of high volatility is said to exhibit volatility 
 clustering. Because the volatility appears in clusters, the variance of the daily 
percentage price change in the Wilshire 5000 index can be forecasted, even though 
the daily price change itself is very difficult to forecast.

Forecasting the variance of a series is of interest for several reasons. First, the 
variance of an asset price is a measure of the risk of owning that asset: The larger 
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the variance of daily stock price changes, the more a stock market participant 
stands to gain—or lose—on a typical day. An investor who is worried about risk 
would be less tolerant of participating in the stock market during a period of 
high—rather than low—volatility.

Second, the value of some financial derivatives, such as options, depends on 
the variance of the underlying asset. An options trader wants the best available 
forecasts of future volatility to help him or her know the price at which to buy or 
sell options.

Third, forecasting variances makes it possible to have accurate forecast inter-
vals. Suppose that you are forecasting the rate of inflation. If the variance of the 
forecast error is constant, then an approximate forecast confidence interval can 
be constructed along the lines discussed in Section 14.4—that is, as the forecast 
plus or minus a multiple of the SER. If, however, the variance of the forecast error 
changes over time, then the width of the forecast interval should change over 
time: At periods when inflation is subject to particularly large disturbances or 
shocks, the interval should be wide; during periods of relative tranquility, the 
interval should be tighter.

Figure 16.3  D.ily p2>c2n@.g2 C5.ng2s in @52 Wils5i>2 Ind2x, 1990–2013

Daily percentage price changes in the Wilshire 5000 index exhibit volatility clustering, in which there are some periods 

of high volatility, such as in 2008, and other periods of relative tranquility, such as in 2004.
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Volatility clustering can be thought of as clustering of the variance of the 
error term over time: If the regression error has a small variance in one period, its 
variance tends to be small in the next period, too. In other words, volatility clus-
tering implies that the error exhibits time-varying heteroskedasticity.

Autoregressive Conditional Heteroskedasticity
Two models of volatility clustering are the autoregressive conditional heteroskedas-
ticity (ARCH) model and its extension, the generalized ARCH (GARCH) model.

ARCH. Consider the ADL(1,1) regression

 Yt = b0 + b1Yt - 1 + g1Xt - 1 + ut. (16.29)

In the ARCH model, which was developed by the econometrician Robert Engle 
(Engle, 1982; see the box “Nobel Laureates in Time Series Econometrics”), the 
error ut is modeled as being normally distributed with mean zero and variance s2

t , 
where s2

t  depends on past squared values ut. Specifically, the ARCH model of 
order p, denoted ARCH(p), is

 s2
t = a0 + a1u

2
t - 1 + a2u

2
t - 2 + g + apu2

t - p, (16.30)

where a0, a1, c, ap are unknown coefficients. If these coefficients are positive, 
then if recent squared errors are large, the ARCH model predicts that the current 
squared error will be large in magnitude, in the sense that its variance, s2

t , is large.
Although it is described here for the ADL(1,1) model in Equation (16.29), 

the ARCH model can be applied to the error variance of any time series regres-
sion model with an error that has a conditional mean of zero, including higher-
order ADL models, autoregressions, and time series regressions with multiple 
predictors.

GARCH. The generalized ARCH (GARCH) model, developed by the econometri-
cian Tim Bollerslev (Bollerslev, 1986), extends the ARCH model to let s2

t  depend 
on its own lags as well as lags of the squared error. The GARCH(p,q) model is

 s2
t = a0 + a1u

2
t - 1 +g + apu2

t - p + f1s
2
t - 1 + g + fqs2

t - q, (16.31)

where a0, a1, c, ap, f1, c, fq are unknown coefficients.
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The ARCH model is analogous to a distributed lag model, and the GARCH 
model is analogous to an ADL model. As discussed in Appendix 15.2, the ADL 
model (when appropriate) can provide a more parsimonious model of dynamic 
multipliers than can the distributed lag model. Similarly, by incorporating lags of 
s2
t , the GARCH model can capture slowly changing variances with fewer param-

eters than the ARCH model.
An important application of ARCH and GARCH models is to measuring and 

forecasting the time-varying volatility of returns on financial assets, particularly 
assets observed at high sampling frequencies such as the daily stock returns in 
Figure 16.3. In such applications, the return itself is often modeled as unpredict-
able, so the regression in Equation (16.29) only includes the intercept.

Estimation and inference. ARCH and GARCH models are estimated by the 
method of maximum likelihood (Appendix 11.2). The estimators of the ARCH 
and GARCH coefficients are normally distributed in large samples, so in large 
samples, t-statistics have standard normal distributions, and confidence inter-
vals can be constructed as the maximum likelihood estimate {1.96 standard 
errors.

Application to Stock Price Volatility
A GARCH(1,1) model of the Wilshire daily percentage stock price changes, Rt, 
estimated using data on all trading days from January 2, 1990, through December 
31, 2013, is

 Rn t = 0.057 (16.32)
(0.010)

 sn 2
t = 0.011 + 0.082 u2

t - 1 + 0.908s2
t - 1. (16.33)

 (0.002) (0.007) (0.008)

No lagged predictors appear in Equation (16.32) because daily Wilshire 5000 per-
centage price changes are essentially unpredictable.

The two coefficients in the GARCH model (the coefficients on u2
t - 1 and s2

t - 1) 
are both individually statistically significant at the 5% significance level. One 
measure of the persistence of movements in the variance is the sum of the coef-
ficients on u2

t - 1 and s2
t - 1 in the GARCH model (Exercise 16.9). This sum (0.99) 

is large, indicating that changes in the conditional variance are persistent. Said 
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Figure 16.4  D.ily p2>c2n@.g2 C5.ng2s in @52 Wils5i>2 5000 Ind2x .nd GarCh(1,1) B.nds

The GARCH(1,1) bands, which are {snt, where snt is computed using Equation (16.33), are narrow when the conditional 

variance is small and wide when it is large. The conditional volatility of stock price changes varies considerably over 

the 1990–2013 period.
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differently, the estimated GARCH model implies that periods of high volatility 
in stock prices will be long-lasting. This implication is consistent with the long 
periods of volatility clustering seen in Figure 16.3.

The estimated conditional variance at date t, sn 2
t , can be computed using 

the residuals from Equation (16.32) and the coefficients in Equation (16.33). 
Figure 16.4 plots bands of plus or minus one conditional standard deviation 
(that is, {snt), based on the GARCH(1,1) model, along with deviations of the 
percentage price change series from its mean. The conditional standard devi-
ation bands quantify the time-varying volatility of the daily price changes. 
During the mid-1990s, the conditional standard deviation bands are tight, 
indicating lower levels of risk for investors holding a portfolio of stocks mak-
ing up the Wilshire index. In contrast, during 2008, these conditional standard 
deviation bands are wide, indicating a period of greater daily stock price 
volatility.
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Nobel Laureates in Time Series Econometrics

spurious? Granger discovered that when variables 

shared common trends—in his terminology, were 

“co-integrated”—meaningful relationships could 

be uncovered by regression analysis using a vector 

error correction model. The methods of cointegra-

tion analysis are now a staple in modern macro-

econometrics.

In 2011, Thomas Sargent and Christopher Sims 

won the Nobel Prize for their empirical research on 

cause and effect in the macroeconomy. Sargent was 

recognized for developing models that featured the 

important role that expecta-

tions about the future play 

in disentangling cause and 

effect. Sims was recognized for 

developing structural VAR 

(SVAR) models. Sims’s key 

insight concerned the forecast 

errors in a VAR model—the 

ut errors in Equations (16.1) 

and (16.2). These errors, he 

realized, arose because of 

unforeseen “shocks” that buf-

feted the macroeconomy, and 

in many cases, these shocks 

had well defined sources like 

OPEC (oil price shocks), the 

Fed (interest rate shocks), or Congress (tax shocks). 

By disentangling the various sources of shocks that 

comprise the VAR errors, Sims was able to estimate 

the dynamic causal effect of these shocks on the vari-

ables appearing in the VAR. This disentangling of 

shocks is never without controversy, but SVARs are 

now a standard tool for estimating dynamic causal 

effects in macroeconomics.

I n 2003 Robert Engle and Clive Granger won the 

Nobel Prize in economics for fundamental theo-

retical research in time series econometrics. Engle’s 

work was motivated by the volatility clustering 

evident in plots like Figure 16.3. Engle wondered 

whether series like these could be stationary and 

whether econometric models could be developed 

to explain and predict their time-varying volatility. 

Engle’s answer was to develop the autoregressive 

conditional heteroskedasticity (ARCH) model, 

described in Section 16.5. The ARCH model and 

its extensions proved espe-

cially useful for modeling 

the volatility of asset returns, 

and the resulting volatility 

forecasts are used to price 

financial derivatives and to 

assess changes over time in 

the risk of holding financial 

assets. Today, measures and 

forecasts of volatility are a 

core component of finan-

cial econometrics, and the 

ARCH model and its descen-

dants are the workhorse tools 

for modeling volatility.

Granger’s work focused 

on how to handle stochastic 

trends in economic time series data. From his ear-

lier work, he knew that two unrelated series with 

stochastic trends could, by the usual statistical 

measures of t-statistics and regression R2’s, falsely 

appear to be meaningfully related; this is the “spuri-

ous regression” problem exemplified by the regres-

sions in Equations (14.28) and (14.29). But are all 

regressions involving stochastic trending variables 

Clive W. J. Granger

Lars Peter Hansen
Robert F. Engle

Christopher A. Sims

continued on next page
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In 2013, Eugene Fama, Lars Peter Hansen, and 

Robert Shiller won the Nobel Prize for their empiri-

cal analysis of asset prices. The work in the two “Can 

You Beat the Market” boxes in Chapter 14 and the 

box “Commodity Traders Send Shivers Through 

Disney World” in Chapter 15 was motivated in part 

by the “efficient markets” (unpredictability) work of 

Fama and the “irrational exuberance” (unexplained 

volatility) work of Shiller. Hansen was honored for 

developing “Generalized Method of Moments” 

(GMM) methods to investigate whether asset 

returns are consistent with expected utility theory.

Microeconomics says that investors should equate 

the marginal cost of an investment (today’s foregone 

utility from investing rather than consuming) with its 

marginal benefit (tomorrow’s boost in utility from 

consumption financed by the investment’s return). 

But a simple test of this proposition is complicated 

because marginal utility is difficult to measure, asset 

returns are uncertain, and the argument should hold 

across all asset returns. Hansen developed GMM 

methods to test asset-pricing models. As it turned 

out, Hansen’s GMM methods had applications well 

beyond finance and are now widely used in econo-

metrics. Section 18.7 introduces GMM.

For more information on these and other Nobel 

laureates in economics, visit the Nobel Foundation 

website, http://www.nobel.se/economics.
    

 16.6 Conclusion

This part of the book has covered some of the most frequently used tools and 
concepts of time series regression. Many other tools for analyzing economic time 
series have been developed for specific applications. If you are interested in learn-
ing more about economic forecasting, see the introductory textbooks by Diebold 
(2007) and Enders (2009). For an advanced treatment of econometrics with time 
series data, see Hamilton (1994) and Hayashi (2000).

Summary

 1. Vector autoregressions model a “vector” of k time series variables as each 
depends on its own lags and the lags of the k - 1 other series. The forecasts 
of each of the time series produced by a VAR are mutually consistent, in the 
sense that they are based on the same information.

 2. Forecasts two or more periods ahead can be computed either by iterating 
forward a one-step-ahead model (an AR or a VAR) or by estimating a 
multiperiod-ahead regression.

 3. Two series that share a common stochastic trend are cointegrated; that is, Yt 
and Xt are cointegrated if Yt and Xt are I(1) but Yt - uXt is I(0). If Yt and 
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Xt are cointegrated, the error correction term Yt - uXt can help predict ∆Yt 
and/or ∆Xt. A vector error correction model is a VAR model of ∆Yt and 
∆Xt, augmented to include the lagged error correction term.

 4. Volatility clustering—in which the variance of a series is high in some peri-
ods and low in others—is common in economic time series, especially finan-
cial time series.

 5. The ARCH model of volatility clustering expresses the conditional variance 
of the regression error as a function of recent squared regression errors. The 
GARCH model augments the ARCH model to include lagged conditional 
variances as well. Estimated ARCH and GARCH models produce forecast 
intervals with widths that depend on the volatility of the most recent regres-
sion residuals.

Key Terms

vector autoregression (VAR) (639)
iterated multiperiod AR forecast (646)
iterated multiperiod VAR forecast 

(646)
direct multiperiod forecast (648)
integrated of order d[I(d)] (650)
second difference (649)
integrated of order zero [I(0)], one 

[I(1)], or two [I(2)] (650)
order of integration (650)
DF-GLS test (651)
common trend (656)

cointegration (657)
cointegrating coefficient (657)
error correction term (658)
vector error correction model 

(VECM) (658)
EG-ADF test (659)
dynamic OLS (DOLS) estimator 

(660)
volatility clustering (664)
autoregressive conditional 

 heteroskedasticity (ARCH) (666)
generalized ARCH (GARCH) (666)
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Review the Concepts

 16.1 A macroeconomist wants to construct forecasts for the following 
macroeconomic variables: GDP, consumption, investment, government 
purchases, exports, imports, short-term interest rates, long-term interest 
rates, and the rate of price inflation. He has quarterly time series for each 
of these variables from 1970 to 2014. Should he estimate a VAR for these 
variables and use this for forecasting? Why or why not? Can you suggest 
an alternative approach?

 16.2 Suppose that Yt follows a stationary AR(1) model with b0 = 0 and b1 = 0.7. 
If Yt = 5, what is your forecast of Yt + 2 (that is, what is Yt + 2∙t)? What is 
Yt + h∙t for h = 30? Does this forecast for h = 30 seem reasonable to you?

 16.3 A version of the permanent income theory of consumption implies that the 
logarithm of real GDP (Y) and the logarithm of real consumption (C) are 
cointegrated with a cointegrating coefficient equal to 1. Explain how you 
would investigate this implication by (a) plotting the data and (b) using a 
statistical test.

 16.4 Consider the ARCH model, s2
t = 1.0 +   0.8 u2

t - 1. Explain why this will lead 
to volatility clustering. (Hint: What happens when u2

t - 1 is unusually large?)

 16.5 The DF-GLS test for a unit root has higher power than the Dickey–Fuller 
test. Why should you use a more powerful test?

Exercises

 16.1 Suppose that Yt follows a stationary AR(1) model, Yt = b0 + b1Yt - 1 + ut.

 a. Show that the h-period-ahead forecast of Yt is given by 
Yt + h∙t = mY + b 

h
1(Yt - mY), where mY = b0> 11 - b12.

 b. Suppose that Xt is related to Yt by Xt = g
∞
i= 0 d

iYt + i∙t, where ∙d ∙ < 1. 
Show that Xt = [mY>(1 - d)] + [(Yt - mY)>(1 - b1d)].

 16.2 One version of the expectations theory of the term structure of interest 
rates holds that a long-term rate equals the average of the expected values 
of short-term interest rates into the future, plus a term premium that is 
I(0). Specifically, let Rkt denote a k-period interest rate, let R1t denote 
a one-period interest rate, and let et denote an I(0) term premium. Then 
Rkt =

1
kg
k - 1
i= 0  R1t + i∙t + et, where R1t + i∙t is the forecast made at date t of the 
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value of R1 at date t + i. Suppose that R1t follows a random walk so that 
R1t = R1t - 1 + ut.

 a. Show that Rkt = R1t + et.

 b. Show that Rkt and R1t are cointegrated. What is the cointegrating 
coefficient?

 c. Now suppose that ∆R1t = 0.5∆R1t - 1 + ut. How does your answer to 
(b) change?

 d. Now suppose that R1t = 0.5R1t - 1 + ut. How does your answer to  
(b) change?

 16.3 Suppose that ut follows the ARCH process, s2
t = 1.0 + 0.5 u2

t - 1.

 a. Let E(u2
t ) = var(ut) be the unconditional variance of ut. Show 

that var(ut) = 2. (Hint: Use the law of iterated expectations, 
E1u2

t 2 = E3E1u2
t ∙ut - 124.)

 b. Suppose that the distribution of ut conditional on lagged values of ut 
is N(0, s2

t ). If ut - 1 = 0.2, what is Pr1-3 … ut … 32? If ut - 1 = 2.0, 
what is Pr1-3 … ut … 32?

 16.4 Suppose that Yt follows the AR(p) model Yt = b0 + b1Yt - 1 + g+
bpYt - p + ut, where E(ut ∙Yt - 1, Yt - 2, c) = 0 Let Yt + h∙t = E(Yt + h ∙Yt, 
Yt - 1, c). Show that Yt + h∙t = b0 + b1Yt - 1 + h∙t + g + bpYt - p + h∙t for  
h > p.

 16.5 Verify Equation (16.20). [Hint: Use gTt= 1Y
2
t = g

T
t= 11Yt - 1 + ∆Yt22 to 

show that gTt= 1Y
2
t = g

T
t= 1Y

2
t - 1 + 2gTt= 1Yt - 1∆Yt + g

T
t= 1∆Y2

t  and solve 
for gTt= 1Yt - 1∆Yt.4

 16.6 A regression of Yt onto current, past, and future values of Xt yields

 Yt = 3.0 + 1.7Xt + 1 + 0.8Xt - 0.2Xt - 1 + ut. 

 a. Rearrange the regression so that it has the form shown in Equation 
(16.25). What are the values of u, d- 1, d0, and d1?

 b.  i. Suppose that Xt is I(1) and ut is I(1). Are Y and X cointegrated?

 ii. Suppose that Xt is I(0) and ut is I(1). Are Y and X cointegrated?

 iii. Suppose that Xt is I(1) and ut is I(0). Are Y and X cointegrated?

 16.7 Suppose that ∆Yt = ut, where ut is i.i.d. N(0, 1), and consider the regression 
Yt = bXt + error, where Xt = ∆Yt + 1 and error is the regression error. 
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Show that bn¡d  1
21x2

1 - 12. [Hint: Analyze the numerator of bn using 
analysis like that in Equation (16.21). Analyze the denominator using the 
law of large numbers.]

 16.8 Consider the following two-variable VAR model with one lag and no 
intercept:

Yt = b11Yt - 1 + g11Xt - 1 + u1t

Xt = b21Yt - 1 + g21Xt - 1 + u2t.

 a. Show that the iterated two-period-ahead forecast for Y can be written 
as Yt∙t - 2 = d1Yt - 2 + d2Xt - 2 and derive values for d1 and d2 in terms 
of the coefficients in the VAR.

 b. In light of your answer to (a), do iterated multiperiod forecasts differ 
from direct multiperiod forecasts? Explain.

 16.9    a.   Suppose that E(ut ∙ut - 1, ut - 2, c) = 0, that var1ut ∙ut - 1, ut - 2, c2 
follows the ARCH(1) model s2

t = a0 + a1u
2
t - 1, and that the process 

for ut is stationary. Show that var1ut2 = a0> 11 - a12. (Hint: Use the 
law of iterated expectations E(u2

t ) = E[E(u2
t ∙ut - 1)].)

 b. Extend the result in (a) to the ARCH(p) model.

 c. Show that gpi= 1 ai 6 1 for a stationary ARCH(p) model.

 d. Extend the result in (a) to the GARCH(1,1) model.

 e. Show that a1 + f1 6 1 for a stationary GARCH(1,1) model.

 16.10 Consider the cointegrated model Yt = uXt + v1t and Xt = Xt - 1 + v2t, 
where v1t and v2t are mean zero serially uncorrelated random variables 
with E1v1tv2j2 = 0 for all t and j. Derive the vector error correction model 
[Equations (16.22) and (16.23)] for X and Y.

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website, http://www.pearsonhighered.com/stock_watson/.)

 E16.1 This exercise is an extension of Empirical Exercise 14.1. On the text web-
site, http://www.pearsonhighered.com/stock_watson, you will find the 
data file USMacro_Quarterly, which contains quarterly data on several 
macroeconomic series for the United States; the data are described in the 
file USMacro_Description. Compute inflation, Infl, using the price index 
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for personal consumption expenditures. For all regressions use the sample 
period 1963:Q1–2012:Q4 (where data before 1963 may be used as initial 
values for lags in regressions).

 a. Using the data on inflation through 2012:Q4 and an estimated AR(2) 
model:

 i. Forecast ΔInfl2013:Q1, the change in inflation from 2012:Q4 to 
2013:Q1.

 ii. Forecast ΔInfl2013:Q2, the change in inflation from 2013:Q1 to 
2013:Q2. (Use an iterated forecast.)

 iii. Forecast Infl2013:Q2 − Infl2012:Q4, the change in inflation from 
2012:Q4 to 2013:Q2.

 iv. Forecast Infl2013:Q2, the level of inflation in 2013:Q2.

 b. Repeat (a) using the direct forecasting method.

 c. In Exercise 14.1 you carried out an ADF test for a unit root in the 
autoregression for Infl. Now carry out the unit root test using the  
DF-GLS test. Are the conclusions based on the DF-GLS test the same 
as you reached using the ADF test? Explain.

 E16.2 On the text website, http://www.pearsonhighered.com/stock_watson, you 
will find the data file USMacro_Quarterly, which contains quarterly data on  
real GDP, measured in $1996. Compute GDPGRt = 400 × [ln(GDPt) − 
ln(GDPt−1)], the growth rate of GDP.

 a. Using data on GDPGRt from 1960:1 to 2012:4, estimate an AR(2) 
model with GARCH(1,1) errors.

 b. Plot the residuals from the AR(2) model along with {snt bands as in 
Figure 16.4.

 c. Some macroeconomists have claimed that there was a sharp drop in 
the variability of the growth rate of GDP around 1983, which they call 
the “Great Moderation.” Is this Great Moderation evident in the plot 
that you formed in (b)?



W hy should an applied econometrician bother learning any econometric the-
ory? There are several reasons. Learning econometric theory turns your sta-

tistical software from a “black box” into a flexible tool kit from which you are able to 
select the right tool for the job at hand. Understanding econometric theory helps 
you appreciate why these tools work and what assumptions are required for each 
tool to work properly. Perhaps most importantly, knowing econometric theory 
helps you recognize when a tool will not work well in an application and when you 
should look for a different econometric approach.

This chapter provides an introduction to the econometric theory of linear 
regression with a single regressor. This introduction is intended to supplement—
not replace—the material in Chapters 4 and 5, which should be read first.

This chapter extends Chapters 4 and 5 in two ways.
First, it provides a mathematical treatment of the sampling distribution of the 

OLS estimator and t-statistic, both in large samples under the three least squares 
assumptions of Key Concept 4.3 and in finite samples under the two additional 
assumptions of homoskedasticity and normal errors. These five extended least 
squares assumptions are laid out in Section 17.1. Sections 17.2 and 17.3, augmented 
by Appendix 17.2, mathematically develop the large-sample normal distributions of 
the OLS estimator and t-statistic under the first three assumptions (the least squares 
assumptions of Key Concept 4.3). Section 17.4 derives the exact distributions of the OLS 
estimator and t-statistic under the two additional assumptions of homoskedasticity 
and normally distributed errors.

Second, this chapter extends Chapters 4 and 5 by providing an alternative 
method for handling heteroskedasticity. The approach of Chapters 4 and 5 is to 
use heteroskedasticity-robust standard errors to ensure that statistical inference 
is valid even if the errors are heteroskedastic. This method comes with a cost, 
however: If the errors are heteroskedastic, then in theory a more efficient estima-
tor than OLS is available. This estimator, called weighted least squares, is pre-
sented in Section 17.5. Weighted least squares requires a great deal of prior 
knowledge about the precise nature of the heteroskedasticity—that is, about the 
conditional variance of u given X. When such knowledge is available, weighted 
least squares improves upon OLS. In most applications, however, such knowledge 

17
The Theory of Linear Regression 
with One Regressor
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is unavailable; in those cases, using OLS with heteroskedasticity-robust standard 
errors is the preferred method.

17.1 The Extended Least Squares Assumptions 
and the OLS Estimator

This section introduces a set o6 assumptions that extend and strengthen the three 
least squares assumptions o6 Chapter 4. These stronger assumptions are used in 
subsequent sections to derive stronger theoretical results about the OLS estimator 
than are possible under the weaker (but more realistic) assumptions o6 Chapter 4.

The Extended Least Squares Assumptions
Extended least squares Assumptions #1, #2, and #3. The 6irst three extended 
least squares assumptions are the three assumptions given in Key Concept 4.3: 
that the conditional mean o6 ui, given Xi, is zero; that (Xi,Yi), i = 1, c, n, are 
i.i.d. draws 6rom their joint distribution; and that Xi and ui have 6our moments.

Under these three assumptions, the OLS estimator is unbiased, is consistent, 
and has an asymptotically normal sampling distribution. I6 these three assump-
tions hold, then the methods 6or in6erence introduced in Chapter 4—hypothesis 
testing using the t-statistic and construction o6 95% con6idence intervals as {1.96
standard errors—are justi6ied when the sample size is large. To develop a theory 
o6 e66icient estimation using OLS or to characterize the exact sampling distribution 
o6 the OLS estimator, however, requires stronger assumptions.

Extended least squares Assumption #4. The 6ourth extended least squares 
assumption is that ui is homoskedastic; that is, var(ui 0Xi) = s2

u, where s2
u is a 

constant. As seen in Section 5.5, i6 this additional assumption holds, then the OLS 
estimator is e66icient among all linear estimators that are unbiased, conditional on 
X1,c, Xn.

Extended least squares Assumption #5. The 6i6th extended least squares assump-
tion is that the conditional distribution o6 ui, given Xi, is normal.

Under least squares Assumptions #1 and #2 and the extended least squares 
Assumptions #4 and #5, ui is i.i.d. N(0, s2

u), and ui and Xi are independently dis-
tributed. To see this, note that the 6i6th extended least squares assumption states 
that the conditional distribution o6 ui 0Xi is N(0, var(ui 0Xi)), where the distribution 
has mean zero by the 6irst extended least squares assumption. By the 6ourth least 
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squares assumption, however, var(ui 0Xi) = s2
u, so the conditional distribution o6 

ui 0Xi is N(0, s2
u). Because this conditional distribution does not depend on Xi, ui

and Xi are independently distributed. By the second least squares assumption, ui

is distributed independently o6 uj 6or all j ≠ i. It 6ollows that, under the extended 
least squares Assumptions #1, #2, #4, and #5, ui and Xi are independently distrib-
uted and ui is i.i.d. N(0, s2

u).
It is shown in Section 17.4 that, i6 all 6ive extended least squares assumptions hold, 

the OLS estimator has an exact normal sampling distribution and the homoskedasticity-
only t-statistic has an exact Student t distribution.

The 6ourth and 6i6th extended least squares assumptions are much more 
restrictive than the 6irst three. Although it might be reasonable to assume that the 
6irst three assumptions hold in an application, the 6inal two assumptions are less 
realistic. Even though these 6inal two assumptions might not hold in practice, they 
are o6 theoretical interest because i6 one or both o6 them hold, then the OLS esti-
mator has additional properties beyond those discussed in Chapters 4 and 5. Thus 
we can enhance our understanding o6 the OLS estimator and the theory o6 estima-
tion in the linear regression model by exploring estimation under these stronger 
assumptions.

The 6ive extended least squares assumptions 6or the single-regressor model 
are summarized in Key Concept 17.1.

The Extended Least Squares Assumptions for Regression 
with a Single Regressor

The linear regression model with a single regressor is

Yi = b0 + b1Xi + ui, i = 1, c, n. (17.1)

The extended least squares assumptions are

1. E(ui 0Xi) = 0 (conditional mean zero);

2. (Xi, Yi), i = 1, c, n, are independent and identically distributed (i.i.d.) 
draws 6rom their joint distribution;

3. (Xi, ui) have nonzero 6inite 6ourth moments;

4. var(ui �Xi) = s2
u (homoskedasticity); and

5. The conditional distribution o6 ui given Xi is normal (normal errors).

KEY CONCEPT

17.1
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The OLS Estimator
For easy re6erence, we restate the OLS estimators o6 b0 and b1 here:

bn1 =
a
n

i= 1
(Xi - X)(Yi - Y)

a
n

i= 1
(Xi - X )2

(17.2)

bn0 = Y - bn1X. (17.3)

Equations (17.2) and (17.3) are derived in Appendix 4.2.

17.2 Fundamentals of Asymptotic 
Distribution Theory

Asymptotic distribution theory is the theory o6 the distribution o6 statistics—esti-
mators, test statistics, and con6idence intervals—when the sample size is large. 
Formally, this theory involves characterizing the behavior o6 the sampling distribu-
tion o6 a statistic along a sequence o6 ever-larger samples. The theory is asymptotic 
in the sense that it characterizes the behavior o6 the statistic in the limit as nS ∞ .

Even though sample sizes are, o6 course, never in6inite, asymptotic distribu-
tion theory plays a central role in econometrics and statistics 6or two reasons. 
First, i6 the number o6 observations used in an empirical application is large, then 
the asymptotic limit can provide a high-quality approximation to the 6inite sample 
distribution. Second, asymptotic sampling distributions typically are much sim-
pler, and thus easier to use in practice, than exact 6inite-sample distributions. 
Taken together, these two reasons mean that reliable and straight6orward meth-
ods 6or statistical in6erence—tests using t-statistics and 95% con6idence intervals 
calculated as {1.96 standard errors—can be based on approximate sampling dis-
tributions derived 6rom asymptotic theory.

The two cornerstones o6 asymptotic distribution theory are the law o6 large num-
bers and the central limit theorem, both introduced in Section 2.6. We begin this sec-
tion by continuing the discussion o6 the law o6 large numbers and the central limit 
theorem, including a proo6 o6 the law o6 large numbers. We then introduce two more 
tools, Slutsky’s theorem and the continuous mapping theorem, that extend the use6ul-
ness o6 the law o6 large numbers and the central limit theorem. As an illustration, these 
tools are then used to prove that the distribution o6 the t-statistic based on Y testing the 
hypothesis E(Y) = m0 has a standard normal distribution under the null hypothesis.
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Convergence in Probability and 
the Law of Large Numbers
The concepts o6 convergence in probability and the law o6 large numbers were intro-
duced in Section 2.6. Here we provide a precise mathematical de6inition o6 conver-
gence in probability, 6ollowed by a statement and proo6 o6 the law o6 large numbers.

Consistency and convergence in probability. Let S1, S2,c, Sn,c be a sequence 
o6 random variables. For example, Sn could be the sample average Y o6 a sample 
o6 n observations o6 the random variable Y. The sequence o6 random variables 
{Sn} is said to converge in probability to a limit, m (that is, Sn ¡

p
m), i6 the prob-

ability that Sn is within {d o6 m tends to 1 as nS ∞ , as long as the constant d is 
positive. That is,

Sn ¡
p
m i6 and only i6 Pr( 0 Sn - m 0 Ú d) ¡ 0 (17.4)

as nS ∞  6or every d 7 0. I6 Sn ¡
p
m then Sn is said to be a consistent estimator

o6 m.

The law of large numbers. The law o6 large numbers says that, under certain con-
ditions on Y1,c, Yn, the sample average Y converges in probability to the pop-
ulation mean. Probability theorists have developed many versions o6 the law o6 
large numbers, corresponding to various conditions on Y1,c, Yn. The version 
o6 the law o6 large numbers used in this book is that Y1,c, Yn are i.i.d. draws 
6rom a distribution with 6inite variance. This law o6 large numbers (also stated in 
Key Concept 2.6) is

i6 Y1,c, Yn are i.i.d., E(Yi) = mY, and var(Yi) 6 ∞ , then Y ¡
p
mY. (17.5)

The idea o6 the law o6 large numbers can be seen in Figure 2.8: As the sample size 
increases, the sampling distribution o6 Y concentrates around the population 
mean, mY. One 6eature o6 the sampling distribution is that the variance o6 Y
decreases as the sample size increases; another 6eature is that the probability that 
Y 6alls outside {d o6 mY vanishes as n increases. These two 6eatures o6 the sam-
pling distribution are in 6act linked, and the proo6 o6 the law o6 large numbers 
exploits this link.

Proof of the law of large numbers. The link between the variance o6 Y and the 
probability that Y is within {d o6 mY is provided by Chebychev’s inequality, which 
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is stated and proven in Appendix 17.2 [see Equation (17.42)]. Written in terms o6 
Y, Chebychev’s inequality is

Pr( 0Y - mY 0 Ú d) …
var(Y)

d2 , (17.6)

6or any positive constant d. Because Y1,c, Yn are i.i.d. with variance s2
Y ,

var(Y) = s2
Y>n; thus, 6or any d 7 0, var(Y) > d2 = s2

Y>(d2n) ¡ 0. It 6ollows 
6rom Equation (17.6) that Pr( 0Y - mY 0 Ú d) ¡ 0 6or every d 7 0, proving the 
law o6 large numbers.

Some examples. Consistency is a 6undamental concept in asymptotic distribu-
tion theory, so we present some examples o6 consistent and inconsistent estima-
tors o6 the population mean, mY. Suppose that Yi, i = 1, c, n are i.i.d. with 
variance s2

Y that is positive and 6inite. Consider the 6ollowing three estimators o6 mY:
(1) ma = Y1; (2) mb = (1 - an

1 - a )-1gn
i= 1a

i - 1Yi, where 0 6 a 6 1; and (3) mc = Y +
1>n. Are these estimators consistent?

The 6irst estimator, ma, is just the 6irst observation, so E(ma) = E(Y1) = mY

and ma is unbiased. However, ma is not consistent: Pr( 0ma - mY 0 Ú d) =
Pr( 0Y1 - mY 0 Ú d), which must be positive 6or su66iciently small d (because s2

Y 7 0),
so Pr( 0ma - mY 0 Ú d) does not tend to zero as nS ∞ , so ma is not consistent. 
This inconsistency should not be surprising: Because ma uses the in6ormation in 
only one observation, its distribution cannot concentrate around mY as the sample 
size increases.

The second estimator, mb, is unbiased but is not consistent. It is unbiased 
because

E(mb) = E c a 1 - an

1 - a
b
-1

a
n

i= 1
ai - 1Yi d = a

1 - an

1 - a
b
-1

a
n

i= 1
ai - 1mY = mY,

since a
n

i= 1
ai - 1 = a1 - anba

∞

i= 0
ai =

1 - an

1 - a
.

The variance o6 mb is

var(mb) = a 1 - an

1 - a
b
- 2

a
n

i - 1
a2(i - 1)s2

Y = s2
Y

(1 - a2n)(1 - a)2

(1 - a2)(1 - an)2 = s
2
Y

(1 + an)(1 - a)

(1 - an)(1 + a)
,

which has the limit var(mb)S s2
Y(1 - a)>(1 + a) as nS ∞ . Thus the variance 

o6 this estimator does not tend to zero, the distribution does not concentrate 
around mY, and the estimator, although unbiased, is not consistent. This is perhaps 
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surprising, because all the observations enter this estimator. But most o6 the obser-
vations receive very small weight (the weight o6 the ith observation is proportional 
to ai - 1, a very small number when i is large), and 6or this reason there is an insu6-
6icient amount o6 cancellation o6 sampling errors 6or the estimator to be consistent.

The third estimator, mc, is biased but consistent. Its bias is 1/n: E(mc) =
E(Y + 1/n) = mY + 1>n, so the bias tends to zero as the sample size increases. 
To see why mc is consistent: Pr( 0mc - mY 0 Ú d) = Pr( 0Y + 1>n - mY 0 Ú d). Now, 
6rom Equation (17.43) in Appendix 17.2, a generalization o6 Chebychev’s inequal-
ity implies that 6or any random variable W, Pr( 0W 0 Ú d) … E(W2)>d2 6or any 
positive constant d. Thus. Pr( 0Y + 1>n - mY 0 Ú d) … E[(Y + 1>n - mY)2] >d2.
But E3(Y + 1/n - mY)24 = var(Y) + 1/n2 = s2/n + 1 >n2 ¡ 0 as n grows 
large. It 6ollows that Pr( 0Y + 1>n - mY 0 Ú d)¡ 0, and mc is consistent. This 
example illustrates the general point that an estimator can be biased in 6inite sam-
ples but, i6 that bias vanishes as the sample size gets large, the estimator can still be 
consistent (Exercise 17.10).

The Central Limit Theorem and 
Convergence in Distribution
I6 the distributions o6 a sequence o6 random variables converge to a limit as 
nS ∞ , then the sequence o6 random variables is said to converge in distribution. 
The central limit theorem says that, under general conditions, the standardized 
sample average converges in distribution to a normal random variable.

Convergence in distribution. Let F1, F2,c, Fn,cbe a sequence o6 cumula-
tive distribution 6unctions corresponding to a sequence o6 random variables, S1,
S2,c, Sn,c. For example, Sn might be the standardized sample average, 
(Y - mY)>sY. Then the sequence o6 random variables Sn is said to converge in 
distribution to S (denoted Sn ¡

d S) i6 the distribution 6unctions {Fn} converge 
to F, the distribution o6 S. That is,

Sn ¡
d S i6 and only i6 lim

nS ∞
Fn(t) = F(t), (17.7)

where the limit holds at all points t at which the limiting distribution F is continu-
ous. The distribution F is called the asymptotic distribution o6 Sn.

It is use6ul to contrast the concepts o6 convergence in probability (¡p
) and 

convergence in distribution (¡d ). I6 Sn ¡
p
m, then Sn becomes close to m with 

high probability as n increases. In contrast, i6 Sn ¡
d S, then the distribution o6 

Sn becomes close to the distribution o6 S as n increases.
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The central limit theorem. We now restate the central limit theorem using the 
concept o6 convergence in distribution. The central limit theorem in Key Concept 
2.7 states that i6 Y1,c,Yn are i.i.d. and 0 6 s2

Y 6 ∞ , then the asymptotic distri-
bution o6 (Y - mY) >sY  is N(0, 1). Because sY = sY >2n, (Y - mY) >sY =
2n(Y - mY)>sY. Thus the central limit theorem can be restated as 2n(Y - mY) ¡d

sYZ, where Z is a standard normal random variable. This means that the distribution 
o62n(Y - mY) converges to N(0, s2

Y) as n ¡ ∞ . Conventional shorthand 6or this 
limit is

2n(Y - mY) ¡d N(0, s2
Y). (17.8)

That is, i6 Y1,c, Yn are i.i.d. and 0 6 s2
Y 6 ∞ , then the distribution o6 

2n(Y - mY) converges to a normal distribution with mean zero and variance s2
Y.

Extensions to time series data. The law o6 large numbers and central limit 
theorem stated in Section 2.6 apply to i.i.d. observations. As discussed in 
Chapter 14, the i.i.d. assumption is inappropriate 6or time series data, and 
these theorems need to be extended be6ore they can be applied to time series 
observations. Those extensions are technical in nature, in the sense that the 
conclusion is the same—versions o6 the law o6 large numbers and the central 
limit theorem apply to time series data—but the conditions under which they 
apply are di66erent. This is discussed brie6ly in Section 16.4, but a mathemati-
cal treatment o6 asymptotic distribution theory 6or time series variables is 
beyond the scope o6 this book and interested readers are re6erred to Hayashi 
(2000, Chapter 2).

Slutsky’s Theorem and the Continuous 
Mapping Theorem
Slutsky’s theorem combines consistency and convergence in distribution. Suppose 
that an ¡

p
a, where a is a constant, and Sn ¡

d S. Then

an + Sn ¡
d a + S, anSn ¡

d aS, and, i6 a ≠ 0, Sn>an ¡
d S>a. (17.9)

These three results are together called Slutsky’s theorem.
The continuous mapping theorem concerns the asymptotic properties o6 a con-

tinuous 6unction, g, o6 a sequence o6 random variables, Sn. The theorem has two 
parts. The 6irst is that i6 Sn converges in probability to the constant a, then g(Sn)
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converges in probability to g(a); the second is that i6 Sn converges in distribution 
to S, then g(Sn) converges in distribution to g(S). That is, i6 g is a continuous 6unc-
tion, then

(i) i6 Sn ¡
p

a, then g(Sn) ¡p
g(a), and

(ii) i6 Sn ¡
d S, then g(Sn) ¡d g(S). (17.10)

As an example o6 (i), i6 s2
Y ¡

p
s2

Y, then 2s2
Y = sY ¡

p
sY. As an example o6 (ii), 

suppose that Sn ¡
d Z, where Z is a standard normal random variable, and let 

g(Sn) = S2
n. Because g is continuous, the continuous mapping theorem applies 

and g(Sn) ¡d g(Z); that is, S2
n ¡

d Z2. In other words, the distribution o6 S2
n

converges to the distribution o6 a squared standard normal random variable, 
which in turn has a x2

1 distribution; that is, S2
n ¡

d
x2

1.

Application to the t-Statistic Based 
on the Sample Mean
We now use the central limit theorem, the law o6 large numbers, and Slutsky’s 
theorem to prove that, under the null hypothesis, the t-statistic based on Y has a 
standard normal distribution when Y1,c, Yn are i.i.d. and 0 6 E(Y4

i ) 6 ∞ .
The t-statistic 6or testing the null hypothesis that E(Yi) = m0 based on the 

sample average Y is given in Equations (3.8) and (3.11), and can be written

t =
Y - m0

sY>2n
=
2n (Y - m0)

sY
,

sY

sY
, (17.11)

where the second equality uses the trick o6 dividing both the numerator and the 
denominator by sY.

Because Y1,c, Yn have two moments (which is implied by their having 6our 
moments; see Exercise 17.5), and because Y1,c, Yn are i.i.d., the 6irst term a6ter 
the 6inal equality in Equation (17.11) obeys the central limit theorem: Under the 
null hypothesis, 2n(Y - m0) >sY ¡

d N(0, 1). In addition, s2
Y ¡

p
s2

Y (as 
proven in Appendix 3.3), so s2

Y >s2
Y ¡

p
1 and the ratio in the second term in 

Equation (17.11) tends to 1 (Exercise 17.4). Thus the expression a6ter the 6inal 
equality in Equation (17.11) has the 6orm o6 the 6inal expression in Equation 
(17.9), where [in the notation o6 Equation (17.9)] Sn = 2n(Y - m0)>sY ¡

d

N(0, 1) and an = sY>sY ¡
p

1. It 6ollows by applying Slutsky’s theorem that 
t ¡d N(0, 1).
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17.3 Asymptotic Distribution of the OLS 
Estimator and t-Statistic

Recall 6rom Chapter 4 that, under the assumptions o6 Key Concept 4.3 (the 6irst 
three assumptions o6 Key Concept 17.1), the OLS estimator bn1 is consistent and 
2n(bn1 - b1) has an asymptotic normal distribution. Moreover, the t-statistic test-
ing the null hypothesis b1 = b1,0 has an asymptotic standard normal distribution 
under the null hypothesis. This section summarizes these results and provides 
additional details o6 their proo6s.

Consistency and Asymptotic Normality 
of the OLS Estimators
The large-sample distribution o6 bn1, originally stated in Key Concept 4.4, is

2n(bn1 - b1) ¡d Na0,
var(vi)

3var(Xi)42
b , (17.12)

where vi = (Xi - mX)ui. The proo6 o6 this result was sketched in Appendix 4.3, 
but that proo6 omitted some details and involved an approximation that was not 
6ormally shown. The missing steps in that proo6 are le6t as Exercise 17.3.

An implication o6 Equation (17.12) is that bn1 is consistent (Exercise 17.4).

Consistency of Heteroskedasticity-Robust 
Standard Errors
Under the 6irst three least squares assumptions, the heteroskedasticity-robust 
standard error 6or bn1 6orms the basis 6or valid statistical in6erences. Speci6ically,

sn 2
bn1

s2
bn1

¡
p

1, (17.13)

where s2
bn1
= var(vi)>{n[var(Xi)]2} and sn 2

bn1
 is square o6 the heteroskedasticity-

robust standard error de6ined in Equation (5.4); that is,

sn 2
bn1
=

1
n

1
n - 2a

n

i=1
(Xi - X)2un2

i

c 1
na

n

i=1
(Xi - X)2 d

2 . (17.14)



686 CHAPTER 17 The Theory of Linear Regression with One Regressor

To show the result in Equation (17.13), 6irst use the de6initions o6 s2
bn1

 and sn 2
bn1

to rewrite the ratio in Equation (17.13) as

sn 2
bn1

s 2
bn1

=
n

n - 2

1
na

n

i=1
(Xi - X)2un2

i

var(vi)
,

1
na

n

i=1
(Xi - X)2

var(Xi)

2

. (17.15)

We need to show that each o6 the three terms in brackets on the right-hand side 
o6 Equation (17.15) converge in probability to 1. Clearly the 6irst term converges 
to 1, and by the consistency o6 the sample variance (Appendix 3.3) the 6inal term 
converges in probability to 1. Thus all that remains is to show that the second term 
converges in probability to 1, that is, that 1

ngn
i= 1(Xi - X)2un2

i ¡
p

var(vi).
The proo6 that 1

ngn
i=1(Xi - X)2un2

i ¡
p

var(vi) proceeds in two steps. The 
6irst shows that 1ngn

i=1v2
i ¡

p
var(vi); the second shows that 1ngn

i=1(Xi - X)2un2
i -

1
ngn

i=1v
2
i ¡

p
0.

For the moment, suppose that Xi and ui have eight moments [that is, 
E(X8

i ) 6 ∞  and E(u8
i ) 6 ∞4 , which is a stronger assumption than the 6our 

moments required by the third least squares assumption. To show the 6irst step, we 
must show that 1ngn

i=1v
2
i  obeys the law o6 large numbers in Equation (17.5). To do 

so, v2
i  must be i.i.d. (which it is by the second least squares assumption) and var(v2

i )
must be 6inite. To show that var(v2

i ) 6 ∞ , apply the Cauchy–Schwarz inequality 
(Appendix 17.2): var(v2

i ) … E(v4
i )= E3(Xi - mX)4u4

i 4 … 5E3(Xi - mX)84E(u8
i )61>2.

Thus, i6 Xi and ui have eight moments, then v2
i  has a 6inite variance and thus satis-

6ies the law o6 large numbers in Equation (17.5).
The second step is to prove that 1

ngn
i= 1(Xi - X )2un2

i - 1
ngn

i= 1v
2
i ¡

p
0.

Because vi = (Xi - mX)ui, this second step is the same as showing that

1
n
gn

i= 13(Xi - X)2un2
i - (Xi - mX)2u2

i 4 ¡
p

0. (17.16)

Showing this result entails setting un i = ui - (bn0 - b0) - (bn1 - b1)Xi, expanding 
the term in Equation (17.16) in brackets, repeatedly applying the Cauchy–Schwarz 
inequality, and using the consistency o6 bn0 and bn1. The details o6 the algebra are 
le6t as Exercise 17.9.

The preceding argument supposes that Xi and ui have eight moments. This is 
not necessary, however, and the result 1

ngn
i=1(Xi - X)2un2

i ¡
p

var(vi) can be 
proven under the weaker assumption that Xi and ui have 6our moments, as stated 
in the third least squares assumption. That proo6, however, is beyond the scope o6 
this textbook; see Hayashi (2000, Section 2.5) 6or details.
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Asymptotic Normality of the
Heteroskedasticity-Robust t-Statistic
We now show that, under the null hypothesis, the heteroskedasticity-robust OLS 
t-statistic testing the hypothesis b1 = b1,0 has an asymptotic standard normal dis-
tribution i6 least squares Assumptions #1, #2, and #3 hold.

The t-statistic constructed using the heteroskedasticity-robust standard error 
SE(bn1) = snbn1 [de6ined in Equation (17.14)] is

t =
bn1 - b1,0

snbn1
=
2n(bn1 - b1,0)

2ns2
bn1

,
sn 2
bn1

s 2
bn1

. (17.17)

It 6ollows 6rom Equation (17.12) and the de6inition o6 s2
bn1

 that 6irst term a6ter the 
second equality in Equation (17.17) converges in distribution to a standard normal 
random variable. In addition, because the heteroskedasticity-robust standard 
error is consistent [Equation (17.13)], 2sn 2

bn1
>s2 
bn1
¡

p
1 (Exercise 17.4). It 6ollows 

6rom Slutsky’s theorem that t ¡d
N(0, 1).

17.4 Exact Sampling Distributions When 
the Errors Are Normally Distributed

In small samples, the distribution o6 the OLS estimator and t-statistic depends on 
the distribution o6 the regression error and typically is complicated. As discussed 
in Section 5.6, however, i6 the regression errors are homoskedastic and normally 
distributed, then these distributions are simple. Speci6ically, i6 all 6ive extended 
least squares assumptions in Key Concept 17.1 hold, then the OLS estimator has 
a normal sampling distribution, conditional on X1,c, Xn. Moreover, the t-statistic 
has a Student t distribution. We present these results here 6or bn1.

Distribution of bn1 with Normal Errors
I6 the errors are i.i.d. normally distributed and independent o6 the regressors, then 
the distribution o6 bn1, conditional on X1,c, Xn, is N(b1, s

2
bn 1 0X

), where

s2
bn1 0X =

s2
u

a
n

i=1
(Xi - X)2

. (17.18)
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The derivation o6 the normal distribution N(b1, s2
bn1 0 X

), conditional on 
X1,c, Xn, entails (i) establishing that the distribution is normal; (ii) showing 
that E(bn1 �X1 ,c, Xn) = b1; and (iii) veri6ying Equation (17.18).

To show (i), note that, conditional on X1,c, Xn, bn1 - b1 is a weighted aver-
age o6 u1,c, un:

bn1 = b1 +

1
na

n

i= 1
(Xi - X)ui

1
na

n

i= 1
(Xi - X)2

. (17.19)

This equation was derived in Appendix 4.3 [Equation (4.30) and is restated here 
6or convenience]. By extended least squares Assumptions #1, #2, #4, and #5, ui is 
i.i.d. N(0, s2

u), and ui and Xi are independently distributed. Because weighted 
averages o6 normally distributed variables are themselves normally distributed, it 
6ollows that bn1 is normally distributed, conditional on X1,c, Xn.

To show (ii), take conditional expectations o6 both sides o6 Equation (17.19): 
E[(bn1 - b1) 0X1,c, Xn)] = E[gn

i=1(Xi - X)ui>g
n
i=1(Xi - X)2 0X1,c, Xn] =

[gn
i=1(Xi -X) E(ui 0X1,c, Xn)]>[gn

i=1(Xi - X)2] = 0, where the 6inal equality 
6ollows because E(ui 0X1, X2,c, Xn) = E(ui 0Xi) = 0. Thus bn1 is conditionally 
unbiased; that is,

E(bn1 0X1,c, Xn) = b1. (17.20)

To show (iii), use that the errors are independently distributed, conditional on 
X1 ,c, Xn, to calculate the conditional variance o6 bn1 using Equation (17.19):

var(bn1 �X1 ,c, Xn) = var≥
a
n

i= 1
(Xi - X)ui

a
n

i= 1
(Xi - X)2

�X1 ,c, Xn ¥

=
a
n

i= 1
(Xi - X)2var(ui �X1 ,c, Xn)

ca
n

i= 1
(Xi - X)2 d

2

=
a
n

i= 1
(Xi - X)2s2

u

ca
n

i= 1
(Xi - X)2 d

2. (17.21)
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Canceling the term in the numerator in the 6inal expression in Equation 
(17.21) yields the 6ormula 6or the conditional variance in Equation (17.18).

Distribution of the Homoskedasticity-Only t-Statistic
The homoskedasticity-only t-statistic testing the null hypothesis b1 = b1,0 is

t =
bn1 - b1,0

SE(bn1)
, (17.22)

where SE(bn1) is computed using the homoskedasticity-only standard error o6 bn1.
Substituting the 6ormula 6or SE(bn1) [Equation (5.29) o6 Appendix 5.1] into Equa-
tion (17.22) and rearranging yields

t =
bn1 - b1,0

s2
un >a

n

i=1
(Xi - X)2

=
bn1 - b1,0

s2
u>a

n

i=1
(Xi - X)2

,
s2

un

s2
u

=
(bn1 - b1,0)>sbn 1 �X

2W>(n - 2)
, (17.23)

where s2
un =

1
n - 2g

n
i=1un2

i  and W = gn
i=1 un2

i >s2
u. Under the null hypothesis, bn1 has 

an N(b1,0, s
2
bn1 0X) distribution conditional on X1,c, Xn, so the distribution o6 the 

numerator in the 6inal expression in Equation (17.23) is N(0, 1). It is shown in 
Section 18.4 that W has a chi-squared distribution with n – 2 degrees o6 6reedom 
and moreover that W is distributed independently o6 the standardized OLS esti-
mator in the numerator o6 Equation (17.23). It 6ollows 6rom the de6inition o6 the 
Student t distribution (Appendix 17.1) that, under the 6ive extended least squares 
assumptions, the homoskedasticity-only t-statistic has a Student t distribution with 
n - 2 degrees o6 6reedom.

Where does the degrees of freedom adjustment fit in? The degrees o6 6reedom 
adjustment in s2

un  ensures that s2
un  is an unbiased estimator o6 s2

u and that the t-statistic 
has a Student t distribution when the errors are normally distributed.

Because W = gn
i=1 un2

i >s2
u is a chi-squared random variable with n - 2 degrees o6 

6reedom, its mean is E(W) = n - 2. Thus E3W>(n - 2)4 = (n - 2)>(n - 2) = 1.
Rearranging the de6inition o6 W, we have that E( 1

n - 2g
n
i=1 un2

i ) = s2
u. Thus the 

degrees o6 6reedom correction makes s2
un  an unbiased estimator o6 s2

u. Also, by divid-
ing by n - 2 rather than n, the term in the denominator o6 the 6inal expression o6 
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Equation (17.23) matches the de6inition o6 a random variable with a Student t
distribution given in Appendix 17.1. That is, by using the degrees o6 6reedom 
adjustment to calculate the standard error, the t-statistic has the Student t distribu-
tion when the errors are normally distributed.

17.5 Weighted Least Squares

Under the 6irst 6our extended least squares assumptions, the OLS estimator is 
e66icient among the class o6 linear (in Y1,c, Yn), conditionally (on X1,c, Xn)
unbiased estimators; that is, the OLS estimator is BLUE. This result is the Gauss–
Markov theorem, which was discussed in Section 5.5 and proven in Appendix 5.2. 
The Gauss–Markov theorem provides a theoretical justi6ication 6or using the OLS 
estimator. A major limitation o6 the Gauss–Markov theorem is that it requires 
homoskedastic errors. I6, as is o6ten encountered in practice, the errors are 
heteroskedastic, the Gauss–Markov theorem does not hold and the OLS estimator 
is not BLUE.

This section presents a modi6ication o6 the OLS estimator, called weighted 
least squares (WLS), which is more e66icient than OLS when the errors are 
heteroskedastic.

WLS requires knowing quite a bit about the conditional variance 6unction, 
var(ui �Xi). We consider two cases. In the 6irst case, var(ui �Xi) is known up to a 
6actor o6 proportionality, and WLS is BLUE. In the second case, the 6unctional 
6orm o6 var(ui �Xi) is known, but this 6unctional 6orm has some unknown param-
eters that can be estimated. Under some additional conditions, the asymptotic 
distribution o6 WLS in the second case is the same as i6 the parameters o6 the 
conditional variance 6unction were in 6act known, and in this sense the WLS esti-
mator is asymptotically BLUE. The section concludes with a discussion o6 the 
practical advantages and disadvantages o6 handling heteroskedasticity using WLS 
or, alternatively, heteroskedasticity-robust standard errors.

WLS with Known Heteroskedasticity
Suppose that the conditional variance var(ui 0Xi) is known up to a 6actor o6 pro-
portionality; that is,

var(ui 0Xi) = lh(Xi), (17.24)

where l is a constant and h is a known 6unction. In this case, the WLS estimator 
is the estimator obtained by 6irst dividing the dependent variable and regressor 
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by the square root o6 h and then regressing this modi6ied dependent variable on 
the modi6ied regressor using OLS. Speci6ically, divide both sides o6 the single-
variable regressor model by 2h(Xi) to obtain

Y
∼

i = b0X
∼

0i + b1X
∼

1i + u∼i, (17.25)

where Y∼i = Yi>2h(Xi), X
∼

0i = 1>2h(Xi), X
∼

1i = Xi>2h(Xi), and u∼i = ui>2h(Xi).
The WLS estimator is the OLS estimator o6 b1 in Equation (17.25); that 

is, it is the estimator obtained by the OLS regression o6 Y
∼

i on X∼0i and X∼1i,
where the coe66icient on X∼0i takes the place o6 the intercept in the unweighted 
regression.

Under the 6irst three least squares assumptions in Key Concept 17.1 plus the 
known heteroskedasticity assumption in Equation (17.24), WLS is BLUE. The 
reason that the WLS estimator is BLUE is that weighting the variables has made 
the error term u∼i in the weighted regression homoskedastic. That is,

var(u∼i 0Xi) = var c
ui

1h(Xi)
0Xi d =

var(ui �Xi)

h(Xi)
=
lh(Xi)

h(Xi)
= l, (17.26)

so the conditional variance o6 u∼i, var(u∼i �Xi), is constant. Thus the 6irst 6our least 
squares assumptions apply to Equation (17.25). Strictly speaking, the Gauss–Markov 
theorem was proven in Appendix 5.2 6or Equation (17.1), which includes the 
intercept b0, so it does not apply to Equation (17.25), in which the intercept is 
replaced by b0X

∼
0i. However, the extension o6 the Gauss–Markov theorem 6or 

multiple regression (Section 18.5) does apply to estimation o6 b1 in the weighted 
population regression, Equation (17.25). Accordingly, the OLS estimator o6 b1 in 
Equation (17.25)—that is, the WLS estimators o6 b1:is BLUE.

In practice, the 6unction h typically is unknown, so neither the weighted vari-
ables in Equation (17.25) nor the WLS estimator can be computed. For this rea-
son, the WLS estimator described here is sometimes called the infeasible WLS
estimator. To implement WLS in practice, the 6unction h must be estimated, the 
topic to which we now turn.

WLS with Heteroskedasticity 
of Known Functional Form
I6 the heteroskedasticity has a known 6unctional 6orm, then the heteroskedasticity 
6unction h can be estimated and the WLS estimator can be calculated using this 
estimated 6unction.
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Example #1: The variance of u is quadratic in X. Suppose that the conditional vari-
ance is known to be the quadratic 6unction

var(ui 0Xi) = u0 + u1X2
i , (17.27)

where u0 and u1 are unknown parameters, u0 7 0, and u1 Ú 0.
Because u0 and u1 are unknown, it is not possible to construct the weighted 

variables Y
∼

i, X
∼

0i, and X∼1i. It is, however, possible to estimate u0 and u1, and to use 
those estimates to compute estimates o6 var(ui �Xi). Let un0 and un1 be estimators o6 
u0 and u1, and let var(ui 0Xi) = un0 + un1X2

i . De6ine the weighted regressors Yn i
∼ =

Yi>2var(ui 0Xi), Xn0i
∼ = 1>2var(ui 0Xi), and Xn1i

∼ = X1i>2var(ui 0Xi). The WLS esti-
mator is the OLS estimator o6 the coe66icients in the regression o6 Yn i

∼  on Xn0i
∼  and 

Xn1i
∼  (where b0Xn0i

∼  takes the place o6 the intercept b0).
Implementation o6 this estimator requires estimating the conditional variance 

6unction, that is, estimating u0 and u1 in Equation (17.27). One way to estimate u0
and u1 consistently is to regress un2

i  on X2
i  using OLS, where un2

i  is the square o6 the 
ith OLS residual.

Suppose that the conditional variance has the 6orm in Equation (17.27) and 
that un0 and un1 are consistent estimators o6 u0 and u1. Under Assumptions #1 
through #3 o6 Key Concept 17.1, plus additional moment conditions that arise 
because u0 and u1 are estimated, the asymptotic distribution o6 the WLS estimator 
is the same as i6 u0 and u1 were known. Thus the WLS estimator with u0 and u1
estimated has the same asymptotic distribution as the in6easible WLS estimator 
and is in this sense asymptotically BLUE.

Because this method o6 WLS can be implemented by estimating unknown 
parameters o6 the conditional variance 6unction, this method is sometimes called 
feasible WLS or estimated WLS.

Example #2: The variance depends on a third variable. WLS also can be used 
when the conditional variance depends on a third variable, Wi, which does not 
appear in the regression 6unction. Speci6ically, suppose that data are collected on 
three variables, Yi, Xi, and Wi, i = 1, c, n; the population regression 6unction 
depends on Xi but not Wi; and the conditional variance depends on Wi but not Xi.
That is, the population regression 6unction is E(Yi �Xi, Wi) = b0 + b1Xi and the 
conditional variance is var(ui �Xi, Wi) = lh(Wi), where l is a constant and h is a 
6unction that must be estimated.

For example, suppose that a researcher is interested in modeling the relation-
ship between the unemployment rate in a state and a state economic policy vari-
able (Xi). The measured unemployment rate (Yi), however, is a survey-based 
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estimate o6 the true unemployment rate (Y*
i ). Thus Yi measures Y*

i  with error, 
where the source o6 the error is random survey error, so Yi = Y*

i + vi, where vi is 
the measurement error arising 6rom the survey. In this example, it is plausible that 
the survey sample size, Wi, is not itsel6 a determinant o6 the true state unemploy-
ment rate. Thus the population regression 6unction does not depend on Wi; that 
is, E(Y*

i �Xi,Wi) = b0 + b1Xi. We there6ore have the two equations

Y*
i = b0 + b1Xi + u*

i and (17.28)

Yi = Y*
i + vi, (17.29)

where Equation (17.28) models the relationship between the state economic pol-
icy variable and the true state unemployment rate and Equation (17.29) repre-
sents the relationship between the measured unemployment rate Yi and the true 
unemployment rate Y*

i .
The model in Equations (17.28) and (17.29) can lead to a population regres-

sion in which the conditional variance o6 the error depends on Wi but not on Xi.
The error term u*

i  in Equation (17.28) represents other 6actors omitted 6rom this 
regression, while the error term vi in Equation (17.29) represents measurement 
error arising 6rom the unemployment rate survey. I6 u*

i  is homoskedastic, then 
var(u*

i 0Xi, Wi) = s2
u* is constant. The survey error variance, however, depends 

inversely on the survey sample size Wi; that is, var(vi 0Xi, Wi) = a>Wi where a is a 
constant. Because vi is random survey error, it is sa6ely assumed to be uncorrelated 
with u*

i , so var(u*
i + vi 0Xi, Wi) = s2

u* + a>Wi Thus, substituting Equation (17.28) 
into Equation (17.29) leads to the regression model with heteroskedasticity

Yi = b0 + b1Xi + ui, (17.30)

var(ui �Xi, Wi) = u0 + u1a
1

Wi
b , (17.31)

where ui = u*
i + vi, u0 = s2

u*, u1 = a, and E(ui �Xi, Wi) = 0.
I6 u0 and u1 were known, then the conditional variance 6unction in Equation 

(17.31) could be used to estimate b0 and b1 by WLS. In this example, u0 and u1 are 
unknown, but they can be estimated by regressing the squared OLS residual [6rom 
OLS estimation o6 Equation (17.30)] on 1>Wi. Then the estimated conditional 
variance 6unction can be used to construct the weights in 6easible WLS.

It should be stressed that it is critical that E(ui 0Xi, Wi) = 0; i6 not, the 
weighted errors will have nonzero conditional mean and WLS will be inconsistent. 
Said di66erently, i6 Wi is in 6act a determinant o6 Yi, then Equation (17.30) should 
be a multiple regression equation that includes both Xi and Wi.
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General method of feasible WLS. In general, 6easible WLS proceeds in 6ive steps:

1. Regress Yi on Xi by OLS and obtain the OLS residuals un i, i = 1, c, n.
2. Estimate a model o6 the conditional variance 6unction var(ui 0Xi). For example, 

i6 the conditional variance 6unction has the 6orm in Equation (17.27), this entails 
regressing un2

i  on X2
i . In general, this step entails estimating a 6unction 6or the 

conditional variance, var(ui �Xi).
3. Use the estimated 6unction to compute predicted values o6 the conditional 

variance 6unction, var(ui 0Xi).
4. Weight the dependent variable and regressor (including the intercept) by the 

inverse o6 the square root o6 the estimated conditional variance 6unction.
5. Estimate the coe6fcients o6 the weighted regression by OLS; the resulting 

estimators are the WLS estimators.

Regression so6tware packages typically include optional weighted least 
squares commands that automate the 6ourth and 6i6th o6 these steps.

Heteroskedasticity-Robust Standard Errors or WLS?
There are two ways to handle heteroskedasticity: estimating b0 and b1 by WLS or 
estimating b0 and b1 by OLS and using heteroskedasticity-robust standard errors. 
Deciding which approach to use in practice requires weighing the advantages and 
disadvantages o6 each.

The advantage o6 WLS is that it is more e66icient than the OLS estimator o6 
the coe66icients in the original regressors, at least asymptotically. The disadvan-
tage o6 WLS is that it requires knowing the conditional variance 6unction and 
estimating its parameters. I6 the conditional variance 6unction has the quadratic 
6orm in Equation (17.27), this is easily done. In practice, however, the 6unctional 
6orm o6 the conditional variance 6unction is rarely known. Moreover, i6 the 6unc-
tional 6orm is incorrect, then the standard errors computed by WLS regression 
routines are invalid in the sense that they lead to incorrect statistical in6erences 
(tests have the wrong size).

The advantage o6 using heteroskedasticity-robust standard errors is that they 
produce asymptotically valid in6erences even i6 you do not know the 6orm o6 the 
conditional variance 6unction. An additional advantage is that heteroskedasticity-
robust standard errors are readily computed as an option in modern regression 
packages, so no additional e66ort is needed to sa6eguard against this threat. The 
disadvantage o6 heteroskedasticity-robust standard errors is that the OLS estima-
tor will have a larger variance than the WLS estimator (based on the true condi-
tional variance 6unction).
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In practice, the 6unctional 6orm o6 var(ui 0Xi)  is rarely i6 ever known, which 
poses a problem 6or using WLS in real-world applications. This problem is di66icult 
enough with a single regressor, but in applications with multiple regressors it is even 
more di66icult to know the 6unctional 6orm o6 the conditional variance. For this rea-
son, practical use o6 WLS con6ronts imposing challenges. In contrast, in modern 
statistical packages it is simple to use heteroskedasticity-robust standard errors, and 
the resulting in6erences are reliable under very general conditions; in particular, 
heteroskedasticity-robust standard errors can be used without needing to speci6y a 
6unctional 6orm 6or the conditional variance. For these reasons, it is our opinion that, 
despite the theoretical appeal o6 WLS, heteroskedasticity-robust standard errors 
provide a better way to handle potential heteroskedasticity in most applications.

Summary

1. The asymptotic normality o6 the OLS estimator, combined with the consistency 
o6 heteroskedasticity-robust standard errors, implies that, i6 the 6irst three least 
squares assumptions in Key Concept 17.1 hold, then the heteroskedasticity-
robust t-statistic has an asymptotic standard normal distribution under the null 
hypothesis.

2. I6 the regression errors are i.i.d. and normally distributed, conditional on the 
regressors, then bn1 has an exact normal sampling distribution, conditional on 
the regressors. In addition, the homoskedasticity-only t-statistic has an exact 
Student tn–2 sampling distribution under the null hypothesis.

3. The weighted least squares (WLS) estimator is OLS applied to a weighted regres-
sion, where all variables are weighted by the square root o6 the inverse o6 the 
conditional variance, var(ui 0Xi), or its estimate. Although the WLS estimator is 
asymptotically more e66icient than OLS, to implement WLS you must know the 
6unctional 6orm o6 the conditional variance 6unction, which usually is a tall order.
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Review the Concepts

17.1 Suppose that Assumption #4 in Key Concept 17.1 is true, but you 
construct a 95% con6idence interval 6or b1 using the heteroskedastic-
robust standard error in a large sample. Would this con6idence interval 
be valid asymptotically in the sense that it contained the true value o6 
b1 in 95% o6 all repeated samples 6or large n? Suppose instead that 
Assumption #4 in Key Concept 17.1 is 6alse, but you construct a 95% 
con6idence interval 6or b1 using the homoskedasticity-only standard 
error 6ormula in a large sample. Would this con6idence interval be 
valid asymptotically?

17.2 Suppose that An is a sequence o6 random variables that converges in 
probability to 3. Suppose that Bn is a sequence o6 random variables that 
converges in distribution to a standard normal. What is the asymptotic dis-
tribution o6 AnBn? Use this asymptotic distribution to compute an approxi-
mate value o6 Pr(AnBn < 2).

17.3 Suppose that Y and X are related by the regression Y = 1.0 + 2.0X + u.
A researcher has observations on Y and X, where 0 … X … 20, where 
the conditional variance is var(ui 0Xi = x) = 1 6or 0 … x … 10 and 
var(ui 0Xi = x) = 16 6or 10 6 x … 20. Draw a hypothetical scatterplot 
o6 the observations (Xi, Yi), i = 1, c, n. Does WLS put more weight on 
observations with x … 10 or x 7 10? Why?

17.4 Instead o6 using WLS, the researcher in the previous problem decides to 
compute the OLS estimator using only the observations 6or which x … 10,
then using only the observations 6or which x 7 10, and then using the 
average the two OLS o6 estimators. Is this estimator more e66icient than 
WLS?

MyEconLab Can Help You Get a Better Grade

MyEconLab If your exam were tomorrow, would you be ready? For each chapter, 
MyEconLab Practice Tests and Study Plan help you prepare for your exams. 

You can also find the Exercises and all Review the Concepts Questions available now in MyEconLab.
To see how it works, turn to the MyEconLab spread on the inside front cover of this book and then 
go to www.myeconlab.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at 
www.pearsonhighered.com/stock_watson.
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Exercises

17.1 Consider the regression model without an intercept term, Yi = b1Xi + ui

(so the true value o6 the intercept, b0, is zero).

a. Derive the least squares estimator o6 b1 6or the restricted regression 
model Yi = b1Xi + ui. This is called the restricted least squares esti-
mator (bnRLS

1 ) o6 b1 because it is estimated under a restriction, which in 
this case is b0 = 0.

b. Derive the asymptotic distribution o6 bnRLS
1  under Assumptions #1 

through #3 o6 Key Concept 17.1.

c. Show that bnRLS
1  is linear [Equation (5.24)] and, under Assumptions #1 

and #2 o6 Key Concept 17.1, conditionally unbiased [Equation (5.25)].

d. Derive the conditional variance o6 bnRLS
1  under the Gauss–Markov 

conditions (Assumptions #1 through #4 o6 Key Concept 17.1).

e. Compare the conditional variance o6 bnRLS
1  in (d) to the conditional 

variance o6 the OLS estimator bn1 (6rom the regression including an 
intercept) under the Gauss–Markov conditions. Which estimator is 
more e66icient? Use the 6ormulas 6or the variances to explain why.

f. Derive the exact sampling distribution o6 bnRLS
1  under Assumptions #1 

through #5 o6 Key Concept 17.1.

g. Now consider the estimator b∼1 = g
n
i= 1Yi>g

n
i= 1Xi. Derive an 

expression 6or var(b∼1 �X1,c, Xn) - var(bnRLS
1 0X1,c, Xn) under 

the Gauss–Markov conditions and use this expression to show that 
var(b

∼
1 0X1,c, Xn) Ú var(bn1RLS 0X1,c, Xn).

17.2 Suppose that (Xi,Yi) are i.i.d. with 6inite 6ourth moments. Prove that the 
sample covariance is a consistent estimator o6 the population covariance—
that is, sXY ¡

p sXY , where sXY is de6ined in Equation (3.24). (Hint: Use 
the strategy outlined in Appendix 3.3 and the Cauchy–Schwarz inequality.)

17.3. This exercise 6ills in the details o6 the derivation o6 the asymptotic distribu-
tion o6 bn1 given in Appendix 4.3.

a. Use Equation (17.19) to derive the expression

2n(bn1 - b1) =
A

1
na

n

i= 1
vi

1
na

n

i= 1
(Xi - X )2

-
(X - mX)

A
1
na

n

i= 1
ui

1
na

n

i= 1
(Xi - X )2

,

where vi = (Xi - mX)ui.
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b. Use the central limit theorem, the law o6 large numbers, and Slutsky’s 
theorem to show that the 6inal term in the equation converges in 
probability to zero.

c. Use the Cauchy–Schwarz inequality and the third least squares 
assumption in Key Concept 17.1 to prove that var(vi) 6 ∞ . Does the 
term 21

ngn
i= 1vi>sv satis6y the central limit theorem?

d. Apply the central limit theorem and Slutsky’s theorem to obtain the 
result in Equation (17.12).

17.4 Show the 6ollowing results:

a. Show that 2n(bn1 - b1) ¡
d N(0, a2), where a2 is a constant, implies 

that bn1 is consistent. (Hint: Use Slutsky’s theorem.)

b. Show that su
2>su

2 ¡
p

1 implies that su>su ¡
p

1.

17.5 Suppose that W is a random variable with E(W4) 6 ∞ . Show that 
E(W2) 6 ∞ .

17.6 Show that i6 bn1 is conditionally unbiased, then it is unbiased; that is, show 
that i6 E(bn1 0X1,c, Xn) = b1, then E(bn1) = b1.

17.7 Suppose that X and u are continuous random variables and (Xi, ui), i =
1, c, n, are i.i.d.

a. Show that the joint probability density 6unction (p.d.6.) o6 (ui, uj, Xi, Xj)
can be written as f(ui, Xi)f(uj, Xj) 6or i ≠ j, where f(ui, Xi) is the joint 
p.d.6. o6 ui and Xi.

b. Show that E(uiuj 0Xi, Xj) = E(ui 0Xi) E(uj 0Xj) 6or i ≠ j.

c. Show that E(ui 0X1,c, Xn) = E(ui 0Xi).

d. Show that E(uiuj 0X1, X2,c, Xn) = E(ui 0Xi) E(uj 0Xj) 6or i ≠ j.

17.8 Consider the regression model in Key Concept 17.1 and suppose that 
Assumptions #1, #2, #3, and #5 hold. Suppose that Assumption #4 is 
replaced by the assumption that var(ui 0Xi) = u0 + u1 0Xi 0 , where 0Xi 0  is 
the absolute value o6 Xi, u0 7 0, and u1 Ú 0.

a. Is the OLS estimator o6 b1 BLUE?

b. Suppose that u0 and u1 are known. What is the BLUE estimator o6 b1?

c. Derive the exact sampling distribution o6 the OLS estimator, bn1, con-
ditional on X1,c, Xn.

d. Derive the exact sampling distribution o6 the WLS estimator (treating 
u0 and u1 as known) o6 b1, conditional on X1,c, Xn.
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17.9 Prove Equation (17.16) under Assumptions #1 and #2 o6 Key Concept 17.1 
plus the assumption that Xi and ui have eight moments.

17.10 Let un  be an estimator o6 the parameter u, where un  might be biased. Show 
that i6 E3(un - u)24¡ 0 as n ¡ ∞  (that is, the mean squared error 
o6 un  tends to zero), then un ¡

p
u. [Hint: Use Equation (17.43) with 

W = un - u.4

17.11 Suppose that X and Y are distributed bivariate normal with density given 
in Equation (17.38).

a. Show that the density o6 Y given X = x can be written as

     fY �X= x(y) =
1

sY�X22p
exp c - 1

2
a

y - mY�X

sY�X
b

2

d

where sYX = 2s2
Y(1 - r2

XY) and mY�X = mY - (sXY>s2
X)(x - mX).

[Hint: Use the de6inition o6 the conditional probability density 
fY 0X = x(y) = 3gX, Y(x, y)4 >3fX(x)4, where gX,Y is the joint density o6 X
and Y, and ƒX is the marginal density o6 X.]

b. Use the result in (a) to show that Y 0X = x ∼ N(mY 0X, s2
Y 0X).

c. Use the result in (b) to show that E(Y 0X = x) = a + bx 6or suitably 
chosen constants a and b.

17.12 a.  Suppose that u ∼ N(0, s2
u). Show that E(eu) = e

1
2s

2
u

b. Suppose that the conditional distribution o6 u given X = x is 
N(0, a + bx2), where a and b are positive constants. Show that 
E(eu 0X = x) = e

1
2(a + bx2).

17.13 Consider the heterogeneous regression model Yi = b0i + b1iXi + ui, where 
b0i and b1i are random variables that di66er 6rom one observation to the next. 
Suppose that E(ui 0Xi) = 0 and (b0i, b1i) are distributed independently o6 Xi.

a. Let bnOLS
1  denote the OLS estimator o6 b1 given in Equation (17.2). 

Show that bnOLS
1 ¡

p
E(b1), where E(b1) is the average value o6 b1i in 

the population. [Hint: See Equation (13.10).]

b. Suppose that var(ui 0Xi) = u0 + u1X2
i , where u0 and u1 are known posi-

tive constants. Let bnWLS
1  denote the weighted least squares estimator. 

Does bnWLS
1 ¡p

E(b1)? Explain.

17.14 Suppose that Yi, i = 1, 2, c, n, are i.i.d. with E(Yi) = m, var(Yi) = s2,
and 6inite 6ourth moment. Show the 6ollowing:
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a. E(Y2
i ) = m2 + s2

b. Y ¡p
μ

c.
1
na

n

i= 1
Y2

i ¡
p
m2 + s2

d.
1
na

n

i= 1
(Yi - Y)2 =

1
na

n

i= 1
Y2

i - Y 2

e.
1
na

n

i= 1
(Yi - Y)2 ¡p

s2

f. s2 =
1

n - 1a
n

i= 1
(Yi - Y)2 ¡

p
s2

17.15 Z is distributed N (0,1), W is distributed x2
n, and V is distributed x2

m. Show, 
as nS ∞  and m is 6ixed, that:

a. W>n ¡
p

1.

b. Z

1W>n
¡d N(0,1). Use the result to explain why the t∞ distribution is 

the same as the standard normal distribution.

c.
V>m
W>n ¡

d
x2

m>m. Use the result to explain why the Fm,∞ distribution is 
the same as the x2

m>m distribution.

 A P P E N D I X

17.1 The Normal and Related Distributions and 
Moments of Continuous Random Variables

This appendix de6ines and discusses the normal and related distributions. The de6initions 

o6 the chi-squared, F, and Student t distributions, given in Section 2.4, are restated here 6or 

convenient re6erence. We begin by presenting de6initions o6 probabilities and moments 

involving continuous random variables.

Probabilities and Moments of Continuous 
Random Variables
As discussed in Section 2.1, i6 Y is a continuous random variable, then its probability is 

summarized by its probability density 6unction (p.d.6.). The probability that Y 6alls between 

two values is the area under its p.d.6. between those two values. Because Y is continuous, 

however, the mathematical expressions 6or its probabilities involve integrals rather than 

the summations that are appropriate 6or discrete random variables.
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Let fY denote the probability density 6unction o6 Y. Because probabilities cannot be 

negative, fY(y) Ú 0 6or all y. The probability that Y 6alls between a and b (where a < b) is

Pr(a … Y … b) =
L

b

a
fY(y)dy. (17.32)

Because Y must take on some value on the real line, Pr(-∞ … Y … ∞) = 1, which implies 

that 1
∞
-∞ fY(y)dy = 1.

Expected values and moments o6 continuous random variables, like those o6 discrete 

random variables, are probability-weighted averages o6 their values, except that summa-

tions [6or example, the summation in Equation (2.3)] are replaced by integrals. Accord-

ingly, the expected value o6 Y is

E(Y) = mY =
L

yfY(y)dy, (17.33)

where the range o6 integration is the set o6 values 6or which fY is nonzero. The variance is 

the expected value o6 (Y - mY)2, the rth moment o6 a random variable is the expected value 

o6 Yr, and the rth central moment is the expected value o6 (Y - mY)r. Thus

var(Y) = E(Y - mY)2 =
L

(y - mY)2 fY(y)dy, (17.34)

E(Y r) =
L

yrfY(y)dy, (17.35)

and similarly 6or the rth central moment, E(Y - mY)r.

The Normal Distribution
The normal distribution for a single variable. The probability density 6unction o6 a nor-

mally distributed random variable (the normal p.d.f.) is

fY(y) =
1

s22p
exp c- 1

2
a

y - m
s
b

2

d , (17.36)

where exp(x) is the exponential 6unction o6 x. The 6actor 1>(s22p) in Equation (17.36) 

ensures that Pr(-∞ … Y … ∞) = 1
∞
-∞ fY(y)dy = 1.

The mean o6 the normal distribution is m, and its variance is s2. The normal distribu-

tion is symmetric, so all odd central moments o6 order three and greater are zero. The 

6ourth central moment is 3s4. In general, i6 Y is distributed N(m, s2), then its even central 

moments are given by
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E(Y - m)k =
k!

2k>2(k>2)!
sk (k even). (17.37)

When m = 0 and s2 = 1, the normal distribution is called the standard normal distribu-

tion. The standard normal p.d.6. is denoted f, and the standard normal c.d.6. is denoted Φ.

Thus the standard normal density is f(y) = 1

22p
exp (- y2

2 ) and Φ(y) = 1
y
-∞f(s)ds.

The bivariate normal distribution. The bivariate normal p.d.f. 6or the two random vari-

ables X and Y is

gX,Y(x, y) =
1

2psXsY21 - r2
XY

* expe
1

-2(1 - r2
XY)
c a

x - mX

sX
b

2

-

2rXYa
x - mX

sX
b a

y - mY

sY
b + a

y - mY

sY
b

2

d f , (17.38)

where rXY is the correlation between X and Y.

When X and Y are uncorrelated (rXY = 0), gX,Y(x, y) = fX(x)fY(y), where f is the 

normal density given in Equation (17.36). This proves that i6 X and Y are jointly 

normally distributed and are uncorrelated, then they are independently distributed. 

This is a special 6eature o6 the normal distribution that is typically not true 6or other 

distributions.

The multivariate normal distribution extends the bivariate normal distribution to 

handle more than two random variables. This distribution is most conveniently stated using 

matrices and is presented in Appendix 18.1.

The conditional normal distribution. Suppose that X and Y are jointly normally distrib-

uted. Then the conditional distribution o6 Y given X is N(mY�X, s2
Y�X), with mean 

mY�X = mY + (sXY>s2
X)(X - mX) and variance s2

Y�X = (1 - r2
XY)s2

Y. The mean o6 this 

conditional distribution, conditional on X = x, is a linear 6unction o6 x, and the variance 

does not depend on x (Exercise 17.11).

Related Distributions
The chi-squared distribution. Let Z1, Z2,c, Zn be n i.i.d. standard normal random vari-

ables. The random variable

W = a
n

i= 1
Z2

i (17.39)

has a chi-squared distribution with n degrees o6 6reedom. This distribution is denoted x2
n.

Because E(Z2
i ) = 1 and E(Z4

i ) = 3, E(W) = n and var(W) = 2n.
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The Student t distribution. Let Z have a standard normal distribution, let W have a x2
m

distribution, and let Z and W be independently distributed. Then the random variable

t =
Z

2W>m
(17.40)

has a Student t distribution with m degrees o6 6reedom, denoted tm. The t∞  distribution is 

the standard normal distribution. (See Exercise 17.15.)

The F distribution. Let W1 and W2 be independent random variables with chi-squared 

distributions with respective degrees o6 6reedom n1 and n2. Then the random variable

F =
W1>n1

W2>n2
(17.41)

has an F distribution with (n1, n2) degrees o6 6reedom. This distribution is denoted Fn1,n2
.

The F distribution depends on the numerator degrees o6 6reedom n1 and the denomi-

nator degrees o6 6reedom n2. As number o6 degrees o6 6reedom in the denominator gets 

large, the Fn1,n2
 distribution is well approximated by a x2

n1
 distribution, divided by n1. In the 

limit, the Fn1,∞  distribution is the same as the x2
n1

 distribution, divided by n1; that is, it is the 

same as the x2
n1
>n1 distribution. (See Exercise 17.15.)

 A P P E N D I X

17.2 Two Inequalities

This appendix states and proves Chebychev’s inequality and the Cauchy–Schwarz inequality.

Chebychev’s Inequality
Chebychev’s inequality uses the variance o6 the random variable V to bound the probabil-

ity that V is 6arther than {d 6rom its mean, where d is a positive constant:

Pr( 0V - mV 0 Ú d) …
var(V)

d2 (Chebychev’s inequality). (17.42)

To prove Equation (17.42), let W = V - mV, let f be the p.d.6. o6 W, and let d be any 

positive number. Now
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E(W2) =
L

∞

-∞
w2f(w)dw

=
L

-d

-∞
w2f(w)dw +

L

d

-d
w2f(w)dw +

L

∞

d

w2f(w)dw

Ú
L

-d

-∞
w2f(w)dw +

L

∞

d

w2f(w)dw

Ú d2 c
L

-d

-∞
f(w)dw +

L

∞

d

f(w)dw d

= d2Pr( �W � Ú d), (17.43)

where the 6irst equality is the de6inition o6 E(W2), the second equality holds because the 

ranges o6 integration divides up the real line, the 6irst inequality holds because the term 

that was dropped is nonnegative, the second inequality holds because w2 Ú d2 over the 

range o6 integration, and the 6inal equality holds by the de6inition o6 Pr( �W � Ú d). Substi-

tuting W = V - mv into the 6inal expression, noting that E(W2) = E3(V - mV)24 = var(V),

and rearranging yields the inequality given in Equation (17.42). I6 V is discrete, this proo6 

applies with summations replacing integrals.

The Cauchy–Schwarz Inequality
The Cauchy–Schwarz inequality is an extension o6 the correlation inequality, �rXY � … 1,

to incorporate nonzero means. The Cauchy–Schwarz inequality is

�E(XY) � … 2E(X2)E(Y2) (Cauchy9Schwarz inequality). (17.44)

The proo6 o6 Equation (17.44) is similar to the proo6 o6 the correlation inequality in 

Appendix 2.1. Let W = Y + bX , where b is a constant. Then  E(W2) = E(Y2) + 2bE(XY) +
b2E(X2). Now let b = -E(XY)>E(X2) so that (a6ter simpli6ication) the expression 

becomes E(W2) = E(Y2) - 3E(XY)42>E(X2). Because E(W2) Ú 0 (since W2 Ú 0), it must 

be the case that 3E(XY)42 … E(X2)E(Y2), and the Cauchy–Schwarz inequality 6ollows by 

taking the square root.


