
In Chapters 4 through 7, the population regression function was assumed to be 
linear. In other words, the slope of the population regression function was  

constant, so the effect on Y of a unit change in X does not itself depend on the value 
of X. But what if the effect on Y of a change in X does depend on the value of one  
or more of the independent variables? If so, the population regression function is 
nonlinear.

This chapter develops two groups of methods for detecting and modeling  
nonlinear population regression functions. The methods in the first group are useful 
when the effect on Y of a change in one independent variable, X1, depends on the 
value of X1 itself. For example, reducing class sizes by one student per teacher might 
have a greater effect if class sizes are already manageably small than if they are so 
large that the teacher can do little more than keep the class under control. If so, the 
test score (Y) is a nonlinear function of the student–teacher ratio (X1), where this 
function is steeper when X1 is small. An example of a nonlinear regression function 
with this feature is shown in Figure 8.1. Whereas the linear population regression 
function in Figure 8.1a has a constant slope, the nonlinear population regression 
function in Figure 8.1b has a steeper slope when X1 is small than when it is large. 
This first group of methods is presented in Section 8.2.

The methods in the second group are useful when the effect on Y of a change 
in X1 depends on the value of another independent variable, say X2. For example, 
students still learning English might especially benefit from having more one-on-one 
attention; if so, the effect on test scores of reducing the student–teacher ratio will be 
greater in districts with many students still learning English than in districts with few 
English learners. In this example, the effect on test scores (Y) of a reduction in the 
student–teacher ratio (X1) depends on the percentage of English learners in the  
district (X2). As shown in Figure 8.1c, the slope of this type of population regression 
function depends on the value of X2. This second group of methods is presented in 
Section 8.3.

In the models of Sections 8.2 and 8.3, the population regression function is a 
nonlinear function of the independent variables; that is, the conditional expectation 
E(Yi 
 X1i, c, Xki) is a nonlinear function of one or more of the X ’s. Although they are 
nonlinear in the X’s, these models are linear functions of the unknown coefficients 
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(or parameters) of the population regression model and thus are versions of the 
multiple regression model of Chapters 6 and 7. Therefore, the unknown parameters 
of these nonlinear regression functions can be estimated and tested using OLS and 
the methods of Chapters 6 and 7.

Sections 8.1 and 8.2 introduce nonlinear regression functions in the context of 
regression with a single independent variable, and Section 8.3 extends this to two 
independent variables. To keep things simple, additional control variables are  
omitted in the empirical examples of Sections 8.1 through 8.3. In practice, however, 
it is important to analyze nonlinear regression functions in models that control for 
omitted factors by including control variables as well. In Section 8.5, we combine 
nonlinear regression functions and additional control variables when we take a close 

Figure 8.1   Popul.@ion R2gr2ssion Func@ions wi@5 Diff2r2n@ Slop2s
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look at possible nonlinearities in the relationship between test scores and the  
student–teacher ratio, holding student characteristics constant. In some applications, 
the regression function is a nonlinear function of the X ’s and of the parameters. If so, 
the parameters cannot be estimated by OLS, but they can be estimated using  
nonlinear least squares. Appendix 8.1 provides examples of such functions and 
describes the nonlinear least squares estimator.

 8.1 A General Strategy for Modeling  
Nonlinear Regression Functions

This section lays out a general strategy for modeling nonlinear population regres-
sion functions. In this strategy, the nonlinear models are extensions of the multi-
ple regression model and therefore can be estimated and tested using the tools of 
Chapters 6 and 7. First, however, we return to the California test score data and 
consider the relationship between test scores and district income.

Test Scores and District Income
In Chapter 7, we found that the economic background of the students is an impor-
tant factor in explaining performance on standardized tests. That analysis used 
two economic background variables (the percentage of students qualifying for a 
subsidized lunch and the percentage of district families qualifying for income 
assistance) to measure the fraction of students in the district coming from poor 
families. A different, broader measure of economic background is the average 
annual per capita income in the school district (“district income”). The California 
data set includes district income measured in thousands of 1998 dollars. The sam-
ple contains a wide range of income levels: For the 420 districts in our sample, the 
median district income is 13.7 (that is, $13,700 per person), and it ranges from 5.3 
($5300 per person) to 55.3 ($55,300 per person).

Figure 8.2 shows a scatterplot of fifth-grade test scores against district income 
for the California data set, along with the OLS regression line relating these two 
variables. Test scores and average income are strongly positively correlated, with 
a correlation coefficient of 0.71; students from affluent districts do better on the 
tests than students from poor districts. But this scatterplot has a peculiarity: Most 
of the points are below the OLS line when income is very low (under $10,000) or 
very high (over $40,000), but are above the line when income is between $15,000 
and $30,000. There seems to be some curvature in the relationship between test 
scores and income that is not captured by the linear regression.



 8.1  A General Strategy for Modeling Nonlinear Regression Functions 259

In short, it seems that the relationship between district income and test scores 
is not a straight line. Rather, it is nonlinear. A nonlinear function is a function 
with a slope that is not constant: The function ƒ(X) is linear if the slope of ƒ(X) is 
the same for all values of X, but if the slope depends on the value of X, then ƒ(X) 
is nonlinear.

If a straight line is not an adequate description of the relationship between 
district income and test scores, what is? Imagine drawing a curve that fits the points 
in Figure 8.2. This curve would be steep for low values of district income and 
then would flatten out as district income gets higher. One way to approximate 
such a curve mathematically is to model the relationship as a quadratic function. 
That is, we could model test scores as a function of income and the square of 
income.

A quadratic population regression model relating test scores and income is 
written mathematically as

 TestScorei = b0 + b1Incomei + b2Income2
i + ui, (8.1)

where b0, b1, and b2 are coefficients, Incomei is the income in the ith district, 
Income2

i  is the square of income in the ith district, and ui is an error term that, as 
usual, represents all the other factors that determine test scores. Equation (8.1) is 
called the quadratic regression model because the population regression function, 

Figure 8.2   Sc.@@2rplo@ of t2s@ Scor2 vs. Dis@ric@ Incom2 wi@5 . Lin2.r OLS R2gr2ssion Func@ion
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E(TestScorei 
 Incomei) = b0 + b1Incomei + b2Income2
i , is a quadratic function of 

the independent variable, Income.
If you knew the population coefficients b0, b1, and b2 in Equation (8.1), you 

could predict the test score of a district based on its average income. But these 
population coefficients are unknown and therefore must be estimated using a 
sample of data.

At first, it might seem difficult to find the coefficients of the quadratic func-
tion that best fits the data in Figure 8.2. If you compare Equation (8.1) with the 
multiple regression model in Key Concept 6.2, however, you will see that Equa-
tion (8.1) is in fact a version of the multiple regression model with two regressors: 
The first regressor is Income, and the second regressor is Income2. Mechanically, 
you can create this second regressor by generating a new variable that equals the 
square of Income, for example as an additional column in a spreadsheet. Thus, 
after defining the regressors as Income and Income2, the nonlinear model in 
Equation (8.1) is simply a multiple regression model with two regressors!

Because the quadratic regression model is a variant of multiple regression, its 
unknown population coefficients can be estimated and tested using the OLS 
methods described in Chapters 6 and 7. Estimating the coefficients of Equation 
(8.1) using OLS for the 420 observations in Figure 8.2 yields

 
TestScore = 607.3 + 3.85 Income - 0.0423 Income2, R 2 = 0.554,

(2.9) (0.27) (0.0048)
 

(8.2)

where (as usual) standard errors of the estimated coefficients are given in parenthe-
ses. The estimated regression function of Equation (8.2) is plotted in Figure 8.3, 
superimposed over the scatterplot of the data. The quadratic function captures 
the curvature in the scatterplot: It is steep for low values of district income but flat-
tens out when district income is high. In short, the quadratic regression function 
seems to fit the data better than the linear one.

We can go one step beyond this visual comparison and formally test the 
hypothesis that the relationship between income and test scores is linear against 
the alternative that it is nonlinear. If the relationship is linear, then the regression 
function is correctly specified as Equation (8.1), except that the regressor Income2 
is absent; that is, if the relationship is linear, then Equation (8.1) holds with b2 = 0. 
Thus we can test the null hypothesis that the population regression function is 
linear against the alternative that it is quadratic by testing the null hypothesis that 
b2 = 0 against the alternative that b2 ≠ 0.

Because Equation (8.1) is just a variant of the multiple regression model, the 
null hypothesis that b2 = 0 can be tested by constructing the t-statistic for this 
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hypothesis. This t-statistic is t = (bn2 - 0)>SE(bn2), which from Equation (8.2) is 
t = -0.0423>0.0048 = -8.81. In absolute value, this exceeds the 5% critical 
value of this test (which is 1.96). Indeed the p-value for the t-statistic is less than 
0.01%, so we can reject the hypothesis that b2 = 0 at all conventional significance 
levels. Thus this formal hypothesis test supports our informal inspection of Fig-
ures 8.2 and 8.3: The quadratic model fits the data better than the linear model.

The Effect on Y of a Change in X  
in Nonlinear Specifications
Put aside the test score example for a moment and consider a general problem. 
You want to know how the dependent variable Y is expected to change when the 
independent variable X1 changes by the amount ∆X1, holding constant other 
independent variables X2, c, Xk. When the population regression function is 
linear, this effect is easy to calculate: As shown in Equation (6.4), the expected 
change in Y is ∆Y = b1∆X1, where b1 is the population regression coefficient 
multiplying X1. When the regression function is nonlinear, however, the expected 
change in Y is more complicated to calculate because it can depend on the values 
of the independent variables.

Figure 8.3  Sc.@@2rplo@ of t2s@ Scor2 vs. Dis@ric@ Incom2 wi@5 Lin2.r .nd Qu.dr.@ic R2gr2ssion Func@ions
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A general formula for a nonlinear population regression function.1  The nonlinear 
population regression models considered in this chapter are of the form

 Yi = f(X1i, X2i, c, Xki) + ui, i = 1, c, n, (8.3)

where f(X1i, X2i, c, Xki) is the population nonlinear regression function, a pos-
sibly nonlinear function of the independent variables X1i, X2i, c, Xki, and ui is 
the error term. For example, in the quadratic regression model in Equation (8.1), 
only one independent variable is present, so X1 is Income and the population 
regression function is f(Incomei) = b0 + b1Incomei + b2Income2

i .
Because the population regression function is the conditional expectation 

of Yi given X1i, X2i, c, Xki, in Equation (8.3) we allow for the possibility that 
this conditional expectation is a nonlinear function of X1i, X2i, c, Xki; that is, 
E(Yi 
X1i, X2i, c, Xki) = f(X1i, X2i, c, Xki), where ƒ can be a nonlinear function. 
If the population regression function is linear, then f(X1i, X2i, c, Xki) = b0 +
b1X1i + b2X2i + g+  bkXki, and Equation (8.3) becomes the linear regression 
model in Key Concept 6.2. However, Equation (8.3) allows for nonlinear regression 
functions as well.

The effect on Y of a change in X1.  As discussed in Section 6.2, the effect on Y of a 
change in X1, ∆X1, holding X2, c, Xk constant, is the difference in the expected 
value of Y when the independent variables take on the values X1 + ∆X1, X2, c, Xk 
and the expected value of Y when the independent variables take on the values 
X1, X2, c, Xk. The difference between these two expected values, say ∆Y, is 
what happens to Y on average in the population when X1 changes by an amount 
∆X1, holding constant the other variables X2, c, Xk. In the nonlinear  
regression model of Equation (8.3), this effect on Y is ∆Y  =
f(X1 + ∆X1, X2, c, Xk) - f(X1, X2, c, Xk).

Because the regression function f is unknown, the population effect on Y of a 
change in X1 is also unknown. To estimate the population effect, first estimate the 
population regression function. At a general level, denote this estimated function 

1The term nonlinear regression applies to two conceptually different families of models. In the first 
family, the population regression function is a nonlinear function of the X’s but is a linear function 
of the unknown parameters (the b’s). In the second family, the population regression function is a 
nonlinear function of the unknown parameters and may or may not be a nonlinear function of the 
X’s. The models in the body of this chapter are all in the first family. Appendix 8.1 takes up models 
from the second family.
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by fn ; an example of such an estimated function is the estimated quadratic regres-
sion function in Equation (8.2). The estimated effect on Y (denoted ∆Yn) of the 
change in X1 is the difference between the predicted value of Y when the inde-
pendent variables take on the values X1 + ∆X1, X2, c, Xk and the predicted 
value of Y when they take on the values X1, X2, c, Xk.

The method for calculating the expected effect on Y of a change in X1 is sum-
marized in Key Concept 8.1. The method in Key Concept 8.1 always works, 
whether ∆X1 is large or small and whether the regressors are continuous or dis-
crete. Appendix 8.2 shows how to evaluate the slope using calculus for the special 
case of a single continuous regressor when ∆X1 small.

Application to test scores and income.  What is the predicted change in test scores 
associated with a change in district income of $1000, based on the estimated qua-
dratic regression function in Equation (8.2)? Because that regression function is 
quadratic, this effect depends on the initial district income. We therefore consider 
two cases: an increase in district income from 10 to 11 (i.e., from $10,000 per 
capita to $11,000) and an increase in district income from 40 to 41.

t52 exp2c@2d C5.ng2 on Y of . C5.ng2 in X1  
in @52 Nonlin2.r R2gr2ssion Mod2l (8.3)

The expected change in Y, ∆Y, associated with the change in X1, ∆X1, holding 
X2, c, Xk constant, is the difference between the value of the population regres-
sion function before and after changing X1, holding X2, c, Xk constant. That is, 
the expected change in Y is the difference:

 ∆Y = f(X1 + ∆X1, X2, c, Xk) - f(X1, X2, c, Xk). (8.4)

The estimator of this unknown population difference is the difference between 
the predicted values for these two cases. Let fn(X1, X2, c, Xk) be the predicted 
value of Y based on the estimator fn  of the population regression function. Then 
the predicted change in Y is

 ∆Yn = fn(X1 + ∆X1, X2, c, Xk) - fn(X1, X2, c, Xk). (8.5)

Key ConCept

8.1
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To compute ∆Yn  associated with the change in income from 10 to 11, we can 
apply the general formula in Equation (8.5) to the quadratic regression model. 
Doing so yields

 ∆Yn = (bn0 + bn1 * 11 + bn2 * 112) - (bn0 + bn1 * 10 + bn2 * 102), (8.6)

where bn0, bn1, and bn2 are the OLS estimators.
The term in the first set of parentheses in Equation (8.6) is the predicted value 

of Y when Income = 11, and the term in the second set of parentheses is the 
predicted value of Y when Income = 10. These predicted values are calculated 
using the OLS estimates of the coefficients in Equation (8.2). Accordingly, when 
Income = 10, the predicted value of test scores is 607.3 + 3.85 * 10 - 0.0423 *
102 = 641.57. When Income = 11, the predicted value is 607.3 + 3.85 * 11 -
0.0423 * 112 = 644.53. The difference in these two predicted values is 
∆Yn = 644.53 - 641.57 = 2.96 points; that is, the predicted difference in test 
scores between a district with average income of $11,000 and one with average 
income of $10,000 is 2.96 points.

In the second case, when income changes from $40,000 to $41,000, the difference 
in the predicted values in Equation (8.6) is ∆Yn = (607.3 + 3.85 * 41 - 0.0423 *
412) - (607.3 + 3.85 * 40 - 0.0423 * 402) = 694.04 - 693.62 = 0.42 points. 
Thus a change of income of $1000 is associated with a larger change in predicted 
test scores if the initial income is $10,000 than if it is $40,000 (the predicted changes 
are 2.96 points versus 0.42 point). Said differently, the slope of the estimated qua-
dratic regression function in Figure 8.3 is steeper at low values of income (like 
$10,000) than at the higher values of income (like $40,000).

Standard errors of estimated effects.  The estimator of the effect on Y of changing 
X1 depends on the estimator of the population regression function, fn, which varies 
from one sample to the next. Therefore, the estimated effect contains a sampling 
error. One way to quantify the sampling uncertainty associated with the estimated 
effect is to compute a confidence interval for the true population effect. To do so, 
we need to compute the standard error of ∆Yn  in Equation (8.5).

It is easy to compute a standard error for ∆Yn  when the regression function is 
linear. The estimated effect of a change in X1 is bn1∆X1, so the standard error of 
∆Yn  is SE(∆Yn) = SE(bn1)∆X1 and a 95% confidence interval for the estimated 
change is bn1∆X1 {  1.96 SE(bn1)∆X1.

In the nonlinear regression models of this chapter, the standard error of ∆Yn  can 
be computed using the tools introduced in Section 7.3 for testing a single restriction 
involving multiple coefficients. To illustrate this method, consider the estimated 
change in test scores associated with a change in income from 10 to 11 in  
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Equation (8.6), which is ∆Yn = bn1 * (11 - 10) + bn2 * (112 - 102) = bn1 + 21bn2. 
The standard error of the predicted change therefore is

 SE(∆Yn) = SE(bn1 + 21bn2). (8.7)

Thus, if we can compute the standard error of bn1 + 21bn2, then we have computed 
the standard error of ∆Yn . There are two methods for doing this using standard 
regression software, which correspond to the two approaches in Section 7.3 for 
testing a single restriction on multiple coefficients.

The first method is to use Approach #1 of Section 7.3, which is to compute the 
F-statistic testing the hypothesis that b1 + 21b2 = 0. The standard error of ∆Yn  is 
then given by2

 SE(∆Yn) =

  ∆Yn  


2F 
. (8.8)

When applied to the quadratic regression in Equation (8.2), the F-statistic testing 
the hypothesis that b1 + 21b2 = 0 is F = 299.94. Because ∆Yn = 2.96, applying 
Equation (8.8) gives SE(∆Yn) = 2.96 >  2299.94 = 0.17. Thus a 95% confidence 
interval for the change in the expected value of Y is 2.96 { 1.96 * 0.17 or  
(2.63, 3.29).

The second method is to use Approach #2 of Section 7.3, which entails 
transforming the regressors so that, in the transformed regression, one of the 
coefficients is b1 + 21b2. Doing this transformation is left as an exercise 
(Exercise 8.9).

A comment on interpreting coefficients in nonlinear specifications.  In the mul-
tiple regression model of Chapters 6 and 7, the regression coefficients had a 
natural interpretation. For example, b1 is the expected change in Y associated 
with a change in X1, holding the other regressors constant. But, as we have 
seen, this is not generally the case in a nonlinear model. That is, it is not very 
helpful to think of b1 in Equation (8.1) as being the effect of changing the dis-
trict’s income, holding the square of the district’s income constant. In nonlinear 
models the regression function is best interpreted by graphing it and by calcu-
lating the predicted effect on Y of changing one or more of the independent 
variables.

2Equation (8.8) is derived by noting that the F-statistic is the square of the t-statistic testing this  
hypothesis—that is, F = t2 = [(bn1 + 21bn2)>SE(bn1 + 21bn1)]2 = [∆Yn >SE(∆Yn)]2—and solving for 
SE(∆Yn).
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A General Approach to Modeling Nonlinearities  
Using Multiple Regression
The general approach to modeling nonlinear regression functions taken in this 
chapter has five elements:

 1. Identify a possible nonlinear relationship.  The best thing to do is to use 
economic theory and what you know about the application to suggest a pos-
sible nonlinear relationship. Before you even look at the data, ask yourself 
whether the slope of the regression function relating Y and X might reason-
ably depend on the value of X or on another independent variable. Why 
might such nonlinear dependence exist? What nonlinear shapes does this 
suggest? For example, thinking about classroom dynamics with 11-year-olds 
suggests that cutting class size from 18 students to 17 could have a greater 
effect than cutting it from 30 to 29.

 2. Specify a nonlinear function and estimate its parameters by OLS.  Sections 
8.2 and 8.3 contain various nonlinear regression functions that can be esti-
mated by OLS. After working through these sections you will understand 
the characteristics of each of these functions.

 3. Determine whether the nonlinear model improves upon a linear model.  Just 
because you think a regression function is nonlinear does not mean it really 
is! You must determine empirically whether your nonlinear model is appro-
priate. Most of the time you can use t-statistics and F-statistics to test the 
null hypothesis that the population regression function is linear against the 
alternative that it is nonlinear.

 4. Plot the estimated nonlinear regression function.  Does the estimated 
regression function describe the data well? Looking at Figures 8.2 and 8.3 
suggested that the quadratic model fit the data better than the linear model.

 5. Estimate the effect on Y of a change in X.  The final step is to use the esti-
mated regression to calculate the effect on Y of a change in one or more 
regressors X using the method in Key Concept 8.1.

 8.2 Nonlinear Functions of a Single  
Independent Variable

This section provides two methods for modeling a nonlinear regression function. 
To keep things simple, we develop these methods for a nonlinear regression func-
tion that involves only one independent variable, X. As we see in Section 8.5, 
however, these models can be modified to include multiple independent variables.
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The first method discussed in this section is polynomial regression, an exten-
sion of the quadratic regression used in the last section to model the relationship 
between test scores and income. The second method uses logarithms of X, of Y, 
or of both X and Y. Although these methods are presented separately, they can 
be used in combination.

Appendix 8.2 provides a calculus-based treatment of the models in this section.

Polynomials
One way to specify a nonlinear regression function is to use a polynomial in X. In 
general, let r denote the highest power of X that is included in the regression. The 
polynomial regression model of degree r is

 Yi = b0 + b1Xi + b2X
2
i + g+  brX

r
i + ui. (8.9)

When r = 2, Equation (8.9) is the quadratic regression model discussed in Sec-
tion 8.1. When r = 3 so that the highest power of X included is X3, Equation (8.9) 
is called the cubic regression model.

The polynomial regression model is similar to the multiple regression model 
of Chapter 6 except that in Chapter 6 the regressors were distinct independent 
variables whereas here the regressors are powers of the same dependent variable, 
X; that is, the regressors are X, X2, X3, and so on. Thus the techniques for estima-
tion and inference developed for multiple regression can be applied here. In par-
ticular, the unknown coefficients b0, b1, c, br in Equation (8.9) can be estimated 
by OLS regression of Yi against Xi, X

2
i , c, X ri .

Testing the null hypothesis that the population regression function is linear.  If the 
population regression function is linear, then the quadratic and higher-degree 
terms do not enter the population regression function. Accordingly, the null 
hypothesis (H0) that the regression is linear and the alternative (H1) that it is a 
polynomial of degree r correspond to

H0 : b2 = 0, b3 = 0, c, br = 0 vs. H1 : at least one bj ≠ 0, j = 2, c, r. (8.10)

The null hypothesis that the population regression function is linear can be tested 
against the alternative that it is a polynomial of degree r by testing H0 against H1 
in Equation (8.10). Because H0 is a joint null hypothesis with q = r - 1 restric-
tions on the coefficients of the population polynomial regression model, it can be 
tested using the F-statistic as described in Section 7.2.
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Which degree polynomial should I use?  That is, how many powers of X should be 
included in a polynomial regression? The answer balances a trade-off between flexibil-
ity and statistical precision. Increasing the degree r introduces more flexibility into the 
regression function and allows it to match more shapes; a polynomial of degree r can 
have up to r - 1 bends (that is, inflection points) in its graph. But increasing r means 
adding more regressors, which can reduce the precision of the estimated coefficients.

Thus the answer to the question of how many terms to include is that you 
should include enough to model the nonlinear regression function adequately, but 
no more. Unfortunately, this answer is not very useful in practice!

A practical way to determine the degree of the polynomial is to ask whether 
the coefficients in Equation (8.9) associated with largest values of r are zero. If so, 
then these terms can be dropped from the regression. This procedure, which is 
called sequential hypothesis testing because individual hypotheses are tested 
sequentially, is summarized in the following steps:

 1. Pick a maximum value of r and estimate the polynomial regression for that r.

 2. Use the t-statistic to test the hypothesis that the coefficient on Xr3br in Equa-
tion (8.9)] is zero. If you reject this hypothesis, then Xr belongs in the regres-
sion, so use the polynomial of degree r.

 3. If you do not reject br = 0 in step 2, eliminate Xr from the regression and 
estimate a polynomial regression of degree r - 1. Test whether the coef-
ficient on X r - 1 is zero. If you reject, use the polynomial of degree r - 1.

 4. If you do not reject br - 1 = 0 in step 3, continue this procedure until the coef-
ficient on the highest power in your polynomial is statistically significant.

This recipe has one missing ingredient: the initial degree r of the polynomial. In 
many applications involving economic data, the nonlinear functions are smooth, 
that is, they do not have sharp jumps, or “spikes.” If so, then it is appropriate to 
choose a small maximum degree for the polynomial, such as 2, 3, or 4—that is, 
begin with r = 2 or 3 or 4 in step 1.

Application to district income and test scores.  The estimated cubic regression 
function relating district income to test scores is

TestScore = 600.1 + 5.02 Income - 0.096 Income2 + 0.00069 Income3,
(5.1)  (0.71) (0.029) (0.00035)

 R2 = 0.555. (8.11)

The t-statistic on Income3 is 1.97, so the null hypothesis that the regression func-
tion is a quadratic is rejected against the alternative that it is a cubic at the 5% 
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level. Moreover, the F-statistic testing the joint null hypothesis that the coeffi-
cients on Income2 and Income3 are both zero is 37.7, with a p-value less than 
0.01%, so the null hypothesis that the regression function is linear is rejected 
against the alternative that it is either a quadratic or a cubic.

Interpretation of coefficients in polynomial regression models.  The coefficients 
in polynomial regressions do not have a simple interpretation. The best way to 
interpret polynomial regressions is to plot the estimated regression function and 
calculate the estimated effect on Y associated with a change in X for one or more 
values of X.

Logarithms
Another way to specify a nonlinear regression function is to use the natural loga-
rithm of Y and/or X. Logarithms convert changes in variables into percentage 
changes, and many relationships are naturally expressed in terms of percentages. 
Here are some examples:

 • A box in Chapter 3, “The Gender Gap of Earnings of College Graduates in 
the United States,” examined the wage gap between male and female col-
lege graduates. In that discussion, the wage gap was measured in terms of 
dollars. However, it is easier to compare wage gaps across professions and 
over time when they are expressed in percentage terms.

 • In Section 8.1, we found that district income and test scores were nonlinearly 
related. Would this relationship be linear using percentage changes? That 
is, might it be that a change in district income of 1%—rather than $1000—is 
associated with a change in test scores that is approximately constant for 
different values of income?

 • In the economic analysis of consumer demand, it is often assumed that a 
1% increase in price leads to a certain percentage decrease in the quan-
tity demanded. The percentage decrease in demand resulting from a 1% 
increase in price is called the price elasticity.

Regression specifications that use natural logarithms allow regression models to 
estimate percentage relationships such as these. Before introducing those specifi-
cations, we review the exponential and natural logarithm functions.

The exponential function and the natural logarithm.  The exponential function 
and its inverse, the natural logarithm, play an important role in modeling 
nonlinear regression functions. The exponential function of x is ex (that is, e raised 
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to the power x), where e is the constant 2.71828 . . . ; the exponential function is 
also written as exp(x). The natural logarithm is the inverse of the exponential 
function; that is, the natural logarithm is the function for which x = ln(ex) or, 
equivalently, x = ln3exp(x)4. The base of the natural logarithm is e. Although 
there are logarithms in other bases, such as base 10, in this book we consider only 
logarithms in base e—that is, the natural logarithm—so when we use the term 
logarithm we always mean “natural logarithm.”

The logarithm function, y = ln(x), is graphed in Figure 8.4. Note that the 
logarithm function is defined only for positive values of x. The logarithm function 
has a slope that is steep at first and then flattens out (although the function con-
tinues to increase). The slope of the logarithm function ln(x) is 1>x.

The logarithm function has the following useful properties:

 ln(1>x) = - ln(x); (8.12)

 ln(ax) = ln(a) + ln(x); (8.13)

 ln(x>a) = ln(x) - ln(a); and (8.14)

 ln(xa) = a ln(x). (8.15)

Logarithms and percentages.  The link between the logarithm and percentages 
relies on a key fact: When ∆x is small, the difference between the logarithm of 
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x + ∆x and the logarithm of x is approximately ∆x>x, the percentage change in x 
divided by 100. That is,

 ln(x + ∆x) - ln(x) ≅
∆x
x
 when 

∆x
x

 is smallb , (8.16)

where “_” means “approximately equal to.” The derivation of this approximation 
relies on calculus, but it is readily demonstrated by trying out some values of x and 
∆x. For example, when x = 100 and ∆x = 1, then ∆x  >x = 1>100 = 0.01 (or 
1%), while ln(x + ∆x) - ln(x) = ln(101) - ln(100) = 0.00995 (or 0.995%). Thus 
∆x>x (which is 0.01) is very close to ln(x + ∆x) - ln(x) (which is 0.00995).  
When ∆x = 5, ∆x>x = 5>100 = 0.05, while ln(x + ∆x) - ln(x) = ln(105) -
ln(100) = 0.04879.

The three logarithmic regression models.  There are three different cases in which 
logarithms might be used: when X is transformed by taking its logarithm but Y is 
not; when Y is transformed to its logarithm but X is not; and when both Y and X are 
transformed to their logarithms. The interpretation of the regression coefficients is 
different in each case. We discuss these three cases in turn.

Case I: X is in logarithms, Y is not.  In this case, the regression model is

 Yi = b0 + b1 ln(Xi) + ui, i = 1, c, n. (8.17)

Because Y is not in logarithms but X is, this is sometimes referred to as a linear-
log model.

In the linear-log model, a 1% change in X is associated with a change in Y of 
0.01b1. To see this, consider the difference between the population regression 
function at values of X that differ by ∆X : This is 3b0 + b1 ln(X + ∆X)4 - 3b0 +
b1 ln(X)4 = b13ln(X + ∆X ) - ln(X)4 ≅ b1(∆X>X), where the final step uses 
the approximation in Equation (8.16). If X changes by 1%, then ∆X>X = 0.01; 
thus in this model a 1% change in X is associated with a change of Y of 0.01b1.

The only difference between the regression model in Equation (8.17) and the 
regression model of Chapter 4 with a single regressor is that the right-hand vari-
able is now the logarithm of X rather than X itself. To estimate the coefficients b0 
and b1 in Equation (8.17), first compute a new variable, ln(X), which is readily 
done using a spreadsheet or statistical software. Then b0 and b1 can be estimated 
by the OLS regression of Yi on  ln(Xi), hypotheses about b1 can be tested using 
the t-statistic, and a 95% confidence interval for b1 can be constructed as 
bn1 {  1.96 SE(bn1).
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As an example, return to the relationship between district income and test 
scores. Instead of the quadratic specification, we could use the linear-log specifi-
cation in Equation (8.17). Estimating this regression by OLS yields

 
TestScore = 557.8 + 36.42 ln(Income), R 2 = 0.561.

(3.8) (1.40)
 (8.18)

According to Equation (8.18), a 1% increase in income is associated with an 
increase in test scores of 0.01 * 36.42 = 0.36 point.

To estimate the effect on Y of a change in X in its original units of thousands 
of dollars (not in logarithms), we can use the method in Key Concept 8.1. For 
example, what is the predicted difference in test scores for districts with aver-
age incomes of $10,000 versus $11,000? The estimated value of ∆Y  is the dif-
ference between the predicted values: ∆Yn = 3557.8 + 36.42 ln(11)4 - 3557.8 +
36.42 ln(10)4 = 36.42 * 3ln(11) - ln(10)4 = 3.47. Similarly, the predicted differ-
ence between a district with average income of $40,000 and a district with average 
income of $41,000 is 36.42 * 3ln(41) - ln(40)4 = 0.90. Thus, like the quadratic 
specification, this regression predicts that a $1000 increase in income has a larger 
effect on test scores in poor districts than it does in affluent districts.

The estimated linear-log regression function in Equation (8.18) is plotted in 
Figure 8.5. Because the regressor in Equation (8.18) is the natural logarithm of 
income rather than income, the estimated regression function is not a straight line. 
Like the quadratic regression function in Figure 8.3, it is initially steep but then 
flattens out for higher levels of income.

Case II: Y is in logarithms, X is not.  In this case, the regression model is

  ln(Yi) = b0 + b1Xi + ui. (8.19)

Because Y is in logarithms but X is not, this is referred to as a log-linear model.
In the log-linear model, a one-unit change in X (∆X = 1) is associated with 

a (100 * b1) % change in Y. To see this, compare the expected values of ln(Y) for 
values of X that differ by ∆X. The expected value of ln(Y) given X is ln(Y) = b0 +
b1X . When X is X + ∆X , the expected value is given by ln(Y + ∆Y) = b0 +
b1(X + ∆X). Thus the difference between these expected values is ln(Y + ∆Y) -
ln(Y) = 3b0 + b1(X + ∆X)4 - 3b0 + b1X4 = b1∆X. From the approximation in 
Equation (8.16), however, if b1∆X is small, then ln(Y + ∆Y) - ln(Y) ≅ ∆Y>Y. 
Thus ∆Y  >  Y ≅ b1∆X. If ∆X = 1 so that X changes by one unit, then ∆Y>Y changes 
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by b1. Translated into percentages, a one-unit change in X is associated with a 
(100 * b1) % change in Y.

As an illustration, we return to the empirical example of Section 3.7, the rela-
tionship between age and earnings of college graduates. Many employment con-
tracts specify that, for each additional year of service, a worker gets a certain 
percentage increase in his or her wage. This percentage relationship suggests esti-
mating the log-linear specification in Equation (8.19) so that each additional year 
of age (X) is, on average in the population, associated with some constant percent-
age increase in earnings (Y). By first computing the new dependent variable, 
ln(Earningsi), the unknown coefficients b0 and b1 can be estimated by the OLS 
regression of ln(Earningsi) against Agei. When estimated using the 14,752 obser-
vations on college graduates in the March 2013 Current Population Survey (the 
data are described in Appendix 3.1), this relationship is

 
ln(Earnings) = 2.811 + 0.0096 Age, R 2 = 0.034.

(0.018)  (0.0004)
 

(8.20)

According to this regression, earnings are predicted to increase by 0.96% 3(100 *
0.0096)%4 for each additional year of age.
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Case III: Both X and Y are in logarithms.  In this case, the regression model is

  ln(Yi) = b0 + b1 ln(Xi) + ui. (8.21)

Because both Y and X are specified in logarithms, this is referred to as a log-log 
model.

In the log-log model, a 1% change in X is associated with a b1% change in Y. 
Thus in this specification b1 is the elasticity of Y with respect to X. To see this, again 
apply Key Concept 8.1; thus ln(Y + ∆Y) - ln(Y) = 3b0 + b1ln(X + ∆X)4 -  
3b0 + b1ln(X)4 = b13ln(X + ∆X) -  ln(X)4. Application of the approximation 
in Equation (8.16) to both sides of this equation yields

∆Y
Y
≅ b1

∆X
X

 or

 b1 =
∆Y>Y
∆X>X =

100 * (∆Y>Y)

100 * (∆X>X)
=

percentage change in Y

percentage change in X
. (8.22)

Thus in the log-log specification b1 is the ratio of the percentage change in Y 
associated with the percentage change in X. If the percentage change in X is 1% 
(that is, if ∆X = 0.01X), then b1 is the percentage change in Y associated with a 
1% change in X. That is, b1 is the elasticity of Y with respect to X.

As an illustration, return to the relationship between income and test scores. 
When this relationship is specified in this form, the unknown coefficients are esti-
mated by a regression of the logarithm of test scores against the logarithm of 
income. The resulting estimated equation is

 
ln(TestScore) = 6.336 + 0.0554 ln(Income), R 2 = 0.557.

(0.006) (0.0021)
 

(8.23)

According to this estimated regression function, a 1% increase in income is esti-
mated to correspond to a 0.0554% increase in test scores.

The estimated log-log regression function in Equation (8.23) is plotted in 
Figure 8.6. Because Y is in logarithms, the vertical axis in Figure 8.6 is the loga-
rithm of the test score and the scatterplot is the logarithm of test scores versus 
district income. For comparison purposes, Figure 8.6 also shows the estimated 
regression function for a log-linear specification, which is

 
ln(TestScore) = 6.439 + 0.00284 Income, R 2 = 0.497.

(0.003)  (0.00018)
 

(8.24)
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Because the vertical axis is in logarithms, the regression function in Equation (8.24) 
is the straight line in Figure 8.6.

As you can see in Figure 8.6, the log-log specification fits better than the log-
linear specification. This is consistent with the higher R 2 for the log-log regression 
(0.557) than for the log-linear regression (0.497). Even so, the log-log specification 
does not fit the data especially well: At the lower values of income most of the 
observations fall below the log-log curve, while in the middle income range most 
of the observations fall above the estimated regression function.

The three logarithmic regression models are summarized in Key Concept 8.2.

A difficulty with comparing logarithmic specifications.  Which of the log regres-
sion models best fits the data? As we saw in the discussion of Equations (8.23) and 
(8.24), the R 2 can be used to compare the log-linear and log-log models; as it hap-
pened, the log-log model had the higher R 2. Similarly, the R 2 can be used to 
compare the linear-log regression in Equation (8.18) and the linear regression of 
Y against X. In the test score and income regression, the linear-log regression has 
an R 2 of 0.561 while the linear regression has an R 2 of 0.508, so the linear-log 
model fits the data better.

How can we compare the linear-log model and the log-log model? Unfortu-
nately, the R 2 cannot be used to compare these two regressions because their 
dependent variables are different [one is Y, the other is ln(Y)]. Recall that the R 2 

Figure 8.6  t52 Log-Lin2.r .nd Log-Log R2gr2ssion Func@ions

In the log-linear regression function, ln(Y) is a  

linear function of X. In the log-log regression  

function, ln(Y) is a linear function of ln(X).

0 10 20 30 40 50 60
6.40

ln(Test score)

District income
(thousands of dollars)

6.45

6.50

6.60
Log-linear regression

Log-log regression

6.55



276 Chapter 8  Nonlinear Regression Functions

measures the fraction of the variance of the dependent variable explained by the 
regressors. Because the dependent variables in the log-log and linear-log models 
are different, it does not make sense to compare their R 2’s.

Because of this problem, the best thing to do in a particular application is to 
decide, using economic theory and either your or other experts’ knowledge of the 
problem, whether it makes sense to specify Y in logarithms. For example, labor 
economists typically model earnings using logarithms because wage comparisons, 
contract wage increases, and so forth are often most naturally discussed in per-
centage terms. In modeling test scores, it seems (to us, anyway) natural to discuss 
test results in terms of points on the test rather than percentage increases in the 
test scores, so we focus on models in which the dependent variable is the test score 
rather than its logarithm.

Computing predicted values of Y when Y is in logarithms.3  If the dependent vari-
able Y has been transformed by taking logarithms, the estimated regression can 
be used to compute directly the predicted value of ln(Y). However, it is a bit 
trickier to compute the predicted value of Y itself.

3 This material is more advanced and can be skipped without loss of continuity.

Log.>i@5ms in r2g>2ssion: t5>22 C.s2s

Logarithms can be used to transform the dependent variable Y, an independent 
variable X, or both (but the variable being transformed must be positive). The fol-
lowing table summarizes these three cases and the interpretation of the regression 
coefficient b1. In each case, b1 can be estimated by applying OLS after taking the 
logarithm of the dependent and/or independent variable.

Cas: R:gr:ssiCB SD:cificaHiCB IBH:rDr:HaHiCB Cf B1

 I Yi = b0 + b1ln(Xi) + ui A 1% change in X is associated  
with a change in Y of 0.01b1.

 II ln(Yi) = b0 + b1Xi + ui A change in X by one unit (∆X = 1)  
is associated with a 100b1% change in Y.

III ln(Yi) = b0 + b1ln(Xi) + ui A 1% change in X is associated  
with a b1% change in Y, so b1 is the  
elasticity of Y with respect to X.

Key ConCept

8.2
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To see this, consider the log-linear regression model in Equation (8.19) and 
rewrite it so that it is specified in terms of Y rather than ln(Y). To do so, take the 
exponential function of both sides of the Equation (8.19); the result is

 Yi =  exp(b0 + b1Xi + ui) = eb0 + b1Xieui. (8.25)

The expected value of Yi given Xi is E(Yi 
Xi) = E(eb0 + b1Xieui 
Xi) = eb0 + b1Xi

E(eui 
Xi). The problem is that even if E(ui 
Xi) = 0, E(eui 
Xi) ≠ 1. Thus the 
appropriate predicted value of Yi is not simply obtained by taking the exponential 
function of bn0 + bn1Xi, that is, by setting Yn i = eb0 + b1Xi: This predicted value is 
biased because of the missing factor E(eui 
Xi).

One solution to this problem is to estimate the factor E(eui 
Xi) and use this 
estimate when computing the predicted value of Y. Exercise 17.12 works through 
several ways to estimate E(eui 
Xi), but this gets complicated, particularly if ui is 
heteroskedastic, and we do not pursue it further.

Another solution, which is the approach used in this book, is to compute 
predicted values of the logarithm of Y but not transform them to their original 
units. In practice, this is often acceptable because when the dependent variable is 
specified as a logarithm, it is often most natural just to use the logarithmic speci-
fication (and the associated percentage interpretations) throughout the analysis.

Polynomial and Logarithmic Models 
of Test Scores and District Income
In practice, economic theory or expert judgment might suggest a functional form to 
use, but in the end the true form of the population regression function is unknown. 
In practice, fitting a nonlinear function therefore entails deciding which method or 
combination of methods works best. As an illustration, we compare logarithmic and 
polynomial models of the relationship between district income and test scores.

Polynomial specifications. We considered two polynomial specifications specified 
using powers of Income, quadratic [Equation (8.2)] and cubic [Equation (8.11)]. 
Because the coefficient on Income3 in Equation (8.11) was significant at the 5% 
level, the cubic specification provided an improvement over the quadratic, so we 
select the cubic model as the preferred polynomial specification.

Logarithmic specifications.  The logarithmic specification in Equation (8.18) 
seemed to provide a good fit to these data, but we did not test this formally. One 
way to do so is to augment it with higher powers of the logarithm of income. If 

n n
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these additional terms are not statistically different from zero, then we can con-
clude that the specification in Equation (8.18) is adequate in the sense that it 
cannot be rejected against a polynomial function of the logarithm. Accordingly, 
the estimated cubic regression (specified in powers of the logarithm of income) is

TestScore = 486.1 + 113.4 ln(Income) - 26.93ln(Income)24
 (79.4) (87.9) (31.7)

 +  3.063ln(Income)43, R 2 = 0.560. (8.26)
 (3.74) 

The t-statistic on the coefficient on the cubic term is 0.818, so the null hypothesis that 
the true coefficient is zero is not rejected at the 10% level. The F-statistic testing the 
joint hypothesis that the true coefficients on the quadratic and cubic term are both 
zero is 0.44, with a p-value of 0.64, so this joint null hypothesis is not rejected at 
the 10% level. Thus the cubic logarithmic model in Equation (8.26) does not pro-
vide a statistically significant improvement over the model in Equation (8.18), 
which is linear in the logarithm of income.

Comparing the cubic and linear-log specifications.  Figure 8.7 plots the estimated 
regression functions from the cubic specification in Equation (8.11) and the linear-
log specification in Equation (8.18). The two estimated regression functions are 
quite similar. One statistical tool for comparing these specifications is the R 2. The 
R 2 of the logarithmic regression is 0.561, and for the cubic regression it is 0.555. 
Because the logarithmic specification has a slight edge in terms of the R 2 and 
because this specification does not need higher-degree polynomials in the logarithm 
of income to fit these data, we adopt the logarithmic specification in Equation (8.18).

 8.3 Interactions Between Independent  
Variables

In the introduction to this chapter we wondered whether reducing the student–
teacher ratio might have a bigger effect on test scores in districts where many 
students are still learning English than in those with few still learning English. 
This could arise, for example, if students who are still learning English benefit 
differentially from one-on-one or small-group instruction. If so, the presence of 
many English learners in a district would interact with the student–teacher ratio 
in such a way that the effect on test scores of a change in the student–teacher ratio 
would depend on the fraction of English learners.
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This section explains how to incorporate such interactions between two inde-
pendent variables into the multiple regression model. The possible interaction 
between the student–teacher ratio and the fraction of English learners is an exam-
ple of the more general situation in which the effect on Y of a change in one 
independent variable depends on the value of another independent variable. We 
consider three cases: when both independent variables are binary, when one is 
binary and the other is continuous, and when both are continuous.

Interactions Between Two Binary Variables
Consider the population regression of log earnings [Yi, where Yi = ln(Earningsi)] 
against two binary variables: whether a worker has a college degree (D1i, where 
D1i = 1 if the ith person graduated from college) and the worker’s gender (D2i, 
where D2i = 1 if the ith person is female). The population linear regression of Yi 
on these two binary variables is

 Yi = b0 + b1D1i + b2D2i + ui. (8.27)

In this regression model, b1 is the effect on log earnings of having a college degree, 
holding gender constant, and b2 is the effect of being female, holding schooling 
constant.
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The specification in Equation (8.27) has an important limitation: The effect 
of having a college degree in this specification, holding constant gender, is the 
same for men and women. There is, however, no reason that this must be so. 
Phrased mathematically, the effect on Yi of D1i, holding D2i constant, could 
depend on the value of D2i. In other words, there could be an interaction between 
having a college degree and gender so that the value in the job market of a degree 
is different for men and women.

Although the specification in Equation (8.27) does not allow for this interac-
tion between having a college degree and gender, it is easy to modify the specifica-
tion so that it does by introducing another regressor, the product of the two binary 
variables, D1i * D2i. The resulting regression is

 Yi = b0 + b1D1i + b2D2i + b3(D1i * D2i) + ui. (8.28)

The new regressor, the product D1i * D2i, is called an interaction term or an 
interacted regressor, and the population regression model in Equation (8.28) is 
called a binary variable interaction regression model.

The interaction term in Equation (8.28) allows the population effect on log 
earnings (Yi) of having a college degree (changing D1i from D1i = 0 to D1i = 1) 
to depend on gender (D2i). To show this mathematically, calculate the population 
effect of a change in D1i using the general method laid out in Key Concept 8.1. 
The first step is to compute the conditional expectation of Yi for D1i = 0, given a 
value of D2i; this is E(Yi 
D1i = 0, D2i = d2) = b0 + b1 * 0 + b2 * d2 + b3 *
(0 * d2) = b0 + b2d2, where we use the conditional mean zero assumption, 
E(ui 
D1i, D2i) = 0. The next step is to compute the conditional expectation of Yi after 
the change—that is, for D1i = 1—given the same value of D2i; this is E(Yi 
D1i = 1,
D2i = d2) = b0 + b1 * 1 + b2 * d2 + b3 * (1 * d2) = b0 + b1 + b2d2 + b3d2 . 
The effect of this change is the difference of expected values [that is, the difference 
in Equation (8.4)], which is

 E(Yi 
D1i = 1, D2i = d2) - E(Yi 
D1i = 0, D2i = d2) = b1 + b3d2. (8.29)

Thus, in the binary variable interaction specification in Equation (8.28), the 
effect of acquiring a college degree (a unit change in D1i) depends on the person’s 
gender [the value of D2i, which is d2 in Equation (8.29)]. If the person is male 
(d2 = 0), the effect of acquiring a college degree is b1, but if the person is female 
(d2 = 1), the effect is b1 + b3. The coefficient b3 on the interaction term is the dif-
ference in the effect of acquiring a college degree for women versus men.
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Although this example was phrased using log earnings, having a college 
degree, and gender, the point is a general one. The binary variable interaction 
regression allows the effect of changing one of the binary independent variables 
to depend on the value of the other binary variable.

The method we used here to interpret the coefficients was, in effect, to work 
through each possible combination of the binary variables. This method, which 
applies to all regressions with binary variables, is summarized in Key Concept 8.3.

Application to the student–teacher ratio and the percentage of English learners.  Let 
HiSTRi be a binary variable that equals 1 if the student–teacher ratio is 20 or more 
and equals 0 otherwise, and let HiELi be a binary variable that equals 1 if the 
percentage of English learners is 10% or more and equals 0 otherwise. The inter-
acted regression of test scores against HiSTRi and HiELi is

TestScore = 664.1 - 1.9 HiSTR - 18.2 HiEL - 3.5(HiSTR * HiEL), 
 (1.4) (1.9) (2.3) (3.1)

R 2 = 0.290. (8.30)

The predicted effect of moving from a district with a low student–teacher ratio  
to one with a high student–teacher ratio, holding constant whether the percentage 
of English learners is high or low, is given by Equation (8.29), with estimated coef-
ficients replacing the population coefficients. According to the estimates in Equation 
(8.30), this effect thus is -1.9 - 3.5HiEL. That is, if the fraction of English learners 
is low (HiEL = 0), then the effect on test scores of moving from HiSTR = 0 to 
HiSTR = 1 is for test scores to decline by 1.9 points. If the fraction of English learn-
ers is high, then test scores are estimated to decline by 1.9 + 3.5 = 5.4 points.

The estimated regression in Equation (8.30) also can be used to estimate the 
mean test scores for each of the four possible combinations of the binary variables. 

a M2@5od for In@2rpr2@ing Co2ffici2n@s  
in R2gr2ssions wi@5 Bin.ry V.ri.bl2s

First compute the expected values of Y for each possible case described by the 
set of binary variables. Next compare these expected values. Each coefficient can 
then be expressed either as an expected value or as the difference between two 
or more expected values.

Key ConCept

8.3
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This is done using the procedure in Key Concept 8.3. Accordingly, the sample aver-
age test score for districts with low student–teacher ratios (HiSTRi = 0) and low 
fractions of English learners (HiELi = 0) is 664.1. For districts with HiSTRi = 1 
(high student–teacher ratios) and HiELi = 0 (low fractions of English learners), 
the sample average is 662.2 (=  664.1 - 1.9). When HiSTRi = 0 and HiELi = 1, 
the sample average is 645.9 (=  664.1 - 18.2), and when HiSTRi = 1 and 
HiELi = 1, the sample average is 640.5 (=  664.1 - 1.9 - 18.2 - 3.5).

Interactions Between a Continuous and  
a Binary Variable
Next consider the population regression of log earnings [Yi = ln(Earningsi)] 
against one continuous variable, the individual’s years of work experience (Xi), 
and one binary variable, whether the worker has a college degree (Di, where 
Di = 1 if the ith person is a college graduate). As shown in Figure 8.8, the popula-
tion regression line relating Y and the continuous variable X can depend on the 
binary variable D in three different ways.

In Figure 8.8a, the two regression lines differ only in their intercept. The 
corresponding population regression model is

 Yi = b0 + b1Xi + b2Di + ui. (8.31)

This is the familiar multiple regression model with a population regression func-
tion that is linear in Xi and Di. When Di = 0, the population regression function 
is b0 + b1Xi, so the intercept is b0 and the slope is b1. When Di = 1, the population 
regression function is b0 + b1Xi + b2, so the slope remains b1 but the intercept is 
b0 + b2. Thus b2 is the difference between the intercepts of the two regression 
lines, as shown in Figure 8.8a. Stated in terms of the earnings example, b1 is the 
effect on log earnings of an additional year of work experience, holding college 
degree status constant, and b2 is the effect of a college degree on log earnings, 
holding years of experience constant. In this specification, the effect of an addi-
tional year of work experience is the same for college graduates and nongraduates; 
that is, the two lines in Figure 8.8a have the same slope.

In Figure 8.8b, the two lines have different slopes and intercepts. The differ-
ent slopes permit the effect of an additional year of work to differ for college 
graduates and nongraduates. To allow for different slopes, add an interaction 
term to Equation (8.31):

 Yi = b0 + b1Xi + b2Di + b3(Xi * Di) + ui, (8.32)
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where Xi * Di is a new variable, the product of Xi and Di. To interpret the coef-
ficients of this regression, apply the procedure in Key Concept 8.3. Doing so 
shows that, if Di = 0, the population regression function is b0 + b1Xi, whereas if 
Di = 1, the population regression function is (b0 + b2) + (b1 + b3)Xi. Thus this 
specification allows for two different population regression functions relating Yi 
and Xi, depending on the value of Di, as is shown in Figure 8.8b. The difference 
between the two intercepts is b2, and the difference between the two slopes is b3. 
In the earnings example, b1 is the effect of an additional year of work experience 
for nongraduates (Di = 0) and b1 + b3 is this effect for graduates, so b3 is the dif-
ference in the effect of an additional year of work experience for college graduates 
versus nongraduates.

Figure 8.8  R2gr2ssion Func@ions Using Bin.ry .nd Con@inuous V.ri.bl2s

Interactions of binary variables and continuous variables can produce three different population regression functions:  

(a) b0 + b1X + b2D allows for different intercepts but has the same slope, (b) b0 + b1X + b2D + b3(X * D) allows 

for different intercepts and different slopes, and (c) b0 + b1X + b2(X * D) has the same intercept but allows for  
different slopes.

X
(a)  Different intercepts, same slope

Y

X
(b)  Different intercepts, different slopes

Y

X
(c) Same intercept, different slopes

Y

b0 +b 1X 

b 0

b0 +b 2

(b0 +b2)+b1X 

slope = b1
b 0 +b1X 

b 0

b0 +b 2 slope = b 1

(b0 +b2)+(b1 +b3)X 

slope = b 1+b3

b0 +b1X b 0

slope = b1

b0 + (b1 +b2)X 
slope = b1+b2
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A third possibility, shown in Figure 8.8c, is that the two lines have different 
slopes but the same intercept. The interacted regression model for this case is

 Yi = b0 + b1Xi + b2(Xi * Di) + ui. (8.33)

The coefficients of this specification also can be interpreted using Key Concept 
8.3. In terms of the earnings example, this specification allows for different effects 
of experience on log earnings between college graduates and nongraduates, but 
requires that expected log earnings be the same for both groups when they have 
no prior experience. Said differently, this specification corresponds to the popula-
tion mean entry-level wage being the same for college graduates and nongraduates. 
This does not make much sense in this application, and in practice this specification 
is used less frequently than Equation (8.32), which allows for different intercepts 
and slopes.

All three specifications—Equations (8.31), (8.32), and (8.33)—are versions of 
the multiple regression model of Chapter 6, and once the new variable Xi * Di is 
created, the coefficients of all three can be estimated by OLS.

The three regression models with a binary and a continuous independent 
variable are summarized in Key Concept 8.4.

Application to the student–teacher ratio and the percentage of English 
learners.  Does the effect on test scores of cutting the student–teacher ratio 
depend on whether the percentage of students still learning English is high or 
low? One way to answer this question is to use a specification that allows for two 

In@2r.c@ions B2@w22n Bin.ry .nd Con@inuous V.ri.bl2s

Through the use of the interaction term Xi * Di, the population regression line 
relating Yi and the continuous variable Xi can have a slope that depends on the 
binary variable Di. There are three possibilities:

 1. Different intercept, same slope (Figure 8.8a):

 Yi = b0 + b1Xi + b2Di + ui; 

 2. Different intercept and slope (Figure 8.8b):

 Yi = b0 + b1Xi + b2Di + b3(Xi * Di) + ui; 

 3. Same intercept, different slope (Figure 8.8c):

 Yi = b0 + b1Xi + b2(Xi * Di) + ui. 

Key ConCept

8.4
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different regression lines, depending on whether there is a high or a low percent-
age of English learners. This is achieved using the different intercept/different 
slope specification:

TestScore = 682.2 - 0.97 STR + 5.6 HiEL - 1.28(STR * HiEL),
 (11.9) (0.59) (19.5) (0.97)

 R 2 = 0.305, (8.34)

where the binary variable HiELi equals 1 if the percentage of students still learn-
ing English in the district is greater than 10% and equals 0 otherwise.

For districts with a low fraction of English learners (HiELi = 0), the esti-
mated regression line is 682.2 - 0.97STRi. For districts with a high fraction of 
English learners (HiELi = 1), the estimated regression line is 682.2 +
5.6 - 0.97STRi -  1.28STRi = 687.8 - 2.25STRi. According to these estimates, 
reducing the student–teacher ratio by 1 is predicted to increase test scores by 0.97 
point in districts with low fractions of English learners but by 2.25 points in districts 
with high fractions of English learners. The difference between these two effects, 
1.28 points, is the coefficient on the interaction term in Equation (8.34).

The interaction regression model in Equation (8.34) allows us to estimate the 
effect of more nuanced policy interventions than the across-the-board class size reduc-
tion considered so far. For example, suppose that the state considered a policy to 
reduce the student–teacher ratio by 2 in districts with a high fraction of English learn-
ers (HiELi = 1) but to leave class size unchanged in other districts. Applying the 
method of Key Concept 8.1 to Equations (8.32) and (8.34) shows that the estimated 
effect of this reduction for the districts for which HiEL = 1 is -2(bn1 + bn3) = 4.50. 
The standard error of this estimated effect is SE(-2bn1 - 2bn3) = 1.53, which can be 
computed using Equation (8.8) and the methods of Section 7.3.

The OLS regression in Equation (8.34) can be used to test several hypotheses 
about the population regression line. First, the hypothesis that the two lines are in fact 
the same can be tested by computing the F-statistic testing the joint hypothesis that 
the coefficient on HiELi and the coefficient on the interaction term STRi * HiELi 
are both zero. This F-statistic is 89.9, which is significant at the 1% level.

Second, the hypothesis that two lines have the same slope can be tested by 
testing whether the coefficient on the interaction term is zero. The t-statistic, 
-1.28>0.97 = -1.32, is less than 1.64 in absolute value, so the null hypothesis that 
the two lines have the same slope cannot be rejected using a two-sided test at the 
10% significance level.

Third, the hypothesis that the lines have the same intercept corresponds to the 
restriction that the population coefficient on HiEL is zero. The t-statistic testing  
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this restriction is t = 5.6>19.5 = 0.29, so the hypothesis that the lines have the 
same intercept cannot be rejected at the 5% level.

These three tests produce seemingly contradictory results: The joint test using 
the F-statistic rejects the joint hypothesis that the slope and the intercept are the 
same, but the tests of the individual hypotheses using the t-statistic fail to reject. 
The reason is that the regressors, HiEL and STR * HiEL, are highly correlated. 
This results in large standard errors on the individual coefficients. Even though it 
is impossible to tell which of the coefficients is nonzero, there is strong evidence 
against the hypothesis that both are zero.

Finally, the hypothesis that the student–teacher ratio does not enter this spec-
ification can be tested by computing the F-statistic for the joint hypothesis that 
the coefficients on STR and on the interaction term are both zero. This F-statistic 
is 5.64, which has a p-value of 0.004. Thus the coefficients on the student–teacher 
ratio are statistically significant at the 1% significance level.

Interactions Between Two Continuous Variables
Now suppose that both independent variables (X1i and X2i) are continuous. An 
example is when Yi is log earnings of the ith worker, X1i is his or her years of work 
experience, and X2i is the number of years he or she went to school. If the population 
regression function is linear, the effect on wages of an additional year of experience 
does not depend on the number of years of education, or, equivalently, the effect of 
an additional year of education does not depend on the number of years of work 
experience. In reality, however, there might be an interaction between these two 
variables so that the effect on wages of an additional year of experience depends on 
the number of years of education. This interaction can be modeled by augmenting the 
linear regression model with an interaction term that is the product of X1i and X2i:

 Yi = b0 + b1X1i + b2X2i + b3(X1i * X2i) + ui. (8.35)

The interaction term allows the effect of a unit change in X1 to depend on X2. To 
see this, apply the general method for computing effects in nonlinear regression 
models in Key Concept 8.1. The difference in Equation (8.4), computed for the 
interacted regression function in Equation (8.35), is ∆Y = (b1 + b3X2)∆X1 
[Exercise 8.10(a)]. Thus the effect on Y of a change in X1, holding X2 constant, is

 
∆Y
∆X1

= b1 + b3X2, (8.36)

which depends on X2. For example, in the earnings example, if b3 is positive, then 
the effect on log earnings of an additional year of experience is greater, by the 
amount b3, for each additional year of education the worker has.
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I n addition to its intellectual pleasures, education 

has economic rewards. As the boxes in Chapters 

3 and 5 show, workers with more education tend to 

earn more than their counterparts with less educa-

tion. The analysis in those boxes was incomplete, 

however, for at least three reasons. First, it failed 

to control for other determinants of earnings that 

might be correlated with educational achievement, 

so the OLS estimator of the coefficient on educa-

tion could have omitted variable bias. Second, the 

functional form used in Chapter 5—a simple linear 

relation—implies that earnings change by a constant 

dollar amount for each additional year of education, 

whereas one might suspect that the dollar change in 

earnings is actually larger at higher levels of educa-

tion. Third, the box in Chapter 5 ignores the gen-

der differences in earnings highlighted in the box in 

Chapter 3.

All these limitations can be addressed by a 

multiple regression analysis that controls for 

determinants of earnings that, if omitted, could 

cause omitted variable bias and that uses a nonlin-

ear functional form relating education and earn-

ings. Table 8.1 summarizes regressions estimated 

using data on full-time workers, ages 30 through 

64, from the Current Population Survey (the CPS 

data are described in Appendix 3.1). The depen-

dent variable is the logarithm of hourly earnings, 

so another year of education is associated with a 

constant percentage increase (not dollar increase) 

in earnings.

Table 8.1 has four salient results. First, the omis-

sion of gender in regression (1) does not result in sub-

stantial omitted variable bias: Even though gender 

enters regression (2) significantly and with a large 

coefficient, gender and years of education are uncor-

related; that is, on average men and women have 

nearly the same levels of education. Second, the 

returns to education are economically and statisti-

cally significantly different for men and women: In 

regression (3), the t-statistic testing the hypothesis 

that they are the same is 4.55 (=  0.008 >0.0018). 

Third, regression (4) controls for the region of 

the country in which the individual lives, thereby 

addressing potential omitted variable bias that 

might arise if years of education differ systematically 

by region. Controlling for region makes a small dif-

ference to the estimated coefficients on the educa-

tion terms, relative to those reported in regression 

(3). Fourth, regression (4) controls for the potential 

experience of the worker, as measured by years 

since completion of schooling. The estimated coeffi-

cients imply a declining marginal value for each year 

of potential experience.

The estimated economic return to education in 

regression (4) is 11.26% for each year of educa-

tion for men and 12.25% (=  0.1126 + 0.0099, in 

percent) for women. Because the regression func-

tions for men and women have different slopes, the 

gender gap depends on the years of education. For  

12 years of education, the gender gap is estimated 

to be 27.3% (=  0.0099 * 12 - 0.392, in percent); 

for 16 years of education, the gender gap is less in 

percentage terms, 23.4%.

These estimates of the return to education and 

the gender gap still have limitations, including the 

possibility of other omitted variables, notably the 

native ability of the worker, and potential problems 

associated with the way variables are measured in 

the CPS. Nevertheless, the estimates in Table 8.1 

t=: r:HIFB HC edIc6H>CB 6Bd H=: g:Bd:F g6D

continued on next page
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are consistent with those obtained by economists 

who carefully address these limitations. A survey by 

the econometrician David Card (1999) of dozens of 

empirical studies concludes that labor economists’ 

best estimates of the return to education generally fall 

between 8% and 11%, and that the return depends 

on the quality of the education. If you are interested 

in learning more about the economic return to edu-

cation, see Card (1999).

taBLe 8.1  t52 R2@urn @o educ.@ion .nd @52 G2nd2r G.p: R2gr2ssion R2sul@s  
for @52 Uni@2d S@.@2s in 2012

D:D:Bd:BH v6F>6bl:: lC<6F>H=m Cf Hourly Earnings.

r:<F:ssCF (1) (2) (3) (4)

Years of education   0.1082** 
(0.0009)

  0.1111** 
(0.0009)

  0.1078** 
(0.0012)

  0.1126** 
(0.0012)

Female   -0.251** 
 (0.005)

-0.367** 
  (0.026)

-0.392** 
  (0.025)

Female * Years of education       0.0081**  
(0.0018)

  0.0099** 
(0.0018)

Potential experience         0.0186** 
(0.0012)

Potential experience2       -0.000263** 
 (0.000024)

Midwest       -0.080**  
  (0.007)

South       -0.083** 
  (0.007)

West       -0.018** 
  (0.007)

Intercept     1.515** 
(0.013)

    1.585** 
(0.013)

    1.632** 
(0.016)

    1.335** 
(0.024)

R 2 0.221 0.263 0.264 0.276

The data are from the March 2013 Current Population Survey (see Appendix 3.1). The sample size is n = 50,174 observa-
tions for each regression. Female is an indicator variable that equals 1 for women and 0 for men. Midwest, South, and West 
are indicator variables denoting the region of the United States in which the worker lives: For example, Midwest equals 1 if 
the worker lives in the Midwest and equals 0 otherwise (the omitted region is Northeast). Standard errors are reported in 
parentheses below the estimated coefficients. Individual coefficients are statistically significant at the *5% or **1% sig-
nificance level.
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A similar calculation shows that the effect on Y of a change ∆X2 in X2, hold-
ing X1 constant, is ∆Y>∆X2 = (b2 + b3X1).

Putting these two effects together shows that the coefficient b3 on the 
interaction term is the effect of a unit increase in X1 and X2, above and 
beyond the sum of the effects of a unit increase in X1 alone and a unit increase 
in X2 alone. That is, if X1 changes by ∆X1 and X2 changes by ∆X2, then the 
expected change in Y is ∆Y = (b1 + b3X2)∆X1 + (b2 + b3X1)∆X2 + b3∆X1∆X2 
[Exercise 8.10(c)]. The first term is the effect from changing X1 holding X2 
constant; the second term is the effect from changing X2 holding X1 constant; 
and the final term, b3∆X1∆X2, is the extra effect from changing both X1  
and X2.

Interactions between two variables are summarized as Key Concept 8.5.
When interactions are combined with logarithmic transformations, they can 

be used to estimate price elasticities when the price elasticity depends on the 
characteristics of the good (see the box “The Demand for Economics Journals” 
on page 290 for an example).

Application to the student–teacher ratio and the percentage of English 
learners.  The previous examples considered interactions between the student–
teacher ratio and a binary variable indicating whether the percentage of English 
learners is large or small. A different way to study this interaction is to examine 
the interaction between the student–teacher ratio and the continuous variable, 

In@2r.c@ions in Mul@ipl2 R2gr2ssion

The interaction term between the two independent variables X1 and X2 is their 
product X1 * X2. Including this interaction term allows the effect on Y of a 
change in X1 to depend on the value of X2 and, conversely, allows the effect of a 
change in X2 to depend on the value of X1.

The coefficient on X1 * X2 is the effect of a one-unit increase in X1 and X2, 
above and beyond the sum of the individual effects of a unit increase in X1 alone 
and a unit increase in X2 alone. This is true whether X1 and/or X2 are continuous 
or binary.

Key ConCept

8.5
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t=: D:m6Bd fCF ecCBCm>cs JCIFB6ls

continued on next page

subscription price using data for the year 2000 for 180 

economics journals. Because the product of a journal 

is not the paper on which it is printed but rather the 

ideas it contains, its price is logically measured not in 

dollars per year or dollars per page but instead in dol-

lars per idea. Although we cannot measure “ideas” 

directly, a good indirect measure is the number of 

times that articles in a journal are subsequently cited 

by other researchers. Accordingly, we measure price 

P rofessional economists follow the most recent 

research in their areas of specialization. Most 

research in economics first appears in economics 

journals, so economists—or their libraries—sub-

scribe to economics journals.

How elastic is the demand by libraries for eco-

nomics journals? To find out, we analyzed the rela-

tionship between the number of subscriptions to a 

journal at U.S. libraries (Yi) and the journal’s library 

Figure 8.9  Libr.ry Subscrip@ions .nd Pric2s of economics Journ.ls

(a)  Subscriptions and Price per citation
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(b)  ln(Subscriptions) and ln(Price per citation)
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(c)  ln(Subscriptions) and ln(Price per citation)

ln(Price per citation)

Demand when
Age = 80

Demand when Age = 5

There is a nonlinear inverse relation between the 

number of U.S. library subscriptions (quantity) and 

the library price per citation (price), as shown in Fig-

ure 8.9a for 180 economics journals in 2000. But as 
seen in Figure 8.9b, the relation between log quan-

tity and log price appears to be approximately lin-

ear. Figure 8.9c shows that demand is more elastic 

for young journals (Age = 5) than for old journals 

(Age = 80).
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as the “price per citation” in the journal. The price 

range is enormous, from 1
2¢ per citation (the Ameri-

can Economic Review) to 20¢ per citation or more. 

Some journals are expensive per citation because they 

have few citations, others because their library sub-

scription price per year is very high. In 2014, a library 

print subscription to the Journal of Econometrics cost 

$4089, compared to only $455 for a bundled subscrip-

tion to all seven journals published by the American 

Economics Association, including the American 

Economic Review!

Because we are interested in estimating elastici-

ties, we use a log-log specification (Key Concept 8.2). 

The scatterplots in Figures 8.9a and 8.9b provide 

empirical support for this transformation. Because 

some of the oldest and most prestigious journals are 

the cheapest per citation, a regression of log quantity 

against log price could have omitted variable bias. 

taBLe 8.2  es@im.@2s of @52 D2m.nd for economics Journ.ls

D:D:Bd:BH v6F>6bl:: lC<6F>H=m Cf sIbscF>DH>CBs 6H u.S. l>bF6F>:s >B H=: y:6F 2000; 180 Cbs:Fv6H>CBs.

r:<F:ssCF (1) (2) (3) (4)

ln(Price per citation)  -0.533**  
(0.034)

 -0.408**  
(0.044)

 -0.961**  
(0.160)

-0.899**  
(0.145)

[ln(Price per citation)]2     0.017  
(0.025)

 

[ln(Price per citation)]3     0.0037 
(0.0055)

 

ln(Age)      0.424**  
(0.119)

   0.373**  
(0.118)

   0.374**  
(0.118)

ln(Age) * ln(Price per citation)        0.156**  
(0.052)

   0.141**  
(0.040)

ln(Characters , 1,000,000)     0.206*  
(0.098)

 0.235*  
(0.098)

 0.229*  
(0.096)

Intercept  4.77**  
(0.055)

  3.21**  
(0.38)

  3.41**  
(0.38)

  3.43**  
(0.38)

F SH6H>sH>cs 6Bd SImm6FM SH6H>sH>cs

F-statistic testing coefficients on  
quadratic and cubic terms (p-value)

    0.25  
  (0.779)

 

SER 0.750 0.705 0.691 0.688

R 2 0.555 0.607 0.622 0.626

The F-statistic tests the hypothesis that the coefficients on 3ln(Price per citation)42 and 3ln(Price per citation)43 are both 
zero. Standard errors are given in parentheses under coefficients, and p-values are given in parentheses under F-statistics. 
Individual coefficients are statistically significant at the *5% level or **1% level.

continued on next page
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Our regressions therefore include two control vari-

ables: the logarithm of age and the logarithm of the 

number of characters per year in the journal.

The regression results are summarized in Table 8.2. 

Those results yield the following conclusions (see if 

you can find the basis for these conclusions in the 

table!):

1.  Demand is less elastic for older than for newer 

journals.

2.  The evidence supports a linear, rather than a 

cubic, function of log price.

3.  Demand is greater for journals with more charac-

ters, holding price and age constant.

So what is the elasticity of demand for econom-

ics journals? It depends on the age of the journal. 

Demand curves for an 80-year-old journal and a 

5-year-old upstart are superimposed on the scatterplot 

in Figure 8.9c; the older journal’s demand elasticity 

is -0.28 (SE = 0.06), while the younger journal’s is 

-0.67(SE = 0.08).

This demand is very inelastic: Demand is very 

insensitive to price, especially for older journals. For 

libraries, having the most recent research on hand 

is a necessity, not a luxury. By way of comparison, 

experts estimate the demand elasticity for cigarettes 

to be in the range of -0.3 to -0.5. Economics jour-

nals are, it seems, as addictive as cigarettes, but a lot 

better for your health!1

1These data were graciously provided by Professor Theo-
dore Bergstrom of the Department of Economics at the 
University of California, Santa Barbara. If you are inter-
ested in learning more about the economics of economics 
journals, see Bergstrom (2001).

the percentage of English learners (PctEL). The estimated interaction regres-
sion is

TestScore = 686.3 - 1.12 STR - 0.67 PctEL + 0.0012(STR * PctEL), 
 (11.8) (0.59) (0.37) (0.019) 

 R 2 = 0.422. (8.37)

When the percentage of English learners is at the median (PctEL = 8.85), the 
slope of the line relating test scores and the student–teacher ratio is estimated to 
be -1.11 (=  -1.12 + 0.0012 * 8.85). When the percentage of English learners is 
at the 75th percentile (PctEL = 23.0), this line is estimated to be flatter, with a 
slope of -1.09 (=  -1.12 + 0.0012 * 23.0). That is, for a district with 8.85% Eng-
lish learners, the estimated effect of a one-unit reduction in the student–teacher 
ratio is to increase test scores by 1.11 points, but for a district with 23.0% English 
learners, reducing the student–teacher ratio by one unit is predicted to increase 
test scores by only 1.09 points. The difference between these estimated effects is 
not statistically significant, however: The t-statistic testing whether the coefficient 
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on the interaction term is zero is t = 0.0012>0.019 = 0.06, which is not significant 
at the 10% level.

To keep the discussion focused on nonlinear models, the specifications in 
Sections 8.1 through 8.3 exclude additional control variables such as the students’ 
economic background. Consequently, these results arguably are subject to omit-
ted variable bias. To draw substantive conclusions about the effect on test scores 
of reducing the student–teacher ratio, these nonlinear specifications must be aug-
mented with control variables, and it is to such an exercise that we now turn.

 8.4 Nonlinear Effects on Test Scores  
of the Student–Teacher Ratio

This section addresses three specific questions about test scores and the student–
teacher ratio. First, after controlling for differences in economic characteristics of 
different districts, does the effect on test scores of reducing the student–teacher 
ratio depend on the fraction of English learners? Second, does this effect depend 
on the value of the student–teacher ratio? Third, and most important, after taking 
economic factors and nonlinearities into account, what is the estimated effect on 
test scores of reducing the student–teacher ratio by two students per teacher, as 
our superintendent from Chapter 4 proposes to do?

We answer these questions by considering nonlinear regression specifications of 
the type discussed in Sections 8.2 and 8.3, extended to include two measures of the 
economic background of the students: the percentage of students eligible for a subsi-
dized lunch and the logarithm of average district income. The logarithm of income 
is used because the empirical analysis of Section 8.2 suggests that this specification 
captures the nonlinear relationship between test scores and income. As in Section 
7.6, we do not include expenditures per pupil as a regressor and in so doing we are 
considering the effect of decreasing the student–teacher ratio, allowing expenditures 
per pupil to increase (that is, we are not holding expenditures per pupil constant).

Discussion of Regression Results
The OLS regression results are summarized in Table 8.3. The columns labeled  
(1) through (7) each report separate regressions. The entries in the table are the 
coefficients, standard errors, certain F-statistics and their p-values, and summary 
statistics, as indicated by the description in each row.

The first column of regression results, labeled regression (1) in the table, is 
regression (3) in Table 7.1 repeated here for convenience. This regression does not 
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taBLe 8.3  Nonlin2.r R2gr2ssion Mod2ls of t2s@ Scor2s

D:D:Bd:BH v6F>6bl:: 6v:F6<: H:sH scCF: >B d>sHF>cH; 420 Cbs:Fv6H>CBs.

r:<F:ssCF (1) (2) (3) (4) (5) (6) (7)

Student–teacher ratio (STR) -1.00**
(0.27)

-0.73**
(0.26)

-0.97
   (0.59)

-0.53
   (0.34)

    64.33**
(24.86)

    83.70**
(28.50)

    65.29** 
(25.26)

STR2          -3.42**
(1.25)

 -4.38**
(1.44)

-3.47**
(1.27)

STR3             0.059**
(0.021)

    0.075**
(0.024)

    0.060** 
(0.021)

% English learners -0.122**
(0.033)

-0.176**
(0.034)

        -0.166**
(0.034)

% English learners  
Ú  10%? (Binary, HiEL)

      5.64 
(19.51)

5.50
(9.80)

 -5.47**
(1.03)

  816.1*
(327.7)

 

HiEL * STR     -1.28 
   (0.97)

-0.58 
    (0.50)

  -123.3*
   (50.2)

 

HiEL * STR2             6.12*
(2.54)

 

HiEL * STR3           -0.101*
 (0.043)

 

% Eligible for subsidized lunch -0.547**
(0.024)

-0.398**
(0.033)

  -0.411**
(0.029)

-0.420**
(0.029)

-0.418**
(0.029)

-0.402**
(0.033)

Average district income 
(logarithm)

  11.57**
(1.81)

  12.12**
(1.80)

11.75**
(1.78)

11.80**
(1.78)

11.51**
(1.81)

Intercept 700.2**
(5.6)

658.6**
(8.6)

682.2**
(11.9)

653.6**
(9.9)

252.0
(163.6)

122.3
(185.5)

244.8
(165.7)

F-SH6H>sH>cs 6Bd p-V6lI:s CB JC>BH hMDCH=:s:s

(a) All STR variables 
and interactions = 0

    5.64 
  (0.004)

5.92
  (0.003)

  6.31
(6  0.001)

  4.96
(6  0.001)

5.91
(0.001)

(b) STR2, STR3 = 0           6.17
(6  0.001)

5.81
  (0.003)

5.96
  (0.003)

(c) HiEL * STR, HiEL * STR2, 
HiEL * STR3 = 0

          2.69 
  (0.046)

 

SER 9.08 8.64 15.88 8.63 8.56 8.55 8.57

R 2 0.773   0.794    0.305   0.795   0.798  0.799   0.798

These regressions were estimated using the data on K–8 school districts in California, described in Appendix 4.1. Standard errors 
are given in parentheses under coefficients, and p-values are given in parentheses under F-statistics. Individual coefficients are  
statistically significant at the *5% or **1% significance level.
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control for income, so the first thing we do is check whether the results change 
substantially when log income is included as an additional economic control vari-
able. The results are given in regression (2) in Table 8.3. The log of income is 
statistically significant at the 1% level and the coefficient on the student–teacher 
ratio becomes somewhat closer to zero, falling from -1.00 to -0.73, although it 
remains statistically significant at the 1% level. The change in the coefficient on 
STR is large enough between regressions (1) and (2) to warrant including the loga-
rithm of income in the remaining regressions as a deterrent to omitted variable bias.

Regression (3) in Table 8.3 is the interacted regression in Equation (8.34) with 
the binary variable for a high or low percentage of English learners, but with no eco-
nomic control variables. When the economic control variables (percentage eligible for 
subsidized lunch and log income) are added [regression (4) in the table], the coeffi-
cients change, but in neither case is the coefficient on the interaction term significant 
at the 5% level. Based on the evidence in regression (4), the hypothesis that the effect 
of STR is the same for districts with low and high percentages of English learners 
cannot be rejected at the 5% level (the t-statistic is t = -0.58>0.50 = -1.16).

Regression (5) examines whether the effect of changing the student–teacher 
ratio depends on the value of the student–teacher ratio by including a cubic spec-
ification in STR in addition to the other control variables in regression (4) [the 
interaction term, HiEL * STR, was dropped because it was not significant in 
regression (4) at the 10% level]. The estimates in regression (5) are consistent 
with the student–teacher ratio having a nonlinear effect. The null hypothesis that 
the relationship is linear is rejected at the 1% significance level against the alter-
native that it is cubic (the F-statistic testing the hypothesis that the true coeffi-
cients on STR2 and STR3 are zero is 6.17, with a p-value of 6  0.001).

Regression (6) further examines whether the effect of the student–teacher ratio 
depends not just on the value of the student–teacher ratio but also on the fraction 
of English learners. By including interactions between HiEL and STR, STR2, and 
STR3, we can check whether the (possibly cubic) population regressions functions 
relating test scores and STR are different for low and high percentages of English 
learners. To do so, we test the restriction that the coefficients on the three interac-
tion terms are zero. The resulting F-statistic is 2.69, which has a p-value of 0.046 and 
thus is significant at the 5% but not the 1% significance level. This provides some 
evidence that the regression functions are different for districts with high and low 
percentages of English learners; however, comparing regressions (6) and (4) makes 
it clear that these differences are associated with the quadratic and cubic terms.

Regression (7) is a modification of regression (5), in which the continuous 
variable PctEL is used instead of the binary variable HiEL to control for the per-
centage of English learners in the district. The coefficients on the other regressors 
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do not change substantially when this modification is made, indicating that the 
results in regression (5) are not sensitive to what measure of the percentage of 
English learners is actually used in the regression.

In all the specifications, the hypothesis that the student–teacher ratio does not 
enter the regressions is rejected at the 1% level.

The nonlinear specifications in Table 8.3 are most easily interpreted graphi-
cally. Figure 8.10 graphs the estimated regression functions relating test scores and 
the student–teacher ratio for the linear specification (2) and the cubic specifications 
(5) and (7), along with a scatterplot of the data.4 These estimated regression func-
tions show the predicted value of test scores as a function of the student–teacher 
ratio, holding fixed other values of the independent variables in the regression. The 
estimated regression functions are all close to one another, although the cubic 
regressions flatten out for large values of the student–teacher ratio.

Regression (6) indicates a statistically significant difference in the cubic regres-
sion functions relating test scores and STR, depending on whether the percentage 
of English learners in the district is large or small. Figure 8.11 graphs these two esti-
mated regression functions so that we can see whether this difference, in addition  

4For each curve, the predicted value was computed by setting each independent variable, other than 
STR, to its sample average value and computing the predicted value by multiplying these fixed values of 
the independent variables by the respective estimated coefficients from Table 8.3. This was done for vari-
ous values of STR, and the graph of the resulting adjusted predicted values is the estimated regression 
function relating test scores and the STR, holding the other variables constant at their sample averages.

Figure 8.10  t5r22 R2gr2ssion Func@ions R2l.@ing t2s@ Scor2s .nd S@ud2n@–t2.c52r R.@io

The cubic regressions from columns (5) and  
(7) of Table 8.3 are nearly identical. They  

indicate a small amount of nonlinearity in  

the relation between test scores and  

student–teacher ratio.

Test score

Student–teacher ratio

12 20
600

620

640

660

680

700

720

2814 16 18 22 24 26

Cubic regression (7)
Cubic regression (5)

Linear regression (2)
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to being statistically significant, is of practical importance. As Figure 8.11 shows, 
for student–teacher ratios between 17 and 23—a range that includes 88% of the 
observations—the two functions are separated by approximately 10 points but 
otherwise are very similar; that is, for STR between 17 and 23, districts with a 
lower percentage of English learners do better, holding constant the student–
teacher ratio, but the effect of a change in the student–teacher ratio is essentially 
the same for the two groups. The two regression functions are different for student–
teacher ratios below 16.5, but we must be careful not to read more into this than 
is justified. The districts with STR 6 16.5 constitute only 6% of the observations, 
so the differences between the nonlinear regression functions are reflecting dif-
ferences in these very few districts with very low student–teacher ratios. Thus, 
based on Figure 8.11, we conclude that the effect on test scores of a change in the 
student–teacher ratio does not depend on the percentage of English learners for 
the range of student–teacher ratios for which we have the most data.

Summary of Findings
These results let us answer the three questions raised at the start of this section.

First, after controlling for economic background, whether there are many or few 
English learners in the district does not have a substantial influence on the effect on 
test scores of a change in the student–teacher ratio. In the linear specifications, there 
is no statistically significant evidence of such a difference. The cubic specification in 
regression (6) provides statistically significant evidence (at the 5% level) that the 

Figure 8.11  R2gr2ssion Func@ions for Dis@ric@s wi@5 hig5 .nd Low P2rc2n@.g2s of englis5 L2.rn2rs

Districts with low percentages of English  

learners (HiEL = 0) are shown by gray dots,  

and districts with HiEL = 1 are shown by  

colored dots. The cubic regression function  
for HiEL = 1 from regression (6) in Table 8.3  

is approximately 10 points below the  

cubic regression function for HiEL = 0 for  

17 …  STR …  23, but otherwise the two  
functions have similar shapes and slopes  

in this range. The slopes of the regression  

functions differ most for very large and  

small values of STR, for which there are few  

observations.

Test score

Student–teacher ratio

Regression function
(HiEL = 0)

12 20
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640
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720

2814 16 18 22 24 26

Regression function
(HiEL = 1)

600
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regression functions are different for districts with high and low percentages of Eng-
lish learners; as shown in Figure 8.11, however, the estimated regression functions 
have similar slopes in the range of student–teacher ratios containing most of our data.

Second, after controlling for economic background, there is evidence of a 
nonlinear effect on test scores of the student–teacher ratio. This effect is statisti-
cally significant at the 1% level (the coefficients on STR2 and STR3 are always 
significant at the 1% level).

Third, we now can return to the superintendent’s problem that opened Chap-
ter 4. She wants to know the effect on test scores of reducing the student–teacher 
ratio by two students per teacher. In the linear specification (2), this effect does 
not depend on the student–teacher ratio itself, and the estimated effect of this 
reduction is to improve test scores by 1.46 (=  -0.73 * -2) points. In the nonlinear 
specifications, this effect depends on the value of the student–teacher ratio. If her 
district currently has a student–teacher ratio of 20 and she is considering cutting 
it to 18, then based on regression (5) the estimated effect of this reduction is to 
improve test scores by 3.00 points, while based on regression (7) this estimate 
is 2.93. If her district currently has a student–teacher ratio of 22 and she is consid-
ering cutting it to 20, then based on regression (5) the estimated effect of this 
reduction is to improve test scores by 1.93 points, while based on regression (7) 
this estimate is 1.90. The estimates from the nonlinear specifications suggest that 
cutting the student–teacher ratio has a greater effect if this ratio is already small.

 8.5 Conclusion

This chapter presented several ways to model nonlinear regression functions. Because 
these models are variants of the multiple regression model, the unknown coefficients 
can be estimated by OLS, and hypotheses about their values can be tested using t- and 
F-statistics as described in Chapter 7. In these models, the expected effect on Y of a 
change in one of the independent variables, X1, holding the other independent vari-
ables X2, c, Xk constant in general depends on the values of X1, X2, c, Xk.

There are many different models in this chapter, and you could not be blamed 
for being a bit bewildered about which to use in a given application. How should 
you analyze possible nonlinearities in practice? Section 8.1 laid out a general 
approach for such an analysis, but this approach requires you to make decisions 
and exercise judgment along the way. It would be convenient if there were a single 
recipe you could follow that would always work in every application, but in prac-
tice data analysis is rarely that simple.

The single most important step in specifying nonlinear regression functions is 
to “use your head.” Before you look at the data, can you think of a reason, based on 
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economic theory or expert judgment, why the slope of the population regression 
function might depend on the value of that, or another, independent variable? If so, 
what sort of dependence might you expect? And, most important, which nonlinearities 
(if any) could have major implications for the substantive issues addressed by 
your study? Answering these questions carefully will focus your analysis. In the test 
score application, for example, such reasoning led us to investigate whether hiring 
more teachers might have a greater effect in districts with a large percentage of 
students still learning English, perhaps because those students would differentially 
benefit from more personal attention. By making the question precise, we were able 
to find a precise answer: After controlling for the economic background of the 
students, we found no statistically significant evidence of such an interaction.

Summary

 1. In a nonlinear regression, the slope of the population regression function 
depends on the value of one or more of the independent variables.

 2. The effect on Y of a change in the independent variable(s) can be com-
puted by evaluating the regression function at two values of the independent 
variable(s). The procedure is summarized in Key Concept 8.1.

 3. A polynomial regression includes powers of X as regressors. A quadratic 
regression includes X and X2, and a cubic regression includes X, X2, and X3.

 4. Small changes in logarithms can be interpreted as proportional or percent-
age changes in a variable. Regressions involving logarithms are used to esti-
mate proportional changes and elasticities.

 5. The product of two variables is called an interaction term. When interaction 
terms are included as regressors, they allow the regression slope of one vari-
able to depend on the value of another variable.

Key Terms

quadratic regression model (259) 
nonlinear regression function (262) 
polynomial regression model (267) 
cubic regression model (267) 
elasticity (269) 
exponential function (269) 
natural logarithm (270) 
linear-log model (271) 

log-linear model (272) 
log-log model (274) 
interaction term (280) 
interacted regressor (280) 
interaction regression model (280) 
nonlinear least squares (311) 
nonlinear least squares  

estimators (311) 
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Review the Concepts

 8.1 Sketch a regression function that is increasing (has a positive slope) and 
is steep for small values of X but less steep for large values of X. Explain 
how you would specify a nonlinear regression to model this shape. Can you 
think of an economic relationship with a shape like this?

 8.2 A “Cobb–Douglas” production function relates production (Q) to factors 
of production, capital (K), labor (L), and raw materials (M), and an error 
term u using the equation Q = lKb1Lb2Mb3eu, where l, b1, b2, and b3 are 
production parameters. Suppose that you have data on production and the 
factors of production from a random sample of firms with the same Cobb–
Douglas production function. How would you use regression analysis to 
estimate the production parameters?

 8.3 Can you use R 2 to compare the fit of a log-log and log-linear regression? Why? 
Can you use R 2to compare the fit of a log-log and linear-log regression? Why?

 8.4 Suppose the regression in Equation (8.30) is estimated using LoSTR and 
LoEL in place of HiSTR and HiEL, where LoSTR = 1 - HiSTR is an 
indicator for a low-class-size district and LoEL = 1 - HiEL is an indica-
tor for a district with a low percentage of English learners. What are the 
values of the estimated regression coefficients?

 8.5 Suppose that in Exercise 8.2 you thought that the value of b2 was not constant 
but rather increased when K increased. How could you use an interaction 
term to capture this effect?

 8.6 You have estimated a linear regression model relating Y to X. Your professor 
says, “I think that the relationship between Y and X is nonlinear.” Explain 
how you would test the adequacy of your linear regression.

MyEconLab Can Help You Get a Better Grade

MyEconLab   If your exam were tomorrow, would you be ready? For each chapter,  
 MyeconL.b Practice Tests and Study Plan help you prepare for your exams. 
You can also find the Exercises and all Review the Concepts Questions available now in MyeconL.b. 
To see how it works, turn to the MyeconL.b spread on the inside front cover of this book and then 
go to www.my2conl.b.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.<2.>son5ig52>2d.com/s@ock_w.@son.
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Exercises

 8.1 Sales in a company are $196 million in 2013 and increase to $198 million  
in 2014.

 a. Compute the percentage increase in sales, using the usual formula 

  100 * (Sales2014 - Sales2013)
Sales2013

. Compare this value to the approximation 

  100 * 3ln(Sales2014) - ln(Sales2013)4.
 b. Repeat (a), assuming that Sales2014 = 205, Sales2014 = 250, and 

Sales2014 = 500.

 c. How good is the approximation when the change is small? Does the 
quality of the approximation deteriorate as the percentage change 
increases?

 8.2 Suppose that a researcher collects data on houses that have sold in a  
particular neighborhood over the past year and obtains the regression 
results in the table shown below.

 a. Using the results in column (1), what is the expected change in price 
of building a 500-square-foot addition to a house? Construct a 95% 
confidence interval for the percentage change in price.

 b. Comparing columns (1) and (2), is it better to use Size or ln(Size) to 
explain house prices?

 c. Using column (2), what is the estimated effect of pool on price? 
(Make sure you get the units right.) Construct a 95% confidence 
interval for this effect.

 d. The regression in column (3) adds the number of bedrooms to the 
regression. How large is the estimated effect of an additional bed-
room? Is the effect statistically significant? Why do you think the  
estimated effect is so small? (Hint: Which other variables are being 
held constant?)

 e. Is the quadratic term ln(Size)2 important?

 f. Use the regression in column (5) to compute the expected  
change in price when a pool is added to a house that doesn’t  
have a view. Repeat the exercise for a house that has a view.  
Is there a large difference? Is the difference statistically  
significant?
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 8.3 After reading this chapter’s analysis of test scores and class size, an educator 
comments, “In my experience, student performance depends on class size, 
but not in the way your regressions say. Rather, students do well when class 
size is less than 20 students and do very poorly when class size is greater than 
25. There are no gains from reducing class size below 20 students, the rela-
tionship is constant in the intermediate region between 20 and 25 students, 
and there is no loss to increasing class size when it is already greater than 
25.” The educator is describing a “threshold effect” in which performance 
is constant for class sizes less than 20, then jumps and is constant for class 

R2gr2ssion R2sul@s for ex2rcis2 8.2

D:D:Bd:BH v6F>6bl:: lB(Price)

r:<F:ssCF (1) (2) (3) (4) (5)

Size        0.00042 
         (0.000038)

       

ln(Size)   0.69 
  (0.054)

0.68 
  (0.087)

0.57 
(2.03)

0.69 
  (0.055)

ln(Size)2           0.0078 
(0.14)

 

Bedrooms         0.0036 
  (0.037)

   

Pool    0.082 
   (0.032)

 0.071 
 (0.034)

  0.071 
  (0.034)

  0.071 
  (0.036)

  0.071 
  (0.035)

View    0.037 
   (0.029)

 0.027 
 (0.028)

  0.026 
  (0.026)

  0.027 
  (0.029)

  0.027 
  (0.030)

Pool * View             0.0022 
(0.10)

Condition  0.13 
   (0.045)

0.12 
  (0.035)

0.12 
  (0.035)

0.12 
  (0.036)

0.12 
  (0.035)

Intercept 10.97 
    (0.069)

6.60 
(0.39)

6.63 
(0.53)

7.02 
(7.50)

6.60 
(0.40)

SImm6FM SH6H>sH>cs

SER     0.102  0.098   0.099   0.099   0.099

R 2   0.72 0.74 0.73 0.73 0.73

Variable definitions: Price = sale price ($); Size = house size (in square feet); Bedrooms = number of bedrooms; Pool = binary 
variable (1 if house has a swimming pool, 0 otherwise); View = binary variable (1 if house has a nice view, 0 otherwise); Condition =
binary variable (1 if real estate agent reports house is in excellent condition, 0 otherwise).
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sizes between 20 and 25, and then jumps again for class sizes greater than 25.  
To model these threshold effects, define the binary variables

STRsmall = 1 if STR 6 20, and STRsmall = 0 otherwise;

STRmoderate = 1 if 20 … STR … 25, and STRmoderate = 0 otherwise; and

STRlarge = 1 if STR 7 25, and STRlarge = 0 otherwise.

 a. Consider the regression TestScorei = b0 + b1STRsmalli + b2STRlargei 
 +  ui. Sketch the regression function relating TestScore to STR for 
hypothetical values of the regression coefficients that are consistent 
with the educator’s statement.

 b. A researcher tries to estimate the regression TestScorei = b0 +
b1STRsmalli + b2STRmoderatei + b3STRlargei + ui and finds that 
the software gives an error message. Why?

 8.4 Read the box “The Return to Education and the Gender Gap” in  
Section 8.3.

 a. Consider a man with 16 years of education and 2 years of experience  
who is from a western state. Use the results from column (4) 
of Table 8.1 and the method in Key Concept 8.1 to estimate the 
expected change in the logarithm of average hourly earnings (AHE) 
associated with an additional year of experience.

 b. Repeat (a), assuming 10 years of experience.

 c. Explain why the answers to (a) and (b) are different.

 d. Is the difference in the answers to (a) and (b) statistically significant 
at the 5% level? Explain.

 e. Would your answers to (a) through (d) change if the person were a 
woman? If the person were from the South? Explain.

 f. How would you change the regression if you suspected that the effect 
of experience on earnings was different for men than for women?

 8.5 Read the box “The Demand for Economics Journals” in Section 8.3.

 a. The box reaches three conclusions. Looking at the results in the table, 
what is the basis for each of these conclusions?

 b. Using the results in regression (4), the box reports that the elasticity 
of demand for an 80-year-old journal is -0.28.

 i. How was this value determined from the estimated regression?

 ii. The box reports that the standard error for the estimated  
elasticity is 0.06. How would you calculate this standard error? 
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(Hint: See the discussion “Standard errors of estimated effects” on 
page 264.)

 c. Suppose that the variable Characters had been divided by 1000 
instead of 1,000,000. How would the results in column (4) change?

 8.6 Refer to Table 8.3.

 a. A researcher suspects that the effect of %Eligible for subsidized lunch 
has a nonlinear effect on test scores. In particular, he conjectures that 
increases in this variable from 10% to 20% have little effect on test 
scores but that changes from 50% to 60% have a much larger effect.

 i. Describe a nonlinear specification that can be used to model this 
form of nonlinearity.

 ii. How would you test whether the researcher’s conjecture was better 
than the linear specification in column (7) of Table 8.3?

 b. A researcher suspects that the effect of income on test scores is different 
in districts with small classes than in districts with large classes.

 i. Describe a nonlinear specification that can be used to model this 
form of nonlinearity.

 ii. How would you test whether the researcher’s conjecture was better 
than the linear specification in column (7) of Table 8.3?

 8.7 This problem is inspired by a study of the “gender gap” in earnings in top 
corporate jobs [Bertrand and Hallock (2001)]. The study compares total 
compensation among top executives in a large set of U.S. public corpo-
rations in the 1990s. (Each year these publicly traded corporations must 
report total compensation levels for their top five executives.)

 a. Let Female be an indicator variable that is equal to 1 for females and 0 
for males. A regression of the logarithm of earnings onto Female yields

 
 ln (Earnings) = 6.48 - 0.44 Female, SER = 2.65.

(0.01) (0.05)
 

 i. The estimated coefficient on Female is -0.44. Explain what this 
value means.

 ii. The SER is 2.65. Explain what this value means.

 iii. Does this regression suggest that female top executives earn less 
than top male executives? Explain.

 iv. Does this regression suggest that there is gender discrimination? 
Explain.
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 b. Two new variables, the market value of the firm (a measure of firm 
size, in millions of dollars) and stock return (a measure of firm  
performance, in percentage points), are added to the regression:

ln(Earnings) = 3.86 - 0.28 Female + 0.37ln(MarketValue) + 0.004 Return,
 (0.03) (0.04) (0.004) (0.003) 

n = 46,670, R 2 = 0.345.

 i. The coefficient on ln(MarketValue) is 0.37. Explain what this 
value means.

 ii. The coefficient on Female is now -0.28. Explain why it has 
changed from the regression in (a).

 c. Are large firms more likely than small firms to have female top exec-
utives? Explain.

 8.8 X is a continuous variable that takes on values between 5 and 100. Z is a binary 
variable. Sketch the following regression functions (with values of X between 
5 and 100 on the horizontal axis and values of Yn  on the vertical axis):

 a. Yn = 2.0 + 3.0 * ln(X).

 b. Yn = 2.0 - 3.0 * ln(X).

 c.  i. Yn = 2.0 + 3.0 * ln(X) + 4.0Z, with Z = 1.

 ii. Same as (i), but with Z = 0.

 d.  i. Yn = 2.0 + 3.0 * ln(X) + 4.0Z - 1.0 * Z * ln(X), with Z = 1.

 ii. Same as (i), but with Z = 0.

 e. Yn = 1.0 + 125.0X - 0.01X2.

 8.9 Explain how you would use Approach #2 from Section 7.3 to calculate the 
confidence interval discussed below Equation (8.8). [Hint: This requires 
estimating a new regression using a different definition of the regressors 
and the dependent variable. See Exercise (7.9).]

 8.10 Consider the regression model Yi = b0 + b1X1i + b2X2i + b3(X1i * X2i) +
ui. Use Key Concept 8.1 to show:

 a. ∆Y>∆X1 = b1 + b3X2 (effect of change in X1, holding X2 constant).

 b. ∆Y>∆X2 = b2 + b3X1 (effect of change in X2, holding X1 constant).

 c. If X1 changes by ∆X1 and X2 changes by ∆X2, then ∆Y =
(b1 + b3X2)∆X1 + (b2 + b3X1)∆X2 + b3∆X1∆X2.

 8.11 Derive the expressions for the elasticities given in Appendix 8.2 for the 
linear and log-log models. (Hint: For the log-log model, assume that u 
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and X are independent, as is done in Appendix 8.2 for the log-linear 
model.)

 8.12 The discussion following Equation (8.28) interprets the coefficient on 
interacted binary variables using the conditional mean zero assump-
tion. This exercise shows that interpretation also applies under con-
ditional mean independence. Consider the hypothetical experiment  
in Exercise 7.11.

 a. Suppose that you estimate the regression Yi = g0 + g1X1i + ui using  
only the data on returning students. Show that g1 is the class size effect  
for returning students—that is, that g1 = E(Yi 
X1i = 1, X2i = 0) -
E(Yi 
X1i = 0, X2i = 0). Explain why gn1 is an unbiased estimator of g1.

 b. Suppose that you estimate the regression Yi = d0 + d1X1i + ui using  
only the data on new students. Show that d1 is the class size effect for new 
students—that is, that d1 = E(Yi 
X1i = 1, X2i = 1) - E(Yi 
X1i = 0, 
X2i = 1). Explain why dn1 is an unbiased estimator of d1.

 c. Consider the regression for both returning and new students, 
Yi = b0 + b1X1i + b2X2i + b3(X1i * X2i) + ui. Use the conditional 
mean independence assumption E(ui 
X1i, X2i) = E(ui 
X2i) to show 
that b1 = g1, b1 + b3 = d1, and b3 = d1 - g1 (the difference in the 
class size effects).

 d. Suppose that you estimate the interaction regression in (c) using the 
combined data and that E(ui 
X1i, X2i) = E(ui 
X2i). Show that bn1 and 
bn3 are unbiased but that bn2 is in general biased.

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website http://www.pearsonhighered.com/stock_watson/.)

 E8.1 Lead is toxic, particularly for young children, and for this reason govern-
ment regulations severely restrict the amount of lead in our environment. 
But this was not always the case. In the early part of the 20th century, the 
underground water pipes in many U.S. cities contained lead, and lead from 
these pipes leached into drinking water. In this exercise you will investigate 
the effect of these lead water pipes on infant mortality. On the text website 
http://www.pearsonhighered.com/stock_watson/, you will find the data file 
Lead_Mortality, which contains data on infant mortality, type of water pipes 
(lead or non-lead), water acidity (pH), and several demographic variables 
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for 172 U.S. cities in 1900.5 A detailed description is given in Lead_Mortality_
Description, also available on the website.

 a. Compute the average infant mortality rate (Inf ) for cities with lead 
pipes and for cities with non-lead pipes. Is there a statistically signifi-
cant difference in the averages?

 b. The amount of lead leached from lead pipes depends on the chemis-
try of the water running through the pipes. The more acidic the water 
(that is, the lower its pH), the more lead is leached. Run a regression 
of Inf on Lead, pH, and the interaction term Lead * pH.

 i. The regression includes four coefficients (the intercept and the 
three coefficients multiplying the regressors). Explain what each 
coefficient measures.

 ii. Plot the estimated regression function relating Inf to pH for  
Lead = 0 and for Lead = 1. Describe the differences in the 
regression functions and relate these differences to the coefficients 
you discussed in (i).

 iii. Does Lead have a statistically significant effect on infant mortality? 
Explain.

 iv. Does the effect of Lead on infant mortality depend on pH? Is this 
dependence statistically significant?

 v. What is the average value of pH in the sample? At this pH level, 
what is the estimated effect of Lead on infant mortality? What 
is the standard deviation of pH? Suppose that the pH level is 
one standard deviation lower than the average level of pH in the 
sample; what is the estimated effect of Lead on infant mortality? 
What if pH is one standard deviation higher than the average 
value?

 vi. Construct a 95% confidence interval for the effect of Lead on 
infant mortality when pH = 6.5.

 c. The analysis in (b) may suffer from omitted variable bias because it 
neglects factors that affect infant mortality and that might potentially 
be correlated with Lead and pH. Investigate this concern, using the 
other variables in the data set.

5These data were provided by Professor Karen Clay of Carnegie Mellon University and were used in 
her paper with Werner Troesken and Michael Haines, “Lead and Mortality,” The Review of Economics 
and Statistics, 2014, 96(3).
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 E8.2 On the text website http://www.pearsonhighered.com/stock_watson/ you 
will find a data file CPS12, which contains data for full-time, full-year 
workers, ages 25–34, with a high school diploma or B.A./B.S. as their high-
est degree. A detailed description is given in CPS12_Description, also 
available on the website. (These are the same data as in CPS92_12, used 
in Empirical Exercise 3.1, but are limited to the year 2012.) In this exercise, 
you will investigate the relationship between a worker’s age and earnings. 
(Generally, older workers have more job experience, leading to higher 
productivity and higher earnings.)

 a. Run a regression of average hourly earnings (AHE) on age (Age), 
gender (Female), and education (Bachelor). If Age increases from  
25 to 26, how are earnings expected to change? If Age increases from 
33 to 34, how are earnings expected to change?

 b. Run a regression of the logarithm of average hourly earnings, 
ln(AHE), on Age, Female, and Bachelor. If Age increases from 25 to 
26, how are earnings expected to change? If Age increases from 33 to 
34, how are earnings expected to change?

 c. Run a regression of the logarithm of average hourly earnings, 
ln(AHE), on ln(Age), Female, and Bachelor. If Age increases from  
25 to 26, how are earnings expected to change? If Age increases from 
33 to 34, how are earnings expected to change?

 d. Run a regression of the logarithm of average hourly earnings, 
ln(AHE), on Age, Age2, Female, and Bachelor. If Age increases from 
25 to 26, how are earnings expected to change? If Age increases from 
33 to 34, how are earnings expected to change?

 e. Do you prefer the regression in (c) to the regression in (b)? Explain.

 f. Do you prefer the regression in (d) to the regression in (b)? Explain.

 g. Do you prefer the regression in (d) to the regression in (c)? Explain.

 h. Plot the regression relation between Age and ln(AHE) from (b), (c), 
and (d) for males with a high school diploma. Describe the similari-
ties and differences between the estimated regression functions. 
Would your answer change if you plotted the regression function for 
females with college degrees?

 i. Run a regression of ln(AHE) on Age, Age2, Female, Bachelor, 
and the interaction term Female * Bachelor. What does the coef-
ficient on the interaction term measure? Alexis is a 30-year-old 
female with a bachelor’s degree. What does the regression predict 
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for her value of ln(AHE)? Jane is a 30-year-old female with a high 
school degree. What does the regression predict for her value of 
ln(AHE)? What is the predicted difference between Alexis’s and 
Jane’s earnings? Bob is a 30-year-old male with a bachelor’s degree. 
What does the regression predict for his value of ln(AHE)? Jim is a 
30-year-old male with a high school degree. What does the regres-
sion predict for his value of ln(AHE)? What is the predicted differ-
ence between Bob’s and Jim’s earnings?

 j. Is the effect of Age on earnings different for men than for women? 
Specify and estimate a regression that you can use to answer this 
question.

 k. Is the effect of Age on earnings different for high school graduates 
than for college graduates? Specify and estimate a regression that you 
can use to answer this question.

 l. After running all these regressions (and any others that you want to 
run), summarize the effect of age on earnings for young workers.

 a p p e n D i x

 8.1 Regression Functions That Are Nonlinear 
in the Parameters

The nonlinear regression functions considered in Sections 8.2 and 8.3 are nonlinear func-

tions of the X’s but are linear functions of the unknown parameters. Because they are 

linear in the unknown parameters, those parameters can be estimated by OLS after defin-

ing new regressors that are nonlinear transformations of the original X’s. This family of 

nonlinear regression functions is both rich and convenient to use. In some applications, 

however, economic reasoning leads to regression functions that are not linear in the param-

eters. Although such regression functions cannot be estimated by OLS, they can be esti-

mated using an extension of OLS called nonlinear least squares.

Functions That Are Nonlinear in the Parameters
We begin with two examples of functions that are nonlinear in the parameters. We then 

provide a general formulation.

Logistic curve.  Suppose that you are studying the market penetration of a technology, such 

as the adoption of database management software in different industries. The dependent 

variable is the fraction of firms in the industry that have adopted the software, a single 
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independent variable X describes an industry characteristic, and you have data on n indus-

tries. The dependent variable is between 0 (no adopters) and 1 (100% adoption). Because 

a linear regression model could produce predicted values less than 0 or greater than 1, it 

makes sense to use instead a function that produces predicted values between 0 and 1.

The logistic function smoothly increases from a minimum of 0 to a maximum of 1. The 

logistic regression model with a single X is

 Yi =
1

1 +  e-(b0 + b1Xi)
+ ui. (8.38)

The logistic function with a single X is graphed in Figure 8.12a. As can be seen in the graph, 

the logistic function has an elongated “S” shape. For small values of X, the value of the 

function is nearly 0 and the slope is flat; the curve is steeper for moderate values of X; and 

for large values of X, the function approaches 1 and the slope is flat again.

Negative exponential growth.  The functions used in Section 8.2 to model the relation 

between test scores and income have some deficiencies. For example, the polynomial mod-

els can produce a negative slope for some values of income, which is implausible. The 

logarithmic specification has a positive slope for all values of income; however, as income 

gets very large, the predicted values increase without bound, so for some incomes the pre-

dicted value for a district will exceed the maximum possible score on the test.

The negative exponential growth model provides a nonlinear specification that has a 

positive slope for all values of income, has a slope that is greatest at low values of income 

Figure 8.12  two Func@ions t5.@ ar2 Nonlin2.r in t52ir P.r.m2@2rs

Part (a) plots the logistic function of Equation (8.38), which has predicted values that lie between 0 and 1. Part (b) plots 

the negative exponential growth function of Equation (8.39), which has a slope that is always positive and decreases as 

X increases, and an asymptote at b0 as X tends to infinity.
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and decreases as income rises, and has an upper bound (that is, an asymptote as income 

increases to infinity). The negative exponential growth regression model is

 Yi = b031 - e-b1(Xi - b2)4 + ui. (8.39)

The negative exponential growth function is graphed in Figure 8.12b. The slope is steep for 

low values of X, but as X increases, it reaches an asymptote of b0.

General functions that are nonlinear in the parameters. The logistic and negative exponen-

tial growth regression models are special cases of the general nonlinear regression model

 Yi = f(X1i, c, Xki; b0, c, bm) + ui, (8.40)

in which there are k independent variables and m + 1 parameters, b0, c, bm. In the mod-

els of Sections 8.2 and 8.3, the X’s entered this function nonlinearly, but the parameters 

entered linearly. In the examples of this appendix, the parameters enter nonlinearly as well. 

If the parameters are known, then predicted effects can be computed using the method 

described in Section 8.1. In applications, however, the parameters are unknown and must 

be estimated from the data. Parameters that enter nonlinearly cannot be estimated by 

OLS, but they can be estimated by nonlinear least squares.

Nonlinear Least Squares Estimation
Nonlinear least squares is a general method for estimating the unknown parameters of 

a regression function when those parameters enter the population regression function 

nonlinearly.

Recall the discussion in Section 5.3 of the OLS estimator of the coefficients of the 

linear multiple regression model. The OLS estimator minimizes the sum of squared predic-

tion mistakes in Equation (5.8), gn
i= 13Yi - (b0 + b1X1i + g + bkXki)42. In principle, the 

OLS estimator can be computed by checking many trial values of b0, c, bk and settling 

on the values that minimize the sum of squared mistakes.

This same approach can be used to estimate the parameters of the general nonlinear 

regression model in Equation (8.40). Because the regression function is nonlinear in the 

coefficients, this method is called nonlinear least squares. For a set of trial parameter 

values b0, b1, c, bm construct the sum of squared prediction mistakes:

 a
n

i= 1
3Yi -  f(X1i, c, Xki, b1, c, bm)42. (8.41)

The nonlinear least squares estimators of b0, b1, c, bm are the values of b0, b1, c, bm that 

minimize the sum of squared prediction mistakes in Equation (8.41).
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In linear regression, a relatively simple formula expresses the OLS estimator as a function 

of the data. Unfortunately, no such general formula exists for nonlinear least squares, so the 

nonlinear least squares estimator must be found numerically using a computer. Regression 

software incorporates algorithms for solving the nonlinear least squares minimization problem, 

which simplifies the task of computing the nonlinear least squares estimator in practice.

Under general conditions on the function f and the X’s, the nonlinear least squares estima-

tor shares two key properties with the OLS estimator in the linear regression model: It is con-

sistent, and it is normally distributed in large samples. In regression software that supports 

nonlinear least squares estimation, the output typically reports standard errors for the esti-

mated parameters. As a consequence, inference concerning the parameters can proceed as 

usual; in particular, t-statistics can be constructed using the general approach in Key Concept 

5.1, and a 95% confidence interval can be constructed as the estimated coefficient, plus or 

minus 1.96 standard errors. Just as in linear regression, the error term in the nonlinear regres-

sion model can be heteroskedastic, so heteroskedasticity-robust standard errors should be used.

Application to the Test Score–Income Relation
A negative exponential growth model, fit to district income (X) and test scores (Y), has the 

desirable features of a slope that is always positive [if b1 in Equation (8.39) is positive] and 

an asymptote of b0 as income increases to infinity. The result of estimating b0, b1, and b2 in 

Figure 8.13   t52 N2g.@iv2 expon2n@i.l Grow@5 .nd Lin2.r-Log R2gr2ssion Func@ions

The negative exponential growth regression  
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infinity, but the linear-log regression  
function does not.
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Equation (8.39) using the California test score data yields bn0 = 703.2 (heteroskedasticity-

robust standard error = 4.44), bn1 = 0.0552 (SE = 0.0068), and bn2 = -34.0 (SE = 4.48). 

Thus the estimated nonlinear regression function (with standard errors reported below the 

parameter estimates) is

 
TestScore = 703.231 - e-0.0552(Income + 34.0)4.

(4.44) (0.0068) (4.48)
 (8.42)

This estimated regression function is plotted in Figure 8.13, along with the logarithmic 

regression function and a scatterplot of the data. The two specifications are, in this case, 

quite similar. One difference is that the negative exponential growth curve flattens out at 

the highest levels of income, consistent with having an asymptote.

 a p p e n D i x

 8.2 Slopes and Elasticities for Nonlinear  
Regression Functions

This appendix uses calculus to evaluate slopes and elasticities of nonlinear regression func-

tions with continuous regressors. We focus on the case of Section 8.2, in which there is a 

single X. This approach extends to multiple X’s, using partial derivatives.

Consider the nonlinear regression model, Yi = f (Xi) + ui, with E(ui 
Xi) = 0. The 

slope of the population regression function, f(X), evaluated at the point X = x, is the 

derivative of f, that is, df (X)>dX 
X=x. For the polynomial regression function in Equation 

(8.9), f (X) = b0 + b1X + b2X
2 +g+  brX

r and dXa>dX = aXa - 1 for any constant a, so 

df (X)>dX 
X=x = b1 + 2b2x + g+  rbr x
r-1. The estimated slope at x is dfn(X)>dX 
X=x =

bn1 + 2bn2x + g+  rbnr x
r-1. The standard error of the estimated slope is SE(bn1 + 2bn2x +

g+  rbnr x
r - 1); for a given value of x, this is the standard error of a weighted sum of regression 

coefficients, which can be computed using the methods of Section 7.3 and Equation (8.8).

The elasticity of Y with respect to X is the percentage change in Y for a given percent-

age change in X. Formally, this definition applies in the limit that the percentage change in 

X goes to zero, so the slope appearing in the definition in Equation (8.22) is replaced by 

the derivative and the elasticity is

elasticity of Y with respect to X =
dY
dX
*

X
Y
=

d ln Y
d ln X

 .
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In a regression model, Y depends both on X and on the error term u. Because u is 
random, it is conventional to evaluate the elasticity as the percentage change not 
of Y but of the predicted component of Y—that is, the percentage change in 
E(Y 
X). Accordingly, the elasticity of E(Y 
X) with respect to X is

dE(Y 
X)

dX
*

X
E(Y 
X)

=
d  ln E(Y 
X)

d ln X
.

The elasticities for the linear model and for the three logarithmic models summarized in 

Key Concept 8.2 are given in the table below.

Case Population Regression  

Model

Elasticity of E(Y|X ) with 

Respect to X

 
linear

 
Y = b0 + b1X + u

b1X

b0 + b1X

 
linear-log

 
Y = b0 + b1 ln(X ) + u

b1

b0 + b1 ln(X)

log-linear ln(Y) = b0 + b1X + u b1X

log-log ln(Y) = b0 + b1 ln(X) + u b1

The log-log specification has a constant elasticity, but in the other three specifications, 

the elasticity depends on X.

We now derive the expressions for the linear-log and log-linear models. For the linear-

log model, E(Y 
X ) = b0 + b1  ln(X). Because dln(X)>dX = 1>X , applying the chain rule 

yields dE(Y 
X)>dX = b1>X . Thus the elasticity is dE(Y 
X)>dX * X>E(Y 
X) =
(b1>X) * X>[b0 + b1ln(X)] = b1>[b0 + b1ln(X)], as is given in the table. For the log-linear 

model, it is conventional to make the additional assumption that u and X are independently 

distributed, so the expression for E(Y 
X) given following Equation (8.25) becomes 

E(Y 
X) = ceb0+b1X, where c = E(eu) is a constant that does not depend on X because of 

the additional assumption that u and X are independent. Thus dE(Y 
X)>dX = ceb0+b1Xb1 

and the elasticity is dE(Y 
X)>dX * X>E(Y 
X) = ceb0+b1Xb1 * X>(ceb0+b1X) = b1X . The 

derivations for the linear and log-log models are left as Exercise 8.11.


