
Introd ction  
to Econometrics

James H. Stock
H v d Univ si y

Mark W. Watson
P inc on Univ si y

T h i r d  E d i T i o n  U p d a T E



T his chapter provides an introduction to the theory of multiple regression analy-
sis. The chapter has four objectives. The first is to present the multiple regression 

model in matrix form, which leads to compact formulas for the OLS estimator and 
test statistics. The second objective is to characterize the sampling distribution of the 
OLS estimator, both in large samples (using asymptotic theory) and in small samples 
(if the errors are homoskedastic and normally distributed). The third objective is to 
study the theory of efficient estimation of the coefficients of the multiple regression 
model and to describe generalized least squares (GLS), a method for estimating the 
regression coefficients efficiently when the errors are heteroskedastic and/or corre-
lated across observations. The fourth objective is to provide a concise treatment of 
the asymptotic distribution theory of instrumental variables (IV) regression in the  
linear model, including an introduction to generalized method of moments (GMM) 
estimation in the linear IV regression model with heteroskedastic errors.

The chapter begins by laying out the multiple regression model and the OLS 
estimator in matrix form in Section 18.1. This section also presents the extended 
least squares assumptions for the multiple regression model. The first four of these 
assumptions are the same as the least squares assumptions of Key Concept 6.4 and 
underlie the asymptotic distributions used to justify the procedures described in 
Chapters 6 and 7. The remaining two extended least squares assumptions are 
stronger and permit us to explore in more detail the theoretical properties of the 
OLS estimator in the multiple regression model.

The next three sections examine the sampling distribution of the OLS estimator 
and test statistics. Section 18.2 presents the asymptotic distributions of the OLS 
 estimator and t-statistic under the least squares assumptions of Key Concept 6.4. 
Section 18.3 unifies and generalizes the tests of hypotheses involving multiple coef-
ficients presented in Sections 7.2 and 7.3, and provides the asymptotic distribution of 
the resulting F-statistic. In Section 18.4, we examine the exact sampling distributions 
of the OLS estimator and test statistics in the special case that the errors are homo-
skedastic and normally distributed. Although the assumption of homoskedastic 
normal errors is implausible in most econometric applications, the exact sampling 
distributions are of theoretical interest, and p-values computed using these distri-
butions often appear in the output of regression software.
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The next two sections turn to the theory of efficient estimation of the coefficients 
of the multiple regression model. Section 18.5 generalizes the Gauss–Markov theorem 
to multiple regression. Section 18.6 develops the method of generalized least 
squares (GLS).

The final section takes up IV estimation in the general IV regression model 
when the instruments are valid and strong. This section derives the asymptotic  
distribution of the TSLS estimator when the errors are heteroskedastic and provides 
expressions for the standard error of the TSLS estimator. The TSLS estimator is one 
of many possible GMM estimators, and this section provides an introduction to 
GMM estimation in the linear IV regression model. It is shown that the TSLS estimator 
is the efficient GMM estimator if the errors are homoskedastic.

Mathematical prerequisite. The treatment of the linear model in this chapter uses 
matrix notation and the basic tools of linear algebra and assumes that the reader 
has taken an introductory course in linear algebra. Appendix 18.1 reviews vectors, 
matrices, and the matrix operations used in this chapter. In addition, multivariate 
calculus is used in Section 18.1 to derive the OLS estimator.

 18.1 The Linear Multiple Regression Model  
and OLS Estimator in Matrix Form

The linear multiple regression model and the OLS estimator can each be repre-
sented compactly using matrix notation.

The Multiple Regression Model in Matrix Notation
The population multiple regression model (Key Concept 6.2) is

 Yi = b0 + b1X1i + b2X2i +  g+  bkXki + ui, i = 1, c, n. (18.1)

To write the multiple regression model in matrix orm, de ine the ollowing vectors 
and matrices:

Y = ±

Y1

Y2
f
Yn

≤ , U = ±

u1

u2

 f
un

≤ , X = ±

1 X11 g Xk1

1 X12 g Xk2
f f f f
1 X1n g Xkn

≤ = ±

X1

X2
f
Xn

≤ , and B = ±

b0

b1

f
bk

≤ , (18.2)
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so Y is n * 1, X is n * (k + 1), U is n * 1, and B is (k + 1) * 1. Throughout we 
denote matrices and vectors by bold type. In this notation,

• Y is the n * 1 dimensional vector o  n observations on the dependent 
 variable.

• X is the n * (k + 1) dimensional matrix o  n observations on the k + 1 
regressors (including the “constant” regressor or the intercept).

• The (k + 1) * 1 dimensional column vector Xi is the ith observation on 
the k + 1 regressors; that is, Xi = (1 X1icXki), where Xi  denotes the 
transpose o  Xi.

• U is the n * 1 dimensional vector o  the n error terms.

• B is the (k + 1) * 1 dimensional vector o  the k + 1 unknown regression 
coe fcients.

The multiple regression model in Equation (18.1) or the ith observation, writ-
ten using the vectors B and Xi, is

 Yi = Xi B + ui, i = 1 ,c, n. (18.3)

T  ext nd d L st Squ r s assum tions  
in t  Multi l  R gr ssion Mod l

The linear regression model with multiple regressors is

 Yi = Xi B + ui, i = 1, c, n. (18.4)

The extended least squares assumptions are

 1. E(ui Xi) = 0 (ui has conditional mean zero);

 2. (Xi, Yi), i = 1, c, n, are independently and identically distributed (i.i.d.) 
draws rom their joint distribution;

 3. Xi and ui have nonzero inite ourth moments;

 4. X has ull column rank (there is no per ect multicollinearity);

 5. var(ui Xi) = s2
u (homoskedasticity); and

 6. The conditional distribution o  ui given Xi is normal (normal errors).

Key ConCept

18.1
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In Equation (18.3), the irst regressor is the “constant” regressor that always 
equals 1, and its coe icient is the intercept. Thus the intercept does not appear 
separately in Equation (18.3); rather, it is the irst element o  the coe icient 
vector B.

Stacking all n observations in Equation (18.3) yields the multiple regression 
model in matrix orm:

 Y = XB + U. (18.5)

The Extended Least Squares Assumptions
The extended least squares assumptions or the multiple regressor model are the 
our least squares assumptions or the multiple regression model in Key Concept 

6.4, plus the two additional assumptions o  homoskedasticity and normally distrib-
uted errors. The assumption o  homoskedasticity is used when we study the e i-
ciency o  the OLS estimator, and the assumption o  normality is used when we 
study the exact sampling distribution o  the OLS estimator and test statistics.

The extended least squares assumptions are summarized in Key Concept 18.1.
Except or notational di erences, the irst three assumptions in Key 

 Concept 18.1 are identical to the irst three assumptions in Key Concept 6.4.
The ourth assumption in Key Concepts 6.4 and 18.1 might appear di erent, 

but in act they are the same: They are simply di erent ways o  saying that there 
cannot be per ect multicollinearity. Recall that per ect multicollinearity arises 
when one regressor can be written as a per ect linear combination o  the others. 
In the matrix notation o  Equation (18.2), per ect multicollinearity means that 
one column o  X is a per ect linear combination o  the other columns o  X, but i  
this is true, then X does not have ull column rank. Thus saying that X has rank 
k + 1, that is, rank equal to the number o  columns o  X, is just another way to 
say that the regressors are not per ectly multicollinear.

The i th least squares assumption in Key Concept 18.1 is that the error term 
is conditionally homoskedastic, and the sixth assumption is that the conditional 
distribution o  ui, given Xi, is normal. These two assumptions are the same as the 
inal two assumptions in Key Concept 17.1, except that they are now stated or 

multiple regressors.

Implications for the mean vector and covariance matrix of U. The least squares 
assumptions in Key Concept 18.1 imply simple expressions or the mean vector 
and covariance matrix o  the conditional distribution o  U given the matrix o  
regressors X. (The mean vector and covariance matrix o  a vector o  random 
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variables are de ined in Appendix 18.2.) Speci ically, the irst and second assump-
tions in Key Concept 18.1 imply that E(ui X) = E(ui Xi) = 0 and that 
cov(ui, uj 0X  ) = E(uiuj 0X) = E(uiuj 0Xi, Xj) = E(ui 0Xi)E(uj 0Xj) = 0 or i ≠ j 
(Exercise 17.7). The irst, second, and i th assumptions imply that 
E(u2

i 0X) = E(u2
i 0Xi) = s2

u. Combining these results, we have that

 under Assumptions #1 and #2, E(U 0X) = 0n, and (18.6)

 under Assumptions #1, #2, and #5, E(UU 0X) = s2
uIn, (18.7)

where 0n is the n-dimensional vector o  zeros and In is the n * n identity matrix.
Similarly, the irst, second, i th, and sixth assumptions in Key Concept 18.1 

imply that the conditional distribution o  the n-dimensional random vector U, 
conditional on X, is the multivariate normal distribution (de ined in Appen-
dix 18.2). That is,

 under Assumptions #1, #2, #5, and #6, the 
 conditional distribution o  U given X is N(0n, s2

uIn). (18.8)

The OLS Estimator
The OLS estimator minimizes the sum o  squared prediction mistakes, 
gn

i = 1(Yi - b0 - b1X1i - g-  bkXki)
2 [Equation (6.8)]. The ormula or the OLS 

estimator is obtained by taking the derivative o  the sum o  squared prediction 
mistakes with respect to each element o  the coe icient vector, setting these 
derivatives to zero, and solving or the estimator Bn .

The derivative o  the sum o  squared prediction mistakes with respect to the 
jth regression coe icient, bj, is

0
0bj
a
n

i= 1
(Yi - b0 - b1X1i - g-  bkXki)2

 = -2a
n

i= 1
Xji(Yi - b0 - b1X1i -g-  bkXki) (18.9)

or j = 0, c, k, where, or j = 0, X0i = 1 or all i. The derivative on the right-
hand side o  Equation (18.9) is the jth element o  the k + 1 dimensional vector, 
-2X′(Y - Xb), where b is the k + 1 dimensional vector consisting o  b0, c, bk. 
There are k + 1 such derivatives, each corresponding to an element o  b. Com-
bined, these yield the system o  k + 1 equations that, when set to zero, constitute 
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the irst order conditions or the OLS estimator Bn . That is, Bn  solves the system o  
k + 1 equations

 X (Y - XBn) = 0k + 1, (18.10)

or, equivalently, X Y = X XBn .
Solving the system o  equations (18.10) yields the OLS estimator Bn  in matrix 

orm:

 Bn = (X X)-1X Y, (18.11)

where (X X )-1  is the inverse o  the matrix X X .

The role of “no perfect multicollinearity.” The ourth least squares assumption in 
Key Concept 18.1 states that X has ull column rank. In turn, this implies that the 
matrix X X has ull rank, that is, X X is nonsingular. Because X X is nonsingular, it is 
invertible. Thus the assumption that there is no per ect multicollinearity ensures 
that (X X)−1 exists, so Equation (18.10) has a unique solution and the ormula in 
Equation (18.11) or the OLS estimator can actually be computed. Said di erently, 
i  X does not have ull column rank, there is not a unique solution to Equation (18.10) 
and X X is singular. There ore, (X X)−1 cannot be computed and thus Bn  cannot be 
computed rom Equation (18.11).

 18.2 Asymptotic Distribution of the OLS Estimator 
and t-Statistic

I  the sample size is large and the irst our assumptions o  Key Concept 18.1 are 
satis ied, then the OLS estimator has an asymptotic joint normal distribution, the 
heteroskedasticity-robust estimator o  the covariance matrix is consistent, and the 
heteroskedasticity-robust OLS t-statistic has an asymptotic standard normal dis-
tribution. These results make use o  the multivariate normal distribution (Appen-
dix 18.2) and a multivariate extension o  the central limit theorem.

The Multivariate Central Limit Theorem
The central limit theorem o  Key Concept 2.7 applies to a one-dimensional random 
variable. To derive the joint asymptotic distribution o  the elements o  Bn , we 
need a multivariate central limit theorem that applies to vector-valued random 
variables.
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The multivariate central limit theorem extends the univariate central limit 
theorem to averages o  observations on a vector-valued random variable, W, 
where W is m-dimensional. The di erence between the central limit theorems or 
a scalar as opposed to a vector-valued random variable is the conditions on the 
variances. In the scalar case in Key Concept 2.7, the requirement is that the vari-
ance is both nonzero and inite. In the vector case, the requirement is that the 
covariance matrix is both positive de inite and inite. I  the vector-valued random 
variable W has a inite positive de inite covariance matrix, then 0 6 var(c W) 6 ∞
or all nonzero m-dimensional vectors c (Exercise 18.3).

The multivariate central limit theorem that we will use is stated in Key Con-
cept 18.2.

Asymptotic Normality of β n
In large samples, the OLS estimator has the multivariate normal asymptotic dis-
tribution

1n(Bn - B) ¡d N(0k + 1, 횺1n( nB -B)), where 횺1n( nB - B) = Q -1
X 횺V Q -1

X , (18.12)

where QX is the (k + 1) * (k + 1)-dimensional matrix o  second moments o  the 
regressors, that is, QX = E(XiXi ), and 횺V is the (k + 1) * (k + 1)-dimensional 
covariance matrix o  Vi = Xiui, that is, 횺V = E(ViVi ). Note that the second least 
squares assumption in Key Concept 18.1 implies that Vi, i = 1, c, n, are i.i.d.

Written in terms o  Bn  rather than 1n(Bn - B), the normal approximation in 
Equation (18.12) is

Bn , in large samples, is approximately distributed N(B, 횺Bn)
    where 횺Bn = 횺1n( nB -B)>n = Q -1

X 횺V Q -1
X >n. (18.13)

T  Multiv ri t  C ntr l Limit T or m

Suppose that W1, c, Wn are i.i.d. m-dimensional random variables with mean vec-
tor E(Wi) = mW  and covariance matrix E3(Wi - mW)(Wi - mW) 4 = 횺W, where 
횺W  is positive de inite and inite. Let W = 1

ngn
i= 1Wi. Then 2n(W - mW) ¡d  

N(0m, 횺W).

Key ConCept

18.2
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The covariance matrix 횺Bn in Equation (18.13) is the covariance matrix o  the 
approximate normal distribution o  Bn , whereas 횺1n( nB -B) in Equation (18.12) is 
the covariance matrix o  the asymptotic normal distribution o  2n(Bn - B). 
These two covariance matrices di er by a actor o  n, depending on whether the 
OLS estimator is scaled by 2n.

Derivation of Equation (18.12). To derive Equation (18.12), irst use Equations 
(18.4) and (18.11) to write Bn = (X X)-1X Y = (X X)-1X (XB + U) so that

 Bn = B + (X X)-1X U. (18.14)

Thus Bn - B = (X X)-1X U , so

 2n(Bn - B) = aX X
n
b
-1

aX U
1n
b . (18.15)

The derivation o  Equation (18.12) involves arguing irst that the “denominator” 
matrix in Equation (18.15), X X  >  n, is consistent or QX and second that the 
“numerator” matrix, X U>1n, obeys the multivariate central limit theorem in 
Key Concept 18.2. The details are given in Appendix 18.3.

Heteroskedasticity-Robust Standard Errors
The heteroskedasticity-robust estimator o  횺1n( nB - B) is obtained by replacing the 
population moments in its de inition [Equation (18.12)] by sample moments. 
Accordingly, the heteroskedasticity-robust estimator o  the covariance matrix o  
2n(Bn - B) is

 횺n 1n( nB -B) = a
X X

n
b
-1

횺n Vn a
X X

n
b
-1 

,  where 횺n Vn =
1

n - k - 1a
n

i= 1
XiXi un2

i , (18.16)

The estimator 횺n Vn incorporates the same degrees-o - reedom adjustment that is 
in the SER or the multiple regression model (Section 6.4) to adjust or potential 
downward bias because o  estimation o  k + 1 regression coe icients.

The proo  that 횺n 1n( nB - B) ¡
p
횺1n( nB -B) is conceptually similar to the proo , 

presented in Section 17.3, o  the consistency o  heteroskedasticity-robust standard 
errors or the single-regressor model.

Heteroskedasticity-robust standard errors. The heteroskedasticity-robust esti-
mator o  the covariance matrix o  Bn , 횺Bn is

 횺n Bn = n-1횺n 1n( nB -B). (18.17)
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The heteroskedasticity-robust standard error or the jth regression coe icient 
is the square root o  the jth diagonal element o  횺n Bn. That is, the heteroskedasticity-
robust standard error o  the jth coe icient is

 SE(Bnj) = 2(횺n Bn)jj , (18.18)

where (횺n Bn)jj is the ( j, j) element o  횺n Bn.

Confidence Intervals for Predicted Effects
Section 8.1 describes two methods or computing the standard error o  predicted 
e ects that involve changes in two or more regressors. There are compact matrix 
expressions or these standard errors and thus or con idence intervals or pre-
dicted e ects.

Consider a change in the value o  the regressors or the ith observation rom 
some initial value, say Xi,0, to some new value, X i, 0 + d, so that the change in Xi 
is ∆Xi = d, where d is a k + 1 dimensional vector. This change in X can involve 
multiple regressors (that is, multiple elements o  Xi). For example, i  two o  the 
regressors are the value o  an independent variable and its square, then d is the 
di erence between the subsequent and initial values o  these two variables.

The expected e ect o  this change in Xi is d B, and the estimator o  this e ect 
is d Bn . Because linear combinations o  normally distributed random variables are 
themselves normally distributed, 2n(d Bn - d B) = d 1n(Bn - B) ¡d

N(0, d g1n( nB - B)d ). Thus the standard error o  this predicted e ect is (d 횺n Bnd)1>2. 
A 95% con idence interval or this predicted e ect is

 d Bn { 1.962d 횺n nB  d. (18.19)

Asymptotic Distribution of the t-Statistic
The t-statistic testing the null hypothesis that bj = bj,0, constructed using the 
heteroskedasticity-robust standard error in Equation (18.18), is given in Key 
Concept 7.1. The argument that this t-statistic has an asymptotic standard normal 
distribution parallels the argument given in Section 17.3 or the single-regressor 
model.

 18.3 Tests of Joint Hypotheses

Section 7.2 considers tests o  joint hypotheses that involve multiple restrictions, 
where each restriction involves a single coe icient, and Section 7.3 considers tests 
o  a single restriction involving two or more coe icients. The matrix setup o  
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Section 18.1 permits a uni ied representation o  these two types o  hypotheses as 
linear restrictions on the coe icient vector, where each restriction can involve 
multiple coe icients. Under the irst our least squares assumptions in Key Con-
cept 18.1, the heteroskedasticity-robust OLS F-statistic testing these hypotheses 
has an Fq,∞ asymptotic distribution under the null hypothesis.

Joint Hypotheses in Matrix Notation
Consider a joint hypothesis that is linear in the coe icients and imposes q restric-
tions, where q … k + 1. Each o  these q restrictions can involve one or more o  
the regression coe icients. This joint null hypothesis can be written in matrix 
notation as

 RB = r, (18.20)

where R is a q * (k + 1) nonrandom matrix with ull row rank and r is a nonrandom 
q * 1 vector. The number o  rows o  R is q, which is the number o  restrictions 
being imposed under the null hypothesis.

The null hypothesis in Equation (18.20) subsumes all the null hypotheses 
considered in Sections 7.2 and 7.3. For example, a joint hypothesis o  the type 
considered in Section 7.2 is that b0 = 0, b1 = 0, c, bq - 1 = 0. To write this joint 
hypothesis in the orm o  Equation (18.20), set R = [Iq 0q * (k + 1- q)] and r = 0q.

The ormulation in Equation (18.20) also captures the restrictions o  Section 7.3 
involving multiple regression coe icients. For example, i  k = 2, then the hypoth-
esis that b1 + b2 = 1 can be written in the orm o  Equation (18.20) by setting 
R = [0 1 1], r = 1, and q = 1.

Asymptotic Distribution of the F-Statistic
The heteroskedasticity-robust F-statistic testing the joint hypothesis in Equa-
tion (18.20) is

 F = (RBn - r) 3R횺n BnR 4-1(RBn - r)>q. (18.21)

I  the irst our assumptions in Key Concept 18.1 hold, then under the null 
hypothesis

 F ¡d Fq,∞. (18.22)
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This result ollows by combining the asymptotic normality o  Bn  with the con-
sistency o  the heteroskedasticity-robust estimator 횺n 1n( nB - B) o  the covariance 
matrix. Speci ically, irst note that Equation (18.12) and Equation (18.74) in 
Appendix 18.2 imply that, under the null hypothesis, 1n(RBn - r) =
1nR(Bn - B) ¡d N(0, R횺1n( nB -B)R ). It ollows rom Equation (18.77) that, 
under the null hypothesis, (RBn - r) [R횺BnR ]-1 (RBn - r) = [1nR(Bn - B)]
[R횺1n( nB -B)R ]-1[1nR (Bn - B)] ¡d

x2
q. However, because 횺n 1n( nB -B) ¡

p

횺1n( nB - B) , it ollows rom Slutsky’s theorem that 31nR(Bn - B)4
[R횺n 1n( nB -B)R ]-131nR (Bn - B)4 ¡d

x2
q. or, equivalently (because 횺n B =  

횺n 1n( nB - B)>n), that F ¡d
x2

q>q, which is in turn distributed Fq,∞ .

Confidence Sets for Multiple Coefficients
As discussed in Section 7.4, an asymptotically valid con idence set or two or 
more elements o  B can be constructed as the set o  values that, when taken as 
the null hypothesis, are not rejected by the F-statistic. In principle, this set could 
be computed by repeatedly evaluating the F-statistic or many values o  B, but, 
as is the case with a con idence interval or a single coe icient, it is simpler to 
manipulate the ormula or the test statistic to obtain an explicit ormula or the 
con idence set.

Here is the procedure or constructing a con idence set or two or more o  the 
elements o  B. Let D denote the q-dimensional vector consisting o  the coe icients 
or which we wish to construct a con idence set. For example, i  we are construct-

ing a con idence set or the regression coe icients b1 and b2, then q = 2 and 
D = (b1 b2) . In general, we can write D = RB, where the matrix R consists o  
zeros and ones [as discussed ollowing Equation (18.20)]. The F-statistic testing 
the hypothesis that D = D0 is F = (Dn - D0) [R횺n BnR ]-1(Dn - D0)>q, where 
Dn = RBn . A 95% con idence set or D is the set o  values D0 that are not rejected 
by the F-statistic. That is, when D = RB, a 95% con idence set or D is

 5D  : (Dn - D) [R횺n BnR ]-1(Dn - D)>q … c6, (18.23)

where c is the 95th percentile (the 5% critical value) o  the Fq,∞  distribution.
The set in Equation (18.23) consists o  all the points contained inside the 

ellipse determined when the inequality in Equation (18.23) is an equality (this is 
an ellipsoid when q 7 2). Thus the con idence set or d can be computed by solv-
ing Equation (18.23) or the boundary ellipse.
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 18.4 Distribution of Regression Statistics  
with Normal Errors

The distributions presented in Sections 18.2 and 18.3, which were justi ied by 
appealing to the law o  large numbers and the central limit theorem, apply when 
the sample size is large. I , however, the errors are homoskedastic and normally 
distributed, conditional on X, then the OLS estimator has a multivariate normal distri-
bution in inite sample, conditional on X. In addition, the inite sample distribu-
tion o  the square o  the standard error o  the regression is proportional to the 
chi-squared distribution with n - k - 1 degrees o  reedom, the homoskedasticity-
only OLS t-statistic has a Student t distribution with n - k - 1 degrees o  ree-
dom, and the homoskedasticity-only F-statistic has an Fq, n - k - 1 distribution. The 
arguments in this section employ some specialized matrix ormulas or OLS 
regression statistics, which are presented irst.

Matrix Representations of OLS Regression Statistics
The OLS predicted values, residuals, and sum o  squared residuals have compact 
matrix representations. These representations make use o  two matrices, PX  
and MX.

The matrices PX and MX. The algebra o  OLS in the multivariate model relies on 
the two symmetric n * n matrices, PX and MX:

 PX = X(X X)-1X  and (18.24)

 MX = In - PX. (18.25)

A matrix C is idempotent i  C is square and CC = C (see Appendix 18.1). Because 
PX = PXPX  and MX = MXMX  (Exercise 18.5), and because PX  and MX  are 
symmetric, PX and MX are symmetric idempotent matrices.

The matrices PX and MX have some additional use ul properties (Exercise 
18.5), which ollow directly rom the de initions in Equations (18.24) and (18.25):

 PXX = X and MXX = 0n * (k + 1); 

 rank(PX) = k + 1 and rank(MX) = n - k - 1, (18.26)

where rank(PX) is the rank o  PX.
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The matrices PX and MX can be used to decompose an n-dimensional vector 
Z into two parts: a part that is spanned by the columns o  X and a part orthogonal 
to the columns o  X. In other words, PXZ is the projection o  Z onto the space 
spanned by the columns o  X, MXZ is the part o  Z orthogonal to the columns o  
X, and Z = PXZ + MXZ.

OLS predicted values and residuals. The matrices PX and MX provide some sim-
ple expressions or OLS predicted values and residuals. The OLS predicted val-
ues, Yn = XBn , and the OLS residuals, Un = Y - Yn, can be expressed as ollows 
(Exercise 18.5):

 Yn = PXY and (18.27)

 Un = MXY = MXU. (18.28)

The expressions in Equations (18.27) and (18.28) provide a simple proo  that 
the OLS residuals and predicted values are orthogonal, that is, Equation (4.37) 
holds: Yn Un = Y PX MXY = 0, where the second equality ollows rom 
PX MX = 0n * n, which in turn ollows rom MXX = 0n * (k +  1) in Equation (18.26).

The standard error of the regression. The SER, de ined in Section 4.3, is sun, 
where

 s2
un =

1
n - k - 1

 a
n

i= 1
un2

i =
1

n - k - 1
Un Un =

1
n - k - 1

 U MXU, (18.29)

where the inal equality ollows because Un Un = (MXU) (MXU ) = U MXMXU =
U MXU (because MX is symmetric and idempotent).

Distribution of β n with Normal Errors
Because Bn = B +  (X X)-1X U  [Equation (18.14)] and because the distribu-
tion o  U conditional on X is, by assumption, N(0n, s2

uIn) [Equation (18.8)], the 
conditional distribution o  Bn  given X is multivariate normal with mean B. The 
covariance matrix o  Bn , conditional  on X, is 횺 nB 0X = E[(Bn  - B)(Bn - B) 0X] =  
E[(X X)-1 X UU X(X X)-1

  X ] = (X X)-1X (s2
u In)X(X X)-1 = s2

u(X X)-1. 
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Accordingly, under all six assumptions in Key Concept 18.1, the inite-sample 
conditional distribution o  Bn  given X is

 Bn N(B, 횺 nB 0X), where 횺 nB 0X = su
2(X X )- 1. (18.30)

Distribution of s2nu
I  all six assumptions in Key Concept 18.1 hold, then s2

un  has an exact sampling 
distribution that is proportional to a chi-squared distribution with n - k - 1 
degrees o  reedom:

 s2
un

s2
u

n - k - 1
* x2

n - k - 1 (18.31)

The proo  o  Equation (18.31) starts with Equation (18.29). Because U is normally 
distributed conditional on X and because MX is a symmetric idempotent matrix, 
the quadratic orm U MXU>s2

u has an exact chi-squared distribution with degrees 
o  reedom equal to the rank o  MX [Equation (18.78) in Appendix 18.2]. From 
Equation (18.26), the rank o  MX is n - k - 1. Thus U MXU>s2

u has an exact 
x2

n - k - 1 distribution, rom which Equation (18.31) ollows.
The degrees-o - reedom adjustment ensures that s2

un  is unbiased. The expecta-
tion o  a random variable with a x2

n - k - 1 distribution is n - k - 1; thus 
E(U MXU) = (n - k - 1)s2

u, so E(s2
un) = s

2
u.

Homoskedasticity-Only Standard Errors
The homoskedasticity-only estimator 횺Bn o  the covariance matrix o  Bn , condi-
tional on X, is obtained by substituting the sample variance s2

un  or the population 
variance s2

u in the expression or 횺 nB 0X in Equation (18.30). Accordingly,

 횺Bn = s2
un(X X)-1 (homoskedasticity@only). (18.32)

The estimator o  the variance o  the normal conditional distribution o  bnj, given 
X, is the ( j, j) element o  횺Bn. Thus the homoskedasticity-only standard error o  bnj is 
the square root o  the j th diagonal element o  횺Bn. That is, the homoskedasticity-only 
standard error o  bnj is

 SE(bnj) = 2(횺
∼
bn)jj (homoskedasticity-only). (18.33)
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Distribution of the t-Statistic
Let t  be the t-statistic testing the hypothesis bj = bj,0, constructed using the 
homoskedasticity-only standard error; that is, let

 t =
bnj - bj,0

2(횺
∼
bn)jj

. (18.34)

Under all six o  the extended least squares assumptions in Key Concept 18.1, the 
exact sampling distribution o  t  is the Student t distribution with n - k - 1 
degrees o  reedom; that is,

 t tn - k - 1. (18.35)

The proo  o  Equation (18.35) is given in Appendix 18.4.

Distribution of the F-Statistic
I  all six least squares assumptions in Key Concept 18.1 hold, then the F-statistic 
testing the hypothesis in Equation (18.20), constructed using the homoskedasticity-
only estimator o  the covariance matrix, has an exact Fq, n - k - 1 distribution under 
the null hypothesis.

The homoskedasticity-only F-statistic. The homoskedasticity-only F-statistic is 
similar to the heteroskedasticity-robust F-statistic in Equation (18.21), except that 
the homoskedasticity-only estimator 횺Bn is used instead o  the heteroskedasticity-
robust estimator 횺Bn. Substituting the expression 횺Bn = s2

un(X X)-1 into the expres-
sion or the F-statistic in Equation (18.21) yields the homoskedasticity-only 
F-statistic testing the null hypothesis in Equation (18.20):

 F =
(RBn - r) 3R(X X)-1R 4-1(RBn - r)>q

s2
un

. (18.36)

I  all six assumptions in Key Concept 18.1 hold, then under the null hypothesis

 F Fq,n - k - 1. (18.37)

The proo  o  Equation (18.37) is given in Appendix 18.4.
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The F-statistic in Equation (18.36) is called the Wald version o  the F-statistic 
(named a ter the statistician Abraham Wald). Although the ormula or the 
homoskedastic-only F-statistic given in Equation (7.13) appears quite di erent 
rom the ormula or the Wald statistic in Equation (18.36), the homoskedastic-

only F-statistic and the Wald F-statistic are two versions o  the same statistic. That 
is, the two expressions are equivalent, a result shown in Exercise 18.13.

 18.5 Efficiency of the OLS Estimator 
with Homoskedastic Errors

Under the Gauss–Markov conditions or multiple regression, the OLS estimator 
o  B is e icient among all linear conditionally unbiased estimators; that is, the 
OLS estimator is BLUE.

The Gauss–Markov Conditions for Multiple Regression
The Gauss–Markov conditions for multiple regression are

 (i) E(U 0X ) = 0n, 

 (ii) E(UU 0X) = s u
2 In, and 

 (iii) X has ull column rank. (18.38)

The Gauss–Markov conditions or multiple regression in turn are implied by the 
irst ive assumptions in Key Concept 18.1 [see Equations (18.6) and (18.7)]. The 

conditions in Equation (18.38) generalize the Gauss–Markov conditions or a sin-
gle regressor model to multiple regression. [By using matrix notation, the second 
and third Gauss–Markov conditions in Equation (5.31) are collected into the sin-
gle condition (ii) in Equation (18.38).]

Linear Conditionally Unbiased Estimators
We start by describing the class o  linear unbiased estimators and by showing that 
OLS is in that class.

The class of linear conditionally unbiased estimators. An estimator o  B is said 
to be linear i  it is a linear unction o  Y1, c, Yn. Accordingly, the estimator B is 
linear in Y i  it can be written in the orm

 B = A Y, (18.39)
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where A is an n * (k + 1) dimensional matrix o  weights that may depend on X 
and on nonrandom constants, but not on Y.

An estimator is conditionally unbiased i  the mean o  its conditional sampling 
distribution, given X, is B. That is, B is conditionally unbiased i  E(B 0X) = B.

The OLS estimator is linear and conditionally unbiased. Comparison o  Equa-
tions (18.11) and (18.39) shows that the OLS estimator is linear in Y; speci ically, 
Bn = An Y, where An = X(X X)-1. To show that Bn  is conditionally unbiased, recall 
rom Equation (18.14) that Bn = B +  (X X)-1X U . Taking the conditional expec-

tation o  both sides o  this expression yields, E(Bn 0X) = B +E[(X X )-1X U 0 X ] =
B + (X X)-1X E(U 0 X) = B, where the inal equality ollows because E(U 0X ) = 0 
by the irst Gauss–Markov condition.

The Gauss–Markov Theorem for Multiple Regression
The Gauss–Markov theorem for multiple regression provides conditions under 
which the OLS estimator is e icient among the class o  linear conditionally 
unbiased estimators. A subtle point arises, however, because Bn  is a vector and 
its “variance” is a covariance matrix. When the “variance” o  an estimator is a 
matrix, just what does it mean to say that one estimator has a smaller variance 
than another?

The Gauss–Markov theorem handles this problem by comparing the 
variance o  a candidate estimator o  a linear combination o  the elements o  
B to the variance o  the corresponding linear combination o  Bn . Speci ically, 
let c be a k + 1 dimensional vector and consider the problem o  estimating 
the linear combination c B using the candidate estimator c B  (where B  is a 
linear conditionally unbiased estimator) on the one hand and c Bn  on the other 
hand. Because c B  and c Bn are both scalars and are both linear conditionally 
unbiased estimators o  c B, it now makes sense to compare their variances.

The Gauss–Markov theorem or multiple regression says that the OLS esti-
mator o  c B is e icient; that is, the OLS estimator c Bn  has the smallest conditional 
variance o  all linear conditionally unbiased estimators c B. Remarkably, this is 
true no matter what the linear combination is. It is in this sense that the OLS 
estimator is BLUE in multiple regression.

The Gauss–Markov theorem is stated in Key Concept 18.3 and proven in 
Appendix 18.5.
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 18.6 Generalized Least Squares1

The assumption o  i.i.d. sampling its many applications. For example, suppose that 
Yi and Xi correspond to in ormation about individuals, such as their earnings, edu-
cation, and personal characteristics, where the individuals are selected rom a 
population by simple random sampling. In this case, because o  the simple random 
sampling scheme, (Xi,Yi) are necessarily i.i.d. Because (Xi,Yi) and (Xj,Yj) are inde-
pendently distributed or i ≠ j, ui and uj are independently distributed or i ≠ j. 
This in turn implies that ui and uj are uncorrelated or i ≠ j. In the context o  the 
Gauss–Markov assumptions, the assumption that E(UU 0X) is diagonal there ore 
is appropriate i  the data are collected in a way that makes the observations inde-
pendently distributed.

Some sampling schemes encountered in econometrics do not, however, result 
in independent observations and instead can lead to error terms ui that are cor-
related rom one observation to the next. The leading example is when the data 
are sampled over time or the same entity, that is, when the data are time series 
data. As discussed in Section 15.3, in regressions involving time series data, many 
omitted actors are correlated rom one period to the next, and this can result in 
regression error terms (which represent those omitted actors) that are correlated 
rom one period o  observation to the next. In other words, the error term in one 

period will not, in general, be distributed independently o  the error term in the 

G uss–M rkov T or m for Multi l  R gr ssion

Suppose that the Gauss–Markov conditions or multiple regression in Equation 
(18.38) hold. Then the OLS estimator Bn  is BLUE. That is, let B be a linear con-
ditionally unbiased estimator o  B and let c be a nonrandom k + 1 dimensional 
vector. Then var(cBn 0X ) … var(cB 0X) or every nonzero vector c, where the 
inequality holds with equality or all c only i  B = Bn .

Key ConCept

18.3

1The GLS estimator was introduced in Section 15.5 in the context o  distributed lag time series regres-
sion. This presentation here is a sel -contained mathematical treatment o  GLS that can be read inde-
pendently o  Section 15.5, but reading that section irst will help to make these ideas more concrete.
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next period. Instead, the error term in one period could be correlated with the 
error term in the next period.

The presence o  correlated error terms creates two problems or in erence based 
on OLS. First, neither the heteroskedasticity-robust nor the homoskedasticity-only 
standard errors produced by OLS provide a valid basis or in erence. The solution to 
this problem is to use standard errors that are robust to both heteroskedasticity and 
correlation o  the error terms across observations. This topic—heteroskedasticity- 
and autocorrelation-consistent (HAC) covariance matrix estimation—is the subject 
o  Section 15.4 and we do not pursue it urther here.

Second, i  the error term is correlated across observations, then E(UU   X) 
is not diagonal, the second Gauss–Markov condition in Equation (18.38) does 
not hold, and OLS is not BLUE. In this section we study an estimator, generalized 
least squares (GLS), that is BLUE (at least asymptotically) when the condi-
tional covariance matrix o  the errors is no longer proportional to the identity matrix. 
A special case o  GLS is weighted least squares, discussed in Section 17.5,  
in which the conditional covariance matrix is diagonal and the ith diagonal ele-
ment is a unction o  Xi. Like WLS, GLS trans orms the regression model so 
that the errors o  the trans ormed model satis y the Gauss–Markov conditions. 
The GLS estimator is the OLS estimator o  the coe icients in the trans ormed  
model.

The GLS Assumptions
There are our assumptions under which GLS is valid. The irst GLS assumption 
is that ui has a mean o  zero, conditional on X1, c, Xn; that is,

 E(U 0X ) = 0n. (18.40)

This assumption is implied by the irst two least squares assumptions in Key Concept 
18.1; that is, i  E(ui 0Xi) = 0 and (Xi,Yi), i = 1, c , n, are i.i.d., then E(U 0X ) = 0n.  
In GLS, however, we will not want to maintain the i.i.d. assumption; a ter all, one 
purpose o  GLS is to handle errors that are correlated across observations. We dis-
cuss the signi icance o  the assumption in Equation (18.40) a ter introducing the 
GLS estimator.

The second GLS assumption is that the conditional covariance matrix o  U 
given X is some unction o  X:

 E(UU 0X) = 훀(X ), (18.41)

where 훀(X ) is an n * n positive de inite matrix-valued unction o  X.
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There are two main applications o  GLS that are covered by this assumption. 
The irst is independent sampling with heteroskedastic errors, in which case 훀(X) 
is a diagonal matrix with diagonal element lh(Xi), where l is a constant and h is 
a unction. In this case, discussed in Section 17.5, GLS is WLS.

The second application is to homoskedastic errors that are serially correlated. 
In practice, in this case a model is developed or the serial correlation. For exam-
ple, one model is that the error term is correlated with only its neighbor, so 
corr(ui, ui - 1) = r ≠ 0 but corr(ui, uj) = 0 i   i - j  Ú 2. In this case, 훀(X ) has 
s2

u as its diagonal element, rs2
u in the irst o -diagonal, and zeros elsewhere. Thus 

훀(X ) does not depend on X, 훀ii = s2
u, 훀ij = rs2

u or  i - j  = 1, and 훀ij = 0 
or  i - j  7 1. Other models or serial correlation, including the irst order 

autoregressive model, are discussed urther in the context o  GLS in Section 15.5 
(also see Exercise 18.8).

One assumption that has appeared on all previous lists o  least squares assump-
tions or cross-sectional data is that Xi and ui have nonzero, inite ourth moments. 
In the case o  GLS, the speci ic moment assumptions needed to prove asymptotic 
results depend on the nature o  the unction 훀(X ), whether 훀(X ) is known or 
estimated, and the statistic under consideration (the GLS estimator, t-statistic, 
etc.). Because the assumptions are case- and model-speci ic, we do not present 
speci ic moment assumptions here, and the discussion o  the large-sample properties 
o  GLS assumes that such moment conditions apply or the relevant case at hand. 
For completeness, as the third GLS assumption, Xi and ui are simply assumed to 
satis y suitable moment conditions.

The ourth GLS assumption is that X has ull column rank; that is, the regres-
sors are not per ectly multicollinear.

The GLS assumptions are summarized in Key Concept 18.4.

T  GLS assum tions

In the linear regression model Y = XB + U , the GLS assumptions are

 1. E(U 0X) = 0n;

 2. E(UU 0X) = 훀(X), where 훀(X) is an n * n positive de inite matrix that can 
depend on X;

 3. Xi and ui satis y suitable moment conditions; and

 4. X has ull column rank (there is no per ect multicollinearity).

Key ConCept

18.4 
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We consider GLS estimation in two cases. In the irst case, 훀(X) is known. 
In the second case, the unctional orm o  훀(X) is known up to some parameters 
that can be estimated. To simpli y notation, we re er to the unction 훀(X) as the 
matrix 훀, so the dependence o  훀 on X is implicit.

GLS When Ω Is Known
When 훀 is known, the GLS estimator uses 훀 to trans orm the regression model 
to one with errors that satis y the Gauss–Markov conditions. Speci ically, let F be 
a matrix square root o  훀-1; that is, let F be a matrix that satis ies F F = 훀-1 
(see Appendix 18.1). A property o  F is that F훀F = In. Now premultiply both 
sides o  Equation (18.4) by F to obtain

 Y = XB + U, (18.42)

where Y∼ = FY, X∼ = FX, and U∼ = FU.
The key insight o  GLS is that, under the our GLS assumptions, the Gauss–

Markov assumptions hold or the trans ormed regression in Equation (18.42). 
That is, by trans orming all the variables by the inverse o  the matrix square root 
o  훀, the regression errors in the trans ormed regression have a conditional mean 
o  zero and a covariance matrix that equals the identity matrix. To show this 
mathematically, irst note that E(U 0X) = E(FU 0FX ) = FE(U 0FX ) = 0n by 
the irst GLS assumption [Equation (18.40)]. In addition, E(UU 0X) =  
E[(FU)(FU) 0FX ] =  FE(UU 0FX)F = F훀F = In, where the second equality 
ollows because (FU)′ = U F  and the inal equality ollows rom the de inition 

o  F. It ollows that the trans ormed regression model in Equation (18.42) satis ies 
the Gauss–Markov conditions in Key Concept 18.3.

The GLS estimator, BGLS, is the OLS estimator o  B in Equation (18.42); 
that is, BGLS = (X X)- 1(X Y). Because the trans ormed regression model satis-
ies the Gauss–Markov conditions, the GLS estimator is the best conditionally 

unbiased estimator that is linear in Y. But because Y = FY  and F is (here) 
assumed to be known, and because F is invertible (because 훀 is positive de i-
nite), the class o  estimators that are linear in Y  is the same as the class o  
estimators that are linear in Y. Thus the OLS estimator o  B in Equation (18.42) 
is also the best conditionally unbiased estimator among estimators that are lin-
ear in Y. In other words, under the GLS assumptions, the GLS estimator is 
BLUE.
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The GLS estimator can be expressed directly in terms o  훀, so in principle 
there is no need to compute the square root matrix F. Because X = FX  and 
Y = FY , BGLS =  (X F FX)-1(X F FY). But F F = 훀-1, so

 BGLS = (X 훀-1X)-1(X 훀-1Y ). (18.43)

In practice, 훀 is typically unknown, so the GLS estimator in Equation (18.43) 
typically cannot be computed and thus is sometimes called the infeasible GLS 
estimator. I , however, 훀 has a known unctional orm but the parameters o  that 
unction are unknown, then 훀 can be estimated and a easible version o  the GLS 

estimator can be computed.

GLS When Ω Contains Unknown Parameters
I  훀 is a known unction o  some parameters that in turn can be estimated, then 
these estimated parameters can be used to calculate an estimator o  the covari-
ance matrix 훀. For example, consider the time series application discussed ol-
lowing Equation (18.41), in which 훀(X) does not depend on X, 훀ii = s2

u, 훀ij =  
rs2

u or 0 i - j 0 = 1, and 훀ij = 0 or 0 i - j 0 7 1. Then 훀  has two unknown 
parameters, s2

u and r. These parameters can be estimated using the residuals rom 
a preliminary OLS regression; speci ically, s2

u can be estimated by s2
un and r can 

be estimated by the sample correlation between all neighboring pairs o  OLS 
residuals. These estimated parameters can in turn be used to compute an estima-
tor o  훀, 훀n .

In general, suppose that you have an estimator 훀n  o  훀. Then the GLS esti-
mator based on 훀n  is

 BnGLS = (X 훀n -1X )-1(X 훀n -1Y). (18.44)

The GLS estimator in Equation (18.44) is sometimes called the feasible GLS 
estimator because it can be computed i  the covariance matrix contains some 
unknown parameters that can be estimated.

The Zero Conditional Mean Assumption and GLS
For the OLS estimator to be consistent, the irst least squares assumption must 
hold; that is, E(ui 0Xi) must be zero. In contrast, the irst GLS assumption is that 
E(ui 0X1, c, Xn) = 0. In other words, the irst OLS assumption is that the error 
or the ith observation has a conditional mean o  zero, given the values o  the 

regressors or that observation, whereas the irst GLS assumption is that ui has a 
conditional mean o  zero, given the values o  the regressors or all observations.
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As discussed in Section 18.1, the assumptions that E(ui 0Xi) = 0 and that sam-
pling is i.i.d. together imply that E(ui 0X1, c, Xn) = 0. Thus, when sampling is 
i.i.d. so that GLS is WLS, the irst GLS assumption is implied by the irst least 
squares assumption in Key Concept 18.1.

When sampling is not i.i.d., however, the irst GLS assumption is not implied 
by the assumption that E(ui 0Xi) = 0; that is, the irst GLS assumption is stronger. 
Although the distinction between these two conditions might seem slight, it can 
be very important in applications to time series data. This distinction is discussed 
in Section 15.5 in the context o  whether the regressor is “past and present” exog-
enous or “strictly” exogenous; the assumption that E(ui 0X1, c, Xn) = 0 corre-
sponds to strict exogeneity. Here, we discuss this distinction at a more general level 
using matrix notation. To do so, we ocus on the case that U is homoskedastic, 훀 is 
known, and 훀 has nonzero o -diagonal elements.

The role of the first GLS assumption. To see the source o  the di erence between 
these assumptions, it is use ul to contrast the consistency arguments or GLS and 
OLS.

We irst sketch the argument or the consistency o  the GLS estimator in Equa-
tion (18.43). Substituting Equation (18.4) into Equation (18.43), we have BGLS = 
B + (X 훀-1X>n)-1(X 훀-1U>n). Under the irst GLS assumption, E(X 훀-1U ) = 
E3X 훀-1E(U 0X )4 = 0n. I  in addition the variance o  X 훀-1U>n tends to zero 
and X 훀-1X>n ¡p

Q, where Q is some invertible matrix, then BGLS ¡p
B. 

Critically, when 훀  has o -diagonal elements, the term X 훀-1U = 
gn

i=1 g
n
j=1Xi(훀-1)ijuj involves products o  Xi and uj or di erent i, j, where (훀-1)ij  

denotes the (i, j) element o  훀-1. Thus, or X 훀-1U  to have a mean o  zero, it is 
not enough that E(ui 0Xi) = 0; rather E(ui 0Xj) must equal zero or all i, j pairs 
corresponding to nonzero values o  (훀-1)ij. Depending on the covariance structure 
o  the errors, only some o  or all the elements o  (훀-1)ij might be nonzero. For 
example, i  ui ollows a irst order autoregression (as discussed in Section 15.5), 
the only nonzero elements (훀- 1)ij are those or which 0 i - j 0 … 1. In general, however, 
all the elements o  훀-1 can be nonzero, so in general or X Ω- 1U>n ¡p

0(k + 1)*1 
(and thus or BGLS to be consistent) we need that E(U 0X ) = 0n; that is, the irst GLS 
assumption must hold.

In contrast, recall the argument that the OLS estimator is consistent. Rewrite 
Equation (18.14) as Bn = B + (X X>n)-1 1

ngn
i=1 Xiui. I  E(ui   Xi) = 0, then the 

term 1
ngn

i=1Xiui has mean zero, and i  this term has a variance that tends to zero, it 
converges in probability to zero. I  in addition X X>  n ¡p

QX, then Bn ¡p
B.

Is the first GLS assumption restrictive? The irst GLS assumption requires that the 
errors or the ith observation be uncorrelated with the regressors or all other 
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observations. This assumption is dubious in some time series applications. This 
issue is discussed in Section 15.6 in the context o  an empirical example, the rela-
tionship between the change in the price o  a contract or uture delivery o  rozen 
orange concentrate and the weather in Florida. As explained there, the error term 
in the regression o  price changes on the weather is plausibly uncorrelated with 
current and past values o  the weather, so the irst OLS assumption holds. How-
ever, this error term is plausibly correlated with uture values o  the weather, so 
the irst GLS assumption does not hold.

This example illustrates a general phenomenon in economic time series data 
that arises when the value o  a variable today is set in part based on expectations 
o  the uture: Those uture expectations typically imply that the error term today 
depends on a orecast o  the regressor tomorrow, which in turn is correlated with 
the actual value o  the regressor tomorrow. For this reason, the irst GLS assump-
tion is in act much stronger than the irst OLS assumption. Accordingly, in some 
applications with economic time series data the GLS estimator is not consistent 
even though the OLS estimator is.

 18.7 Instrumental Variables and Generalized 
Method of Moments Estimation

This section provides an introduction to the theory o  instrumental variables (IV) 
estimation and the asymptotic distribution o  IV estimators. It is assumed through-
out that the IV regression assumptions in Key Concepts 12.3 and 12.4 hold and, 
moreover, that the instruments are strong. These assumptions apply to cross-
sectional data with i.i.d. observations. Under certain conditions the results derived 
in this section are applicable to time series data as well, and the extension to time 
series data is brie ly discussed at the end o  this section. All asymptotic results in 
this section are developed under the assumption o  strong instruments.

This section begins by presenting the IV regression model, the two stage least 
squares (TSLS) estimator, and its asymptotic distribution in the general case o  
heteroskedasticity, all in matrix orm. It is next shown that, in the special case o  
homoskedasticity, the TSLS estimator is asymptotically e icient among the class 
o  IV estimators in which the instruments are linear combinations o  the exoge-
nous variables. Moreover, the J-statistic has an asymptotic chi-squared distribu-
tion in which the degrees o  reedom equal the number o  overidenti ying 
restrictions. This section concludes with a discussion o  e icient IV estimation and 
the test o  overidenti ying restrictions when the errors are heteroskedastic—a 
situation in which the e icient IV estimator is known as the e icient generalized 
method o  moments (GMM) estimator.
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The IV Estimator in Matrix Form
In this section, we let X denote the n * (k + r + 1) matrix o  the regressors in 
the equation o  interest, so X contains the included endogenous regressors (the 
X’s in Key Concept 12.1) and the included exogenous regressors (the W’s in Key 
Concept 12.1). That is, in the notation o  Key Concept 12.1, the ith row o  X is 
X i  =  (1 X1i X2i . . . Xki W1i W2i . . . Wri). Also, let Z denote the  
n * (m + r + 1) matrix o  all the exogenous regressors, both those included in 
the equation o  interest (the W’s) and those excluded rom the equation o  
interest (the instruments). That is, in the notation o  Key Concept 12.1, the ith 
row o  Z is Z i  =  (1 Z1i Z2i . . . Zmi W1i W2i . . . Wri).

With this notation, the IV regression model o  Key Concept 12.1, written in 
matrix orm, is

 Y = XB + U , (18.45)

where U is the n * 1 vector o  errors in the equation o  interest, with ith element ui.
The matrix Z consists o  all the exogenous regressors, so under the IV regres-

sion assumptions in Key Concept 12.4,

 E(Ziui) = 0   (instrument exogeneity). (18.46)

Because there are k included endogenous regressors, the irst stage regression 
consists o  k equations.

The TSLS estimator.  The TSLS estimator is the instrumental variables estimator 
in which the instruments are the predicted values o  X based on OLS estimation 
o  the irst stage regression. Let Xn  denote this matrix o  predicted values so that 
the ith row o  Xn  is (Xn 1i Xn 2i c Xn ki W1i W2i c Wri), where Xn 1i is the 
predicted value rom the regression o  X1i on Z, and so orth. Because the W’s 
are contained in Z, the predicted value rom a regression o  W1i on Z is just W1i, 
and so orth, so Xn = PZX, where PZ =  Z(Z Z)−1Z  [see Equation (18.27)]. 
Accordingly, the TSLS estimator is

 BnTSLS = (Xn Xn)-1Xn Y . (18.47)

Because Xn = PZX , Xn Xn = X PZX , and Xn Y = X PZY , the TSLS estimator can 
be rewritten as

 BnTSLS = (X PZX)-1X PZY . (18.48)
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Asymptotic Distribution of the TSLS Estimator
Substituting Equation (18.45) into Equation (18.48), rearranging, and multiplying 
by 2n yields the expression or the centered and scaled TSLS estimator:

  2n(BnTSLS - B) = a
X PZX

n
b
-1

 
X PZU

2n
 

  = c
X Z

n
a

Z Z
n
b
-1

 
Z X

n
d
-1 

c
X Z

n
a

Z′Z
n
b
-1

 
Z U

2n
d , (18.49)

where the second equality uses the de inition o  PZ. Under the IV regression 
assumptions, X Z>n ¡p

QXZ and Z Z>n ¡p
QZZ, where QXZ = E(XiZ′i) and 

QZZ = E(ZiZi). In addition, under the IV regression assumptions, Ziui is i.i.d. 
with mean zero [Equation (18.46)] and a nonzero inite variance, so its sum, 
divided by 2n, satis ies the conditions o  the central limit theorem and

 Z U>2n ¡d 횿ZU, where 횿ZU  N(0, H ), H = E(ZiZi u
2
i ) (18.50)

and 횿ZU  is (m + r + 1) * 1. 
Application o  Equation (18.50) and o  the limits X Z>n ¡p

QXZ and 
Z Z>n ¡p

QZZ to Equation (18.49) yields the result that, under the IV regres-
sion assumptions, the TSLS estimator is asymptotically normally distributed:

  2n (BnTSLS - B) ¡d (QXZQ-1
ZZQZX)-1QXZQ-1

ZZΨZU  N(0, 횺TSLS), (18.51)

where

  횺TSLS = (QXZQ-1
ZZQZX)-1QXZQ-1

ZZ HQ-1
ZZ QZX (QXZQ-1

ZZQZX)-1, (18.52)

where H is de ined in Equation (18.50).

Standard errors for TSLS. The ormula in Equation (18.52) is daunting. Neverthe-
less, it provides a way to estimate 횺TSLS by substituting sample moments or the 
population moments. The resulting variance estimator is

 횺n TSLS = (Qn XZQn -1
ZZQn ZX)-1Qn XZQn -1

ZZHnQn -1
ZZQn ZX (Qn XZQn -1

ZZQn ZX)-1, (18.53)

where Qn XZ = X Z>n, Qn ZZ = Z Z>n, Qn ZX = Z X>n, and

 Hn =
1
na

n

i= 1
ZiZi  un 2

i , where Un = Y - XBnTSLS  (18.54)
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so that Un  is the vector o  TSLS residuals and where un i is the ith element o  that 
vector (the TSLS residual or the ith observation).

The TSLS standard errors are the square roots o  the diagonal elements o  
횺n TSLS>n.

Properties of TSLS When the Errors Are Homoskedastic
I  the errors are homoskedastic, then the TSLS estimator is asymptotically e i-
cient among the class o  IV estimators in which the instruments are linear combi-
nations o  the rows o  Z. This result is the IV counterpart to the Gauss–Markov 
theorem and constitutes an important justi ication or using TSLS.

The TSLS distribution under homoskedasticity. I  the errors are homoskedastic, that is, 
i  E(u2

i 0Zi) = s2
u, then H = E(ZiZi u

2
i ) = E[E(ZiZi ui

2 Zi)] = E[ZiZiE(ui
2 Zi)] =  

QZZsu
2. In this case, the variance o  the asymptotic distribution o  the TSLS estimator 

in Equation (18.52) simpli ies to

 횺TSLS = (QXZQ-1
ZZQZX)-1s2

u   (homoskedasticity only). (18.55)

The homoskedasticity-only estimator o  the TSLS variance matrix is

횺TSLS = (Qn XZQn -1
ZZQn ZX)-1sn 2

u, where sn 2
u =

Un Un

n - k - r - 1
 (homoskedasticity only), (18.56)

and the homoskedasticity-only TSLS standard errors are the square root o  the 
diagonal elements o  횺TSLS>n.

The class of IV estimators that use linear combinations of Z. The class o  IV 
estimators that use linear combinations o  Z as instruments can be generated in 
two equivalent ways. Both start with the same moment equation: Under the 
assumption o  instrument exogeneity, the errors U = Y - XB are uncorrelated 
with the exogenous regressors; that is, at the true value o  B, Equation (18.46) 
implies that

 E[(Y - XB) Z] = 0. (18.57)

Equation (18.57) constitutes a system o  m + r + 1 equations involving the 
k + r + 1 unknown elements o  B. When m 7 k, these equations are redundant, 
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in the sense that all are satis ied at the true value o  B. When these population 
moments are replaced by their sample moments, the system o  equations  
(Y - Xb) Z = 0 can be solved or b when there is exact identi ication (m = k). 
This value o  b is the IV estimator o  B. However, when there is overidenti ication 
(m 7 k), the system o  equations typically cannot all be satis ied by the same 
value o  b because o  sampling variation—there are more equations than 
unknowns—and in general this system does not have a solution.

The irst approach to the problem o  estimating B when there is overidenti ica-
tion is to trade o  the desire to satis y each equation by minimizing a quadratic orm 
involving all the equations. Speci ically, let A be an (m + r + 1) * (m + r + 1) 
symmetric positive semide inite weight matrix and let BnIV

A  denote the estimator that 
minimizes

 minb(Y - Xb) ZAZ (Y - Xb). (18.58)

The solution to this minimization problem is ound by taking the derivative o  the 
objective unction with respect to b, setting the result equal to zero, and rearrang-
ing. Doing so yields Bn IV

A , the IV estimator based on the weight matrix A:

 BnIV
A = (X ZAZ X)-1X ZAZ Y . (18.59)

Comparison o  Equations (18.59) and (18.48) shows that TSLS is the IV estimator 
with A = (Z Z)-1. That is, TSLS is the solution o  the minimization problem in 
Equation (18.58) with A = (Z Z)-1.

The calculations leading to Equations (18.51) and (18.52), applied to BnIV
A , 

show that

2n(BnIV
A - B) ¡d N(0, 횺IV

A ), where
 횺IV

A = (QXZAQZX)-1QXZAHAQZX (QXZAQZX)-1. (18.60)

The second way to generate the class o  IV estimators that use linear combinations 
o  Z is to consider IV estimators in which the instruments are ZB, where B is an 
(m + r + 1) * (k + r + 1) matrix with ull row rank. Then the system o  (k + r + 1) 
equations, (Y − Xb) ZB = 0, can be solved uniquely or the (k + r + 1) unknown 
elements o  b. Solving these equations or b yields BnIV =  (B Z X)−1(B Z Y), and 
substitution o  B = AZ X into this expression yields Equation (18.59). Thus the two 
approaches to de ining IV estimators that are linear combinations o  the instruments 
yield the same amily o  IV estimators. It is conventional to work with the irst 
approach, in which the IV estimator solves the quadratic minimization problem in 
Equation (18.58), and that is the approach taken here.



 18.7  Instrumental Variables and Generalized Method of Moments Estimation 733

Asymptotic efficiency of TSLS under homoskedasticity. I  the errors are homo-
skedastic, then H = QZZs

2
u and the expression or 횺IV

A  in Equation (18.60) 
becomes

 횺IV
A = (QXZAQZX)-1QXZAQZZAQZX (QXZAQZX)-1s2

u. (18.61)

To show that TSLS is asymptotically e icient among the class o  estimators that 
are linear combinations o  Z when the errors are homoskedastic, we need to show 
that, under homoskedasticity,

 c 횺IV
A c Ú c 횺TSLSc (18.62)

or all positive semide inite matrices A and all (k + r + 1) * 1 vectors c, where 
횺TSLS = (QXZQ-1

ZZQZX)-1s2
u [Equation (18.55)]. The inequality (18.62), which is 

proven in Appendix 18.6, is the same e iciency criterion as is used in the multi-
variate Gauss–Markov theorem in Key Concept 18.3. Consequently, TSLS is the 
e icient IV estimator under homoskedasticity, among the class o  estimators in 
which the instruments are linear combinations o  Z.

The J-statistic under homoskedasticity. The J-statistic (Key Concept 12.6) tests 
the null hypothesis that all the overidenti ying restrictions hold against the alter-
native that some or all o  them do not hold.

The idea o  the J-statistic is that, i  the overidenti ying restrictions hold, ui will 
be uncorrelated with the instruments and thus a regression o  U on Z will have 
population regression coe icients that all equal zero. In practice, U is not 
observed, but it can be estimated by the TSLS residuals Un , so a regression o  Un  on 
Z should yield statistically insigni icant coe icients. Accordingly, the TSLS J-statistic 
is the homoskedasticity-only F-statistic testing the hypothesis that the coe icients on 
Z are all zero, in the regression o  Un  on Z, multiplied by (m + r + 1) so that the 
F-statistic is in its asymptotic chi-squared orm.

An explicit ormula or the J-statistic can be obtained using Equation (7.13) 
or the homoskedasticity-only F-statistic. The unrestricted regression is the regres-

sion o  Un  on the m + r + 1 regressors Z, and the restricted regression has no 
regressors. Thus, in the notation o  Equation (7.13), SSRunrestricted = Un MZUn  and 
SSRrestricted = Un Un , so SSRrestricted - SSRunrestricted = Un Un - Un MZUn = Un PZUn  
and the J-statistic is

 J =
Un ′PZUn

Un MZUn>(n - m - r - 1)
. (18.63)
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The method or computing the J-statistic described in Key Concept 12.6 
entails testing only the hypothesis that the coe icients on the excluded instru-
ments are zero. Although these two methods have di erent computational steps, 
they produce identical J-statistics (Exercise 18.14).

It is shown in Appendix 18.6 that, under the null hypothesis that E(uiZi) = 0,

 J ¡d
x2

m-k. (18.64)

Generalized Method of Moments Estimation  
in Linear Models
I  the errors are heteroskedastic, then the TSLS estimator is no longer e icient 
among the class o  IV estimators that use linear combinations o  Z as instruments. 
The e icient estimator in this case is known as the e icient generalized method o  
moments (GMM) estimator. In addition, i  the errors are heteroskedastic, then the 
J-statistic as de ined in Equation (18.63) no longer has a chi-squared distribution. 
However, an alternative ormulation o  the J-statistic, constructed using the e icient 
GMM estimator, does have a chi-squared distribution with m − k degrees o  reedom.

These results parallel the results or the estimation o  the usual regression 
model with exogenous regressors and heteroskedastic errors: I  the errors are 
heteroskedastic, then the OLS estimator is not e icient among estimators that are 
linear in Y (the Gauss–Markov conditions are not satis ied) and the homoskedasticity-
only F-statistic no longer has an F distribution, even in large samples. In the regres-
sion model with exogenous regressors and heteroskedasticity, the e icient estimator 
is weighted least squares; in the IV regression model with heteroskedasticity, the 
e icient estimator uses a di erent weighting matrix than TSLS, and the resulting 
estimator is the e icient GMM estimator.

GMM estimation. Generalized method of moments (GMM) estimation is a gen-
eral method or the estimation o  the parameters o  linear or nonlinear models, in 
which the parameters are chosen to provide the best it to multiple equations, 
each o  which sets a sample moment to zero. These equations, which in the con-
text o  GMM are called moment conditions, typically cannot all be satis ied 
simultaneously. The GMM estimator trades o  the desire to satis y each o  the 
equations by minimizing a quadratic objective unction.

In the linear IV regression model with exogenous variables Z, the class o  
GMM estimators consists o  all the estimators that are solutions to the quadratic 
minimization problem in Equation (18.58). Thus the class o  GMM estimators 
based on the ull set o  instruments Z with di erent-weight matrices A is the same as 
the class o  IV estimators in which the instruments are linear combinations o  Z. 
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In the linear IV regression model, GMM is just another name or the class o  
estimators we have been studying—that is, estimators that solve Equation (18.58).

The asymptotically efficient GMM estimator. Among the class o  GMM estimators, 
the efficient GMM estimator is the GMM estimator with the smallest asymptotic 
variance matrix [where the smallest variance matrix is de ined as in Equation 
(18.62)]. Thus the result in Equation (18.62) can be restated as saying that TSLS is 
the e icient GMM estimator in the linear model when the errors are homoskedastic.

To motivate the expression or the e icient GMM estimator when the errors 
are heteroskedastic, recall that when the errors are homoskedastic, H [the vari-
ance matrix o  Ziui; see Equation (18.50)] equals QZZs

2
u, and the asymptotically 

e icient weight matrix is obtained by setting A = (Z Z)-1, which yields the TSLS 
estimator. In large samples, using the weight matrix A = (Z Z)-1 is equivalent to 
using A = (QZZs

2
u)-1 = H -1. This interpretation o  the TSLS estimator suggests 

that, by analogy, the e icient IV estimator under heteroskedasticity can be 
obtained by setting A = H -1 and solving

 minb(Y - Xb) ZH - 1Z (Y - Xb). (18.65)

This analogy is correct: The solution to the minimization problem in Equation 
(18.65) is the e icient GMM estimator. Let BEff.GMM denote the solution to the 
minimization problem in Equation (18.65). By Equation (18.59), this estimator is

 BEff.GMM = (X ZH-1Z X)-1X ZH -1Z Y. (18.66)

The asymptotic distribution o  BEff.GMM is obtained by substituting A = H -1 into 
Equation (18.60) and simpli ying; thus

2n(BEff.GMM - B) ¡d N(0, 횺Eff.GMM),

 where 횺Eff.GMM = (QXZH -1QZX)-1. (18.67)

The result that BEff.GMM is the e icient GMM estimator is proven by showing that 
c 횺IV

A c Ú c 횺Eff.GMMc or all vectors c, where 횺IV
A  is given in Equation (18.60). 

The proo  o  this result is given in Appendix 18.6.

Feasible efficient GMM estimation. The GMM estimator de ined in Equation 
(18.66) is not a easible estimator because it depends on the unknown variance 
matrix H. However, a easible e icient GMM estimator can be computed by sub-
stituting a consistent estimator o  H into the minimization problem o  Equation 
(18.65) or, equivalently, by substituting a consistent estimator o  H into the or-
mula or BnEff.GMM in Equation (18.66).
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The e icient GMM estimator can be computed in two steps. In the irst step, 
estimate B using any consistent estimator. Use this estimator o  B to compute the 
residuals rom the equation o  interest, and then use these residuals to compute an 
estimator o  H. In the second step, use this estimator o  H to estimate the optimal 
weight matrix H−1 and to compute the e icient GMM estimator. To be concrete, in 
the linear IV regression model, it is natural to use the TSLS estimator in the irst 
step and to use the TSLS residuals to estimate H. I  TSLS is used in the irst step, 
then the easible e icient GMM estimator computed in the second step is

 BnEff.GMM = (X ZHn -1Z X )-1X ZHn -1Z Y, (18.68)

where Hn  is given in Equation (18.54).
Because Hn ¡

p
H,2n(BnEff.GMM - BEff.GMM) ¡

p
0 (Exercise 18.12), and

 2n (BnEff.GMM - B) ¡d N(0, 횺Eff.GMM), (18.69)

where 횺Eff.GMM = (QXZH -1QZX)-1 [Equation (18.67)]. That is, the easible two-
step estimator BnEff.GMM in Equation (18.68) is, asymptotically, the e icient GMM 
estimator.

The heteroskedasticity-robust J-statistic. The heteroskedasticity-robust  
J-statistic, also known as the GMM J-statistic, is the counterpart o  the TSLS-
based J-statistic, computed using the e icient GMM estimator and weight unction. 
That is, the GMM J-statistic is given by

 JGMM = (Z Un
GMM

) Hn -1(Z Un
GMM

) >  n, (18.70)

where Un GMM = Y - XBnEff.GMM are the residuals rom the equation o  interest, 
estimated by ( easible) e icient GMM, and Hn  -1 is the weight matrix used to com-
pute BnEff.GMM.

Under the null hypothesis E(Ziui) = 0, JGMM ¡d
x2

m-k (see Appendix 18.6).

GMM with time series data. The results in this section were derived under the IV 
regression assumptions or cross–sectional data. In many applications, however, 
these results extend to time series applications o  IV regression and GMM. 
Although a ormal mathematical treatment o  GMM with time series data is 
beyond the scope o  this book ( or such a treatment, see Hayashi, 2000, Chapter 6), 
we nevertheless will summarize the key ideas o  GMM estimation with time series 
data. This summary assumes amiliarity with the material in Chapters 14 and 15. 
For this discussion, it is assumed that the variables are stationary.
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It is use ul to distinguish between two types o  applications: applications in 
which the error term ut is serially correlated and applications in which ut is serially 
uncorrelated. I  the error term ut is serially correlated, then the asymptotic distri-
bution o  the GMM estimator continues to be normally distributed, but the or-
mula or H in Equation (18.50) is no longer correct. Instead, the correct expression 
or H depends on the autocovariances o  Ztut and is analogous to the ormula 

given in Equation (15.14) or the variance o  the OLS estimator when the error 
term is serially correlated. The e icient GMM estimator is still constructed using 
a consistent estimator o  H; however, that consistent estimator must be computed 
using the HAC methods discussed in Chapter 15.

I  the error term ut is not serially correlated, then HAC estimation o  H is 
unnecessary and the ormulas presented in this section all extend to time series 
GMM applications. In modern applications to inance and macroeconometrics, it 
is common to encounter models in which the error term represents an unexpected 
or un orecastable disturbance, in which case the model implies that ut is serially 
uncorrelated. For example, consider a model with a single included endogenous 
variable and no included exogenous variables so that the equation o  interest is 
Yt = b0 + b1Xt + ut. Suppose that an economic theory implies that ut is unpre-
dictable given past in ormation. Then the theory implies the moment condition

 E(ut 0Yt - 1, Xt - 1, Zt - 1, Yt - 2, Xt - 2, Zt - 2, c) = 0, (18.71)

where Zt−1 is the lagged value o  some other variable. The moment condition in 
Equation (18.71) implies that all the lagged variables Yt - 1, Xt - 1, Zt - 1, Yt - 2, Xt - 2,  
Zt - 2, care candidates or being valid instruments (they satis y the exogeneity 
condition). Moreover, because ut - 1 = Yt - 1 - b0 - b1Xt - 1, the moment condi-
tion in Equation (18.71) is equivalent to E(ut 0 ut - 1, Xt - 1, Zt - 1, ut - 2, Xt - 2,
Zt - 2, c) = 0. Because ut is serially uncorrelated, HAC estimation o  H is 
unnecessary. The theory o  GMM presented in this section, including e icient 
GMM estimation and the GMM J-statistic, there ore applies directly to time 
series applications with moment conditions o  the orm in Equation (18.71), under 
the hypothesis that the moment condition in Equation (18.71) is, in act, correct.

  Summary

 1. The linear multiple regression model in matrix orm is Y = XB + U , where 
Y is the n * 1 vector o  observations on the dependent variable, X is the 
n * (k + 1) matrix o  n observations on the k + 1 regressors (including a 
constant), B is the k + 1 vector o  unknown parameters, and U is the n * 1 
vector o  error terms.
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 2. The OLS estimator is Bn = (X X) -1X Y . Under the irst our least squares 
assumptions in Key Concept 18.1, Bn  is consistent and asymptotically nor-
mally distributed. I  in addition the errors are homoskedastic, then the con-
ditional variance o  Bn  is var(Bn   X) = s2

u(X X)-1.
 3. General linear restrictions on B can be written as the q equations RB = r, 

and this ormulation can be used to test joint hypotheses involving multiple 
coe icients or to construct con idence sets or elements o  B.

 4. When the regression errors are i.i.d. and normally distributed, condi-
tional on X, B has an exact normal distribution and the homoskedasticity- 
only t- and F-statistics have exact tn - k - 1and Fq, n - k - 1  distributions, 
respectively.

 5. The Gauss–Markov theorem says that, i  the errors are homoskedastic and 
conditionally uncorrelated across observations and i  E(ui|X) = 0, the OLS 
estimator is e icient among linear conditionally unbiased estimators (that 
is, OLS is BLUE).

 6. I  the error covariance matrix 훀 is not proportional to the identity matrix, 
and i  훀 is known or can be estimated, then the GLS estimator is asymp-
totically more e icient than OLS. However, GLS requires that, in general, 
ui be uncorrelated with all observations on the regressors, not just with Xi, 
as is required by OLS, an assumption that must be evaluated care ully in 
applications.

 7. The TSLS estimator is a member o  the class o  GMM estimators o  
the linear model. In GMM, the coe icients are estimated by mak-
ing the sample covariance between the regression error and the 
exogenous variables as small as possible—speci ically, by solving 
 min b3(Y - Xb) Z4A3Z (Y - Xb)4 , where A is a weight matrix. The 
asymptotically e icient GMM estimator sets A = 3E(ZiZi

′u2
i )4-1. When 

the errors are homoskedastic, the asymptotically e icient GMM estima-
tor in the linear IV regression model is TSLS.

Key Terms

Gauss–Markov conditions or 
multiple regression (720)  

Gauss–Markov theorem or multiple 
regression (721)  

generalized least squares  
(GLS) (723)  

in easible GLS (726)  
easible GLS (726)  

generalized method o  moments 
(GMM) (734)  

e icient GMM (735)  



 Review the Concepts 739

heteroskedasticity-robust  
J-statistic (736) 

GMM J-statistic (736)  

mean vector (750)  
covariance matrix (750)  

Review the Concepts

 18.1 A researcher studying the relationship between earnings and gen-
der or a group o  workers speci ies the regression model Yi = 
b0 + X1ib1 + X2ib2 + ui, where X1i is a binary variable that equals 1 i  
the ith person is a emale and X2i is a binary variable that equals 1 i  the ith 
person is a male. Write the model in the matrix orm o  Equation (18.2) 
or a hypothetical set o  n = 5 observations. Show that the columns o  X 

are linearly dependent so that X does not have ull rank. Explain how you 
would respeci iy the model to eliminate the per ect multicollinearity.

 18.2 You are analyzing a linear regression model with 500 observations and one 
regressor. Explain how you would construct a con idence interval or b1 i :

 a. Assumptions #1 through #4 in Key Concept 18.1 are true, but you 
think Assumption #5 or #6 might not be true.

 b. Assumptions #1 through #5 are true, but you think Assumption #6 
might not be true. (Give two ways to construct the con idence interval.)

 c. Assumptions #1 through #6 are true.

 18.3 Suppose that Assumptions #1 through #5 in Key Concept 18.1 are true 
but that Assumption #6 is not. Does the result in Equation (18.31) hold? 
Explain.

  18.4 Can you compute the BLUE estimator o  B i  Equation (18.41) holds and 
you do not know 훀? What i  you know 훀?

 18.5 Construct an example o  a regression model that satis ies the assumption 
E(ui   Xi) = 0 but or which E(U   X ) ≠ 0n.
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MyEconLab   If your exam were tomorrow, would you be ready? For each chapter,  
 MyeconL b Practice Tests and Study Plan help you prepare for your exams. 
You can also find the Exercises and all Review the Concepts Questions available now in MyeconL b. 
To see how it works, turn to the MyeconL b spread on the inside front cover of this book and then 
go to www.my conl b.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www. rson ig r d.com/stock_w tson.
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Exercises

 18.1 Consider the population regression o  test scores against income and the 
square o  income in Equation (8.1).

 a. Write the regression in Equation (8.1) in the matrix orm o  Equation 
(18.5). De ine Y, X, U, and B.

 b. Explain how to test the null hypothesis that the relationship between 
test scores and income is linear against the alternative that it is qua-
dratic. Write the null hypothesis in the orm o  Equation (18.20). 
What are R, r, and q?

 18.2 Suppose that a sample o  n = 20 households has the sample means and 
sample covariances below or a dependent variable and two regressors:

 a. Calculate the OLS estimates o  b0, b1, and b2. Calculate s2
un. Calculate 

the R2 o  the regression.

 b. Suppose that all six assumptions in Key Concept 18.1 hold. Test the 
hypothesis that b1 = 0 at the 5% signi icance level.

 18.3 Let W be an m * 1 vector with covariance matrix 횺W , where 횺W  is inite 
and positive de inite. Let c be a nonrandom m * 1 vector and let Q = c W.

 a. Show that var(Q) = c 횺W  c.

 b. Suppose that c ≠ 0m. Show that 0 < var(Q) 6 ∞ .

 18.4 Consider the regression model Yi = b0 + b1Xi + ui rom Chapter 4 and 
assume that the least squares assumptions in Key Concept 4.3 hold.

 a. Write the model in the matrix orm given in Equations (18.2) and (18.4).

 b. Show that Assumptions #1 through #4 in Key Concept 18.1 are satis ied.

 c. Use the general ormula or Bn  in Equation (18.11) to derive the 
expressions or bn0 and bn1 given in Key Concept 4.2.

 d. Show that the (1, 1) element o  횺Bn in Equation (18.13) is equal to the 
expression or s2

bn 0
 given in Key Concept 4.4.

    

S m l  M s

S m l  C v c s  

Y X1 X2

Y 6.39 0.26 0.22 0.32

X1 7.24   0.80 0.28

X2 4.00     2.40
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 18.5 Let PX and MX be as de ined in Equations (18.24) and (18.25).

 a. Prove that PXMX = 0n * n and that PX and MX are idempotent.

 b. Derive Equations (18.27) and (18.28).

 c. Show that rank(PX) = k + 1 and rank(MX) = n − k − 1. [Hint: 
First solve Exercise 18.10 and then use the act that trace(AB) =
trace(BA) or con ormable matrices A and B.]

 18.6 Consider the regression model in matrix orm, Y = XB + WG + U , 
where X is an n * k1 matrix o  regressors and W is an n * k2 matrix o  
regressors. Then, as shown in Exercise 18.17, the OLS estimator Bn  can 
be expressed

Bn = (X MWX )-1(X MWY ).

  Now let bnBV
1  be the “binary variable” ixed e ects estimator computed 

by estimating Equation (10.11) by OLS and let bnDM
1  be the “de-meaning” 

ixed e ects estimator computed by estimating Equation (10.14) by OLS, 
in which the entity-speci ic sample means have been subtracted rom X 
and Y. Use the expression or Bn  given above to prove that bnBV

1 = bnDM
1 . 

[Hint: Write Equation (10.11) using a ull set o  ixed e ects, D1i, D2i, . . . , 
Dni and no constant term. Include all o  the ixed e ects in W. Write out 
the matrix MWX.]

 18.7 Consider the regression model Yi = b1Xi + b2Wi + ui, where or simplicity 
the intercept is omitted and all variables are assumed to have a mean o  zero. 
Suppose that Xi is distributed independently o  (Wi, ui) but Wi and ui might be 
correlated and let bn1 and bn2 be the OLS estimators or this model. Show that

 a. Whether or not Wi and ui are correlated, bn1 ¡
p
b1.

 b. I  Wi and ui are correlated, then bn2 is inconsistent.

 c. Let bnr1 be the OLS estimator rom the regression o  Y on X (the 
restricted regression that excludes W). Will bn1 have a smaller asymp-
totic variance than bnr1, allowing or the possibility that Wi and ui are 
correlated? Explain.

 18.8 Consider the regression model Yi = b0 + b1Xi + ui, where u1 = u1 and 
ui = 0.5ui-1 + ui  or i = 2, 3, . . . , n. Suppose that ui are i.i.d. with mean 0 
and variance 1 and are distributed independently o  Xj or all i and j.

 a. Derive an expression or E(UU′) = 훀.
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 b. Explain how to estimate the model by GLS without explicitly invert-
ing the matrix 훀. (Hint: Trans orm the model so that the regression 
errors are u1, u2, c, un.)

 18.9 This exercise shows that the OLS estimator o  a subset o  the regres-
sion coe icients is consistent under the conditional mean independence 
assumption stated in Appendix 7.2. Consider the multiple regression 
model in matrix orm Y = XB + WG + U , where X and W are, respec-
tively, n * k1 and n * k2 matrices o  regressors. Let Xi  and Wi  denote the  
ith rows o  X and W [as in Equation (18.3)]. Assume that (i) E(ui|Xi, Wi) = 

W′i D, where D is a k2 * 1 vector o  unknown parameters; (ii) (Xi, Wi, Yi)  
are i.i.d.; (iii) (X i, Wi, ui) have our inite, nonzero moments;  
and (iv) there is no per ect multicollinearity. These are Assumptions 
#1 through #4 o  Key Concept 18.1, with the conditional mean inde-
pendence assumption (i) replacing the usual conditional mean zero 
assumption.

 a. Use the expression or Bn  given in Exercise 18.6 to write Bn - B = 
(n-1X MWX )-1(n-1X MWU ).

 b. Show that n-1X MWX ¡p
횺XX - 횺XW횺-1

WW횺WX, where 횺XX =  
E(XiXi  ), 횺XW = E(XiWi ), and so orth. [The matrix An ¡

p
A i  

An,ij ¡
p

Aij or all i, j, where An,ij and Aij are the (i, j) elements o  
An and A.]

 c. Show that assumptions (i) and (ii) imply that E(U|X, W) = WD.

 d. Use (c) and the law o  iterated expectations to show that 

n-1X MWU ¡p
0k1 * 1.

 e. Use (a) through (d) to conclude that, under conditions (i) through (iv), 
Bn ¡p

B.

 18.10 Let C be a symmetric idempotent matrix.

 a. Show that the eigenvalues o  C are either 0 or 1. (Hint: Note that Cq = gq 
implies 0 = Cq - gq = CCq - gq = gCq - gq = g2q - gq and 
solve or G.)

 b. Show that trace(C) = rank(C).

 c. Let d be an n * 1 vector. Show that d Cd Ú 0.

 18.11 Suppose that C is an n * n symmetric idempotent matrix with rank r and 
let V ∼ N(0n, In).
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 a. Show that C = A A′, where A is n * r with A′A = Ir. (Hint: C is 
positive semide inite and can be written as Q횲Q , as explained in 
Appendix 18.1.)

 b. Show that A V ∼ N10r, Ir2.
 c. Show that V CV ∼ x2

r.

 18.12 a.  Show that B Eff.GMM is the e icient GMM estimator—that is, that 
B Eff.GMM in Equation (18.66) is the solution to Equation (18.65).

 b. Show that 2n1BnEff.GMM - B Eff.GMM2 ¡p
0.

 c. Show that JGMM ¡d
x2

m - k. 

 18.13 Consider the problem o  minimizing the sum o  squared residuals, subject 
to the constraint that Rb = r, where R is q * (k + 1) with rank q. Let B  
be the value o  b that solves the constrained minimization problem.

 a. Show that the Lagrangian or the minimization problem is  
L(b, G) = (Y − Xb)  (Y − Xb) + G (Rb − r), where G is a q * 1  
vector o  Lagrange multipliers.

 b. Show that B = Bn - (X X)-1R [R(X X)-1R ]-1(RBn - r).

 c. Show that (Y - XB) (Y - XB) - (Y - XBn)(Y - XBn) =  
(RBn - r) [R(X X)-1R ]-1(RBn - r).

 d. Show that F  in Equation (18.36) is equivalent to the homoskedasticity- 
only F-statistic in Equation (7.13). 

 18.14 Consider the regression model Y = XB + U. Partition X as [X1 X2] and B 
as [B1 B2] , where X1 has k1 columns and X2 has k2 columns. Suppose that 
X2Y = 0k2 * 1. Let R = [Ik1

 0k1 * k2
].

 a. Show that Bn (X X)Bn = (RBn) [R(X X)-1R]-1(RBn).

 b. Consider the regression described in Equation (12.17). Let W =
[1 W1 W2 c Wr], where 1 is an n * 1 vector o  ones, W1 is the 
n * 1 vector with ith element W1i, and so orth. Let UnTSLS denote the 
vector o  two-stage least squares residuals.

 i. Show that W UnTSLS = 0.

 ii. Show that the method or computing the J-statistic described in Key 
Concept 12.6 (using a homoskedasticity-only F-statistic) and the 
ormula in Equation (18.63) produce the same value or the J-statistic. 

[Hint: Use the results in (a), (b, i), and Exercise 18.13.]
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 18.15 (Consistency o  clustered standard errors.) Consider the panel data model Yit = 
bXit + ai + uit, where all variables are scalars. Assume that Assumptions #1, #2,  
and #4 in Key Concept 10.3 hold and strengthen Assumption #3 so that Xit and 
uit have eight nonzero inite moments. Let M = IT -T -1II , where I is a T * 1 
vector o  ones. Also let Yi = (Yi1 Yi2 g YiT) , Xi = (Xi1 Xi2 g XiT) , 
ui = (ui1 ui2 g uiT) , Y i = MYi, Xi = MXi, and ui = Mui. For the 
asymptotic calculations in this problem, suppose that T is ixed and n ¡ ∞ .

 a. Show that the ixed e ects estimator o  b rom Section 10.3 can be 

written as bn = (gn
i=1Xi Xi)-1gn

i=1Xi Yi.

 b. Show that bn - b = (gn
i=1Xi Xi)

-1gn
i=1Xi ui. (Hint: M is idempotent.)

 c. Let QX = T -1E(Xi Xi) and QnX =
1

nTg
n
i=1g

T
t=1X2

it. Show that QnX ¡p
QX.

 d. Let hi = Xiui  >  2T and s2
h = var(hi). Show that 1

ngn
i=1hi   ¡

d N(0, s2
h).

 e. Use your answers to (b) through (d) to prove Equation (10.25); that 
is, show that 2nT(bn - b) ¡d N(0, s2

h>Q
2  
X ).

 f. Let s2
h,clustered be the in easible clustered variance estimator, 

computed using the true errors instead o  the residuals so that  
s2
h,clustered =

1
nTg

n
i=1(Xi

 ui)
2. Show that s2

h,clustered ¡
p
s2
h.

 g. Let un1 = Y i - bnXi and sn2
h, clustered =

n
n - 1 1

nTg
n
i=1(Xi

= uni)2 [this is  
Equation (10.27) in matrix orm]. Show that sn2

h, clustered ¡
p
s2
h.  

[Hint: Use an argument like that used in Equation (17.16) to show 
that sn 2

h, clustered - s2
h, clustered ¡

p
0 and then use your answer  

to ( ).]

 18.16 This exercise takes up the problem o  missing data discussed in Section 
9.2. Consider the regression model Yi = Xib + ui, i = 1, c, n, where 
all variables are scalars and the constant term/intercept is omitted or 
convenience.

 a. Suppose that the least squares assumptions in Key Concept 4.3 are 
satis ied. Show that the least squares estimator o  b is unbiased and 
consistent.

 b. Now suppose that some o  the observations are missing. Let Ii denote 
a binary random variable that indicates the nonmissing observations; 
that is, Ii = 1 i  observation i is not missing and Ii = 0 i  observation 
i is missing. Assume that {Ii, Xi, ui} are i.i.d.
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 i. Show that the OLS estimator can be written as

bn = aa
n

i= 1
IiXiXi b

-1

aa
n

i= 1
IiXiYib = b + aa

n

i= 1
IiXiXi b

-1

aa
n

i= 1
IiXiuib .

 ii. Suppose that data are missing, “completely at random,” in the 
sense that Pr(Ii = 1 0Xi,ui) = p, where p is a constant. Show that bn 
is unbiased and consistent.

 iii. Suppose that the probability that the ith observation is missing 
depends o  Xi, but not on ui; that is, Pr(Ii = 1 0Xi, ui) = p(Xi). 
Show that bn is unbiased and consistent.

 iv. Suppose that the probability that the ith observation is missing 
depends on both Xi and ui; that is, Pr(Ii = 1 0Xi, ui) = p(Xi, ui). Is 
bn unbiased? Is bn consistent? Explain.

 c. Suppose that b = 1 and that Xi and ui are mutually independent 
standard normal random variables [so that both Xi and ui are dis-
tributed N(0, 1)]. Suppose that Ii = 1 when Yi Ú 0, but Ii = 0 when 
Yi 6 0. Is bn unbiased? Is bn consistent? Explain. 

 18.17 Consider the regression model in matrix orm Y = XB + WG + U , 
where X and W are matrices o  regressors and B and G are vectors o  
unknown regression coe icients. Let X = MWX  and Y = MWY , where 
MW = I - W(W W)-1W .

 a. Show that the OLS estimators o  B and G can be written as

Bn

Gn
=

X X X W
W X W W

 -1 X Y
W Y

 b. Show that

X X X W
W X W W

-1

= c (X MWX)-1 - (X MWX)-1X W(W W)-1

-(W W)-1W X(X MWX)-1 (W W)-1 + (W W)-1W X(X MWX)-1X W(W W)-1 d .

  (Hint: Show that the product o  the two matrices is equal to the iden-
tity matrix.)
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 c. Show that Bn = (X MWX)-1X MWY .

 d. The Frisch–Waugh theorem (Appendix 6.2) says that Bn =  
(X X)-1X Y. Use the result in (c) to prove the Frisch–Waugh  
theorem.

 a p p e n d i x

 18.1 Summary of Matrix Algebra

This appendix summarizes vectors, matrices, and the elements o  matrix algebra used in 

Chapter 1. The purpose o  this appendix is to review some concepts and de initions rom 

a course in linear algebra, not to replace such a course.

Definitions of Vectors and Matrices
A vector is a collection o  n numbers or elements, collected either in a column (a column 

vector) or in a row (a row vector). The n-dimensional column vector b and the n-dimensional 

row vector c are

b =  ≥

b1

b2

f
bn

¥  and c = 3c1 c2 g cn4,

where b1 is the irst element o  b and in general bi is the ith element o  b.

Throughout, a bold ace symbol denotes a vector or matrix.

A matrix is a collection, or an array, o  numbers or elements in which the elements are 

laid out in columns and rows. The dimension o  a matrix is n * m, where n is the number 

o  rows and m is the number o  columns. The n * m matrix A is

A = ≥

a11 a12 g a1m

a21 a22 g a2m

f f f f
an1 an2 g anm

¥ ,

where aij is the (i, j) element o  A, that is, aij is the element that appears in the ith row and jth 

column. An n * m matrix consists o  n row vectors or, alternatively, o  m column vectors.

To distinguish one-dimensional numbers rom vectors and matrices, a one-dimensional 

number is called a scalar.
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Types of Matrices
Square, symmetric, and diagonal matrices.  A matrix is said to be square i  the number o  

rows equals the number o  columns. A square matrix is said to be symmetric i  its (i, j) ele-

ment equals its (j, i) element. A diagonal matrix is a square matrix in which all the o - 

diagonal elements equal zero; that is, i  the square matrix A is diagonal, then aij = 0 or i ≠ j.

Special matrices.  An important matrix is the identity matrix, In, which is an n * n diago-

nal matrix with ones on the diagonal. The null matrix, 0n *m, is the n * m matrix with all 

elements equal to zero.

The transpose.  The transpose o  a matrix switches the rows and the columns. That is, the 

transpose o  a matrix turns the n * m matrix A into the m * n matrix, which is denoted 

by A , where the (i, j) element o  A becomes the (j, i) element o  A ; said di erently, the 

transpose o  the matrix A turns the rows o  A into the columns o  A . I  aij is the (i, j) 

element o  A, then A  (the transpose o  A) is

A = ≥

a11 a21 g an1

a12 a22 g an2

f f f f
a1m a2m g anm

¥ .

The transpose o  a vector is a special case o  the transpose o  a matrix. Thus the transpose 

o  a vector turns a column vector into a row vector; that is, i  b is an n * 1 column vector, 

then its transpose is the 1 * n row vector

b =  3b1 b2 g bn4.

The transpose o  a row vector is a column vector.

Elements of Matrix Algebra: Addition and Multiplication
Matrix addition.  Two matrices A and B that have the same dimensions ( or example, that 

are both n * m) can be added together. The sum o  two matrices is the sum o  their ele-

ments; that is, i  C = A + B, then cij = aij + bij. A special case o  matrix addition is vec-

tor addition: I  a and b are both n * 1 column vectors, then their sum c = a + b is the 

element-wise sum; that is, ci = ai + bi.

Vector and matrix multiplication.  Let a and b be two n * 1 column vectors. Then the 

product o  the transpose o  a (which is itsel  a row vector) with b is a b = gn
i= 1aibi. Apply-

ing this de inition with b = a yields a a = gn
i= 1 a

2
i .

Similarly, the matrices A and B can be multiplied together i  they are con ormable—

that is, i  the number o  columns o  A equals the number o  rows o  B. Speci ically, suppose 
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that A has dimension n * m and B has dimension m * r. Then the product o  A and B is 

an n * r matrix, C; that is, C = AB, where the (i, j) element o  C is cij = g
m
k= 1aikbkj. Said 

di erently, the (i, j) element o  AB is the product o  multiplying the row vector that is the 

ith row o  A with the column vector that is the j th column o  B.

The product o  a scalar d with the matrix A has the (i, j) element daij; that is, each 

element o  A is multiplied by the scalar d.

Some useful properties of matrix addition and multiplication.  Let A and B be matrices. 

Then:

 a. A + B = B + A;

 b. (A + B) + C = A + (B + C);

 c. (A + B) = A + B ;

 d. If A is n * m, then AIm = A and InA = A;

 e. A(BC) = (AB)C;

 f. (A + B)C = AC + BC; and

 g. (AB) = B A .

In general, matrix multiplication does not commute; that is, in general AB ≠ BA, 

although there are some special cases in which matrix multiplication commutes; or exam-

ple, i  A and B are both n * n diagonal matrices, then AB = BA.

Matrix Inverse, Matrix Square Roots, and Related Topics
The matrix inverse. Let A be a square matrix. Assuming that it exists, the inverse o  the 

matrix A is de ined as the matrix or which A−1A = In. I  in act the inverse matrix A−1 

exists, then A is said to be invertible or nonsingular. I  both A and B are invertible, then 

(AB)−1 = B−1A−1.

Positive definite and positive semidefinite matrices. Let V be an n * n square matrix. 

Then V is positive definite i  c Vc 7 0 or all nonzero n * 1 vectors c. Similarly, V is 

positive semidefinite i  c Vc Ú 0 or all nonzero n * 1 vectors c. I  V is positive de inite, 

then it is invertible.

Linear independence.  The n * 1 vectors a1 and a2 are linearly independent i  there do not exist 

nonzero scalars c1 and c2 such that c1a1 + c2a2 = 0n * 1. More generally, the set o  k vectors 

a1, a2, c, ak are linearly independent i  there do not exist nonzero scalars c1, c2, c, ck such 

that c1a1 + c2a2 +g+  ckak = 0n * 1.
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The rank of a matrix.  The rank o  the n * m matrix A is the number o  linearly independ-

ent columns o  A. The rank o  A is denoted rank(A). I  the rank o  A equals the number 

o  columns o  A, then A is said to have ull column rank. I  the n * m matrix A has ull 

column rank, then there does not exist a nonzero m * 1 vector c such that Ac = 0n * 1. I  

A is n * n with rank(A) = n, then A is nonsingular. I  the n * m matrix A has ull column 

rank, then A A is nonsingular.

The matrix square root.  Let V be an n * n square symmetric positive de inite matrix. The 

matrix square root o  V is de ined to be an n * n matrix F such that F F = V . The matrix 

square root o  a positive de inite matrix will always exist, but it is not unique. The matrix 

square root has the property that FV -1F = In. In addition, the matrix square root o  a 

positive de inite matrix is invertible, so F -1VF -1 = In.

Eigenvalues and eigenvectors.  Let A be an n * n matrix. I  the n * 1 vector q and the 

scalar l satis y Aq = lq, where q q = 1, then l is an eigenvalue o  A, and q is the eigen-

vector o  A associated with that eigenvalue. An n * n matrix has n eigenvalues, which 

need not take on distinct values, and n eigenvectors.

I  V is an n * n symmetric positive de inite matrix, then all the eigenvalues o  V are 

positive real numbers, and all the eigenvectors o  V are real. Also, V can be written in 

terms o  its eigenvalues and eigenvectors as V = Q횲Q , where 횲 is a diagonal n * n 

matrix with diagonal elements that equal the eigenvalues o  V, and Q is an n * n matrix 

consisting o  the eigenvectors o  V, arranged so that the ith column o  Q is the eigenvector 

corresponding to the eigenvalue that is the ith diagonal element o  횲. The eigenvectors are 

orthonormal, so Q Q = In.

Idempotent matrices.  A matrix C is idempotent i  C is square and CC = C. I  C is an 

n * n idempotent matrix that is also symmetric, then C is positive semide inite and C 

has r eigenvalues that equal 1 and n − r eigenvalues that equal 0, where r = rank(C) 

(Exercise 18.10).

a p p e n d i x

 18.2 Multivariate Distributions

This appendix collects various de initions and acts about distributions o  vectors o  ran-

dom variables. We start by de ining the mean and covariance matrix o  the n-dimensional 

random variable V. Next we present the multivariate normal distribution. Finally, we sum-

marize some acts about the distributions o  linear and quadratic unctions o  jointly nor-

mally distributed random variables.
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The Mean Vector and Covariance Matrix
The irst and second moments o  an m * 1 vector o  random variables, V =
(V1 V2  g Vm) , are summarized by its mean vector and covariance matrix.

Because V is a vector, the vector o  its means—that is, its mean vector—is E(V) = MV. 

The ith element o  the mean vector is the mean o  the ith element o  V.

The covariance matrix o  V is the matrix consisting o  the variance var(Vi), i = 1, . . . , m, 

along the diagonal and the (i, j) o -diagonal elements cov(Vi, Vj). In matrix orm, the 

covariance matrix 횺V  is

횺V = E[(V - MV)(V - MV) ] =
var(V1)
f

cov(Vm, V1)

g
f

g

cov(V1, Vm)
f

var(Vm)

. (18.72)

The Multivariate Normal Distribution
The m * 1 vector random variable V has a multivariate normal distribution with mean 

vector MV and covariance matrix 횺V  i  it has the joint probability density unction

 f(V ) =
1

2(2p)mdet(횺V)
 exp c -

1
2

 (V - MV) 횺-1
V (V - MV) d , (18.73)

where det(횺V) is the determinant o  the matrix 횺V . The multivariate normal distribution 

is denoted N(MV, 횺V).

An important act about the multivariate normal distribution is that i  two jointly 

normally distributed random variables are uncorrelated (equivalently, have a block-diagonal 

covariance matrix), then they are independently distributed. That is, let V1 and V2 be 

jointly normally distributed random variables with respective dimensions m1 * 1 and 

m2 * 1. Then i  cov(V1, V2) = E[(V1 - MV1
)(V2 - MV2

) ] = 0m1 *m2
, V1 and V2 are 

independent.

I  {Vi} are i.i.d. N(0, s2
v), then 횺V = s2

v  Im, and the multivariate normal distribution 

simpli ies to the product o  m univariate normal densities.

Distributions of Linear Combinations and Quadratic 
Forms of Normal Random Variables
Linear combinations o  multivariate normal random variables are themselves normally 

distributed, and certain quadratic orms o  multivariate normal random variables have a 

chi-squared distribution. Let V be an m * 1 random variable distributed N(MV, 횺V), let A 
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and B be nonrandom a * m and b * m matrices, and let d be a nonrandom a * 1 vector. 

Then

 d + AV is distributed N(d + AMV, A횺VA ); (18.74)

 cov (AV, BV ) = A횺VB ; (18.75)

 i  A횺VB = 0a * b, then AV and BV are independently distributed; and (18.76)

 (V - MV) 횺-1
V (V - MV) is distributed x2

m. (18.77)

Let U be an m-dimensional multivariate standard normal random variable with distribu-

tion N(0, Im). I  C is symmetric and idempotent, then

 U CU has a x2
r  distribution, where r =  rank(C). (18.78)

Equation (18.78) is proven as Exercise 18.11.

a p p e n d i x

 18.3 Derivation of the Asymptotic Distribution of β n

This appendix provides the derivation o  the asymptotic normal distribution o  2n(Bn - B) 

given in Equation (18.12). An implication o  this result is that Bn ¡p
B.

First consider the “denominator” matrix X X  >  n = 1
ngn

i=1XiX i  in Equation (18.15). The  

(j, l) element o  this matrix is 1
ngn

i=1 XjiXli. By the second assumption in Key Concept 18.1, 

Xi is i.i.d., so XjiXli is i.i.d. By the third assumption in Key Concept 18.1, each element o  

Xi has our moments, so, by the Cauchy–Schwarz inequality (Appendix 17.2), XjiXli has two 

moments. Because XjiXli is i.i.d. with two moments, 1
ngn

i=1 XjiXli obeys the law o  large 

numbers, so 1
ngn

i= 1 Xji Xli ¡
p

E(Xji Xli). This is true or all the elements o  X X  >  n, so 

X X  >  n ¡p
E(XiXi) = QX.

Next consider the “numerator” matrix in Equation (18.15), X U  >  2n = 21
ngn

i= 1Vi, 

where Vi = Xiui. By the irst assumption in Key Concept 18.1 and the law o  iterated 

expectations, E(Vi) = E[XiE(ui|Xi)] = 0k+1. By the second least squares assumption, 

Vi is i.i.d. Let c be a inite k + 1 dimensional vector. By the Cauchy–Schwarz inequality, 

E[(c Vi)
2] = E[(c Xiui)

2] = E[(c Xi)
2(ui)

2] … 2E[(c Xi)
4]E(u4

i ), which is inite by the 

third least squares assumption. This is true or every such vector c, so E(ViV i) = 횺V  is 

inite and, we assume, positive de inite. Thus the multivariate central limit theorem o  Key 

Concept 18.2 applies to 21
ngn

i= 1Vi =
1

2n
X U; that is,

 
1

2n
 X U ¡d

N(0k + 1, 횺V). (18.79)
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The result in Equation (18.12) ollows rom Equations (18.15) and (18.79), the consist-

ency o  X X  >  n, the ourth least squares assumption (which ensures that (X X)-1 exists), 

and Slutsky’s theorem.

a p p e n d i x

 18.4 Derivations of Exact Distributions of OLS Test 
Statistics with Normal Errors

This appendix presents the proo s o  the distributions under the null hypothesis o  the 

homoskedasticity-only t-statistic in Equation (18.35) and the homoskedasticity-only F-statistic 

in Equation (18.37), assuming that all six assumptions in Key Concept 18.1 hold.

Proof of Equation (18.35)
I  (i) Z has a standard normal distribution, (ii) W has a x2

m distribution, and (iii) Z and W 

are independently distributed, then the random variable Z  >  2W  >  m has the t-distribution 

with m degrees o  reedom (Appendix 17.1). To put t  in this orm, notice that 

횺n bn = (s2
un  >  s2

u)횺Bn
 

 X. Then rewrite Equation (18.34) as

 t =
(bnj - bj,0)>2(횺Bn 0X)jj

2W>(n - k - 1)
, (18.80)

where W = (n – k – 1)(sun
2 >su

2),  and let Z = (bnj - bj,0)>2(횺Bn 0X)jj and m = n − k − 1. 

With these de initions, t = Z>2W>m. Thus, to prove the result in Equation (18.35), we 

must show (i) through (iii) or these de initions o  Z, W, and m.

 i.  An implication o  Equation (18.30) is that, under the null hypothesis, Z = 

(bnj - bj,0)>2(횺Bn 0X)jj has an exact standard normal distribution, which shows (i).

  ii. From Equation (18.31), W is distributed as x2
n - k - 1, which shows (ii).

iii. To show (iii), it must be shown that bnj and sun
2  are independently distributed.

From Equations (18.14) and (18.29), Bn - B = (X X)-1X U  and sun
2 = (MXU) (MXU)>

(n - k - 1). Thus Bn - B and sun
2  are independent i  (X X)-1X U  and MXU are independ-

ent. Both (X X)-1X U  and MXU are linear combinations o  U, which has an N(0n * 1, s
2
uIn) 

distribution, conditional on X. But because MXX(X X)-1 = 0n * (k + 1) [Equation (18.26)], it 

ollows that (X X)-1X U  and MXU are independently distributed [Equation (18.76)]. Con-

sequently, under all six assumptions in Key Concept 18.1,

 Bn  and sun
2  are independently distributed, (18.81)

which shows (iii) and thus proves Equation (18.35).
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Proof of Equation (18.37)
The Fn1, n2

 distribution is the distribution o  (W1>n1)>(W2>n2), where (i) W1 is distributed 

x2
n1

; (ii) W2 is distributed x2
n2

; and (iii) W1 and W2 are independently distributed (Appendix 

17.1). To express F  in this orm, let W1 = (RBn - r) [R(X X)-1R s2
u]-1(RBn - r) and  

W2 = (n – k – 1)sun
2 >su

2 Substitution o  these de initions into Equation (18.36) shows that 

F = (W1 >  q) >  [W2 >  (n - k - 1)]. Thus, by the de inition o  the F distribution, F has an 

Fq, n−k−1 distribution i  (i) through (iii) hold with n1 = q and n2 = n − k − 1.

 i.  Under the null hypothesis, RBn - r = R(Bn - B). Because Bn  has the conditional 

normal distribution in Equation (18.30) and because R is a nonrandom matrix, 

R(Bn - B) is distributed N(0q * 1, R(X X)-1R s2
u), conditional on X. Thus, by 

Equation (18.77) in Appendix 18.2, (RBn - r) [R(X X)R s2
u]-1(RBn - r) is dis-

tributed x2
q, proving (i).

  ii. Requirement (ii) is shown in Equation (18.31).

iii.  It has already been shown that Bn - B and sun
2  are independently distributed [Equa-

tion (18.81)]. It ollows that RBn - r and sun
2  are independently distributed, which 

in turn implies that W1 and W2 are independently distributed, proving (iii) and 

completing the proo .

a p p e n d i x

 18.5 Proof of the Gauss–Markov Theorem 
for Multiple Regression

This appendix proves the Gauss–Markov theorem (Key Concept 18.3) or the multiple 

regression model. Let B be a linear conditionally unbiased estimator o  B so that B = A Y  

and E(B   X) = B, where A is an n * (k + 1) matrix that can depend on X and nonran-

dom constants. We show that var(c Bn) … var(c B) or all k + 1 dimensional vectors c, 

where the inequality holds with equality only i  B = Bn .
Because B  is linear, it can be written as B = AY = A(XB + U ) = (AX)B + AU. 

By the irst Gauss–Markov condition, E(U 0X) = 0n * 1, so E(B 0X ) = (A′X)B, but because 

B is conditionally unbiased, E(B   X) = B = (AX )B, which implies that AX = Ik + 1. 

Thus B = B + AU , so var(B 0X ) = var(AU 0X) = E(AUU A 0X) = AE(UU 0X)A =
Su

2AA,  where the third equality ollows because A can depend on X but not U, and the 

inal equality ollows rom the second Gauss–Markov condition. That is, i  B is linear and 

unbiased, then under the Gauss–Markov conditions,

 AX = Ik + 1 and var(B 0X) = su
2 AA. (18.82)

The results in Equation (18.82) also apply to Bn  with A = An = X(X X)-1, where (X X)-1 

exists by the third Gauss–Markov condition.
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Now let A = An + D so that D is the di erence between the matrices A and An . 

Note that An A = (X X)-1X A = (X X)-1  [by Equation (18.82)] and An An =  

(X X)-1X X(X X)-1 = (X X)-1, so  An D = An (A - An ) = An A - An An =  0(k +  1) * (k +  1). 

Substituting A = An + D into the ormula or the conditional variance in Equation 

(18.82) yields

 var(B 0X) = su
2(An + D) (An + D) 

  = su
2[An An + An D + D An + D D]

  = su
2(X X)- 1 + su

2D D, (18.83)

where the inal equality uses the acts An An = (X X)-1 and An D = 0(k +  1) * (k +  1).

Because var(Bn   X ) = s2
u(X X)-1, Equations (18.82) and (18.83) imply that  

var(B 0X) -  var(Bn 0X) = su
2D D.  The di erence between the variances o  the two estima-

tors o  the linear combination c B thus is

 var (c B 0X ) -  var(c Bn 0X) =  su
2 c D Dc Ú 0. (18.84)

The inequality in Equation (18.84) holds or all linear combinations c B, and the inequality 

holds with equality or all nonzero c only i  D = 0n * (k+1)—that is, i  A = An  or, equiva-

lently, B = Bn . Thus c Bn  has the smallest variance o  all linear conditionally unbiased esti-

mators o  c B; that is, the OLS estimator is BLUE.

a p p e n d i x

 18.6 Proof of Selected Results for IV  
and GMM Estimation

The Efficiency of TSLS Under Homoskedasticity 
[Proof of Equation (18.62)]
When the errors ui are homoskedastic, the di erence between 횺IV

A  [Equation (18.61)] and 

횺TSLS [Equation (18.55)] is given by

횺IV
A - 횺TSLS = (QXZAQZX)-1QXZAQZZAQZX(QXZAQZX)-1s2

u - (QXZQ-1
ZZQZX)-1s2

u

= (QXZAQZX)-1QXZA[QZZ - QZX(QXZQ-1
ZZ QZX)-1QXZ]AQZX(QXZAQZX)-1s2

u, (18.85)

where the second term in brackets in the second equality ollows rom 

(QXZAQZX)-1QXZAQZX = I(k +  r +  1). Let F be the matrix square root o  QZZ, so QZZ = F F 

and Q-1
ZZ = F -1F -1 . [The latter equality ollows rom noting that (F F)-1 = F -1F -1 and 

F -1 = F -1 .] Then the inal expression in Equation (18.85) can be rewritten to yield

 횺IV
A - 횺TSLS = (QXZAQZX)-1QXZAF [I - F -1 QZX(QXZF -1F -1 QZX)-1QXZF -1]

 * FAQZX(QXZAQZX)-1s2
u, (18.86)


