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The Theory
of Multiple Regression

his chapter provides an introduction to the theory of multiple regression analy-

sis. The chapter has four objectives. The first is to present the multiple regression
model in matrix form, which leads to compact formulas for the OLS estimator and
test statistics. The second objective is to characterize the sampling distribution of the
OLS estimator, both in large samples (using asymptotic theory) and in small samples
(if the errors are homoskedastic and normally distributed). The third objective is to
study the theory of efficient estimation of the coefficients of the multiple regression
model and to describe generalized least squares (GLS), a method for estimating the
regression coefficients efficiently when the errors are heteroskedastic and/or corre-
lated across observations. The fourth objective is to provide a concise treatment of
the asymptotic distribution theory of instrumental variables (V) regression in the
linear model, including an introduction to generalized method of moments (GMM)
estimation in the linear IV regression model with heteroskedastic errors.

The chapter begins by laying out the multiple regression model and the OLS
estimator in matrix form in Section 18.1. This section also presents the extended
least squares assumptions for the multiple regression model. The first four of these
assumptions are the same as the least squares assumptions of Key Concept 6.4 and
underlie the asymptotic distributions used to justify the procedures described in
Chapters 6 and 7. The remaining two extended least squares assumptions are
stronger and permit us to explore in more detail the theoretical properties of the
OLS estimator in the multiple regression model.

The next three sections examine the sampling distribution of the OLS estimator
and test statistics. Section 18.2 presents the asymptotic distributions of the OLS
estimator and t-statistic under the least squares assumptions of Key Concept 6.4.
Section 18.3 unifies and generalizes the tests of hypotheses involving multiple coef-
ficients presented in Sections 7.2 and 7.3, and provides the asymptotic distribution of
the resulting F-statistic. In Section 18.4, we examine the exact sampling distributions
of the OLS estimator and test statistics in the special case that the errors are homo-
skedastic and normally distributed. Although the assumption of homoskedastic
normal errors is implausible in most econometric applications, the exact sampling
distributions are of theoretical interest, and p-values computed using these distri-
butions often appear in the output of regression software.
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The next two sections turn to the theory of efficient estimation of the coefficients
of the multiple regression model. Section 18.5 generalizes the Gauss—-Markov theorem
to multiple regression. Section 18.6 develops the method of generalized least
squares (GLS).

The final section takes up IV estimation in the general IV regression model
when the instruments are valid and strong. This section derives the asymptotic
distribution of the TSLS estimator when the errors are heteroskedastic and provides
expressions for the standard error of the TSLS estimator. The TSLS estimator is one
of many possible GMM estimators, and this section provides an introduction to
GMM estimation in the linear IV regression model. It is shown that the TSLS estimator
is the efficient GMM estimator if the errors are homoskedastic.

Mathematical prerequisite. The treatment of the linear model in this chapter uses
matrix notation and the basic tools of linear algebra and assumes that the reader
has taken an introductory course in linear algebra. Appendix 18.1 reviews vectors,
matrices, and the matrix operations used in this chapter. In addition, multivariate
calculus is used in Section 18.1 to derive the OLS estimator.

18.1 The Linear Multiple Regression Model
and OLS Estimator in Matrix Form

The linear multiple regression model and the OLS estimator can each be repre-
sented compactly using matrix notation.

The Multiple Regression Model in Matrix Notation
The population multiple regression model (Key Concept 6.2) is

Yi = ,80 + Blei + ,82X2i+ st Bkai + ui,i = 1, [ (R (181)

To write the multiple regression model in matrix form, define the following vectors
and matrices:

Y, uy 1 Xy X X Bo
Y 1 X X X,
y=|.2|uv="x=|. 2 7 =" [adp= Bl as2

Yn u, 1 Xln o an Xn Bk
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soYisn X 1,Xisn X (k + 1),Uisn X 1,and Bis (k + 1) X 1. Throughout we
denote matrices and vectors by bold type. In this notation,

T Yisthen X 1 dimensional vector of n observations on the dependent
variable.

T Xisthen X (k + 1) dimensional matrix of n observations on the k + 1
regressors (including the “constant” regressor for the intercept).

T 6KX (k + 1) X 1 dimensional column vector X; is the i observation on
the k + 1 regressors; thatis, X; = (1 Xj;... X};), where X denotes the
transpose of X;.

T Uisthe n X 1 dimensional vector of the n error terms.

T PBisthe (k + 1) X 1 dimensional vector of the k + 1 unknown regression
coefficients.

The multiple regression model in Equation (18.1) for the i observation, writ-
ten using the vectors B and X, is

Yi=X,fB+u,~,i=1,...,n. (183)
The Extended Least Squares Assumptions
in the Multiple Regression Model 18.1

The linear regression model with multiple regressors is

The extended least squares assumptions are

1. E(u;| X;) = 0 (u; has conditional mean zero);

N

(X;, Y;),i =1,...,n, are independently and identically distributed (i.i.d.)
draws from their joint distribution;

X; and u; have nonzero finite fourth moments;
X has full column rank (there is no perfect multicollinearity);

var(u;| X;) = o2 (homoskedasticity); and

Al D

The conditional distribution of u; given X, is normal (normal errors).
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In Equation (18.3), the first regressor is the “constant” regressor that always
equals 1, and its coefficient is the intercept. Thus the intercept does not appear
separately in Equation (18.3); rather, it is the first element of the coefficient
vector f3.

Stacking all n observations in Equation (18.3) yields the multiple regression
model in matrix form:

Y=XB+U. (18.5)

The Extended Least Squares Assumptions

The extended least squares assumptions for the multiple regressor model are the
four least squares assumptions for the multiple regression model in Key Concept
6.4, plus the two additional assumptions of homoskedasticity and normally distrib-
uted errors. The assumption of homoskedasticity is used when we study the effi-
ciency of the OLS estimator, and the assumption of normality is used when we
study the exact sampling distribution of the OLS estimator and test statistics.

The extended least squares assumptions are summarized in Key Concept 18.1.

Except for notational differences, the first three assumptions in Key
Concept 18.1 are identical to the first three assumptions in Key Concept 6.4.

The fourth assumption in Key Concepts 6.4 and 18.1 might appear different,
but in fact they are the same: They are simply different ways of saying that there
cannot be perfect multicollinearity. Recall that perfect multicollinearity arises
when one regressor can be written as a perfect linear combination of the others.
In the matrix notation of Equation (18.2), perfect multicollinearity means that
one column of X is a perfect linear combination of the other columns of X, but if
this is true, then X does not have full column rank. Thus saying that X has rank
k + 1, that is, rank equal to the number of columns of X, is just another way to
say that the regressors are not perfectly multicollinear.

The fifth least squares assumption in Key Concept 18.1 is that the error term
is conditionally homoskedastic, and the sixth assumption is that the conditional
distribution of u;, given X;, is normal. These two assumptions are the same as the
final two assumptions in Key Concept 17.1, except that they are now stated for
multiple regressors.

Implications for the mean vector and covariance matrix of U. The least squares
assumptions in Key Concept 18.1 imply simple expressions for the mean vector
and covariance matrix of the conditional distribution of U given the matrix of
regressors X. (The mean vector and covariance matrix of a vector of random
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variables are defined in Appendix 18.2.) Specifically, the first and second assump-
tions in Key Concept 18.1 imply that E(x;|X) = E(u;|X;) = 0 and that
cov(u;, uj| X) = E(uu;|X) = E(uu|X;, X;) = E(u;| X;))E(uj|X;) = 0 for i #j
(Exercise 17.7). The first, second, and fifth assumptions imply that
E(u?|X) = E(u?|X;) = o2. Combining these results, we have that

under Assumptions #1 and #2, E(U|X) = 0,, and (18.6)
under Assumptions #1, #2, and #5, E(UU'|X) = o1, (18.7)

where 0, is the n-dimensional vector of zeros and I, is the n X n identity matrix.

Similarly, the first, second, fifth, and sixth assumptions in Key Concept 18.1
imply that the conditional distribution of the n-dimensional random vector U,
conditional on X, is the multivariate normal distribution (defined in Appen-
dix 18.2). That is,

under Assumptions #1, #2, #5, and #6, the
conditional distribution of U given X is N(0,, o-21,,). (18.8)

The OLS Estimator

The OLS estimator minimizes the sum of squared prediction mistakes,
Si(Y; — by — byXy; — -+ - — bX},)? [Equation (6.8)]. The formula for the OLS
estimator is obtained by taking the derivative of the sum of squared prediction
mistakes with respect to each element of the coefficient vector, setting these
derivatives to zero, and solving for the estimator [§

The derivative of the sum of squared prediction mistakes with respect to the
j™ regression coefficient, b;, is

a n

aTbj,Z{(Y" — by — biXy; —  — X))
= 2> X;(Y; = by — biXy; — -+ = biXp) (18.9)
=1

forj=0,...,k, where, for j = 0, X;; = 1 for all i. The derivative on the right-
hand side of Equation (18.9) is the j" element of the k + 1 dimensional vector,
—2X'(Y — Xb), where b is the k + 1 dimensional vector consisting of b, . . ., by.
There are k + 1 such derivatives, each corresponding to an element of b. Com-
bined, these yield the system of k + 1 equations that, when set to zero, constitute
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18.2

the first order conditions for the OLS estimator ﬁ That is, [§ solves the system of
k + 1 equations

X'(Y - XB) = 0,4, (18.10)

or, equivalently, X'Y = X 'XP.
Solving the system of equations (18.10) yields the OLS estimator B in matrix
form:

B =XX)'XY, (18.11)
where (X'X) ! is the inverse of the matrix X'X.

The role of “no perfect multicollinearity.” The fourth least squares assumption in
Key Concept 18.1 states that X has full column rank. In turn, this implies that the
matrix X'X has full rank, that is, X'X is nonsingular. Because X'X is nonsingular, it is
invertible. Thus the assumption that there is no perfect multicollinearity ensures
that (X'X)~! exists, so Equation (18.10) has a unique solution and the formula in
Equation (18.11) for the OLS estimator can actually be computed. Said differently,
if X does not have full column rank, there is not a unique solution to Equation (18.10)
and X'X is singular. Therefore, (X'X)~! cannot be computed and thus BB cannot be
computed from Equation (18.11).

Asymptotic Distribution of the OLS Estimator
and t-Statistic

If the sample size is large and the first four assumptions of Key Concept 18.1 are
satisfied, then the OLS estimator has an asymptotic joint normal distribution, the
heteroskedasticity-robust estimator of the covariance matrix is consistent, and the
heteroskedasticity-robust OLS t-statistic has an asymptotic standard normal dis-
tribution. These results make use of the multivariate normal distribution (Appen-
dix 18.2) and a multivariate extension of the central limit theorem.

The Multivariate Central Limit Theorem

The central limit theorem of Key Concept 2.7 applies to a one-dimensional random
variable. To derive the joint asymptotic distribution of the elements of ﬁ, we
need a multivariate central limit theorem that applies to vector-valued random
variables.



18.2 Asymptotic Distribution of the OLS Estimator and t-Statistic 711

The Multivariate Central Limit Theorem

Suppose that Wy, . .

18.2

., W,areii.d. m-dimensional random variables with mean vec-

tor E(W;) = uw and covariance matrix E[(W; — uw)(W; — uw)'] = 2w, where
3. is positive definite and finite. Let W = 37— W,. Then \/E(V_V — uwy) -

N(Om’ 2W)

The multivariate central limit theorem extends the univariate central limit
theorem to averages of observations on a vector-valued random variable, W,
where Wis m-dimensional. The difference between the central limit theorems for
a scalar as opposed to a vector-valued random variable is the conditions on the
variances. In the scalar case in Key Concept 2.7, the requirement is that the vari-
ance is both nonzero and finite. In the vector case, the requirement is that the
covariance matrix is both positive definite and finite. If the vector-valued random
variable W has a finite positive definite covariance matrix, then 0 < var(c'W) < o
for all nonzero m-dimensional vectors ¢ (Exercise 18.3).

The multivariate central limit theorem that we will use is stated in Key Con-
cept 18.2.

Asymptotic Normality of B

In large samples, the OLS estimator has the multivariate normal asymptotic dis-
tribution

Vi — B) = N0y, Svng-py)s Where 25— p = Ox'2y0x', (18.12)

where Qyisthe (k + 1) X (k + 1)-dimensional matrix of second moments of the
regressors, that is, Qy = E(X.X}), and %y is the (k + 1) X (k + 1)-dimensional
covariance matrix of V; = X, thatis, 3y = E(V;V). Note that the second least
squares assumption in Key Concept 18.1 implies that V;,i = 1, ..., n, are i.i.d.

Written in terms of ﬁ rather than \/ﬁ(ﬁ — B), the normal approximation in
Equation (18.12) is

A

B, in large samples, is approximately distributed N(B, 2 p)
where 23 = X\53-p)/n = Ox' 2y 0x'/n. (18.13)
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The covariance matrix 4 in Equation (18.13) is the covariance matrix of the
approximate normal distribution of [§, whereas X/, - ) in Equation (18.12) is
the covariance matrix of the asymptotic normal distribution of \/E(ﬁ - B).
These two covariance matrices differ by a factor of n, depending on whether the
OLS estimator is scaled by V.

Derivation of Equation (18.12). To derive Equation (18.12), first use Equations
(18.4) and (18.11) to write B = (X'X)"'X'Y = (X'X)"'X'(XB + U) so that

B=pB+ XX XU (18.14)

Thus B8 — B = (X'X)"'X'U, so

A XxX\'xu
V(B - B) = < ) ( ) 18.15
ne-p=(5") (1, (1815)
The derivation of Equation (18.12) involves arguing first that the “denominator”

matrix in Equation (18.15), X'X /n, is consistent for Qx and second that the
“numerator” matrix, X'U/Vn, obeys the multivariate central limit theorem in

Key Concept 18.2. The details are given in Appendix 18.3.

Heteroskedasticity-Robust Standard Errors
The heteroskedasticity-robust estimator of %/, - g) is obtained by replacing the

population moments in its definition [Equation (18.12)] by sample moments.
Accordingly, the heteroskedasticity-robust estimator of the covariance matrix of

V(B — B)is

v\ 1 y\ 1 . 1 ‘- N
S vap-p) = <an> ﬁo(XnX> , where 3 = = 2 XX (18.16)
The estimator ﬁ‘,& incorporates the same degrees-of-freedom adjustment that is
in the SER for the multiple regression model (Section 6.4) to adjust for potential
downward bias because of estimation of k + 1 regression coefficients.

The proof that 3 Va(g - B) —£> 2 (g - p) 1s conceptually similar to the proof,
presented in Section 17.3, of the consistency of heteroskedasticity-robust standard
errors for the single-regressor model.

Heteroskedasticity-robust standard errors. The heteroskedasticity-robust esti-
mator of the covariance matrix of B, Xz is

A

S5 =n"Svig-pr (18.17)
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The heteroskedasticity-robust standard error for the j regression coefficient
is the square root of the /" diagonal element of 34. That is, the heteroskedasticity-
robust standard error of the j™ coefficient is

SEB) = V (3p)i- (18.18)
where (ﬁ),;)]-]- is the (j, j) element of ﬁ),;.

Confidence Intervals for Predicted Effects

Section 8.1 describes two methods for computing the standard error of predicted
effects that involve changes in two or more regressors. There are compact matrix
expressions for these standard errors and thus for confidence intervals for pre-
dicted effects.

Consider a change in the value of the regressors for the i observation from
some initial value, say X;, to some new value, X; o + d, so that the change in X
is AX; = d, where dis a k + 1 dimensional vector. This change in X can involve
multiple regressors (that is, multiple elements of X;). For example, if two of the
regressors are the value of an independent variable and its square, then d is the
difference between the subsequent and initial values of these two variables.

The expected effect of this change in Xjis d’ 8, and the estimator of this effect
isd’ [% Because linear combinations of normally distributed random variables are
themselves normally distributed, \/r;(d’ﬁ —d'B) =dVnB - B
N(0,d' 2/ - pyd). Thus the standard error of this predicted effect is (d ’ﬁﬁd )12,
A 95% confidence interval for this predicted effect is

d'f + 196Vd 2. (18.19)

Asymptotic Distribution of the t-Statistic

The t-statistic testing the null hypothesis that §; = B;,, constructed using the
heteroskedasticity-robust standard error in Equation (18.18), is given in Key
Concept 7.1. The argument that this #-statistic has an asymptotic standard normal
distribution parallels the argument given in Section 17.3 for the single-regressor
model.

Tests of Joint Hypotheses

Section 7.2 considers tests of joint hypotheses that involve multiple restrictions,
where each restriction involves a single coefficient, and Section 7.3 considers tests
of a single restriction involving two or more coefficients. The matrix setup of
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Section 18.1 permits a unified representation of these two types of hypotheses as
linear restrictions on the coefficient vector, where each restriction can involve
multiple coefficients. Under the first four least squares assumptions in Key Con-
cept 18.1, the heteroskedasticity-robust OLS F-statistic testing these hypotheses
has an F, .. asymptotic distribution under the null hypothesis.

Joint Hypotheses in Matrix Notation

Consider a joint hypothesis that is linear in the coefficients and imposes g restric-
tions, where ¢ = k + 1. Each of these g restrictions can involve one or more of
the regression coefficients. This joint null hypothesis can be written in matrix
notation as

RB =, (18.20)

where Risa g X (k + 1) nonrandom matrix with full row rank and ris a nonrandom
q X 1 vector. The number of rows of R is g, which is the number of restrictions
being imposed under the null hypothesis.

The null hypothesis in Equation (18.20) subsumes all the null hypotheses
considered in Sections 7.2 and 7.3. For example, a joint hypothesis of the type
considered in Section 7.2 is that By = 0, 8; = 0, ..., 8,1 = 0.To write this joint
hypothesis in the form of Equation (18.20),set R = [I, 0,x+1-4] and r = 0.

The formulation in Equation (18.20) also captures the restrictions of Section 7.3
involving multiple regression coefficients. For example, if k = 2, then the hypoth-
esis that B; + B, = 1 can be written in the form of Equation (18.20) by setting

R=[0 1 1],r=1,andg = 1.

Asymptotic Distribution of the F-Statistic

The heteroskedasticity-robust F-statistic testing the joint hypothesis in Equa-
tion (18.20) is

F=(RB - r)[RER |\ (RB - 1/q. (18.21)

If the first four assumptions in Key Concept 18.1 hold, then under the null
hypothesis

F—F,,. (18.22)
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This result follows by combining the asymptotic normality of B with the con-
sistency of the heteroskedasticity-robust estimator i\/ﬁ(ﬁ _p) of the covariance
matrix. Specifically, first note that Equation (18.12) and Equation (18.74) in
Appendix 18.2 imply that, under the null hypothesis, Va(RB — r) =
\fR([A% B) — N(o, REW(B p)R'). It follows from Equation (18.77) that,
under the null hypothesw (RB — r) [RE RT'(RB -1 = [\fR(B B)]
[R3\up-pR'1 VAR (B — B)] —4s x;- However, because E\f(,; ) AN
E\f(,; p), it follows from Slutsky s theorem that [VaR(B — B)]
[szf(ﬁ pR' T [ ViR B-pl L X;. or, equivalently (because Eﬁ—
E\r(ﬁ p)/n), that F —4s Xq 2/q, which is in turn distributed F,

Confidence Sets for Multiple Coefficients

As discussed in Section 7.4, an asymptotically valid confidence set for two or
more elements of B can be constructed as the set of values that, when taken as
the null hypothesis, are not rejected by the F-statistic. In principle, this set could
be computed by repeatedly evaluating the F-statistic for many values of 3, but,
as is the case with a confidence interval for a single coefficient, it is simpler to
manipulate the formula for the test statistic to obtain an explicit formula for the
confidence set.

Here is the procedure for constructing a confidence set for two or more of the
elements of B. Let 6 denote the g-dimensional vector consisting of the coefficients
for which we wish to construct a confidence set. For example, if we are construct-
ing a confidence set for the regression coefficients 8, and 3,, then ¢ = 2 and
6 = (B1B,)'. In general, we can write 6 = R, where the matrix R consists of
zeros and ones [as discussed following Equation (18.20)]. The F-statistic testing
the hypothesis that 8§ = &, is F = (6 — 60)’[R§[§R’]_1(¢§ — 8y)/q, where
6= Rﬁ. A 95% confidence set for o is the set of values §, that are not rejected
by the F-statistic. That is, when 6 = Rf3, a 95% confidence set for 6 is

{8:(8 — 8)'[RE;R']\(5 — 8)/q = c}, (18.23)

where c is the 95" percentile (the 5% critical value) of the F, ., distribution.

The set in Equation (18.23) consists of all the points contained inside the
ellipse determined when the inequality in Equation (18.23) is an equality (this is
an ellipsoid when g > 2). Thus the confidence set for 6 can be computed by solv-
ing Equation (18.23) for the boundary ellipse.
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18.4 Distribution of Regression Statistics

with Normal Errors

The distributions presented in Sections 18.2 and 18.3, which were justified by
appealing to the law of large numbers and the central limit theorem, apply when
the sample size is large. If, however, the errors are homoskedastic and normally
distributed, conditional on X, then the OLS estimator has a multivariate normal distri-
bution in finite sample, conditional on X. In addition, the finite sample distribu-
tion of the square of the standard error of the regression is proportional to the
chi-squared distribution withn — k — 1 degrees of freedom, the homoskedasticity-
only OLS t-statistic has a Student ¢ distribution with n — k — 1 degrees of free-
dom, and the homoskedasticity-only F-statistic has an F, ,, ; distribution. The
arguments in this section employ some specialized matrix formulas for OLS
regression statistics, which are presented first.

Matrix Representations of OLS Regression Statistics

The OLS predicted values, residuals, and sum of squared residuals have compact
matrix representations. These representations make use of two matrices, Py
and My.

The matrices Py and My. The algebra of OLS in the multivariate model relies on
the two symmetric n X n matrices, Py and My:

Py = X(X'X)"'X' and (18.24)

A matrix Cis idempotent if Cis square and CC = C (see Appendix 18.1). Because
Py = PyPy and My = MxMy (Exercise 18.5), and because Py and My are
symmetric, Py and My are symmetric idempotent matrices.

The matrices Py and My have some additional useful properties (Exercise
18.5), which follow directly from the definitions in Equations (18.24) and (18.25):

PXX == Xand MXX == 0”X(k+1);
rank(Py) = k + 1 andrank(My) = n — k — 1, (18.26)

where rank(Py) is the rank of Py.
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The matrices Py and My can be used to decompose an n-dimensional vector
Z into two parts: a part that is spanned by the columns of X and a part orthogonal
to the columns of X. In other words, PxZ is the projection of Z onto the space
spanned by the columns of X, MyZ is the part of Z orthogonal to the columns of
X and Z = PyZ + MxZ.

OLS predicted values and residuals. The matrices Py and My provide some sim-
ple expressions for OLS predicted values and residuals. The OLS predicted val-
ues, Y = Xﬁ, and the OLS residuals, U=Y - IA/, can be expressed as follows
(Exercise 18.5):

Y = PyY and (18.27)
U= MyY = MyU. (18.28)

The expressions in Equations (18.27) and (18.28) provide a simple proof that
the OLS residuals and predicted values are orthogonal, that is, Equation (4.37)
holds: Y'U = Y'PyMyY = 0, where the second equality follows from
PxMy = 0,,, which in turn follows from MxX = 0, + 1)in Equation (18.26).

The standard error of the regression. The SER, defined in Section 4.3, is s,
where

1 z 1 PPN 1
UU =

N UM, (1829
n—k—l,.;”’ n—k—1 n— k-1 UMU (1829

2=

where the final equality follows because UU = MxU) (MxU) = UMxMxU =
U'MxU (because My is symmetric and idempotent).

Distribution of,@ with Normal Errors

Because ﬁ = B + (X'X)"'X'U [Equation (18.14)] and because the distribu-
tion of U conditional on X is, by assumption, N(0,, o2I,) [Equation (18.8)], the
conditional distribution of ﬁ given X is multivariate normal with mean 8. The
covariance matrix of 3, conditional on X, is Jpx = E[((B — BB - B)'|X] =
E(XX)'XUUXX'X)X]= X X)) X'(c2I)XX'X)!' = 2 X'X)"".
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Accordingly, under all six assumptions in Key Concept 18.1, the finite-sample
conditional distribution of [§ given X is

B ~ N(B, 3 jx), where Spy = o2(X'X) . (18.30)

Distribution of s2

If all six assumptions in Key Concept 18.1 hold, then s3 has an exact sampling
distribution that is proportional to a chi-squared distribution with n — k — 1
degrees of freedom:

0_2

sE o~ ﬁ X X2 _ k1 (18.31)
The proof of Equation (18.31) starts with Equation (18.29). Because U is normally
distributed conditional on X and because My is a symmetric idempotent matrix,
the quadratic form U'MyU /o2 has an exact chi-squared distribution with degrees
of freedom equal to the rank of My [Equation (18.78) in Appendix 18.2]. From
Equation (18.26), the rank of My is n — k — 1. Thus U'MyU/o? has an exact
X5 — 1 distribution, from which Equation (18.31) follows.

The degrees-of-freedom adjustment ensures that sl% is unbiased. The expecta-
tion of a random variable with a y2_,_; distribution is n — k — 1; thus
E(UMyU) = (n — k — 1)02, 50 E(s3) = o2.

Homoskedasticity-Only Standard Errors

The homoskedasticity-only estimator iﬁ of the covariance matrix of [§, condi-
tional on X, is obtained by substituting the sample variance s for the population
variance ¢ in the expression for ¥ plx in Equation (18.30). Accordingly,

iﬁ =s3(X'X)"! (homoskedasticity-only). (18.32)

The estimator of the variance of the normal conditional distribution of ,8], glven
X, is the (J, j) element of EB Thus the homoskedast1c1ty—only standard error of ,8] is
the square root of the j™ diagonal element of EB. That s, the homoskedasticity-only
standard error of ,é]- is

SNE(L?]-) = \/(ig)jj (homoskedasticity-only). (18.33)
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Distribution of the t-Statistic

Let 7 be the t-statistic testing the hypothesis g; = B;, constructed using the
homoskedasticity-only standard error; that is, let

éj — Bjo
T=——F. (18.34)
V (Zp)j
Under all six of the extended least squares assumptions in Key Concept 18.1, the
exact sampling distribution of 7 is the Student ¢ distribution with n — k — 1
degrees of freedom; that is,

? ~ tn—k—l' (1835)

The proof of Equation (18.35) is given in Appendix 18.4.

Distribution of the F-Statistic

If all six least squares assumptions in Key Concept 18.1 hold, then the F-statistic
testing the hypothesis in Equation (18.20), constructed using the homoskedasticity-
only estimator of the covariance matrix, has an exact F, ,, distribution under
the null hypothesis.

The homoskedasticity-only F-statistic. The homoskedasticity-only F-statistic is
similar to the heteroskedasticity-robust F-statistic in Equation (18.21), except that
the homoskedasticity-only estimator f},; 1s used instead of the heteroskedasticity-
robust estimator ig. Substituting the expression ig = s2(X'X) ! into the expres-
sion for the F-statistic in Equation (18.21) yields the homoskedasticity-only
F-statistic testing the null hypothesis in Equation (18.20):

(RB —n)'[RX'X)'R']'(RB — 1)/q
5 :

S3

F = (18.36)

If all six assumptions in Key Concept 18.1 hold, then under the null hypothesis
F~F, -1 (18.37)

The proof of Equation (18.37) is given in Appendix 18.4.
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The F-statistic in Equation (18.36) is called the Wald version of the F-statistic
(named after the statistician Abraham Wald). Although the formula for the
homoskedastic-only F-statistic given in Equation (7.13) appears quite different
from the formula for the Wald statistic in Equation (18.36), the homoskedastic-
only F-statistic and the Wald F-statistic are two versions of the same statistic. That
is, the two expressions are equivalent, a result shown in Exercise 18.13.

Efficiency of the OLS Estimator
with Homoskedastic Errors

Under the Gauss—Markov conditions for multiple regression, the OLS estimator
of B is efficient among all linear conditionally unbiased estimators; that is, the
OLS estimator is BLUE.

The Gauss—Markov Conditions for Multiple Regression
The Gauss—-Markov conditions for multiple regression are

(i) E(U|X) = 0,

(i) E(UU'|X) = oI, and

(iii) X has full column rank. (18.38)
The Gauss—Markov conditions for multiple regression in turn are implied by the
first five assumptions in Key Concept 18.1 [see Equations (18.6) and (18.7)]. The
conditions in Equation (18.38) generalize the Gauss—Markov conditions for a sin-
gle regressor model to multiple regression. [By using matrix notation, the second

and third Gauss—Markov conditions in Equation (5.31) are collected into the sin-
gle condition (ii) in Equation (18.38).]

Linear Conditionally Unbiased Estimators

We start by describing the class of linear unbiased estimators and by showing that
OLS is in that class.

The class of linear conditionally unbiased estimators. An estimator of B8 is said
to be linear if it is a linear function of Y7, . . ., Y,,. Accordingly, the estimator f3 is
linear in Y if it can be written in the form

B =AY, (18.39)
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where A isan n X (k + 1) dimensional matrix of weights that may depend on X
and on nonrandom constants, but not on Y.

An estimator is conditionally unbiased if the mean of its conditional sampling
distribution, given X, is B. That is, B is conditionally unbiased if E£(f 1X) = B.

The OLS estimator is linear and conditionally unbiased. Comparison of Equa-
tions (18.11) and (18.39) shows that the OLS estimator is linear in Y; specifically,
B =AY, where A = X (X'X) L. To show that Bis conditionally unbiased, recall
from Equation (18.14) that B=pB+ (X'X)"'X'U. Taking the conditional expec-
tation of both sides of this expression yields, £ (ﬁ\X )= B+E[(X'X)'X'U|X]=
B + (X'X) 'X'E(U|X) = B, where the final equality follows because E(U|X) = 0
by the first Gauss—Markov condition.

The Gauss—Markov Theorem for Multiple Regression

The Gauss—Markov theorem for multiple regression provides conditions under
which the OLS estimator is efficient among the class of linear conditionally
unbiased estimators. A subtle point arises, however, because ﬁ is a vector and
its “variance” is a covariance matrix. When the “variance” of an estimator is a
matrix, just what does it mean to say that one estimator has a smaller variance
than another?

The Gauss—Markov theorem handles this problem by comparing the
variance of a candidate estimator of a linear combination of the elements of
B to the variance of the corresponding linear combination of [§ Specifically,
let ¢ be a k + 1 dimensional vector and consider the problem of estimating
the linear combination ¢’ using the candidate estimator c’ﬁ (where E is a
linear conditionally unbiased estimator) on the one hand and ¢ on the other
hand. Because c’ﬁ and c’ﬁ are both scalars and are both linear conditionally
unbiased estimators of ¢, it now makes sense to compare their variances.

The Gauss—Markov theorem for multiple regression says that the OLS esti-
mator of ¢'B is efficient; that is, the OLS estimator c’[§ has the smallest conditional
variance of all linear conditionally unbiased estimators ¢’B. Remarkably, this is
true no matter what the linear combination is. It is in this sense that the OLS
estimator is BLUE in multiple regression.

The Gauss—Markov theorem is stated in Key Concept 18.3 and proven in
Appendix 18.5.
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Gauss—-Markov Theorem for Multiple Regression

Suppose that the Gauss—Markov conditions for multiple regression in Equation
(18.38) hold. Then the OLS estimator ﬁ is BLUE. That is, let 8 be a linear con-
ditionally unbiased estimator of 8 and let ¢ be a nonrandom k + 1 dimensional
vector. Then Var(c’ﬁ\X) = Var(c’E\X) for every nonzero vector ¢, where the
inequality holds with equality for all ¢ only if B = B.

Generalized Least Squares'

The assumption of i.1.d. sampling fits many applications. For example, suppose that
Y; and X, correspond to information about individuals, such as their earnings, edu-
cation, and personal characteristics, where the individuals are selected from a
population by simple random sampling. In this case, because of the simple random
sampling scheme, (X,Y;) are necessarily i.i.d. Because (X,,Y;) and (X,Y)) are inde-
pendently distributed for i # j, u; and u; are independently distributed for i # j.
This in turn implies that u; and u; are uncorrelated for i # j. In the context of the
Gauss-Markov assumptions, the assumption that E(UU'| X) is diagonal therefore
is appropriate if the data are collected in a way that makes the observations inde-
pendently distributed.

Some sampling schemes encountered in econometrics do not, however, result
in independent observations and instead can lead to error terms u; that are cor-
related from one observation to the next. The leading example is when the data
are sampled over time for the same entity, that is, when the data are time series
data. As discussed in Section 15.3, in regressions involving time series data, many
omitted factors are correlated from one period to the next, and this can result in
regression error terms (which represent those omitted factors) that are correlated
from one period of observation to the next. In other words, the error term in one
period will not, in general, be distributed independently of the error term in the

The GLS estimator was introduced in Section 15.5 in the context of distributed lag time series regres-
sion. This presentation here is a self-contained mathematical treatment of GLS that can be read inde-
pendently of Section 15.5, but reading that section first will help to make these ideas more concrete.
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next period. Instead, the error term in one period could be correlated with the
error term in the next period.

The presence of correlated error terms creates two problems for inference based
on OLS. First, neither the heteroskedasticity-robust nor the homoskedasticity-only
standard errors produced by OLS provide a valid basis for inference. The solution to
this problem is to use standard errors that are robust to both heteroskedasticity and
correlation of the error terms across observations. This topic—heteroskedasticity-
and autocorrelation-consistent (HAC) covariance matrix estimation—is the subject
of Section 15.4 and we do not pursue it further here.

Second, if the error term is correlated across observations, then E(UU’| X)
is not diagonal, the second Gauss—Markov condition in Equation (18.38) does
not hold, and OLS is not BLUE. In this section we study an estimator, generalized
least squares (GLS), that is BLUE (at least asymptotically) when the condi-
tional covariance matrix of the errors is no longer proportional to the identity matrix.
A special case of GLS is weighted least squares, discussed in Section 17.5,
in which the conditional covariance matrix is diagonal and the i" diagonal ele-
ment is a function of X;. Like WLS, GLS transforms the regression model so
that the errors of the transformed model satisfy the Gauss—Markov conditions.
The GLS estimator is the OLS estimator of the coefficients in the transformed
model.

The GLS Assumptions

There are four assumptions under which GLS is valid. The first GLS assumption
is that u; has a mean of zero, conditional on X}, . . ., X,; that s,

E(UIX) = 0,. (18.40)

This assumption is implied by the first two least squares assumptions in Key Concept
18.1; that is, if E(u;|X;) = 0 and (X,,Y}),i=1,...,n, areiid., then E(U|X) = 0,.
In GLS, however, we will not want to maintain the i.i.d. assumption; after all, one
purpose of GLS is to handle errors that are correlated across observations. We dis-
cuss the significance of the assumption in Equation (18.40) after introducing the
GLS estimator.

The second GLS assumption is that the conditional covariance matrix of U
given X is some function of X:

E(UU'|X) = Q(X), (18.41)

where Q(X) is an n X n positive definite matrix-valued function of X.
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The GLS Assumptions

In the linear regression model Y = XB + U, the GLS assumptions are

L. E(UIX) = 0,
2. E(UU'|X) = Q(X), where Q(X)isann X n positive definite matrix that can
depend on X;

3. X; and y; satisfy suitable moment conditions; and

4. X has full column rank (there is no perfect multicollinearity).

There are two main applications of GLS that are covered by this assumption.
The first is independent sampling with heteroskedastic errors, in which case Q (X)
is a diagonal matrix with diagonal element A#(X;), where A is a constant and 4 is
a function. In this case, discussed in Section 17.5, GLS is WLS.

The second application is to homoskedastic errors that are serially correlated.
In practice, in this case a model is developed for the serial correlation. For exam-
ple, one model is that the error term is correlated with only its neighbor, so
corr(u;, u;—1) = p # 0but corr(u;, u) =0if |i — j| = 2.In this case, &(X) has
o2 asits diagonal element, po? in the first off-diagonal, and zeros elsewhere. Thus
Q(X) does not depend on X, Q; = o7, Q;; = poy for [i — j| = 1,and Q;; = 0
for |i — j| > 1. Other models for serial correlation, including the first order
autoregressive model, are discussed further in the context of GLS in Section 15.5
(also see Exercise 18.8).

One assumption that has appeared on all previous lists of least squares assump-
tions for cross-sectional data is that X; and u; have nonzero, finite fourth moments.
In the case of GLS, the specific moment assumptions needed to prove asymptotic
results depend on the nature of the function Q(X), whether Q(X) is known or
estimated, and the statistic under consideration (the GLS estimator, ¢-statistic,
etc.). Because the assumptions are case- and model-specific, we do not present
specific moment assumptions here, and the discussion of the large-sample properties
of GLS assumes that such moment conditions apply for the relevant case at hand.
For completeness, as the third GLS assumption, X; and u; are simply assumed to
satisty suitable moment conditions.

The fourth GLS assumption is that X has full column rank; that is, the regres-
sors are not perfectly multicollinear.

The GLS assumptions are summarized in Key Concept 18.4.
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We consider GLS estimation in two cases. In the first case, (X) is known.
In the second case, the functional form of (X) is known up to some parameters
that can be estimated. To simplify notation, we refer to the function (X) as the
matrix €, so the dependence of €2 on X is implicit.

GLS When Q Is Known

When € is known, the GLS estimator uses € to transform the regression model
to one with errors that satisfy the Gauss—Markov conditions. Specifically, let F be
a matrix square root of Q! that is, let F be a matrix that satisfies F’/F = Q7!
(see Appendix 18.1). A property of Fis that FQF' = I,. Now premultiply both
sides of Equation (18.4) by F to obtain

Y=XB+U, (18.42)

where Y = FY, X = FX,and U = FU.

The key insight of GLS is that, under the four GLS assumptions, the Gauss—
Markov assumptions hold for the transformed regression in Equation (18.42).
That is, by transforming all the variables by the inverse of the matrix square root
of , the regression errors in the transformed regression have a conditional mean
of zero and a covariance matrix that equals the identity matrix. To show this
mathematically, first note that E(U|X) = E(FU|FX) = FE(U|FX) = 0, by
the first GLS assumption [Equation (18.40)]. In addition, E(UU’ ])N() =
E[(FU)(FU)'|FX] = FE(UU'|FX)F' = FQF' = I, where the second equality
follows because (FU)'" = U'F' and the final equality follows from the definition
of F. It follows that the transformed regression model in Equation (18.42) satisfies
the Gauss—Markov conditions in Key Concept 18.3.

The GLS estimator, BS, is the OLS estimator of 8 in Equation (18.42);
that is, B = (X'X) '(X'Y). Because the transformed regression model satis-
fies the Gauss—Markov conditions, the GLS estimator is the best conditionally
unbiased estimator that is linear in Y. But because ¥ = FY and F is (here)
assumed to be known, and because F is invertible (because € is positive defi-
nite), the class of estimators that are linear in Y is the same as the class of
estimators that are linear in Y. Thus the OLS estimator of 8 in Equation (18.42)
is also the best conditionally unbiased estimator among estimators that are lin-
ear in Y. In other words, under the GLS assumptions, the GLS estimator is
BLUE.
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The GLS estimator can be expressed directly in terms of €2, so in principle
there is no need to compute the square root matrix F. Because X = FX and
Y = FY, B9 = (X'F'FX)"'(X'F'FY).But F'FF = Q!,s0

Be = (x' Q7' X)) '(x' Q7 'Y). (18.43)

In practice, € is typically unknown, so the GLS estimator in Equation (18.43)
typically cannot be computed and thus is sometimes called the infeasible GLS
estimator. If, however, ) has a known functional form but the parameters of that
function are unknown, then {2 can be estimated and a feasible version of the GLS
estimator can be computed.

GLS When Q Contains Unknown Parameters

If Q is a known function of some parameters that in turn can be estimated, then
these estimated parameters can be used to calculate an estimator of the covari-
ance matrix 2. For example, consider the time series application discussed fol-
lowing Equation (18.41), in which (X) does not depend on X, Q; = 2, Q0=
po;, for |i — j| =1, and Q; = 0 for |i — j| > 1. Then Q has two unknown
parameters, o2 and p. These parameters can be estimated using the residuals from
a preliminary OLS regression; specifically, o can be estimated by sl% and p can
be estimated by the sample correlation between all neighboring pairs of OLS
residuals. These estimated parameters can in turn be used to compute an estima-
tor of ), Q.

In general, suppose that you have an estimator Q of Q. Then the GLS esti-

mator based on  is
B = (X’ QXY '(x Q7). (18.44)

The GLS estimator in Equation (18.44) is sometimes called the feasible GLS
estimator because it can be computed if the covariance matrix contains some
unknown parameters that can be estimated.

The Zero Conditional Mean Assumption and GLS

For the OLS estimator to be consistent, the first least squares assumption must
hold; that is, E(u,;|X;) must be zero. In contrast, the first GLS assumption is that
E(u;| Xy, ..., X,) = 0.In other words, the first OLS assumption is that the error
for the i" observation has a conditional mean of zero, given the values of the
regressors for that observation, whereas the first GLS assumption is that u; has a
conditional mean of zero, given the values of the regressors for all observations.
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As discussed in Section 18.1, the assumptions that E(u;|X;) = 0 and that sam-
pling is i.i.d. together imply that E(u;|X, ..., X,) = 0. Thus, when sampling is
1.1.d. so that GLS is WLS, the first GLS assumption is implied by the first least
squares assumption in Key Concept 18.1.

When sampling is not i.i.d., however, the first GLS assumption is not implied
by the assumption that E(i;|X;) = 0; that is, the first GLS assumption is stronger.
Although the distinction between these two conditions might seem slight, it can
be very important in applications to time series data. This distinction is discussed
in Section 15.5 in the context of whether the regressor is “past and present” exog-
enous or “strictly” exogenous; the assumption that E(u;|X, ..., X,) = 0 corre-
sponds to strict exogeneity. Here, we discuss this distinction at a more general level
using matrix notation. To do so, we focus on the case that U is homoskedastic, € is
known, and € has nonzero off-diagonal elements.

The role of the first GLS assumption. To see the source of the difference between
these assumptions, it is useful to contrast the consistency arguments for GLS and
OLS.

We first sketch the argument for the consistency of the GLS estimator in Equa-
tion (18.43). Substituting Equation (18.4) into Equation (18.43), we have B9LS =
B + (X' Q'X/n) {(X' Q'U/n). Under the first GLS assumption, E(X' Q" 'U) =
E[X'Q'E(U|X)] = 0,. If in addition the variance of X' Q'U/n tends to zero
and X' Q" 'X/n — Q, where Q is some invertible matrix, then ﬁGLS L B.
Critically, when Q has off-diagonal elements, the term X'Q7'U =
it 2 X(Q7),u; involves products of X; and u; for different i, j, where (Q71);;
denotes the (i, j) element of Q7! Thus, for X’ Q7'U to have a mean of zero, it is
not enough that E(u,;]X;) = 0; rather E(u,\X]) must equal zero for all i, j pairs
corresponding to nonzero values of (1) i Depending on the covariance structure
of the errors, only some of or all the elements of (Q‘l),-j might be nonzero. For
example, if u; follows a first order autoregression (as discussed in Section 15.5),
the only nonzero elements (2~ 1),~]~ are those for which |i — j| = 1.1In general, however,
all the elements of ! can be nonzero, so in general for X' Q™ 'U/n —+£ 0+ 1)x1
(and thus for BS to be consistent) we need that E(U |X) = 0,;thatis, the first GLS
assumption must hold.

In contrast, recall the argument that the OLS estimator is consistent. Rewrite
Equation (18.14) as B = B + (X'’X/n)"' 13, X;u;. If E(u;| X;) = 0, then the
term > 11 X;u; has mean zero, and if this term has a variance that tends to zero, it
converges in probability to zero. If in addition X'X/n — Oy, then B B.

Isthefirst GLS assumption restrictive? The first GLS assumption requires that the
errors for the it observation be uncorrelated with the regressors for all other
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observations. This assumption is dubious in some time series applications. This
issue is discussed in Section 15.6 in the context of an empirical example, the rela-
tionship between the change in the price of a contract for future delivery of frozen
orange concentrate and the weather in Florida. As explained there, the error term
in the regression of price changes on the weather is plausibly uncorrelated with
current and past values of the weather, so the first OLS assumption holds. How-
ever, this error term is plausibly correlated with future values of the weather, so
the first GLS assumption does not hold.

This example illustrates a general phenomenon in economic time series data
that arises when the value of a variable today is set in part based on expectations
of the future: Those future expectations typically imply that the error term today
depends on a forecast of the regressor tomorrow, which in turn is correlated with
the actual value of the regressor tomorrow. For this reason, the first GLS assump-
tion is in fact much stronger than the first OLS assumption. Accordingly, in some
applications with economic time series data the GLS estimator is not consistent
even though the OLS estimator is.

Instrumental Variables and Generalized
Method of Moments Estimation

This section provides an introduction to the theory of instrumental variables (IV)
estimation and the asymptotic distribution of IV estimators. It is assumed through-
out that the IV regression assumptions in Key Concepts 12.3 and 12.4 hold and,
moreover, that the instruments are strong. These assumptions apply to cross-
sectional data with 1.1.d. observations. Under certain conditions the results derived
in this section are applicable to time series data as well, and the extension to time
series data is briefly discussed at the end of this section. All asymptotic results in
this section are developed under the assumption of strong instruments.

This section begins by presenting the IV regression model, the two stage least
squares (TSLS) estimator, and its asymptotic distribution in the general case of
heteroskedasticity, all in matrix form. It is next shown that, in the special case of
homoskedasticity, the TSLS estimator is asymptotically efficient among the class
of IV estimators in which the instruments are linear combinations of the exoge-
nous variables. Moreover, the J-statistic has an asymptotic chi-squared distribu-
tion in which the degrees of freedom equal the number of overidentifying
restrictions. This section concludes with a discussion of efficient IV estimation and
the test of overidentifying restrictions when the errors are heteroskedastic—a
situation in which the efficient IV estimator is known as the efficient generalized
method of moments (GMM) estimator.
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The IV Estimator in Matrix Form

In this section, we let X denote the n X (k + r + 1) matrix of the regressors in
the equation of interest, so X contains the included endogenous regressors (the
X’s in Key Concept 12.1) and the included exogenous regressors (the W’s in Key
Concept 12.1). That is, in the notation of Key Concept 12.1, the i row of X is
Xi=0 X,; Xy ... Xy W,; W, ... W,). Also, let Z denote the
n X (m + r + 1) matrix of all the exogenous regressors, both those included in
the equation of interest (the W’s) and those excluded from the equation of
interest (the instruments). That is, in the notation of Key Concept 12.1, the ith
rowof ZisZ: =1 Z,;, Z,, ... Z,;, W, Wy ... W,).

With this notation, the IV regression model of Key Concept 12.1, written in
matrix form, is

Y=XB+ U, (18.45)

where Uis the n X 1 vector of errors in the equation of interest, with i element u;.
The matrix Z consists of all the exogenous regressors, so under the IV regres-
sion assumptions in Key Concept 12.4,

E(Zu;) = 0 (instrument exogeneity). (18.46)

Because there are k included endogenous regressors, the first stage regression
consists of k equations.

The TSLS estimator. The TSLS estimator is the instrumental variables estimator
in which the instruments are the predicted values of X based on OLS estimation
of the first stage regression. Let X denote this matrix of predicted values so that
the i row of Xis (X;; Xy ... Xu W, W, ... W,), where Xy, is the
predicted value from the regression of X;; on Z, and so forth. Because the W’s
are contained in Z, the predicted value from a regression of W,; on Z is just W,
and so forth, so X = P,X, where P, = Z(Z'Z)'Z’ [see Equation (18.27)].
Accordingly, the TSLS estimator is

A
!

BT = (X'X)"'X'Y. (18.47)

Because X = PzX, XX=X 'PzX, and Xy=Xx 'PzY, the TSLS estimator can
be rewritten as

BTSLS = (X' P,X)"'X'P,Y. (18.48)
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Asymptotic Distribution of the TSLS Estimator

Substituting Equation (18.45) into Equation (18.48), rearranging, and multiplying
by Vn yields the expression for the centered and scaled TSLS estimator:

n X'PX\'X'P,U
V(BT — p) = ( : ) :
n Vn
B {X’Z/Z’Z)‘l ZXT{X’Z/Z’Z)‘1 A
B n \ n n \ n \/;l
where the second equality uses the definition of P,. Under the IV regression

assumptions, X'Z/n —£> Qyz and Z'Z/n —L5 0,7, where Oy, = E(X;Z}) and
077 = E(Z,Z)}). In addition, under the IV regression assumptions, Z; is i.i.d.

. } (18.49)

with mean zero [Equation (18.46)] and a nonzero finite variance, so its sum,
divided by \/ﬁ, satisfies the conditions of the central limit theorem and

Z'U/Nn = W, where Wy, ~ N0, H), H = E(Z,Z}u?) (18.50)

and Wyyis(m +r + 1) X 1.

Application of Equation (18.50) and of the limits X'Z/n —2> Qyz and
Z'Z/n —> 0, to Equation (18.49) yields the result that, under the IV regres-
sion assumptions, the TSLS estimator is asymptotically normally distributed:

Vi (BT = B) =5 (0x2075072x) ' Ox2075V 7 ~ N(0, S7515), (18.51)

where

38 = (Qx707707x) ' Ox2077 HO77 Q7x (0x207207x) (18.52)

where H is defined in Equation (18.50).

Standard errors for TSLS. The formula in Equation (18.52) is daunting. Neverthe-
less, it provides a way to estimate 37555 by substituting sample moments for the
population moments. The resulting variance estimator is

3TSLS = (0x2075072%) ' 0x2075H07,07x (0x207502x) ", (18.53)

where QXZ = X'Z/n, QZZ =Z'Z/n, QZX = Z'X/n, and

n

27,7, i}, where U = Y — XBT5!S (18.54)

~ 1
H = —
ni=
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so that U is the vector of TSLS residuals and where il; is the i element of that
vector (the TSLS residual for the i observation).
The TSLS standard errors are the square roots of the diagonal elements of

iTSLS/n.

Properties of TSLS When the Errors Are Homoskedastic

If the errors are homoskedastic, then the TSLS estimator is asymptotically effi-
cient among the class of IV estimators in which the instruments are linear combi-
nations of the rows of Z. This result is the IV counterpart to the Gauss—Markov
theorem and constitutes an important justification for using TSLS.

The TSLS distribution under homoskedasticity. 1If the errors are homoskedastic, that is,
if EG?|Z) = o2, then H = E(ZZ{w}) = E|[E(ZZ}i}| Z)] = E[ZZ/E(«}| Z)] =
Q7,02 In this case, the variance of the asymptotic distribution of the TSLS estimator
in Equation (18.52) simplifies to

IS = (Qxz07,07%) ‘o2 (homoskedasticity only). (18.55)
The homoskedasticity-only estimator of the TSLS variance matrix is
- A A U'v
S50 = (0x207202x) 7' 65, Where 67, = Wk —r_1

(homoskedasticity only), (18.56)

and the homoskedasticity-only TSLS standard errors are the square root of the
diagonal elements of 37555 /.

The class of IV estimators that use linear combinations of Z. The class of IV
estimators that use linear combinations of Z as instruments can be generated in
two equivalent ways. Both start with the same moment equation: Under the
assumption of instrument exogeneity, the errors U = Y — X3 are uncorrelated
with the exogenous regressors; that is, at the true value of 8, Equation (18.46)
implies that

E[(Y — XB)'Z] = 0. (18.57)

Equation (18.57) constitutes a system of m + r + 1 equations involving the
k + r + 1 unknown elements of . When m > k, these equations are redundant,
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in the sense that all are satisfied at the true value of 8. When these population
moments are replaced by their sample moments, the system of equations
(Y — Xb)'Z = 0 can be solved for b when there is exact identification (m = k).
This value of bis the IV estimator of 8. However, when there is overidentification
(m > k), the system of equations typically cannot all be satisfied by the same
value of b because of sampling variation—there are more equations than
unknowns—and in general this system does not have a solution.

The first approach to the problem of estimating 8 when there is overidentifica-
tion is to trade off the desire to satisfy each equation by minimizing a quadratic form
involving all the equations. Specifically, let A bean (m + r + 1) X (m + r + 1)
symmetric positive semidefinite weight matrix and let ﬁf{ denote the estimator that
minimizes

min,(Y — Xb)'ZAZ'(Y — Xb). (18.58)

The solution to this minimization problem is found by taking the derivative of the
objective function with respect to b, setting the result equal to zero, and rearrang-
ing. Doing so yields B, the IV estimator based on the weight matrix A:

BY = (X'ZAZ'X)"'X'ZAZ'Y. (18.59)

Comparison of Equations (18.59) and (18.48) shows that TSLS is the IV estimator
with A = (Z'Z)"!. That is, TSLS is the solution of the minimization problem in
Equation (18.58) with A = (Z'Z)".

The calculations leading to Equations (18.51) and (18.52), applied to BY,
show that

VaBY - B) =% N, 31), where
3 = (0xzAQ2zx) 'OxzZAHAQ7x (0OxzA0zx) . (18.60)

The second way to generate the class of IV estimators that use linear combinations
of Z is to consider IV estimators in which the instruments are ZB, where B is an
(m +r + 1) X (k + r + 1) matrix with full row rank. Then the system of (k + r + 1)
equations, (Y — Xb)'ZB = 0, can be solved uniquely for the (k + r + 1) unknown
elements of b. Solving these equations for b yields B = (B'Z'X)"Y(B'Z'Y), and
substitution of B = AZ'X into this expression yields Equation (18.59). Thus the two
approaches to defining IV estimators that are linear combinations of the instruments
yield the same family of IV estimators. It is conventional to work with the first
approach, in which the IV estimator solves the quadratic minimization problem in
Equation (18.58), and that is the approach taken here.
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Asymptotic efficiency of TSLS under homoskedasticity. If the errors are homo-
skedastic, then H = Qzz02 and the expression for %4 in Equation (18.60)
becomes

Y = (0xzA02x) ' OxzA 0724 02x (OxzAQzx) ', (18.61)

To show that TSLS is asymptotically efficient among the class of estimators that
are linear combinations of Z when the errors are homoskedastic, we need to show
that, under homoskedasticity,

c'3e = ¢3¢ (18.62)

for all positive semidefinite matrices A and all (k + r + 1) X 1 vectors ¢, where
3558 = (Qyz07,0,x) "o [Equation (18.55)]. The inequality (18.62), which is
proven in Appendix 18.6, is the same efficiency criterion as is used in the multi-
variate Gauss—Markov theorem in Key Concept 18.3. Consequently, TSLS is the
efficient IV estimator under homoskedasticity, among the class of estimators in
which the instruments are linear combinations of Z.

The J-statistic under homoskedasticity. The J-statistic (Key Concept 12.6) tests
the null hypothesis that all the overidentifying restrictions hold against the alter-
native that some or all of them do not hold.

The idea of the J-statistic is that, if the overidentifying restrictions hold, u; will
be uncorrelated with the instruments and thus a regression of U on Z will have
population regression coefficients that all equal zero. In practice, U is not
observed, but it can be estimated by the TSLS residuals U,soa regression of Uon
Z should yield statistically insignificant coefficients. Accordingly, the TSLS J-statistic
is the homoskedasticity-only F-statistic testing the hypothesis that the coefficients on
Z are all zero, in the regression of Uon Z, multiplied by (m + r + 1) so that the
F-statistic 1s in its asymptotic chi-squared form.

An explicit formula for the J-statistic can be obtained using Equation (7.13)
for the homoskedasticity-only F-statistic. The unrestricted regression is the regres-
sion of U on the m + r + 1 regressors Z, and the restricted regression has no
regressors. Thus, in the notation of Equation (7.13), SSRunm,,md U MZU and
SSRrestrtcted U’U SO SSRrestrtcted SSRunresmcted U U U MZU U PZU
and the J-statistic is

J=— vr.U _ (18.63)
UMU/(n —m —r—1)
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The method for computing the J-statistic described in Key Concept 12.6
entails testing only the hypothesis that the coefficients on the excluded instru-
ments are zero. Although these two methods have different computational steps,
they produce identical J-statistics (Exercise 18.14).

It is shown in Appendix 18.6 that, under the null hypothesis that E(i;,Z;) = 0,

T4 2 (18.64)

Generalized Method of Moments Estimation
in Linear Models

If the errors are heteroskedastic, then the TSLS estimator is no longer efficient
among the class of IV estimators that use linear combinations of Z as instruments.
The efficient estimator in this case is known as the efficient generalized method of
moments (GMM) estimator. In addition, if the errors are heteroskedastic, then the
J-statistic as defined in Equation (18.63) no longer has a chi-squared distribution.
However, an alternative formulation of the J-statistic, constructed using the efficient
GMM estimator, does have a chi-squared distribution with 7 — k degrees of freedom.

These results parallel the results for the estimation of the usual regression
model with exogenous regressors and heteroskedastic errors: If the errors are
heteroskedastic, then the OLS estimator is not efficient among estimators that are
linear in Y (the Gauss—-Markov conditions are not satisfied) and the homoskedasticity-
only F-statistic no longer has an F distribution, even in large samples. In the regres-
sion model with exogenous regressors and heteroskedasticity, the efficient estimator
is weighted least squares; in the IV regression model with heteroskedasticity, the
efficient estimator uses a different weighting matrix than TSLS, and the resulting
estimator is the efficient GMM estimator.

GMM estimation. Generalized method of moments (GMM) estimation is a gen-
eral method for the estimation of the parameters of linear or nonlinear models, in
which the parameters are chosen to provide the best fit to multiple equations,
each of which sets a sample moment to zero. These equations, which in the con-
text of GMM are called moment conditions, typically cannot all be satisfied
simultaneously. The GMM estimator trades off the desire to satisfy each of the
equations by minimizing a quadratic objective function.

In the linear IV regression model with exogenous variables Z, the class of
GMM estimators consists of all the estimators that are solutions to the quadratic
minimization problem in Equation (18.58). Thus the class of GMM estimators
based on the full set of instruments Z with different-weight matrices A is the same as
the class of IV estimators in which the instruments are linear combinations of Z.
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In the linear IV regression model, GMM is just another name for the class of
estimators we have been studying —that is, estimators that solve Equation (18.58).

The asymptotically efficient GMM estimator. Among the class of GMM estimators,
the efficient GMM estimator is the GMM estimator with the smallest asymptotic
variance matrix [where the smallest variance matrix is defined as in Equation
(18.62)]. Thus the result in Equation (18.62) can be restated as saying that TSLS is
the efficient GMM estimator in the linear model when the errors are homoskedastic.

To motivate the expression for the efficient GMM estimator when the errors
are heteroskedastic, recall that when the errors are homoskedastic, H [the vari-
ance matrix of Zu,; see Equation (18.50)] equals Q,z02, and the asymptotically
efficient weight matrix is obtained by setting A = (Z'Z)™!, which yields the TSLS
estimator. In large samples, using the weight matrix A = (Z'Z) ! is equivalent to
using A = (Qzz02)' = H ! This interpretation of the TSLS estimator suggests
that, by analogy, the efficient IV estimator under heteroskedasticity can be
obtained by setting A = H ! and solving

min,(Y — Xb)'ZH 'Z'(Y — Xb). (18.65)

This analogy is correct: The solution to the minimization problem in Equation
(18.65) is the efficient GMM estimator. Let BEIFGMM denote the solution to the
minimization problem in Equation (18.65). By Equation (18.59), this estimator is

BEMGMM — (X' ZH'Z'X) ' X'ZH'Z'Y. (18.66)

The asymptotic distribution of B¢ is obtained by substituting A = H ' into
Equation (18.60) and simplifying; thus

\/;( ’B“Eff.GMM ) _d N(o, EEff.GMM)’

where 3ECMM — (Q W, H'Q %) 7. (18.67)

The result that MM s the efficient GMM estimator is proven by showing that
c'3lWe = ¢'SEFOMMe for all vectors ¢, where 3% is given in Equation (18.60).
The proof of this result is given in Appendix 18.6.

Feasible efficient GMM estimation. The GMM estimator defined in Equation
(18.66) is not a feasible estimator because it depends on the unknown variance
matrix H. However, a feasible efficient GMM estimator can be computed by sub-
stituting a consistent estimator of H into the minimization problem of Equation
(18.65) or, equivalently, by substituting a consistent estimator of H into the for-
mula for BEFGMM i Equation (18.66).
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The efficient GMM estimator can be computed in two steps. In the first step,
estimate 3 using any consistent estimator. Use this estimator of 8 to compute the
residuals from the equation of interest, and then use these residuals to compute an
estimator of H. In the second step, use this estimator of H to estimate the optimal
weight matrix H-! and to compute the efficient GMM estimator. To be concrete, in
the linear IV regression model, it is natural to use the TSLS estimator in the first
step and to use the TSLS residuals to estimate H. If TSLS is used in the first step,
then the feasible efficient GMM estimator computed in the second step is

ﬁEff.GMM — (X,Zﬁ—lzlx)—erZﬁ—lz/Y’ (18.68)

where H is given in Equation (18.54).
Because H —— H ,\/ﬁ(ﬁEﬁ‘GMM — BEAGMM) 50 (Exercise 18.12), and

Vn (BEFGMM _ gy —4s N(0, S EIGMM) (18.69)

where 3E6MM = (Qy, H 'Q,x) "' [Equation (18.67)]. That is, the feasible two-
step estimator ﬁEffGMM in Equation (18.68) is, asymptotically, the efficient GMM
estimator.

The heteroskedasticity-robust J-statistic. The heteroskedasticity-robust
J-statistic, also known as the GMM J-statistic, is the counterpart of the TSLS-
based J-statistic, computed using the efficient GMM estimator and weight function.
That is, the GMM J-statistic is given by

oMM — 0™y H Y207 / n, (18.70)

where UMM =y — X BEIFGMM gre the residuals from the equation of interest,
estimated by (feasible) efficient GMM, and H'is the weight matrix used to com-
pute BEIGMM

Under the null hypothesis E(Zu;) = 0, MM —4s Xon—x (see Appendix 18.6).

GMM with time series data. The results in this section were derived under the IV
regression assumptions for cross—sectional data. In many applications, however,
these results extend to time series applications of IV regression and GMM.
Although a formal mathematical treatment of GMM with time series data is
beyond the scope of this book (for such a treatment, see Hayashi, 2000, Chapter 6),
we nevertheless will summarize the key ideas of GMM estimation with time series
data. This summary assumes familiarity with the material in Chapters 14 and 15.
For this discussion, it is assumed that the variables are stationary.



Summary 737

It is useful to distinguish between two types of applications: applications in
which the error term u, is serially correlated and applications in which u, is serially
uncorrelated. If the error term u, is serially correlated, then the asymptotic distri-
bution of the GMM estimator continues to be normally distributed, but the for-
mula for H in Equation (18.50) is no longer correct. Instead, the correct expression
for H depends on the autocovariances of Zu, and is analogous to the formula
given in Equation (15.14) for the variance of the OLS estimator when the error
term is serially correlated. The efficient GMM estimator is still constructed using
a consistent estimator of H; however, that consistent estimator must be computed
using the HAC methods discussed in Chapter 15.

If the error term u, is not serially correlated, then HAC estimation of H is
unnecessary and the formulas presented in this section all extend to time series
GMM applications. In modern applications to finance and macroeconometrics, it
is common to encounter models in which the error term represents an unexpected
or unforecastable disturbance, in which case the model implies that u, is serially
uncorrelated. For example, consider a model with a single included endogenous
variable and no included exogenous variables so that the equation of interest is
Y, = By + BiX, + u,. Suppose that an economic theory implies that «, is unpre-
dictable given past information. Then the theory implies the moment condition

E(ut‘ Yt—l’ Xt—la Zt—la Yt—Z’ Xt—2a Zt—27 cee ) = O’ (1871)

where Z,_; is the lagged value of some other variable. The moment condition in
Equation (18.71) implies that all the lagged variables Y, |, X, 1, Z,_1, Y;_, X,_»,
Z,_», ...are candidates for being valid instruments (they satisfy the exogeneity
condition). Moreover, because u,_; = Y,_; — By — BiX,;—1, the moment condi-
tion in Equation (18.71) is equivalent to E(u|u, 1, X;_1, Zi—1, ty—2, X, 1,
Z,_5,...) = 0. Because u, is serially uncorrelated, HAC estimation of H is
unnecessary. The theory of GMM presented in this section, including efficient
GMM estimation and the GMM J-statistic, therefore applies directly to time
series applications with moment conditions of the form in Equation (18.71), under
the hypothesis that the moment condition in Equation (18.71) is, in fact, correct.

Summary

1. The linear multiple regression model in matrix formis ¥ = X8 + U, where
Y is the n X 1 vector of observations on the dependent variable, X is the
n X (k + 1) matrix of n observations on the k + 1 regressors (including a
constant), B is the k + 1 vector of unknown parameters, and Uis the n X 1
vector of error terms.
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The OLS estimator is 3 = (X'X)"'X'Y. Under the first four least squares
assumptions in Key Concept 18.1, ﬁ is consistent and asymptotically nor-
mally distributed. If in addition the errors are homoskedastic, then the con-
ditional variance of @ is Var(ﬁ | X) = c2(X'X) L.

General linear restrictions on 3 can be written as the g equations R = r,
and this formulation can be used to test joint hypotheses involving multiple
coefficients or to construct confidence sets for elements of .

When the regression errors are i.i.d. and normally distributed, condi-
tional on X, B has an exact normal distribution and the homoskedasticity-
only 7- and F-statistics have exact ¢, ,jand F, , ., distributions,
respectively.

The Gauss—Markov theorem says that, if the errors are homoskedastic and
conditionally uncorrelated across observations and if E(«;/X) = 0, the OLS
estimator is efficient among linear conditionally unbiased estimators (that
is, OLS is BLUE).

If the error covariance matrix € is not proportional to the identity matrix,
and if  is known or can be estimated, then the GLS estimator is asymp-
totically more efficient than OLS. However, GLS requires that, in general,
u; be uncorrelated with all observations on the regressors, not just with X,
as is required by OLS, an assumption that must be evaluated carefully in
applications.

The TSLS estimator is a member of the class of GMM estimators of
the linear model. In GMM, the coefficients are estimated by mak-
ing the sample covariance between the regression error and the
exogenous variables as small as possible—specifically, by solving
min,[(Y — Xb)'Z]A[Z'(Y — Xb)], where A is a weight matrix. The
asymptotically efficient GMM estimator sets A = [ E(Z,Z;u?)]"!. When
the errors are homoskedastic, the asymptotically efficient GMM estima-
tor in the linear I'V regression model is TSLS.

Key Terms
Gauss—Markov conditions for infeasible GLS (726)
multiple regression (720) feasible GLS (726)
Gauss—Markov theorem for multiple generalized method of moments
regression (721) (GMM) (734)
generalized least squares efficient GMM (735)

(GLS) (723)
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18.1

18.2

18.3

18.4

18.5

A researcher studying the relationship between earnings and gen-
der for a group of workers specifies the regression model Y; =
Bo + X181 + X5B8, + u;, where X; is a binary variable that equals 1 if
the i" person is a female and X, is a binary variable that equals 1 if the i
person is a male. Write the model in the matrix form of Equation (18.2)
for a hypothetical set of n = 5 observations. Show that the columns of X
are linearly dependent so that X does not have full rank. Explain how you
would respecifiy the model to eliminate the perfect multicollinearity.

You are analyzing a linear regression model with 500 observations and one

regressor. Explain how you would construct a confidence interval for S if:

a. Assumptions #1 through #4 in Key Concept 18.1 are true, but you
think Assumption #5 or #6 might not be true.

b. Assumptions #1 through #5 are true, but you think Assumption #6
might not be true. (Give two ways to construct the confidence interval.)

¢. Assumptions #1 through #6 are true.

Suppose that Assumptions #1 through #5 in Key Concept 18.1 are true
but that Assumption #6 is not. Does the result in Equation (18.31) hold?
Explain.

Can you compute the BLUE estimator of B if Equation (18.41) holds and
you do not know 2? What if you know 2?

Construct an example of a regression model that satisfies the assumption
E(u;| X;) = 0but for which E(U | X) # 0,.
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Exercises

18.1 Consider the population regression of test scores against income and the
square of income in Equation (8.1).

18.2

18.3

18.4

a.

Write the regression in Equation (8.1) in the matrix form of Equation
(18.5). Define Y, X, U, and B.

Explain how to test the null hypothesis that the relationship between
test scores and income is linear against the alternative that it is qua-
dratic. Write the null hypothesis in the form of Equation (18.20).
What are R, r, and g?

Suppose that a sample of n = 20 households has the sample means and

sample covariances below for a dependent variable and two regressors:

( Sample Covariances h
Sample Means Y X, X,

Y 6.39 0.26 0.22 0.32

X, 7.24 0.80 0.28

X, 4.00 240

Calculate the OLS estimates of By, 8;, and 3,. Calculate s3. Calculate
the R? of the regression.

Suppose that all six assumptions in Key Concept 18.1 hold. Test the
hypothesis that 8; = 0 at the 5% significance level.

Let Wbe an m X 1 vector with covariance matrix 3y, where 3y is finite
and positive definite. Let ¢ be anonrandom m X 1 vectorandlet Q = ¢'W.

a.

b.

Show that var(Q) = ¢’ yec.
Suppose that ¢ # 0,,. Show that 0 < var(Q) < o°.

Consider the regression model Y; = B + B1X; + u; from Chapter 4 and
assume that the least squares assumptions in Key Concept 4.3 hold.

a. Write the model in the matrix form given in Equations (18.2) and (18.4).

Show that Assumptions #1 through #4 in Key Concept 18.1 are satisfied.

Use the general formula for Bin Equation (18.11) to derive the
expressions for ,éo and ,él given in Key Concept 4.2.

Show that the (1, 1) element of %z in Equation (18.13) is equal to the
expression for o-éo given in Key Concept 4.4.
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Let Py and My be as defined in Equations (18.24) and (18.25).

a. Prove that PyMy = 0, ., and that Py and My are idempotent.
b. Derive Equations (18.27) and (18.28).

¢. Show that rank(Py) = k + 1 andrank(My) = n— k — 1. [Hint:
First solve Exercise 18.10 and then use the fact that trace(AB) =
trace(BA) for conformable matrices A and B.]

Consider the regression model in matrix form, ¥ = X + Wy + U,
where X is an n X k; matrix of regressors and Wis an n X k, matrix of
regressors. Then, as shown in Exercise 18.17, the OLS estimator [% can
be expressed

B = (X'MyX) (X' MyY).

Now let ,éfv be the “binary variable” fixed effects estimator computed
by estimating Equation (10.11) by OLS and let BPM be the “de-meaning”
fixed effects estimator computed by estimating Equation (10.14) by OLS,
in which the entity-specific sample means have been subtracted from X
and Y. Use the expression for ﬁ given above to prove that ,éfv = BAf’M.
[Hint: Write Equation (10.11) using a full set of fixed effects, D1,, D2,,. ..,
Dn; and no constant term. Include all of the fixed effects in W. Write out
the matrix MyX.]

Consider the regression model Y; = BX; + B,W; + u;, where for simplicity
the intercept is omitted and all variables are assumed to have a mean of zero.
Suppose that X;is distributed independently of (W, u;) but W, and u; might be
correlated and let /§1 and ,éz be the OLS estimators for this model. Show that

a. Whether or not W, and u, are correlated, ,él —+5 ;.

b. If W, and u; are correlated, then j, is inconsistent.

c. Let ,é{ be the OLS estimator from the regression of Y on X (the
restricted regression that excludes W). Will B, have a smaller asymp-
totic variance than ,é{, allowing for the possibility that W, and u; are
correlated? Explain.

Consider the regression model Y; = By + B X; + u;, where u; = u; and
u; = 0.5u;  + u; fori = 2,3,...,n. Suppose that u; are i.i.d. with mean 0
and variance 1 and are distributed independently of X; for all i and j.

a. Derive an expression for E(UU") = ().
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18.9

18.10

18.11

b. Explain how to estimate the model by GLS without explicitly invert-
ing the matrix €. (Hint: Transform the model so that the regression
erTors are Uy, ty, . . . , Uy,.)

This exercise shows that the OLS estimator of a subset of the regres-
sion coefficients is consistent under the conditional mean independence
assumption stated in Appendix 7.2. Consider the multiple regression
model in matrix form Y = X3 + Wy + U, where X and W are, respec-
tively, n X kyand n X k, matrices of regressors. Let X; and W," denote the
i rows of X and W [as in Equation (18.3)]. Assume that (i) E(u;|X;, W,) =
W/6, where 8 is a k, X 1 vector of unknown parameters; (ii) (X;, W, Y))
are i.i.d.; (iii) (X;, W,, u;) have four finite, nonzero moments;
and (iv) there is no perfect multicollinearity. These are Assumptions
#1 through #4 of Key Concept 18.1, with the conditional mean inde-
pendence assumption (i) replacing the usual conditional mean zero
assumption.

a. Use the expression for ﬁ given in Exercise 18.6 to write [§ - B =
(' X' MyX) N (n ' X' MyU).

b. Show that n ' X' MyX —> Sxx — S xwEwwwx. where S yy =
E(X.X}), 2 xw = E(X;W/), and so forth. [The matrix A, —— A if
A, i > Ajforalli,j, where A, ; and A are the (i, j) elements of
A,and A.]

¢. Show that assumptions (i) and (ii) imply that E(U|X, W) = Wa.

d. Use (c) and the law of iterated expectations to show that
X' MyU —= 0 ;.

e. Use (a) through (d) to conclude that, under conditions (i) through (iv),
B—— B

Let C be a symmetric idempotent matrix.

a. Show that the eigenvalues of C are either O or 1. (Hint: Note that Cq = yq
implies 0 = Cq — yq = CCq — yq = yCq — yq = v’q — yq and
solve for y.)

b. Show that trace(C) = rank(C).

¢. Letdbeann X 1 vector. Show that d'Cd = 0.

Suppose that Cis an n X n symmetric idempotent matrix with rank r and
let V.~ N, I,).
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18.13

18.14

a.

b

C.

Exercises 743

Show that C = A A’, where A isn X rwith A’A = I,. (Hint: Cis
positive semidefinite and can be written as QA Q’, as explained in
Appendix 18.1.)

Show that A’V ~ N(0, 1,).

Show that V'CV ~ x?2

Show that ﬁEfﬁGMM is the efficient GMM estimator —that is, that
BETGMM i Equation (18.66) is the solution to Equation (18.65).
Show that \/n(BEFGMM — gEEGMM) Lo g,

Show that JOMM —<, X

Consider the problem of minimizing the sum of squared residuals, subject
to the constraint that Rb = r, where Ris g X (k + 1) with rank ¢q. Let B8
be the value of b that solves the constrained minimization problem.

a.

Show that the Lagrangian for the minimization problem is
L(b,y) = (Y- Xb)' (Y- Xb) + y'(Rb—r), where yisag X 1
vector of Lagrange multipliers.

b. Showthat B = B — (X’X) 'R'[R(X'X)"'R']"(RB — »).

Show that (Y — XB)'(Y — XB) — (Y — XB)(Y — XP) =

(RB — 1)'[RX'X)'RT'(RB — ).

Show that F in Equation (18.36) is equivalent to the homoskedasticity-
only F-statistic in Equation (7.13).

Consider the regression model Y = X + U. Partition X as [X; X,]and 8
as [B1 B3], where X| has k; columns and X, has k, columns. Suppose that
XﬁY = 0k2><1' LetR = [Ikl 0k1><k2]'

a.
b.

Show that B'(X'X)B = (RB)'[R(X'X) 'R (R).

Consider the regression described in Equation (12.17). Let W =

1 W, W, ... W], wherelisann X 1 vector of ones, W, is the
n X 1 vector with i element W;;, and so forth. Let U™ denote the
vector of two-stage least squares residuals.

i. Show that W UTSLS = ¢,

ii. Show that the method for computing the J-statistic described in Key
Concept 12.6 (using a homoskedasticity-only F-statistic) and the
formula in Equation (18.63) produce the same value for the J-statistic.
[Hint: Use the results in (a), (b, 1), and Exercise 18.13.]
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18.15 (Consistency of clustered standard errors.) Consider the panel datamodel Y;; =
BX; + «; + u;, where all variables are scalars. Assume that Assumptions #1, #2,
and #4 in Key Concept 10.3 hold and strengthen Assumption #3 so that X, and
u; have eight nonzero finite moments. Let M = I — T 'w’,wherevisa T X 1
vector of ones. Alsolet Y; = (Y;; Yp -+ Yip), Xi= (X Xp - Xip)/,
= (uy up -+ wgp),Y;=MY,X, = MX, and #; = Mu,. For the
asymptotic calculations in this problem, suppose that 7'is fixedandn —— .

a. Show that the fixed effects estimator of 8 from Section 10.3 can be
written as 8 = (3L, X/ X)) ' 21 XY,

b. Show that ,é - B = (2?215(/ ’“i)—12?:15(;ui. (Hint: M is idempotent.)

c letQy= T_lE(Xi’j(i) and Q); = ,}72?=12,T:1)~(,~2r Show that QA)} —15 05

d. Letn, = Xu; / \/T and a',27 = var(m;). Show that \/%Eflmi -4 MO, 072,).

e. Use your answers to (b) through (d) to prove Equation (10.25); that
is, show that \VnT(B — B) —=> N(0, 02/ 0%).

f. Let 5-%7611,”6,85, be the infeasible clustered variance estimator,

computed using the true errors instead of the residuals so that

2.

g Letwt; = ¥, — BX;and 62 susierca = w1 nr i (X; 1;)? [this is
Equation (10.27) in matrix form]. Show that 6-%7 clustered ——> o-%.

[Hint: Use an argument like that used in Equation (17.16) to show

2 1 n v’ \2 ~2 p
Oy clustered — ﬁ2i=1(Xiui) . Show that O o clustered o

A p
that crf,, clustered — O, clustered — > 0 and then use your answer

to (f).]
18.16 This exercise takes up the problem of missing data discussed in Section
9.2. Consider the regression model Y; = X;8 + u;,i = 1,...,n, where

all variables are scalars and the constant term/intercept is omitted for
convenience.

a. Suppose that the least squares assumptions in Key Concept 4.3 are
satisfied. Show that the least squares estimator of 8 is unbiased and
consistent.

b. Now suppose that some of the observations are missing. Let /; denote
a binary random variable that indicates the nonmissing observations;
that is, /; = 1 if observation i is not missing and /; = 0 if observation
i is missing. Assume that {/,, X,, u;} are i.i.d.
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i. Show that the OLS estimator can be written as

-1

n -1/ n n n
B= <EIiXiX/> <EI,~X,~Y,-> =B+ <EI,-X,~X,~’> <EI,-Xiui>,
i=1 i=1 i=1 i=1

ii. Suppose that data are missing, “completely at random,” in the
sense that Pr(I; = 1|X,u;) = p, where p is a constant. Show that B
is unbiased and consistent.

iii. Suppose that the probability that the i observation is missing
depends of X;, but not on u;; that is, Pr(I; = 1]X;, u;) = p(X)).
Show that ,é is unbiased and consistent.

iv. Suppose that the probability that the i observation is missing
depends on both X; and u;; thatis, Pr(l; = 1|X;, u;) = p(X;, u;). Is
,é unbiased? Is ,é consistent? Explain.

¢. Suppose that 8 = 1 and that X; and u; are mutually independent
standard normal random variables [so that both X; and u; are dis-
tributed N(0, 1)]. Suppose that I; = 1 when Y; = 0, but /; = 0 when

Y, <O0.Is ,é unbiased? Is ff consistent? Explain.

18.17 Consider the regression model in matrix form Y = X + Wy + U,
where X and W are matrices of regressors and 8 and y are vectors of
unknown regression coefficients. Let X = MyX and Y = MyY, where
My =1— WWW)'W.

a. Show that the OLS estimators of 8 and y can be written as

[[; B [X’X X'w *[X/Y
v WX WW W'Y
b. Show that
|:X’X xw |t
wXxX WWw
_ (X' MyX)™! —(X'MuX)"' X' WW'W)!
_(W/W)—lw/X(X/MWX)—l (W/W)—l + (W/W)—lw/X(X/MWX)—lX/W(W/m—l :

(Hint: Show that the product of the two matrices is equal to the iden-
tity matrix.)
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¢. Show that B = (X'MyX) ' X'MyY.

d. The Frisch-Waugh theorem (Appendix 6.2) says that B =
(X'X)"'X'Y. Use the result in (c) to prove the Frisch-Waugh
theorem.

Summary of Matrix Algebra

This appendix summarizes vectors, matrices, and the elements of matrix algebra used in
Chapter 1. The purpose of this appendix is to review some concepts and definitions from

a course in linear algebra, not to replace such a course.

Definitions of Vectors and Matrices

A vector is a collection of n numbers or elements, collected either in a column (a column
vector) or in a row (a row vector). The n-dimensional column vector b and the n-dimensional

TOwW vector ¢ are

by

where b, is the first element of b and in general b, is the i element of b.

Throughout, a boldface symbol denotes a vector or matrix.

A matrix is a collection, or an array, of numbers or elements in which the elements are
laid out in columns and rows. The dimension of a matrix is n X m, where n is the number

of rows and m is the number of columns. The n X m matrix A is

ap  ap T Am

ayy dxp e ap
A=|" : . 7,

ap1 4y e Apym

ith

where a;; is the (i, j) element of A, that is, a;; is the element that appears in the i row and j

i
column. An n X m matrix consists of n row vectors or, alternatively, of m column vectors.
To distinguish one-dimensional numbers from vectors and matrices, a one-dimensional

number is called a scalar.
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Types of Matrices

Square, symmetric, and diagonal matrices. A matrix is said to be square if the number of
rows equals the number of columns. A square matrix is said to be symmetric if its (i, j) ele-
ment equals its (j, /) element. A diagonal matrix is a square matrix in which all the off-

diagonal elements equal zero; that is, if the square matrix A is diagonal, then a; = Ofori # j.

Special matrices. Animportant matrix is the identity matrix, ,, which is an n X n diago-
nal matrix with ones on the diagonal. The null matrix, 0,,,,, is the n X m matrix with all

elements equal to zero.

The transpose. The transpose of a matrix switches the rows and the columns. That is, the
transpose of a matrix turns the n X m matrix A into the m X n matrix, which is denoted
by A’, where the (i, j) element of A becomes the (j, i) element of A'; said differently, the
transpose of the matrix A turns the rows of A into the columns of A". If a; is the (i, j)

element of A, then A’ (the transpose of A) is

ap  dax T apy
A= | %2 b2 A
A, Qo e Aym

The transpose of a vector is a special case of the transpose of a matrix. Thus the transpose
of a vector turns a column vector into a row vector; that is, if b is an n X 1 column vector,

then its transpose is the 1 X n row vector
b= 1[b, b, -+ bl

The transpose of a row vector is a column vector.

Elements of Matrix Algebra: Addition and Multiplication

Matrix addition. Two matrices A and B that have the same dimensions (for example, that
are both n X m) can be added together. The sum of two matrices is the sum of their ele-
ments; thatis, if C = A + B, thenc; = a; + b;. A special case of matrix addition is vec-
tor addition: If @ and b are both n X 1 column vectors, then their sum ¢ = a + b is the

element-wise sum; thatis,c; = a; + b;.

Vector and matrix multiplication. Let a and b be two n X 1 column vectors. Then the
product of the transpose of a (which is itself a row vector) with bis a’'b = X;_,ab;. Apply-
ing this definition with b = ayieldsa'a = X/_; az.

Similarly, the matrices A and B can be multiplied together if they are conformable —

that is, if the number of columns of A equals the number of rows of B. Specifically, suppose
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that A has dimension n X m and B has dimension m X r. Then the product of A and B is
ann X rmatrix, C; that is, C = AB, where the (i, j) element of Cis ¢; = E',?:laikbkj. Said
differently, the (i, j) element of AB is the product of multiplying the row vector that is the
i™ row of A with the column vector that is the j® column of B.

The product of a scalar d with the matrix A has the (i, j) element da;; that is, each
element of A is multiplied by the scalar d.

Some useful properties of matrix addition and multiplication. Let A and B be matrices.
Then:

a. A+ B=B+A;

b. (A+B)+C=A+ (B+ C);

¢ (A+B)' =A + B';

d. IfAisn X m,then AI,, = Aand I,LA = A;

e. A(BC) = (AB)C;

f. (A+ B)C =AC + BC;and

g. (AB)' = B'A.

In general, matrix multiplication does not commute; that is, in general AB # BA,
although there are some special cases in which matrix multiplication commutes; for exam-
ple, if A and B are both n X n diagonal matrices, then AB = BA.

Matrix Inverse, Matrix Square Roots, and Related Topics

The matrix inverse. Let A be a square matrix. Assuming that it exists, the inverse of the
matrix A is defined as the matrix for which A'A = I,. If in fact the inverse matrix A~!
exists, then A is said to be invertible or nonsingular. If both A and B are invertible, then
(AB) = B'A7".

Positive definite and positive semidefinite matrices. Let V be an n X n square matrix.
Then V is positive definite if ¢'Vc > 0 for all nonzero n X 1 vectors c. Similarly, V is
positive semidefinite if ¢' Ve = 0 for all nonzero n X 1 vectors c. If V'is positive definite,

then it is invertible.

Linear independence. The n X 1vectors a; and a, are linearly independent if there do not exist
nonzero scalars ¢; and ¢, such that ¢;a; + c,a, = 0,;. More generally, the set of k vectors
a, a,, ..., a;are linearly independent if there do not exist nonzero scalars ¢y, ¢,, . . . , ¢, such
that cja; + ca, + -+ - + cpa, = 0,,«1.
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The rank of amatrix. The rank of the n X m matrix A is the number of linearly independ-
ent columns of A. The rank of A is denoted rank(A). If the rank of A equals the number
of columns of A, then A is said to have full column rank. If the n X m matrix A has full
column rank, then there does not exist a nonzero m X 1 vector c¢ such that Ac = 0,5 ;. If
Aisn X nwithrank(A) = n,then A is nonsingular. If the n X m matrix A has full column

rank, then A’'A is nonsingular.

The matrixsquare root. Let V' be ann X nsquare symmetric positive definite matrix. The
matrix square root of Vis defined to be an n X n matrix F such that F'F = V. The matrix
square root of a positive definite matrix will always exist, but it is not unique. The matrix
square root has the property that FV 'F’ = I,,. In addition, the matrix square root of a

positive definite matrix is invertible, so F' 'VF ™1 = I,.

Eigenvalues and eigenvectors. Let A be an n X n matrix. If the n X 1 vector g and the
scalar A satisfy Aq = Aq, where q'q = 1, then A is an eigenvalue of A, and ¢ is the eigen-
vector of A associated with that eigenvalue. An n X n matrix has n eigenvalues, which
need not take on distinct values, and n eigenvectors.

If Vis an n X n symmetric positive definite matrix, then all the eigenvalues of V are
positive real numbers, and all the eigenvectors of V are real. Also, V can be written in
terms of its eigenvalues and eigenvectors as V = QAQ’, where A is a diagonal n X n
matrix with diagonal elements that equal the eigenvalues of V, and Q is an n X n matrix
consisting of the eigenvectors of V, arranged so that the i column of Q is the eigenvector
corresponding to the eigenvalue that is the i diagonal element of A. The eigenvectors are

orthonormal, so Q'Q = I,,.

Idempotent matrices. A matrix C is idempotent if C is square and CC = C. If C is an
n X nidempotent matrix that is also symmetric, then C is positive semidefinite and C
has r eigenvalues that equal 1 and n — r eigenvalues that equal 0, where r = rank(C)
(Exercise 18.10).

Multivariate Distributions

This appendix collects various definitions and facts about distributions of vectors of ran-
dom variables. We start by defining the mean and covariance matrix of the n-dimensional
random variable V. Next we present the multivariate normal distribution. Finally, we sum-
marize some facts about the distributions of linear and quadratic functions of jointly nor-

mally distributed random variables.
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The Mean Vector and Covariance Matrix

The first and second moments of an m X 1 vector of random variables, V =
(Vy V, -+ V,)', are summarized by its mean vector and covariance matrix.

Because Vis a vector, the vector of its means—that is, its mean vector —is E(V) = py.
The i element of the mean vector is the mean of the i element of V.

The covariance matrix of V'is the matrix consisting of the variance var(V,),i = 1,...,m,
along the diagonal and the (i, j) off-diagonal elements cov(V; V)). In matrix form, the

covariance matrix Xy is

var(V) e cov(VL, V)
Sy = E[(V—pn)(V - my)]= : E (18.72)

cov(V,,, V) - var(V,,)

The Multivariate Normal Distribution

The m X 1 vector random variable V has a multivariate normal distribution with mean

vector py and covariance matrix 3y if it has the joint probability density function

= ! X _1 _ ry—1 _
W = a2V w2V en (1873

where det(2 y) is the determinant of the matrix 2 y. The multivariate normal distribution
is denoted N(py, 2 y).

An important fact about the multivariate normal distribution is that if two jointly
normally distributed random variables are uncorrelated (equivalently, have a block-diagonal
covariance matrix), then they are independently distributed. That is, let V; and V, be
jointly normally distributed random variables with respective dimensions m; X 1 and
m, X 1. Then if cov(Vy, V3) = E[(V1 — py) (V2 — my,)'] = 0, 5m,» V1 and V), are
independent.

If {V;} are ii.d. N(0, 02), then %y = 031, and the multivariate normal distribution

simplifies to the product of m univariate normal densities.

Distributions of Linear Combinations and Quadratic
Forms of Normal Random Variables
Linear combinations of multivariate normal random variables are themselves normally

distributed, and certain quadratic forms of multivariate normal random variables have a

chi-squared distribution. Let V' be an m X 1random variable distributed N(pmy, 2 y), let A
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and B be nonrandom a X m and b X m matrices, and let d be a nonrandom a X 1 vector.
Then

d + AVis distributed N(d + Apy, AZyA'); (18.74)

cov (AV,BV) = A yB’; (18.75)

if A B’ = 0,4, then AV and BV are independently distributed; and (18.76)
(V = py) 23V — py) is distributed x2, (18.77)

Let U be an m-dimensional multivariate standard normal random variable with distribu-

tion N(0, Z,,). If C is symmetric and idempotent, then
U'CU has a y? distribution, where r = rank(C). (18.78)

Equation (18.78) is proven as Exercise 18.11.

Derivation of the Asymptotic Distribution of[§

This appendix provides the derivation of the asymptotic normal distribution of \/};([;' - B)
given in Equation (18.12). An implication of this result is that g —2— B.

First consider the “denominator” matrix X'X /n = %>, X;X} in Equation (18.15). The
(j, [) element of this matrix is £ 31— Xj;X;. By the second assumption in Key Concept 18.1,
X; isiid., so X; X is i.i.d. By the third assumption in Key Concept 18.1, each element of
X; has four moments, so, by the Cauchy-Schwarz inequality (Appendix 17.2), X;; X;; has two
moments. Because X;Xj; is i.i.d. with two moments, > XjiX; obeys the law of large
numbers, so 37—, Xji X £ E(Xj; X;;). This is true for all the elements of X'X/n, so
X'X/n == E(XX]) = Q.

Next consider the “numerator” matrix in Equation (18.15), X'U/ Vi = \/,l;E?:lV,-,
where V; = Xu,. By the first assumption in Key Concept 18.1 and the law of iterated
expectations, E(V;) = E[X;E(u|X;)] = 0,.,. By the second least squares assumption,
V;isii.d. Let ¢ be a finite k + 1 dimensional vector. By the Cauchy-Schwarz inequality,
E[(c'V)?] = E[(c¢'Xu,)’] = E[(c'X)* ()] = VE[(c'X))*]E(u}), which is finite by the
third least squares assumption. This is true for every such vector ¢, so E(V;V)) = Xy is
finite and, we assume, positive definite. Thus the multivariate central limit theorem of Key
Concept 18.2 applies to VAS! v, = %X 'U; that is,

1
——X'U = N0y, 3y). (18.79)

Vi
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The result in Equation (18.12) follows from Equations (18.15) and (18.79), the consist-
ency of X'X /n, the fourth least squares assumption (which ensures that (X'X) ! exists),

and Slutsky’s theorem.

Derivations of Exact Distributions of OLS Test
Statistics with Normal Errors

This appendix presents the proofs of the distributions under the null hypothesis of the
homoskedasticity-only #-statistic in Equation (18.35) and the homoskedasticity-only F-statistic
in Equation (18.37), assuming that all six assumptions in Key Concept 18.1 hold.

Proof of Equation (18.35)

If (i) Z has a standard normal distribution, (i) W has a x2, distribution, and (iii) Z and W
are independently distributed, then the random variable Z / V' W /m has the t-distribution
with m degrees of freedom (Appendix 17.1). To put 7 in this form, notice that
) = (s%{ Joh)3 21x- Then rewrite Equation (18.34) as

+ (Bj - Bj,U)/m
VWn -k -1)

(18.80)
where W = (n—k —1)(s2 /o2), and let Z = (B, — Bo)/ V(S px)jand m = n—k - 1.
With these definitions, 1 = Z/\/W/m. Thus, to prove the result in Equation (18.35), we

must show (i) through (iii) for these definitions of Z, W, and m.

i. An implication of Equation (18.30) is that, under the null hypothesis, Z =
(éj — Bjo)/ V(2 x); has an exact standard normal distribution, which shows (i).
ii. From Equation (18.31), W is distributed as 2 __, which shows (ii).

iii. To show (iii), it must be shown that éj and s3 are independently distributed.

From Equations (18.14) and (18.29), B-B= (X'X)"'X'U and 53 = (MyU) (MyU)/
(n — k — 1). Thus B — Band s? are independent if (X'X)'X'U and MU are independ-
ent. Both (X'X)"'X'U and MU are linear combinations of U, which has an N(0,,, o21,,)
distribution, conditional on X. But because MyX(X'X)™! = 0, k+1) [Equation (18.26)], it
follows that (X'X)"'X'U and MU are independently distributed [Equation (18.76)]. Con-

sequently, under all six assumptions in Key Concept 18.1,
B and s3 are independently distributed, (18.81)

which shows (iii) and thus proves Equation (18.35).
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Proof of Equation (18.37)

The F,, ,, distribution is the distribution of (W, /n;)/(W,/n,), where (i) W, is distributed
xa; (i) W, is distributed x; ; and (iii) W, and W, are independently distributed (Appendix
17.1). To express F in this form, let W, = (RB — r)'[RX'X)"'R'¢2] '(RB - r) and
W, = (n—-k—1)s2 /o Substitution of these definitions into Equation (18.36) shows that
F = (W,/q)/[W,/(n — k — 1)]. Thus, by the definition of the F distribution, F has an
F, , k-1 distribution if (i) through (iii) hold with n; = gandn, = n -k - 1.
i. Under the null hypothesis, RB — r = R( — B). Because f has the conditional
normal distribution in Equation (18.30) and because R is a nonrandom matrix,
R(B — B) is distributed N(0,»;, R(X'X)'R'02), conditional on X. Thus, by
Equation (18.77) in Appendix 18.2, (Rﬁ’ - r'[R(X'X)R'o?, 71(R[§' — r) is dis-
tributed XZ, proving (i).
ii. Requirement (ii) is shown in Equation (18.31).
iii. It has already been shown that B — Bands? are independently distributed [Equa-
tion (18.81)]. It follows that R — r and s3 are independently distributed, which
in turn implies that W, and W, are independently distributed, proving (iii) and

completing the proof.

Proof of the Gauss—Markov Theorem
for Multiple Regression

This appendix proves the Gauss—Markov theorem (Key Concept 18.3) for the multiple
regression model. Let E be a linear conditionally unbiased estimator of 8 so that E =AY
and E(B | X) = B, where A is an n X (k + 1) matrix that can depend on X and nonran-
dom constants. We show that Var(c’ﬁ) = var(c¢'B) for all k + 1 dimensional vectors c,
where the inequality holds with equality only if B = B.

Because B is linear, it can be written as g = A'Y = AXB+U)=(AX)B + AU.
By the first Gauss-Markov condition, E(U|X) = 0,,x,s0 E( B |X) = (A’X)p, but because
B is conditionally unbiased, E(B|X) = B = (A'X)B, which implies that AX = I, ;.
Thus B = B + AU, so var(B|X) = var(AU|X) = E(AUU'A|X) = AE(UU'|X)A =
o02A'A, where the third equality follows because A can depend on X but not U, and the
final equality follows from the second Gauss—Markov condition. That is, if B is linear and

unbiased, then under the Gauss—-Markov conditions,
AX = I, and var(B|X) = 02 AA. (18.82)

The results in Equation (18.82) also apply to BwithA = A = X(X'X)"!, where (X'X)!
exists by the third Gauss—Markov condition.
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Now let A = A + D so that D is the difference between the matrices A and A.
Note that A'A = (X'X)"'X'A = (X'’X)"' [by Equation (18.82)] and AA =
X'X)'XXX'X) "' =(XX)Lso AD=A(A—-A) =A'A—-A'A= 04 )xu+ 1)
Substituting A = A + D into the formula for the conditional variance in Equation
(18.82) yields

var(B|X) = 0%(A + D)'(A + D)
=¢2[A’A + A'D + D'A + D'D]
= o2(X'X) ! + ¢2D'D, (18.83)
where the final equality uses the facts A’A = (X'X)"'and AD = O+ 1yx(k+ 1)
Because Var(ﬁ\X) = ¢2(X'X)"!, Equations (18.82) and (18.83) imply that
var(B |X) — var(B 'X) = ¢2D'D. The difference between the variances of the two estima-
tors of the linear combination ¢’ thus is
var (' B|X) — Var(c’ﬁ\X) = ¢2¢'D'Dc = 0. (18.84)

The inequality in Equation (18.84) holds for all linear combinations ¢’B, and the inequality
holds with equality for all nonzero ¢ only if D = 0, +,)—thatis, if A = A or, equiva-
lently, B = B. Thus ¢’ has the smallest variance of all linear conditionally unbiased esti-
mators of ¢’ B; that is, the OLS estimator is BLUE.

Proof of Selected Results for IV
and GMM Estimation

The Efficiency of TSLS Under Homoskedasticity
[Proof of Equation (18.62)]

When the errors u; are homoskedastic, the difference between 3/ [Equation (18.61)] and
3 T5LS [Equation (18.55)] is given by

S — 3B = (0xzAQ7zx) 'OxzA Q22A02x(Qx7A02x) "0k — (0x207202x) ‘0%
= (OxzA0zx) 'OxzA[Q77 — Ozx(0x2077 Ozx) 'Oxz]AQ7x(QxzAQzx) ‘o7, (18.85)

where the second term in brackets in the second equality follows from
(0OxzAQz%) '0xzAQ,x = I .+ 1) Let Fbe the matrix square root of @,,,s0 Qzz = F'F
and @7, = F'F~".[The latter equality follows from noting that (F'F)"! = F~'F'"! and
F'! = F~" ] Then the final expression in Equation (18.85) can be rewritten to yield

W - 35 = (QxzAQ7%) ' OxzAF'[I — F V' Qzx(QxzF 'F ' Qzx) ' OxzF ']
X FAQzx(QxzAQzx) ‘o2, (18.86)



