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T his chapter provides an introduction to the theory of multiple regression analy-
sis. The chapter has four objectives. The first is to present the multiple regression 

model in matrix form, which leads to compact formulas for the OLS estimator and 
test statistics. The second objective is to characterize the sampling distribution of the 
OLS estimator, both in large samples (using asymptotic theory) and in small samples 
(if the errors are homoskedastic and normally distributed). The third objective is to 
study the theory of efficient estimation of the coefficients of the multiple regression 
model and to describe generalized least squares (GLS), a method for estimating the 
regression coefficients efficiently when the errors are heteroskedastic and/or corre-
lated across observations. The fourth objective is to provide a concise treatment of 
the asymptotic distribution theory of instrumental variables (IV) regression in the  
linear model, including an introduction to generalized method of moments (GMM) 
estimation in the linear IV regression model with heteroskedastic errors.

The chapter begins by laying out the multiple regression model and the OLS 
estimator in matrix form in Section 18.1. This section also presents the extended 
least squares assumptions for the multiple regression model. The first four of these 
assumptions are the same as the least squares assumptions of Key Concept 6.4 and 
underlie the asymptotic distributions used to justify the procedures described in 
Chapters 6 and 7. The remaining two extended least squares assumptions are 
stronger and permit us to explore in more detail the theoretical properties of the 
OLS estimator in the multiple regression model.

The next three sections examine the sampling distribution of the OLS estimator 
and test statistics. Section 18.2 presents the asymptotic distributions of the OLS 
 estimator and t-statistic under the least squares assumptions of Key Concept 6.4. 
Section 18.3 unifies and generalizes the tests of hypotheses involving multiple coef-
ficients presented in Sections 7.2 and 7.3, and provides the asymptotic distribution of 
the resulting F-statistic. In Section 18.4, we examine the exact sampling distributions 
of the OLS estimator and test statistics in the special case that the errors are homo-
skedastic and normally distributed. Although the assumption of homoskedastic 
normal errors is implausible in most econometric applications, the exact sampling 
distributions are of theoretical interest, and p-values computed using these distri-
butions often appear in the output of regression software.
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The next two sections turn to the theory of efficient estimation of the coefficients 
of the multiple regression model. Section 18.5 generalizes the Gauss–Markov theorem 
to multiple regression. Section 18.6 develops the method of generalized least 
squares (GLS).

The final section takes up IV estimation in the general IV regression model 
when the instruments are valid and strong. This section derives the asymptotic  
distribution of the TSLS estimator when the errors are heteroskedastic and provides 
expressions for the standard error of the TSLS estimator. The TSLS estimator is one 
of many possible GMM estimators, and this section provides an introduction to 
GMM estimation in the linear IV regression model. It is shown that the TSLS estimator 
is the efficient GMM estimator if the errors are homoskedastic.

Mathematical prerequisite. The treatment of the linear model in this chapter uses 
matrix notation and the basic tools of linear algebra and assumes that the reader 
has taken an introductory course in linear algebra. Appendix 18.1 reviews vectors, 
matrices, and the matrix operations used in this chapter. In addition, multivariate 
calculus is used in Section 18.1 to derive the OLS estimator.

 18.1 The Linear Multiple Regression Model  
and OLS Estimator in Matrix Form

The linear multiple regression model and the OLS estimator can each be repre-
sented compactly using matrix notation.

The Multiple Regression Model in Matrix Notation
The population multiple regression model (Key Concept 6.2) is

 Yi = b0 + b1X1i + b2X2i +  g+  bkXki + ui, i = 1, c, n. (18.1)

To write the multiple regression model in matrix Borm, deBine the Bollowing vectors 
and matrices:

Y = ±

Y1

Y2
f
Yn

≤ , U = ±

u1

u2

 f
un

≤ , X = ±

1 X11 g Xk1

1 X12 g Xk2
f f f f
1 X1n g Xkn

≤ = ±

X�1
X �2
f
X�n

≤ , and B = ±

b0

b1

f
bk

≤ , (18.2)
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so Y is n * 1, X is n * (k + 1), U is n * 1, and B is (k + 1) * 1. Throughout we 
denote matrices and vectors by bold type. In this notation,

• Y is the n * 1 dimensional vector oB n observations on the dependent 
 variable.

• X is the n * (k + 1) dimensional matrix oB n observations on the k + 1 
regressors (including the “constant” regressor Bor the intercept).

• The (k + 1) * 1 dimensional column vector Xi is the ith observation on 
the k + 1 regressors; that is, X�i = (1 X1icXki), where X�i  denotes the 
transpose oB Xi.

• U is the n * 1 dimensional vector oB the n error terms.

• B is the (k + 1) * 1 dimensional vector oB the k + 1 unknown regression 
coeBfcients.

The multiple regression model in Equation (18.1) Bor the ith observation, writ-
ten using the vectors B and Xi, is

 Yi = X�i B + ui, i = 1 ,c, n. (18.3)

T52 ext2nd2d L2.st Squ.r2s assum<tions  
in t52 Multi<l2 R2gr2ssion Mod2l

The linear regression model with multiple regressors is

 Yi = X�i B + ui, i = 1, c, n. (18.4)

The extended least squares assumptions are

 1. E(ui 
Xi) = 0 (ui has conditional mean zero);

 2. (Xi, Yi), i = 1, c, n, are independently and identically distributed (i.i.d.) 
draws Brom their joint distribution;

 3. Xi and ui have nonzero Binite Bourth moments;

 4. X has Bull column rank (there is no perBect multicollinearity);

 5. var(ui 
Xi) = s2
u (homoskedasticity); and

 6. The conditional distribution oB ui given Xi is normal (normal errors).

Key ConCept

18.1
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In Equation (18.3), the Birst regressor is the “constant” regressor that always 
equals 1, and its coeBBicient is the intercept. Thus the intercept does not appear 
separately in Equation (18.3); rather, it is the Birst element oB the coeBBicient 
vector B.

Stacking all n observations in Equation (18.3) yields the multiple regression 
model in matrix Borm:

 Y = XB + U. (18.5)

The Extended Least Squares Assumptions
The extended least squares assumptions Bor the multiple regressor model are the 
Bour least squares assumptions Bor the multiple regression model in Key Concept 
6.4, plus the two additional assumptions oB homoskedasticity and normally distrib-
uted errors. The assumption oB homoskedasticity is used when we study the eBBi-
ciency oB the OLS estimator, and the assumption oB normality is used when we 
study the exact sampling distribution oB the OLS estimator and test statistics.

The extended least squares assumptions are summarized in Key Concept 18.1.
Except Bor notational diBBerences, the Birst three assumptions in Key 

 Concept 18.1 are identical to the Birst three assumptions in Key Concept 6.4.
The Bourth assumption in Key Concepts 6.4 and 18.1 might appear diBBerent, 

but in Bact they are the same: They are simply diBBerent ways oB saying that there 
cannot be perBect multicollinearity. Recall that perBect multicollinearity arises 
when one regressor can be written as a perBect linear combination oB the others. 
In the matrix notation oB Equation (18.2), perBect multicollinearity means that 
one column oB X is a perBect linear combination oB the other columns oB X, but iB 
this is true, then X does not have Bull column rank. Thus saying that X has rank 
k + 1, that is, rank equal to the number oB columns oB X, is just another way to 
say that the regressors are not perBectly multicollinear.

The BiBth least squares assumption in Key Concept 18.1 is that the error term 
is conditionally homoskedastic, and the sixth assumption is that the conditional 
distribution oB ui, given Xi, is normal. These two assumptions are the same as the 
Binal two assumptions in Key Concept 17.1, except that they are now stated Bor 
multiple regressors.

Implications for the mean vector and covariance matrix of U. The least squares 
assumptions in Key Concept 18.1 imply simple expressions Bor the mean vector 
and covariance matrix oB the conditional distribution oB U given the matrix oB 
regressors X. (The mean vector and covariance matrix oB a vector oB random 
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variables are deBined in Appendix 18.2.) SpeciBically, the Birst and second assump-
tions in Key Concept 18.1 imply that E(ui 
X) = E(ui 
Xi) = 0 and that 
cov(ui, uj 0X  ) = E(uiuj 0X) = E(uiuj 0Xi, Xj) = E(ui 0Xi)E(uj 0Xj) = 0 Bor i ≠ j 
(Exercise 17.7). The Birst, second, and BiBth assumptions imply that 
E(u2

i 0X) = E(u2
i 0Xi) = s2

u. Combining these results, we have that

 under Assumptions #1 and #2, E(U 0X) = 0n, and (18.6)

 under Assumptions #1, #2, and #5, E(UU� 0X) = s2
uIn, (18.7)

where 0n is the n-dimensional vector oB zeros and In is the n * n identity matrix.
Similarly, the Birst, second, BiBth, and sixth assumptions in Key Concept 18.1 

imply that the conditional distribution oB the n-dimensional random vector U, 
conditional on X, is the multivariate normal distribution (deBined in Appen-
dix 18.2). That is,

 under Assumptions #1, #2, #5, and #6, the 
 conditional distribution oB U given X is N(0n, s2

uIn). (18.8)

The OLS Estimator
The OLS estimator minimizes the sum oB squared prediction mistakes, 
gn

i = 1(Yi - b0 - b1X1i - g-  bkXki)
2 [Equation (6.8)]. The Bormula Bor the OLS 

estimator is obtained by taking the derivative oB the sum oB squared prediction 
mistakes with respect to each element oB the coeBBicient vector, setting these 
derivatives to zero, and solving Bor the estimator Bn .

The derivative oB the sum oB squared prediction mistakes with respect to the 
jth regression coeBBicient, bj, is

0
0bj
a
n

i= 1
(Yi - b0 - b1X1i - g-  bkXki)2

 = -2a
n

i= 1
Xji(Yi - b0 - b1X1i -g-  bkXki) (18.9)

Bor j = 0, c, k, where, Bor j = 0, X0i = 1 Bor all i. The derivative on the right-
hand side oB Equation (18.9) is the jth element oB the k + 1 dimensional vector, 
-2X′(Y - Xb), where b is the k + 1 dimensional vector consisting oB b0, c, bk. 
There are k + 1 such derivatives, each corresponding to an element oB b. Com-
bined, these yield the system oB k + 1 equations that, when set to zero, constitute 
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the Birst order conditions Bor the OLS estimator Bn . That is, Bn  solves the system oB 
k + 1 equations

 X�(Y - XBn) = 0k + 1, (18.10)

or, equivalently, X�Y = X�XBn .
Solving the system oB equations (18.10) yields the OLS estimator Bn  in matrix 

Borm:

 Bn = (X�X)-1X�Y, (18.11)

where (X�X )-1  is the inverse oB the matrix X�X .

The role of “no perfect multicollinearity.” The Bourth least squares assumption in 
Key Concept 18.1 states that X has Bull column rank. In turn, this implies that the 
matrix X�X has Bull rank, that is, X�X is nonsingular. Because X�X is nonsingular, it is 
invertible. Thus the assumption that there is no perBect multicollinearity ensures 
that (X�X)−1 exists, so Equation (18.10) has a unique solution and the Bormula in 
Equation (18.11) Bor the OLS estimator can actually be computed. Said diBBerently, 
iB X does not have Bull column rank, there is not a unique solution to Equation (18.10) 
and X�X is singular. ThereBore, (X�X)−1 cannot be computed and thus Bn  cannot be 
computed Brom Equation (18.11).

 18.2 Asymptotic Distribution of the OLS Estimator 
and t-Statistic

IB the sample size is large and the Birst Bour assumptions oB Key Concept 18.1 are 
satisBied, then the OLS estimator has an asymptotic joint normal distribution, the 
heteroskedasticity-robust estimator oB the covariance matrix is consistent, and the 
heteroskedasticity-robust OLS t-statistic has an asymptotic standard normal dis-
tribution. These results make use oB the multivariate normal distribution (Appen-
dix 18.2) and a multivariate extension oB the central limit theorem.

The Multivariate Central Limit Theorem
The central limit theorem oB Key Concept 2.7 applies to a one-dimensional random 
variable. To derive the joint asymptotic distribution oB the elements oB Bn , we 
need a multivariate central limit theorem that applies to vector-valued random 
variables.
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The multivariate central limit theorem extends the univariate central limit 
theorem to averages oB observations on a vector-valued random variable, W, 
where W is m-dimensional. The diBBerence between the central limit theorems Bor 
a scalar as opposed to a vector-valued random variable is the conditions on the 
variances. In the scalar case in Key Concept 2.7, the requirement is that the vari-
ance is both nonzero and Binite. In the vector case, the requirement is that the 
covariance matrix is both positive deBinite and Binite. IB the vector-valued random 
variable W has a Binite positive deBinite covariance matrix, then 0 6 var(c�W) 6 ∞
Bor all nonzero m-dimensional vectors c (Exercise 18.3).

The multivariate central limit theorem that we will use is stated in Key Con-
cept 18.2.

Asymptotic Normality of β n
In large samples, the OLS estimator has the multivariate normal asymptotic dis-
tribution

1n(Bn - B) ¡d N(0k + 1, 횺1n( nB -B)), where 횺1n( nB - B) = Q -1
X 횺V Q -1

X , (18.12)

where QX is the (k + 1) * (k + 1)-dimensional matrix oB second moments oB the 
regressors, that is, QX = E(XiX�i ), and 횺V is the (k + 1) * (k + 1)-dimensional 
covariance matrix oB Vi = Xiui, that is, 횺V = E(ViV�i ). Note that the second least 
squares assumption in Key Concept 18.1 implies that Vi, i = 1, c, n, are i.i.d.

Written in terms oB Bn  rather than 1n(Bn - B), the normal approximation in 
Equation (18.12) is

Bn , in large samples, is approximately distributed N(B, 횺Bn)
    where 횺Bn = 횺1n( nB -B)>n = Q -1

X 횺V Q -1
X >n. (18.13)

T52 Multiv.ri.t2 C2ntr.l Limit T52or2m

Suppose that W1, c, Wn are i.i.d. m-dimensional random variables with mean vec-
tor E(Wi) = mW  and covariance matrix E3(Wi - mW)(Wi - mW)�4 = 횺W, where 
횺W  is positive deBinite and Binite. Let W = 1

ngn
i= 1Wi. Then 2n(W - mW) ¡d  

N(0m, 횺W).

Key ConCept

18.2
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The covariance matrix 횺Bn in Equation (18.13) is the covariance matrix oB the 
approximate normal distribution oB Bn , whereas 횺1n( nB -B) in Equation (18.12) is 
the covariance matrix oB the asymptotic normal distribution oB 2n(Bn - B). 
These two covariance matrices diBBer by a Bactor oB n, depending on whether the 
OLS estimator is scaled by 2n.

Derivation of Equation (18.12). To derive Equation (18.12), Birst use Equations 
(18.4) and (18.11) to write Bn = (X�X)-1X�Y = (X�X)-1X�(XB + U) so that

 Bn = B + (X�X)-1X�U. (18.14)

Thus Bn - B = (X�X)-1X�U , so

 2n(Bn - B) = aX�X
n
b
-1

aX�U
1n
b . (18.15)

The derivation oB Equation (18.12) involves arguing Birst that the “denominator” 
matrix in Equation (18.15), X�X  >  n, is consistent Bor QX and second that the 
“numerator” matrix, X�U>1n, obeys the multivariate central limit theorem in 
Key Concept 18.2. The details are given in Appendix 18.3.

Heteroskedasticity-Robust Standard Errors
The heteroskedasticity-robust estimator oB 횺1n( nB - B) is obtained by replacing the 
population moments in its deBinition [Equation (18.12)] by sample moments. 
Accordingly, the heteroskedasticity-robust estimator oB the covariance matrix oB 
2n(Bn - B) is

 횺n 1n( nB -B) = a
X�X

n
b
-1

횺n Vn a
X�X

n
b
-1 

,  where 횺n Vn =
1

n - k - 1a
n

i= 1
XiX�i un2

i , (18.16)

The estimator 횺n Vn incorporates the same degrees-oB-Breedom adjustment that is 
in the SER Bor the multiple regression model (Section 6.4) to adjust Bor potential 
downward bias because oB estimation oB k + 1 regression coeBBicients.

The prooB that 횺n 1n( nB - B) ¡
p
횺1n( nB -B) is conceptually similar to the prooB, 

presented in Section 17.3, oB the consistency oB heteroskedasticity-robust standard 
errors Bor the single-regressor model.

Heteroskedasticity-robust standard errors. The heteroskedasticity-robust esti-
mator oB the covariance matrix oB Bn , 횺Bn is

 횺n Bn = n-1횺n 1n( nB -B). (18.17)
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The heteroskedasticity-robust standard error Bor the jth regression coeBBicient 
is the square root oB the jth diagonal element oB 횺n Bn. That is, the heteroskedasticity-
robust standard error oB the jth coeBBicient is

 SE(Bnj) = 2(횺n Bn)jj , (18.18)

where (횺n Bn)jj is the ( j, j) element oB 횺n Bn.

Confidence Intervals for Predicted Effects
Section 8.1 describes two methods Bor computing the standard error oB predicted 
eBBects that involve changes in two or more regressors. There are compact matrix 
expressions Bor these standard errors and thus Bor conBidence intervals Bor pre-
dicted eBBects.

Consider a change in the value oB the regressors Bor the ith observation Brom 
some initial value, say Xi,0, to some new value, X i, 0 + d, so that the change in Xi 
is ∆Xi = d, where d is a k + 1 dimensional vector. This change in X can involve 
multiple regressors (that is, multiple elements oB Xi). For example, iB two oB the 
regressors are the value oB an independent variable and its square, then d is the 
diBBerence between the subsequent and initial values oB these two variables.

The expected eBBect oB this change in Xi is d�B, and the estimator oB this eBBect 
is d�Bn . Because linear combinations oB normally distributed random variables are 
themselves normally distributed, 2n(d�Bn - d�B) = d�1n(Bn - B) ¡d

N(0, d�g1n( nB - B)d ). Thus the standard error oB this predicted eBBect is (d�횺n Bnd)1>2. 
A 95% conBidence interval Bor this predicted eBBect is

 d�Bn { 1.962d�횺n nB  d. (18.19)

Asymptotic Distribution of the t-Statistic
The t-statistic testing the null hypothesis that bj = bj,0, constructed using the 
heteroskedasticity-robust standard error in Equation (18.18), is given in Key 
Concept 7.1. The argument that this t-statistic has an asymptotic standard normal 
distribution parallels the argument given in Section 17.3 Bor the single-regressor 
model.

 18.3 Tests of Joint Hypotheses

Section 7.2 considers tests oB joint hypotheses that involve multiple restrictions, 
where each restriction involves a single coeBBicient, and Section 7.3 considers tests 
oB a single restriction involving two or more coeBBicients. The matrix setup oB 



714 ChapTeR 18  The Theory of Multiple Regression 

Section 18.1 permits a uniBied representation oB these two types oB hypotheses as 
linear restrictions on the coeBBicient vector, where each restriction can involve 
multiple coeBBicients. Under the Birst Bour least squares assumptions in Key Con-
cept 18.1, the heteroskedasticity-robust OLS F-statistic testing these hypotheses 
has an Fq,∞ asymptotic distribution under the null hypothesis.

Joint Hypotheses in Matrix Notation
Consider a joint hypothesis that is linear in the coeBBicients and imposes q restric-
tions, where q … k + 1. Each oB these q restrictions can involve one or more oB 
the regression coeBBicients. This joint null hypothesis can be written in matrix 
notation as

 RB = r, (18.20)

where R is a q * (k + 1) nonrandom matrix with Bull row rank and r is a nonrandom 
q * 1 vector. The number oB rows oB R is q, which is the number oB restrictions 
being imposed under the null hypothesis.

The null hypothesis in Equation (18.20) subsumes all the null hypotheses 
considered in Sections 7.2 and 7.3. For example, a joint hypothesis oB the type 
considered in Section 7.2 is that b0 = 0, b1 = 0, c, bq - 1 = 0. To write this joint 
hypothesis in the Borm oB Equation (18.20), set R = [Iq 0q * (k + 1- q)] and r = 0q.

The Bormulation in Equation (18.20) also captures the restrictions oB Section 7.3 
involving multiple regression coeBBicients. For example, iB k = 2, then the hypoth-
esis that b1 + b2 = 1 can be written in the Borm oB Equation (18.20) by setting 
R = [0 1 1], r = 1, and q = 1.

Asymptotic Distribution of the F-Statistic
The heteroskedasticity-robust F-statistic testing the joint hypothesis in Equa-
tion (18.20) is

 F = (RBn - r)�3R횺n BnR�4-1(RBn - r)>q. (18.21)

IB the Birst Bour assumptions in Key Concept 18.1 hold, then under the null 
hypothesis

 F ¡d Fq,∞. (18.22)
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This result Bollows by combining the asymptotic normality oB Bn  with the con-
sistency oB the heteroskedasticity-robust estimator 횺n 1n( nB - B) oB the covariance 
matrix. SpeciBically, Birst note that Equation (18.12) and Equation (18.74) in 
Appendix 18.2 imply that, under the null hypothesis, 1n(RBn - r) =
1nR(Bn - B) ¡d N(0, R횺1n( nB -B)R�). It Bollows Brom Equation (18.77) that, 
under the null hypothesis, (RBn - r)�[R횺BnR�]-1 (RBn - r) = [1nR(Bn - B)]�
[R횺1n( nB -B)R�]-1[1nR (Bn - B)] ¡d

x2
q. However, because 횺n 1n( nB -B) ¡

p

횺1n( nB - B) , it Bollows Brom Slutsky’s theorem that 31nR(Bn - B)4 �
[R횺n 1n( nB -B)R�]-131nR (Bn - B)4 ¡d

x2
q. or, equivalently (because 횺n B =  

횺n 1n( nB - B)>n), that F ¡d
x2

q>q, which is in turn distributed Fq,∞ .

Confidence Sets for Multiple Coefficients
As discussed in Section 7.4, an asymptotically valid conBidence set Bor two or 
more elements oB B can be constructed as the set oB values that, when taken as 
the null hypothesis, are not rejected by the F-statistic. In principle, this set could 
be computed by repeatedly evaluating the F-statistic Bor many values oB B, but, 
as is the case with a conBidence interval Bor a single coeBBicient, it is simpler to 
manipulate the Bormula Bor the test statistic to obtain an explicit Bormula Bor the 
conBidence set.

Here is the procedure Bor constructing a conBidence set Bor two or more oB the 
elements oB B. Let D denote the q-dimensional vector consisting oB the coeBBicients 
Bor which we wish to construct a conBidence set. For example, iB we are construct-
ing a conBidence set Bor the regression coeBBicients b1 and b2, then q = 2 and 
D = (b1 b2)�. In general, we can write D = RB, where the matrix R consists oB 
zeros and ones [as discussed Bollowing Equation (18.20)]. The F-statistic testing 
the hypothesis that D = D0 is F = (Dn - D0)�[R횺n BnR�]-1(Dn - D0)>q, where 
Dn = RBn . A 95% conBidence set Bor D is the set oB values D0 that are not rejected 
by the F-statistic. That is, when D = RB, a 95% conBidence set Bor D is

 5D  : (Dn - D)�[R횺n BnR�]-1(Dn - D)>q … c6, (18.23)

where c is the 95th percentile (the 5% critical value) oB the Fq,∞  distribution.
The set in Equation (18.23) consists oB all the points contained inside the 

ellipse determined when the inequality in Equation (18.23) is an equality (this is 
an ellipsoid when q 7 2). Thus the conBidence set Bor d can be computed by solv-
ing Equation (18.23) Bor the boundary ellipse.
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 18.4 Distribution of Regression Statistics  
with Normal Errors

The distributions presented in Sections 18.2 and 18.3, which were justiBied by 
appealing to the law oB large numbers and the central limit theorem, apply when 
the sample size is large. IB, however, the errors are homoskedastic and normally 
distributed, conditional on X, then the OLS estimator has a multivariate normal distri-
bution in Binite sample, conditional on X. In addition, the Binite sample distribu-
tion oB the square oB the standard error oB the regression is proportional to the 
chi-squared distribution with n - k - 1 degrees oB Breedom, the homoskedasticity-
only OLS t-statistic has a Student t distribution with n - k - 1 degrees oB Bree-
dom, and the homoskedasticity-only F-statistic has an Fq, n - k - 1 distribution. The 
arguments in this section employ some specialized matrix Bormulas Bor OLS 
regression statistics, which are presented Birst.

Matrix Representations of OLS Regression Statistics
The OLS predicted values, residuals, and sum oB squared residuals have compact 
matrix representations. These representations make use oB two matrices, PX  
and MX.

The matrices PX and MX. The algebra oB OLS in the multivariate model relies on 
the two symmetric n * n matrices, PX and MX:

 PX = X(X�X)-1X� and (18.24)

 MX = In - PX. (18.25)

A matrix C is idempotent iB C is square and CC = C (see Appendix 18.1). Because 
PX = PXPX  and MX = MXMX  (Exercise 18.5), and because PX  and MX  are 
symmetric, PX and MX are symmetric idempotent matrices.

The matrices PX and MX have some additional useBul properties (Exercise 
18.5), which Bollow directly Brom the deBinitions in Equations (18.24) and (18.25):

 PXX = X and MXX = 0n * (k + 1); 

 rank(PX) = k + 1 and rank(MX) = n - k - 1, (18.26)

where rank(PX) is the rank oB PX.
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The matrices PX and MX can be used to decompose an n-dimensional vector 
Z into two parts: a part that is spanned by the columns oB X and a part orthogonal 
to the columns oB X. In other words, PXZ is the projection oB Z onto the space 
spanned by the columns oB X, MXZ is the part oB Z orthogonal to the columns oB 
X, and Z = PXZ + MXZ.

OLS predicted values and residuals. The matrices PX and MX provide some sim-
ple expressions Bor OLS predicted values and residuals. The OLS predicted val-
ues, Yn = XBn , and the OLS residuals, Un = Y - Yn, can be expressed as Bollows 
(Exercise 18.5):

 Yn = PXY and (18.27)

 Un = MXY = MXU. (18.28)

The expressions in Equations (18.27) and (18.28) provide a simple prooB that 
the OLS residuals and predicted values are orthogonal, that is, Equation (4.37) 
holds: Yn �Un = Y�P�X MXY = 0, where the second equality Bollows Brom 
P�X MX = 0n * n, which in turn Bollows Brom MXX = 0n * (k +  1) in Equation (18.26).

The standard error of the regression. The SER, deBined in Section 4.3, is sun, 
where

 s2
un =

1
n - k - 1

 a
n

i= 1
un2

i =
1

n - k - 1
Un �Un =

1
n - k - 1

 U�MXU, (18.29)

where the Binal equality Bollows because Un �Un = (MXU)�(MXU ) = U�MXMXU =
U�MXU (because MX is symmetric and idempotent).

Distribution of β n with Normal Errors
Because Bn = B +  (X�X)-1X�U  [Equation (18.14)] and because the distribu-
tion oB U conditional on X is, by assumption, N(0n, s2

uIn) [Equation (18.8)], the 
conditional distribution oB Bn  given X is multivariate normal with mean B. The 
covariance matrix oB Bn , conditional  on X, is 횺 nB 0X = E[(Bn  - B)(Bn - B)� 0X] =  
E[(X�X)-1 X�UU�X(X�X)-1

 
  X ] = (X�X)-1X�(s2
u In)X(X�X)-1 = s2

u(X�X)-1. 
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Accordingly, under all six assumptions in Key Concept 18.1, the Binite-sample 
conditional distribution oB Bn  given X is

 Bn � N(B, 횺 nB 0X), where 횺 nB 0X = su
2(X�X )- 1. (18.30)

Distribution of s2nu
IB all six assumptions in Key Concept 18.1 hold, then s2

un  has an exact sampling 
distribution that is proportional to a chi-squared distribution with n - k - 1 
degrees oB Breedom:

 s2
un �

s2
u

n - k - 1
* x2

n - k - 1 (18.31)

The prooB oB Equation (18.31) starts with Equation (18.29). Because U is normally 
distributed conditional on X and because MX is a symmetric idempotent matrix, 
the quadratic Borm U�MXU>s2

u has an exact chi-squared distribution with degrees 
oB Breedom equal to the rank oB MX [Equation (18.78) in Appendix 18.2]. From 
Equation (18.26), the rank oB MX is n - k - 1. Thus U�MXU>s2

u has an exact 
x2

n - k - 1 distribution, Brom which Equation (18.31) Bollows.
The degrees-oB-Breedom adjustment ensures that s2

un  is unbiased. The expecta-
tion oB a random variable with a x2

n - k - 1 distribution is n - k - 1; thus 
E(U�MXU) = (n - k - 1)s2

u, so E(s2
un) = s

2
u.

Homoskedasticity-Only Standard Errors
The homoskedasticity-only estimator 횺�Bn oB the covariance matrix oB Bn , condi-
tional on X, is obtained by substituting the sample variance s2

un  Bor the population 
variance s2

u in the expression Bor 횺 nB 0X in Equation (18.30). Accordingly,

 횺�Bn = s2
un(X�X)-1 (homoskedasticity@only). (18.32)

The estimator oB the variance oB the normal conditional distribution oB bnj, given 
X, is the ( j, j) element oB 횺�Bn. Thus the homoskedasticity-only standard error oB bnj is 
the square root oB the j th diagonal element oB 횺�Bn. That is, the homoskedasticity-only 
standard error oB bnj is

 SE
� (bnj) = 2(횺

∼
bn)jj (homoskedasticity-only). (18.33)
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Distribution of the t-Statistic
Let t� be the t-statistic testing the hypothesis bj = bj,0, constructed using the 
homoskedasticity-only standard error; that is, let

 t� =
bnj - bj,0

2(횺
∼
bn)jj

. (18.34)

Under all six oB the extended least squares assumptions in Key Concept 18.1, the 
exact sampling distribution oB t� is the Student t distribution with n - k - 1 
degrees oB Breedom; that is,

 t� � tn - k - 1. (18.35)

The prooB oB Equation (18.35) is given in Appendix 18.4.

Distribution of the F-Statistic
IB all six least squares assumptions in Key Concept 18.1 hold, then the F-statistic 
testing the hypothesis in Equation (18.20), constructed using the homoskedasticity-
only estimator oB the covariance matrix, has an exact Fq, n - k - 1 distribution under 
the null hypothesis.

The homoskedasticity-only F-statistic. The homoskedasticity-only F-statistic is 
similar to the heteroskedasticity-robust F-statistic in Equation (18.21), except that 
the homoskedasticity-only estimator 횺�Bn is used instead oB the heteroskedasticity-
robust estimator 횺�Bn. Substituting the expression 횺�Bn = s2

un(X�X)-1 into the expres-
sion Bor the F-statistic in Equation (18.21) yields the homoskedasticity-only 
F-statistic testing the null hypothesis in Equation (18.20):

 F
� =

(RBn - r)�3R(X�X)-1R�4-1(RBn - r)>q
s2

un
. (18.36)

IB all six assumptions in Key Concept 18.1 hold, then under the null hypothesis

 F
� � Fq,n - k - 1. (18.37)

The prooB oB Equation (18.37) is given in Appendix 18.4.
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The F-statistic in Equation (18.36) is called the Wald version oB the F-statistic 
(named aBter the statistician Abraham Wald). Although the Bormula Bor the 
homoskedastic-only F-statistic given in Equation (7.13) appears quite diBBerent 
Brom the Bormula Bor the Wald statistic in Equation (18.36), the homoskedastic-
only F-statistic and the Wald F-statistic are two versions oB the same statistic. That 
is, the two expressions are equivalent, a result shown in Exercise 18.13.

 18.5 Efficiency of the OLS Estimator 
with Homoskedastic Errors

Under the Gauss–Markov conditions Bor multiple regression, the OLS estimator 
oB B is eBBicient among all linear conditionally unbiased estimators; that is, the 
OLS estimator is BLUE.

The Gauss–Markov Conditions for Multiple Regression
The Gauss–Markov conditions for multiple regression are

 (i) E(U 0X ) = 0n, 

 (ii) E(UU� 0X) = s u
2 In, and 

 (iii) X has Bull column rank. (18.38)

The Gauss–Markov conditions Bor multiple regression in turn are implied by the 
Birst Bive assumptions in Key Concept 18.1 [see Equations (18.6) and (18.7)]. The 
conditions in Equation (18.38) generalize the Gauss–Markov conditions Bor a sin-
gle regressor model to multiple regression. [By using matrix notation, the second 
and third Gauss–Markov conditions in Equation (5.31) are collected into the sin-
gle condition (ii) in Equation (18.38).]

Linear Conditionally Unbiased Estimators
We start by describing the class oB linear unbiased estimators and by showing that 
OLS is in that class.

The class of linear conditionally unbiased estimators. An estimator oB B is said 
to be linear iB it is a linear Bunction oB Y1, c, Yn. Accordingly, the estimator B� is 
linear in Y iB it can be written in the Borm

 B
� = A�Y, (18.39)
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where A is an n * (k + 1) dimensional matrix oB weights that may depend on X 
and on nonrandom constants, but not on Y.

An estimator is conditionally unbiased iB the mean oB its conditional sampling 
distribution, given X, is B. That is, B� is conditionally unbiased iB E(B� 0X) = B.

The OLS estimator is linear and conditionally unbiased. Comparison oB Equa-
tions (18.11) and (18.39) shows that the OLS estimator is linear in Y; speciBically, 
Bn = An�Y, where An = X(X�X)-1. To show that Bn  is conditionally unbiased, recall 
Brom Equation (18.14) that Bn = B +  (X�X)-1X�U . Taking the conditional expec-
tation oB both sides oB this expression yields, E(Bn 0X) = B +E[(X�X )-1X�U 0 X ] =
B + (X�X)-1X�E(U 0 X) = B, where the Binal equality Bollows because E(U 0X ) = 0 
by the Birst Gauss–Markov condition.

The Gauss–Markov Theorem for Multiple Regression
The Gauss–Markov theorem for multiple regression provides conditions under 
which the OLS estimator is eBBicient among the class oB linear conditionally 
unbiased estimators. A subtle point arises, however, because Bn  is a vector and 
its “variance” is a covariance matrix. When the “variance” oB an estimator is a 
matrix, just what does it mean to say that one estimator has a smaller variance 
than another?

The Gauss–Markov theorem handles this problem by comparing the 
variance oB a candidate estimator oB a linear combination oB the elements oB 
B to the variance oB the corresponding linear combination oB Bn . SpeciBically, 
let c be a k + 1 dimensional vector and consider the problem oB estimating 
the linear combination c�B using the candidate estimator c�B� (where B� is a 
linear conditionally unbiased estimator) on the one hand and c�Bn  on the other 
hand. Because c�B� and c�Bn are both scalars and are both linear conditionally 
unbiased estimators oB c�B, it now makes sense to compare their variances.

The Gauss–Markov theorem Bor multiple regression says that the OLS esti-
mator oB c�B is eBBicient; that is, the OLS estimator c�Bn  has the smallest conditional 
variance oB all linear conditionally unbiased estimators c�B�. Remarkably, this is 
true no matter what the linear combination is. It is in this sense that the OLS 
estimator is BLUE in multiple regression.

The Gauss–Markov theorem is stated in Key Concept 18.3 and proven in 
Appendix 18.5.



722 ChapTeR 18  The Theory of Multiple Regression 

 18.6 Generalized Least Squares1

The assumption oB i.i.d. sampling Bits many applications. For example, suppose that 
Yi and Xi correspond to inBormation about individuals, such as their earnings, edu-
cation, and personal characteristics, where the individuals are selected Brom a 
population by simple random sampling. In this case, because oB the simple random 
sampling scheme, (Xi,Yi) are necessarily i.i.d. Because (Xi,Yi) and (Xj,Yj) are inde-
pendently distributed Bor i ≠ j, ui and uj are independently distributed Bor i ≠ j. 
This in turn implies that ui and uj are uncorrelated Bor i ≠ j. In the context oB the 
Gauss–Markov assumptions, the assumption that E(UU � 0X) is diagonal thereBore 
is appropriate iB the data are collected in a way that makes the observations inde-
pendently distributed.

Some sampling schemes encountered in econometrics do not, however, result 
in independent observations and instead can lead to error terms ui that are cor-
related Brom one observation to the next. The leading example is when the data 
are sampled over time Bor the same entity, that is, when the data are time series 
data. As discussed in Section 15.3, in regressions involving time series data, many 
omitted Bactors are correlated Brom one period to the next, and this can result in 
regression error terms (which represent those omitted Bactors) that are correlated 
Brom one period oB observation to the next. In other words, the error term in one 
period will not, in general, be distributed independently oB the error term in the 

G.uss–M.rkov T52or2m for Multi<l2 R2gr2ssion

Suppose that the Gauss–Markov conditions Bor multiple regression in Equation 
(18.38) hold. Then the OLS estimator Bn  is BLUE. That is, let B� be a linear con-
ditionally unbiased estimator oB B and let c be a nonrandom k + 1 dimensional 
vector. Then var(c�Bn 0X ) … var(c�B� 0X) Bor every nonzero vector c, where the 
inequality holds with equality Bor all c only iB B� = Bn .

Key ConCept

18.3

1The GLS estimator was introduced in Section 15.5 in the context oB distributed lag time series regres-
sion. This presentation here is a selB-contained mathematical treatment oB GLS that can be read inde-
pendently oB Section 15.5, but reading that section Birst will help to make these ideas more concrete.
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next period. Instead, the error term in one period could be correlated with the 
error term in the next period.

The presence oB correlated error terms creates two problems Bor inBerence based 
on OLS. First, neither the heteroskedasticity-robust nor the homoskedasticity-only 
standard errors produced by OLS provide a valid basis Bor inBerence. The solution to 
this problem is to use standard errors that are robust to both heteroskedasticity and 
correlation oB the error terms across observations. This topic—heteroskedasticity- 
and autocorrelation-consistent (HAC) covariance matrix estimation—is the subject 
oB Section 15.4 and we do not pursue it Burther here.

Second, iB the error term is correlated across observations, then E(UU�  
  X) 
is not diagonal, the second Gauss–Markov condition in Equation (18.38) does 
not hold, and OLS is not BLUE. In this section we study an estimator, generalized 
least squares (GLS), that is BLUE (at least asymptotically) when the condi-
tional covariance matrix oB the errors is no longer proportional to the identity matrix. 
A special case oB GLS is weighted least squares, discussed in Section 17.5,  
in which the conditional covariance matrix is diagonal and the ith diagonal ele-
ment is a Bunction oB Xi. Like WLS, GLS transBorms the regression model so 
that the errors oB the transBormed model satisBy the Gauss–Markov conditions. 
The GLS estimator is the OLS estimator oB the coeBBicients in the transBormed  
model.

The GLS Assumptions
There are Bour assumptions under which GLS is valid. The Birst GLS assumption 
is that ui has a mean oB zero, conditional on X1, c, Xn; that is,

 E(U 0X ) = 0n. (18.40)

This assumption is implied by the Birst two least squares assumptions in Key Concept 
18.1; that is, iB E(ui 0Xi) = 0 and (Xi,Yi), i = 1, c , n, are i.i.d., then E(U 0X ) = 0n.  
In GLS, however, we will not want to maintain the i.i.d. assumption; aBter all, one 
purpose oB GLS is to handle errors that are correlated across observations. We dis-
cuss the signiBicance oB the assumption in Equation (18.40) aBter introducing the 
GLS estimator.

The second GLS assumption is that the conditional covariance matrix oB U 
given X is some Bunction oB X:

 E(UU� 0X) = 훀(X ), (18.41)

where 훀(X ) is an n * n positive deBinite matrix-valued Bunction oB X.
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There are two main applications oB GLS that are covered by this assumption. 
The Birst is independent sampling with heteroskedastic errors, in which case 훀(X) 
is a diagonal matrix with diagonal element lh(Xi), where l is a constant and h is 
a Bunction. In this case, discussed in Section 17.5, GLS is WLS.

The second application is to homoskedastic errors that are serially correlated. 
In practice, in this case a model is developed Bor the serial correlation. For exam-
ple, one model is that the error term is correlated with only its neighbor, so 
corr(ui, ui - 1) = r ≠ 0 but corr(ui, uj) = 0 iB 
  i - j  
 Ú 2. In this case, 훀(X ) has 
s2

u as its diagonal element, rs2
u in the Birst oBB-diagonal, and zeros elsewhere. Thus 

훀(X ) does not depend on X, 훀ii = s2
u, 훀ij = rs2

u Bor 
  i - j  
 = 1, and 훀ij = 0 
Bor 
  i - j  
 7 1. Other models Bor serial correlation, including the Birst order 
autoregressive model, are discussed Burther in the context oB GLS in Section 15.5 
(also see Exercise 18.8).

One assumption that has appeared on all previous lists oB least squares assump-
tions Bor cross-sectional data is that Xi and ui have nonzero, Binite Bourth moments. 
In the case oB GLS, the speciBic moment assumptions needed to prove asymptotic 
results depend on the nature oB the Bunction 훀(X ), whether 훀(X ) is known or 
estimated, and the statistic under consideration (the GLS estimator, t-statistic, 
etc.). Because the assumptions are case- and model-speciBic, we do not present 
speciBic moment assumptions here, and the discussion oB the large-sample properties 
oB GLS assumes that such moment conditions apply Bor the relevant case at hand. 
For completeness, as the third GLS assumption, Xi and ui are simply assumed to 
satisBy suitable moment conditions.

The Bourth GLS assumption is that X has Bull column rank; that is, the regres-
sors are not perBectly multicollinear.

The GLS assumptions are summarized in Key Concept 18.4.

T52 GLS assum<tions

In the linear regression model Y = XB + U , the GLS assumptions are

 1. E(U 0X) = 0n;

 2. E(UU� 0X) = 훀(X), where 훀(X) is an n * n positive deBinite matrix that can 
depend on X;

 3. Xi and ui satisBy suitable moment conditions; and

 4. X has Bull column rank (there is no perBect multicollinearity).

Key ConCept

18.4 
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We consider GLS estimation in two cases. In the Birst case, 훀(X) is known. 
In the second case, the Bunctional Borm oB 훀(X) is known up to some parameters 
that can be estimated. To simpliBy notation, we reBer to the Bunction 훀(X) as the 
matrix 훀, so the dependence oB 훀 on X is implicit.

GLS When Ω Is Known
When 훀 is known, the GLS estimator uses 훀 to transBorm the regression model 
to one with errors that satisBy the Gauss–Markov conditions. SpeciBically, let F be 
a matrix square root oB 훀-1; that is, let F be a matrix that satisBies F�F = 훀-1 
(see Appendix 18.1). A property oB F is that F훀F� = In. Now premultiply both 
sides oB Equation (18.4) by F to obtain

 Y� = X�B + U�, (18.42)

where Y∼ = FY, X∼ = FX, and U∼ = FU.
The key insight oB GLS is that, under the Bour GLS assumptions, the Gauss–

Markov assumptions hold Bor the transBormed regression in Equation (18.42). 
That is, by transBorming all the variables by the inverse oB the matrix square root 
oB 훀, the regression errors in the transBormed regression have a conditional mean 
oB zero and a covariance matrix that equals the identity matrix. To show this 
mathematically, Birst note that E(U� 0X�) = E(FU 0FX ) = FE(U 0FX ) = 0n by 
the Birst GLS assumption [Equation (18.40)]. In addition, E(U�U�� 0X�) =  
E[(FU)(FU)� 0FX ] =  FE(UU� 0FX)F� = F훀F� = In, where the second equality 
Bollows because (FU)′ = U�F� and the Binal equality Bollows Brom the deBinition 
oB F. It Bollows that the transBormed regression model in Equation (18.42) satisBies 
the Gauss–Markov conditions in Key Concept 18.3.

The GLS estimator, B�GLS, is the OLS estimator oB B in Equation (18.42); 
that is, B�GLS = (X��X�)- 1(X��Y�). Because the transBormed regression model satis-
Bies the Gauss–Markov conditions, the GLS estimator is the best conditionally 
unbiased estimator that is linear in Y�. But because Y� = FY  and F is (here) 
assumed to be known, and because F is invertible (because 훀 is positive deBi-
nite), the class oB estimators that are linear in Y� is the same as the class oB 
estimators that are linear in Y. Thus the OLS estimator oB B in Equation (18.42) 
is also the best conditionally unbiased estimator among estimators that are lin-
ear in Y. In other words, under the GLS assumptions, the GLS estimator is 
BLUE.
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The GLS estimator can be expressed directly in terms oB 훀, so in principle 
there is no need to compute the square root matrix F. Because X� = FX  and 
Y
� = FY , B

�GLS =  (X�F�FX)-1(X�F�FY). But F�F = 훀-1, so

 B
�GLS = (X�훀-1X)-1(X�훀-1Y ). (18.43)

In practice, 훀 is typically unknown, so the GLS estimator in Equation (18.43) 
typically cannot be computed and thus is sometimes called the infeasible GLS 
estimator. IB, however, 훀 has a known Bunctional Borm but the parameters oB that 
Bunction are unknown, then 훀 can be estimated and a Beasible version oB the GLS 
estimator can be computed.

GLS When Ω Contains Unknown Parameters
IB 훀 is a known Bunction oB some parameters that in turn can be estimated, then 
these estimated parameters can be used to calculate an estimator oB the covari-
ance matrix 훀. For example, consider the time series application discussed Bol-
lowing Equation (18.41), in which 훀(X) does not depend on X, 훀ii = s2

u, 훀ij =  
rs2

u Bor 0 i - j 0 = 1, and 훀ij = 0 Bor 0 i - j 0 7 1. Then 훀  has two unknown 
parameters, s2

u and r. These parameters can be estimated using the residuals Brom 
a preliminary OLS regression; speciBically, s2

u can be estimated by s2
un and r can 

be estimated by the sample correlation between all neighboring pairs oB OLS 
residuals. These estimated parameters can in turn be used to compute an estima-
tor oB 훀, 훀n .

In general, suppose that you have an estimator 훀n  oB 훀. Then the GLS esti-
mator based on 훀n  is

 BnGLS = (X�훀n -1X )-1(X�훀n -1Y). (18.44)

The GLS estimator in Equation (18.44) is sometimes called the feasible GLS 
estimator because it can be computed iB the covariance matrix contains some 
unknown parameters that can be estimated.

The Zero Conditional Mean Assumption and GLS
For the OLS estimator to be consistent, the Birst least squares assumption must 
hold; that is, E(ui 0Xi) must be zero. In contrast, the Birst GLS assumption is that 
E(ui 0X1, c, Xn) = 0. In other words, the Birst OLS assumption is that the error 
Bor the ith observation has a conditional mean oB zero, given the values oB the 
regressors Bor that observation, whereas the Birst GLS assumption is that ui has a 
conditional mean oB zero, given the values oB the regressors Bor all observations.
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As discussed in Section 18.1, the assumptions that E(ui 0Xi) = 0 and that sam-
pling is i.i.d. together imply that E(ui 0X1, c, Xn) = 0. Thus, when sampling is 
i.i.d. so that GLS is WLS, the Birst GLS assumption is implied by the Birst least 
squares assumption in Key Concept 18.1.

When sampling is not i.i.d., however, the Birst GLS assumption is not implied 
by the assumption that E(ui 0Xi) = 0; that is, the Birst GLS assumption is stronger. 
Although the distinction between these two conditions might seem slight, it can 
be very important in applications to time series data. This distinction is discussed 
in Section 15.5 in the context oB whether the regressor is “past and present” exog-
enous or “strictly” exogenous; the assumption that E(ui 0X1, c, Xn) = 0 corre-
sponds to strict exogeneity. Here, we discuss this distinction at a more general level 
using matrix notation. To do so, we Bocus on the case that U is homoskedastic, 훀 is 
known, and 훀 has nonzero oBB-diagonal elements.

The role of the first GLS assumption. To see the source oB the diBBerence between 
these assumptions, it is useBul to contrast the consistency arguments Bor GLS and 
OLS.

We Birst sketch the argument Bor the consistency oB the GLS estimator in Equa-
tion (18.43). Substituting Equation (18.4) into Equation (18.43), we have B�GLS = 
B + (X�훀-1X>n)-1(X�훀-1U>n). Under the Birst GLS assumption, E(X�훀-1U ) = 
E3X�훀-1E(U 0X )4 = 0n. IB in addition the variance oB X�훀-1U>n tends to zero 
and X�훀-1X>n ¡p

Q
�, where Q� is some invertible matrix, then B�GLS ¡p

B. 
Critically, when 훀  has oBB-diagonal elements, the term X�훀-1U = 
gn

i=1 g
n
j=1Xi(훀-1)ijuj involves products oB Xi and uj Bor diBBerent i, j, where (훀-1)ij  

denotes the (i, j) element oB 훀-1. Thus, Bor X�훀-1U  to have a mean oB zero, it is 
not enough that E(ui 0Xi) = 0; rather E(ui 0Xj) must equal zero Bor all i, j pairs 
corresponding to nonzero values oB (훀-1)ij. Depending on the covariance structure 
oB the errors, only some oB or all the elements oB (훀-1)ij might be nonzero. For 
example, iB ui Bollows a Birst order autoregression (as discussed in Section 15.5), 
the only nonzero elements (훀- 1)ij are those Bor which 0 i - j 0 … 1. In general, however, 
all the elements oB 훀-1 can be nonzero, so in general Bor X�Ω- 1U>n ¡p

0(k + 1)*1 
(and thus Bor B�GLS to be consistent) we need that E(U 0X ) = 0n; that is, the Birst GLS 
assumption must hold.

In contrast, recall the argument that the OLS estimator is consistent. Rewrite 
Equation (18.14) as Bn = B + (X�X>n)-1 1

ngn
i=1 Xiui. IB E(ui  
  Xi) = 0, then the 

term 1
ngn

i=1Xiui has mean zero, and iB this term has a variance that tends to zero, it 
converges in probability to zero. IB in addition X�X>  n ¡p

QX, then Bn ¡p
B.

Is the first GLS assumption restrictive? The Birst GLS assumption requires that the 
errors Bor the ith observation be uncorrelated with the regressors Bor all other 
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observations. This assumption is dubious in some time series applications. This 
issue is discussed in Section 15.6 in the context oB an empirical example, the rela-
tionship between the change in the price oB a contract Bor Buture delivery oB Brozen 
orange concentrate and the weather in Florida. As explained there, the error term 
in the regression oB price changes on the weather is plausibly uncorrelated with 
current and past values oB the weather, so the Birst OLS assumption holds. How-
ever, this error term is plausibly correlated with Buture values oB the weather, so 
the Birst GLS assumption does not hold.

This example illustrates a general phenomenon in economic time series data 
that arises when the value oB a variable today is set in part based on expectations 
oB the Buture: Those Buture expectations typically imply that the error term today 
depends on a Borecast oB the regressor tomorrow, which in turn is correlated with 
the actual value oB the regressor tomorrow. For this reason, the Birst GLS assump-
tion is in Bact much stronger than the Birst OLS assumption. Accordingly, in some 
applications with economic time series data the GLS estimator is not consistent 
even though the OLS estimator is.

 18.7 Instrumental Variables and Generalized 
Method of Moments Estimation

This section provides an introduction to the theory oB instrumental variables (IV) 
estimation and the asymptotic distribution oB IV estimators. It is assumed through-
out that the IV regression assumptions in Key Concepts 12.3 and 12.4 hold and, 
moreover, that the instruments are strong. These assumptions apply to cross-
sectional data with i.i.d. observations. Under certain conditions the results derived 
in this section are applicable to time series data as well, and the extension to time 
series data is brieBly discussed at the end oB this section. All asymptotic results in 
this section are developed under the assumption oB strong instruments.

This section begins by presenting the IV regression model, the two stage least 
squares (TSLS) estimator, and its asymptotic distribution in the general case oB 
heteroskedasticity, all in matrix Borm. It is next shown that, in the special case oB 
homoskedasticity, the TSLS estimator is asymptotically eBBicient among the class 
oB IV estimators in which the instruments are linear combinations oB the exoge-
nous variables. Moreover, the J-statistic has an asymptotic chi-squared distribu-
tion in which the degrees oB Breedom equal the number oB overidentiBying 
restrictions. This section concludes with a discussion oB eBBicient IV estimation and 
the test oB overidentiBying restrictions when the errors are heteroskedastic—a 
situation in which the eBBicient IV estimator is known as the eBBicient generalized 
method oB moments (GMM) estimator.
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The IV Estimator in Matrix Form
In this section, we let X denote the n * (k + r + 1) matrix oB the regressors in 
the equation oB interest, so X contains the included endogenous regressors (the 
X’s in Key Concept 12.1) and the included exogenous regressors (the W’s in Key 
Concept 12.1). That is, in the notation oB Key Concept 12.1, the ith row oB X is 
X�i  =  (1 X1i X2i . . . Xki W1i W2i . . . Wri). Also, let Z denote the  
n * (m + r + 1) matrix oB all the exogenous regressors, both those included in 
the equation oB interest (the W’s) and those excluded Brom the equation oB 
interest (the instruments). That is, in the notation oB Key Concept 12.1, the ith 
row oB Z is Z�i  =  (1 Z1i Z2i . . . Zmi W1i W2i . . . Wri).

With this notation, the IV regression model oB Key Concept 12.1, written in 
matrix Borm, is

 Y = XB + U , (18.45)

where U is the n * 1 vector oB errors in the equation oB interest, with ith element ui.
The matrix Z consists oB all the exogenous regressors, so under the IV regres-

sion assumptions in Key Concept 12.4,

 E(Ziui) = 0   (instrument exogeneity). (18.46)

Because there are k included endogenous regressors, the Birst stage regression 
consists oB k equations.

The TSLS estimator.  The TSLS estimator is the instrumental variables estimator 
in which the instruments are the predicted values oB X based on OLS estimation 
oB the Birst stage regression. Let Xn  denote this matrix oB predicted values so that 
the ith row oB Xn  is (Xn 1i Xn 2i c Xn ki W1i W2i c Wri), where Xn 1i is the 
predicted value Brom the regression oB X1i on Z, and so Borth. Because the W’s 
are contained in Z, the predicted value Brom a regression oB W1i on Z is just W1i, 
and so Borth, so Xn = PZX, where PZ =  Z(Z�Z)−1Z� [see Equation (18.27)]. 
Accordingly, the TSLS estimator is

 BnTSLS = (Xn �Xn)-1Xn �Y . (18.47)

Because Xn = PZX , Xn �Xn = X�PZX , and Xn �Y = X�PZY , the TSLS estimator can 
be rewritten as

 BnTSLS = (X�PZX)-1X�PZY . (18.48)
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Asymptotic Distribution of the TSLS Estimator
Substituting Equation (18.45) into Equation (18.48), rearranging, and multiplying 
by 2n yields the expression Bor the centered and scaled TSLS estimator:

  2n(BnTSLS - B) = a
X�PZX

n
b
-1

 
X�PZU

2n
 

  = c
X�Z

n
a

Z�Z
n
b
-1

 
Z�X

n
d
-1 

c
X�Z

n
a

Z′Z
n
b
-1

 
Z�U

2n
d , (18.49)

where the second equality uses the deBinition oB PZ. Under the IV regression 
assumptions, X�Z>n ¡p

QXZ and Z�Z>n ¡p
QZZ, where QXZ = E(XiZ′i) and 

QZZ = E(ZiZ�i). In addition, under the IV regression assumptions, Ziui is i.i.d. 
with mean zero [Equation (18.46)] and a nonzero Binite variance, so its sum, 
divided by 2n, satisBies the conditions oB the central limit theorem and

 Z�U>2n ¡d 횿ZU, where 횿ZU � N(0, H ), H = E(ZiZ�i u2
i ) (18.50)

and 횿ZU  is (m + r + 1) * 1. 
Application oB Equation (18.50) and oB the limits X�Z>n ¡p

QXZ and 
Z�Z>n ¡p

QZZ to Equation (18.49) yields the result that, under the IV regres-
sion assumptions, the TSLS estimator is asymptotically normally distributed:

  2n (BnTSLS - B) ¡d (QXZQ-1
ZZQZX)-1QXZQ-1

ZZΨZU � N(0, 횺TSLS), (18.51)

where

  횺TSLS = (QXZQ-1
ZZQZX)-1QXZQ-1

ZZ HQ-1
ZZ QZX (QXZQ-1

ZZQZX)-1, (18.52)

where H is deBined in Equation (18.50).

Standard errors for TSLS. The Bormula in Equation (18.52) is daunting. Neverthe-
less, it provides a way to estimate 횺TSLS by substituting sample moments Bor the 
population moments. The resulting variance estimator is

 횺n TSLS = (Qn XZQn -1
ZZQn ZX)-1Qn XZQn -1

ZZHnQn -1
ZZQn ZX (Qn XZQn -1

ZZQn ZX)-1, (18.53)

where Qn XZ = X�Z>n, Qn ZZ = Z�Z>n, Qn ZX = Z�X>n, and

 Hn =
1
na

n

i= 1
ZiZi  un 2

i , where Un = Y - XBnTSLS  (18.54)
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so that Un  is the vector oB TSLS residuals and where un i is the ith element oB that 
vector (the TSLS residual Bor the ith observation).

The TSLS standard errors are the square roots oB the diagonal elements oB 
횺n TSLS>n.

Properties of TSLS When the Errors Are Homoskedastic
IB the errors are homoskedastic, then the TSLS estimator is asymptotically eBBi-
cient among the class oB IV estimators in which the instruments are linear combi-
nations oB the rows oB Z. This result is the IV counterpart to the Gauss–Markov 
theorem and constitutes an important justiBication Bor using TSLS.

The TSLS distribution under homoskedasticity. IB the errors are homoskedastic, that is, 
iB E(u2

i 0Zi) = s2
u, then H = E(ZiZ�i u2

i ) = E[E(ZiZ�i ui
2 
Zi)] = E[ZiZ�iE(ui

2 
Zi)] =  
QZZsu

2. In this case, the variance oB the asymptotic distribution oB the TSLS estimator 
in Equation (18.52) simpliBies to

 횺TSLS = (QXZQ-1
ZZQZX)-1s2

u   (homoskedasticity only). (18.55)

The homoskedasticity-only estimator oB the TSLS variance matrix is

횺�TSLS = (Qn XZQn -1
ZZQn ZX)-1sn 2

u, where sn 2
u =

Un �Un

n - k - r - 1
 (homoskedasticity only), (18.56)

and the homoskedasticity-only TSLS standard errors are the square root oB the 
diagonal elements oB 횺� TSLS>n.

The class of IV estimators that use linear combinations of Z. The class oB IV 
estimators that use linear combinations oB Z as instruments can be generated in 
two equivalent ways. Both start with the same moment equation: Under the 
assumption oB instrument exogeneity, the errors U = Y - XB are uncorrelated 
with the exogenous regressors; that is, at the true value oB B, Equation (18.46) 
implies that

 E[(Y - XB)�Z] = 0. (18.57)

Equation (18.57) constitutes a system oB m + r + 1 equations involving the 
k + r + 1 unknown elements oB B. When m 7 k, these equations are redundant, 
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in the sense that all are satisBied at the true value oB B. When these population 
moments are replaced by their sample moments, the system oB equations  
(Y - Xb)�Z = 0 can be solved Bor b when there is exact identiBication (m = k). 
This value oB b is the IV estimator oB B. However, when there is overidentiBication 
(m 7 k), the system oB equations typically cannot all be satisBied by the same 
value oB b because oB sampling variation—there are more equations than 
unknowns—and in general this system does not have a solution.

The Birst approach to the problem oB estimating B when there is overidentiBica-
tion is to trade oBB the desire to satisBy each equation by minimizing a quadratic Borm 
involving all the equations. SpeciBically, let A be an (m + r + 1) * (m + r + 1) 
symmetric positive semideBinite weight matrix and let BnIV

A  denote the estimator that 
minimizes

 minb(Y - Xb)�ZAZ�(Y - Xb). (18.58)

The solution to this minimization problem is Bound by taking the derivative oB the 
objective Bunction with respect to b, setting the result equal to zero, and rearrang-
ing. Doing so yields Bn IV

A , the IV estimator based on the weight matrix A:

 BnIV
A = (X�ZAZ�X)-1X�ZAZ�Y . (18.59)

Comparison oB Equations (18.59) and (18.48) shows that TSLS is the IV estimator 
with A = (Z�Z)-1. That is, TSLS is the solution oB the minimization problem in 
Equation (18.58) with A = (Z�Z)-1.

The calculations leading to Equations (18.51) and (18.52), applied to BnIV
A , 

show that

2n(BnIV
A - B) ¡d N(0, 횺IV

A ), where
 횺IV

A = (QXZAQZX)-1QXZAHAQZX (QXZAQZX)-1. (18.60)

The second way to generate the class oB IV estimators that use linear combinations 
oB Z is to consider IV estimators in which the instruments are ZB, where B is an 
(m + r + 1) * (k + r + 1) matrix with Bull row rank. Then the system oB (k + r + 1) 
equations, (Y − Xb)�ZB = 0, can be solved uniquely Bor the (k + r + 1) unknown 
elements oB b. Solving these equations Bor b yields BnIV =  (B�Z�X)−1(B�Z�Y), and 
substitution oB B = AZ�X into this expression yields Equation (18.59). Thus the two 
approaches to deBining IV estimators that are linear combinations oB the instruments 
yield the same Bamily oB IV estimators. It is conventional to work with the Birst 
approach, in which the IV estimator solves the quadratic minimization problem in 
Equation (18.58), and that is the approach taken here.
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Asymptotic efficiency of TSLS under homoskedasticity. IB the errors are homo-
skedastic, then H = QZZs

2
u and the expression Bor 횺IV

A  in Equation (18.60) 
becomes

 횺IV
A = (QXZAQZX)-1QXZAQZZAQZX (QXZAQZX)-1s2

u. (18.61)

To show that TSLS is asymptotically eBBicient among the class oB estimators that 
are linear combinations oB Z when the errors are homoskedastic, we need to show 
that, under homoskedasticity,

 c�횺IV
A c Ú c�횺TSLSc (18.62)

Bor all positive semideBinite matrices A and all (k + r + 1) * 1 vectors c, where 
횺TSLS = (QXZQ-1

ZZQZX)-1s2
u [Equation (18.55)]. The inequality (18.62), which is 

proven in Appendix 18.6, is the same eBBiciency criterion as is used in the multi-
variate Gauss–Markov theorem in Key Concept 18.3. Consequently, TSLS is the 
eBBicient IV estimator under homoskedasticity, among the class oB estimators in 
which the instruments are linear combinations oB Z.

The J-statistic under homoskedasticity. The J-statistic (Key Concept 12.6) tests 
the null hypothesis that all the overidentiBying restrictions hold against the alter-
native that some or all oB them do not hold.

The idea oB the J-statistic is that, iB the overidentiBying restrictions hold, ui will 
be uncorrelated with the instruments and thus a regression oB U on Z will have 
population regression coeBBicients that all equal zero. In practice, U is not 
observed, but it can be estimated by the TSLS residuals Un , so a regression oB Un  on 
Z should yield statistically insigniBicant coeBBicients. Accordingly, the TSLS J-statistic 
is the homoskedasticity-only F-statistic testing the hypothesis that the coeBBicients on 
Z are all zero, in the regression oB Un  on Z, multiplied by (m + r + 1) so that the 
F-statistic is in its asymptotic chi-squared Borm.

An explicit Bormula Bor the J-statistic can be obtained using Equation (7.13) 
Bor the homoskedasticity-only F-statistic. The unrestricted regression is the regres-
sion oB Un  on the m + r + 1 regressors Z, and the restricted regression has no 
regressors. Thus, in the notation oB Equation (7.13), SSRunrestricted = Un �MZUn  and 
SSRrestricted = Un �Un , so SSRrestricted - SSRunrestricted = Un �Un - Un �MZUn = Un �PZUn  
and the J-statistic is

 J =
Un ′PZUn

Un �MZUn>(n - m - r - 1)
. (18.63)
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The method Bor computing the J-statistic described in Key Concept 12.6 
entails testing only the hypothesis that the coeBBicients on the excluded instru-
ments are zero. Although these two methods have diBBerent computational steps, 
they produce identical J-statistics (Exercise 18.14).

It is shown in Appendix 18.6 that, under the null hypothesis that E(uiZi) = 0,

 J ¡d
x2

m-k. (18.64)

Generalized Method of Moments Estimation  
in Linear Models
IB the errors are heteroskedastic, then the TSLS estimator is no longer eBBicient 
among the class oB IV estimators that use linear combinations oB Z as instruments. 
The eBBicient estimator in this case is known as the eBBicient generalized method oB 
moments (GMM) estimator. In addition, iB the errors are heteroskedastic, then the 
J-statistic as deBined in Equation (18.63) no longer has a chi-squared distribution. 
However, an alternative Bormulation oB the J-statistic, constructed using the eBBicient 
GMM estimator, does have a chi-squared distribution with m − k degrees oB Breedom.

These results parallel the results Bor the estimation oB the usual regression 
model with exogenous regressors and heteroskedastic errors: IB the errors are 
heteroskedastic, then the OLS estimator is not eBBicient among estimators that are 
linear in Y (the Gauss–Markov conditions are not satisBied) and the homoskedasticity-
only F-statistic no longer has an F distribution, even in large samples. In the regres-
sion model with exogenous regressors and heteroskedasticity, the eBBicient estimator 
is weighted least squares; in the IV regression model with heteroskedasticity, the 
eBBicient estimator uses a diBBerent weighting matrix than TSLS, and the resulting 
estimator is the eBBicient GMM estimator.

GMM estimation. Generalized method of moments (GMM) estimation is a gen-
eral method Bor the estimation oB the parameters oB linear or nonlinear models, in 
which the parameters are chosen to provide the best Bit to multiple equations, 
each oB which sets a sample moment to zero. These equations, which in the con-
text oB GMM are called moment conditions, typically cannot all be satisBied 
simultaneously. The GMM estimator trades oBB the desire to satisBy each oB the 
equations by minimizing a quadratic objective Bunction.

In the linear IV regression model with exogenous variables Z, the class oB 
GMM estimators consists oB all the estimators that are solutions to the quadratic 
minimization problem in Equation (18.58). Thus the class oB GMM estimators 
based on the Bull set oB instruments Z with diBBerent-weight matrices A is the same as 
the class oB IV estimators in which the instruments are linear combinations oB Z. 
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In the linear IV regression model, GMM is just another name Bor the class oB 
estimators we have been studying—that is, estimators that solve Equation (18.58).

The asymptotically efficient GMM estimator. Among the class oB GMM estimators, 
the efficient GMM estimator is the GMM estimator with the smallest asymptotic 
variance matrix [where the smallest variance matrix is deBined as in Equation 
(18.62)]. Thus the result in Equation (18.62) can be restated as saying that TSLS is 
the eBBicient GMM estimator in the linear model when the errors are homoskedastic.

To motivate the expression Bor the eBBicient GMM estimator when the errors 
are heteroskedastic, recall that when the errors are homoskedastic, H [the vari-
ance matrix oB Ziui; see Equation (18.50)] equals QZZs

2
u, and the asymptotically 

eBBicient weight matrix is obtained by setting A = (Z�Z)-1, which yields the TSLS 
estimator. In large samples, using the weight matrix A = (Z�Z)-1 is equivalent to 
using A = (QZZs

2
u)-1 = H -1. This interpretation oB the TSLS estimator suggests 

that, by analogy, the eBBicient IV estimator under heteroskedasticity can be 
obtained by setting A = H -1 and solving

 minb(Y - Xb)�ZH - 1Z�(Y - Xb). (18.65)

This analogy is correct: The solution to the minimization problem in Equation 
(18.65) is the eBBicient GMM estimator. Let B�Eff.GMM denote the solution to the 
minimization problem in Equation (18.65). By Equation (18.59), this estimator is

 B
�Eff.GMM = (X�ZH-1Z�X)-1X�ZH -1Z�Y. (18.66)

The asymptotic distribution oB B�Eff.GMM is obtained by substituting A = H -1 into 
Equation (18.60) and simpliBying; thus

2n(B�Eff.GMM - B) ¡d N(0, 횺Eff.GMM),

 where 횺Eff.GMM = (QXZH -1QZX)-1. (18.67)

The result that B�Eff.GMM is the eBBicient GMM estimator is proven by showing that 
c�횺IV

A c Ú c�횺Eff.GMMc Bor all vectors c, where 횺IV
A  is given in Equation (18.60). 

The prooB oB this result is given in Appendix 18.6.

Feasible efficient GMM estimation. The GMM estimator deBined in Equation 
(18.66) is not a Beasible estimator because it depends on the unknown variance 
matrix H. However, a Beasible eBBicient GMM estimator can be computed by sub-
stituting a consistent estimator oB H into the minimization problem oB Equation 
(18.65) or, equivalently, by substituting a consistent estimator oB H into the Bor-
mula Bor BnEff.GMM in Equation (18.66).
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The eBBicient GMM estimator can be computed in two steps. In the Birst step, 
estimate B using any consistent estimator. Use this estimator oB B to compute the 
residuals Brom the equation oB interest, and then use these residuals to compute an 
estimator oB H. In the second step, use this estimator oB H to estimate the optimal 
weight matrix H−1 and to compute the eBBicient GMM estimator. To be concrete, in 
the linear IV regression model, it is natural to use the TSLS estimator in the Birst 
step and to use the TSLS residuals to estimate H. IB TSLS is used in the Birst step, 
then the Beasible eBBicient GMM estimator computed in the second step is

 BnEff.GMM = (X�ZHn -1Z�X )-1X�ZHn -1Z�Y, (18.68)

where Hn  is given in Equation (18.54).
Because Hn ¡

p
H,2n(BnEff.GMM - B�Eff.GMM) ¡

p
0 (Exercise 18.12), and

 2n (BnEff.GMM - B) ¡d N(0, 횺Eff.GMM), (18.69)

where 횺Eff.GMM = (QXZH -1QZX)-1 [Equation (18.67)]. That is, the Beasible two-
step estimator BnEff.GMM in Equation (18.68) is, asymptotically, the eBBicient GMM 
estimator.

The heteroskedasticity-robust J-statistic. The heteroskedasticity-robust  
J-statistic, also known as the GMM J-statistic, is the counterpart oB the TSLS-
based J-statistic, computed using the eBBicient GMM estimator and weight Bunction. 
That is, the GMM J-statistic is given by

 JGMM = (Z�Un
GMM

)�Hn -1(Z�Un
GMM

) >  n, (18.70)

where Un GMM = Y - XBnEff.GMM are the residuals Brom the equation oB interest, 
estimated by (Beasible) eBBicient GMM, and Hn  -1 is the weight matrix used to com-
pute BnEff.GMM.

Under the null hypothesis E(Ziui) = 0, JGMM ¡d
x2

m-k (see Appendix 18.6).

GMM with time series data. The results in this section were derived under the IV 
regression assumptions Bor cross–sectional data. In many applications, however, 
these results extend to time series applications oB IV regression and GMM. 
Although a Bormal mathematical treatment oB GMM with time series data is 
beyond the scope oB this book (Bor such a treatment, see Hayashi, 2000, Chapter 6), 
we nevertheless will summarize the key ideas oB GMM estimation with time series 
data. This summary assumes Bamiliarity with the material in Chapters 14 and 15. 
For this discussion, it is assumed that the variables are stationary.
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It is useBul to distinguish between two types oB applications: applications in 
which the error term ut is serially correlated and applications in which ut is serially 
uncorrelated. IB the error term ut is serially correlated, then the asymptotic distri-
bution oB the GMM estimator continues to be normally distributed, but the Bor-
mula Bor H in Equation (18.50) is no longer correct. Instead, the correct expression 
Bor H depends on the autocovariances oB Ztut and is analogous to the Bormula 
given in Equation (15.14) Bor the variance oB the OLS estimator when the error 
term is serially correlated. The eBBicient GMM estimator is still constructed using 
a consistent estimator oB H; however, that consistent estimator must be computed 
using the HAC methods discussed in Chapter 15.

IB the error term ut is not serially correlated, then HAC estimation oB H is 
unnecessary and the Bormulas presented in this section all extend to time series 
GMM applications. In modern applications to Binance and macroeconometrics, it 
is common to encounter models in which the error term represents an unexpected 
or unBorecastable disturbance, in which case the model implies that ut is serially 
uncorrelated. For example, consider a model with a single included endogenous 
variable and no included exogenous variables so that the equation oB interest is 
Yt = b0 + b1Xt + ut. Suppose that an economic theory implies that ut is unpre-
dictable given past inBormation. Then the theory implies the moment condition

 E(ut 0Yt - 1, Xt - 1, Zt - 1, Yt - 2, Xt - 2, Zt - 2, c) = 0, (18.71)

where Zt−1 is the lagged value oB some other variable. The moment condition in 
Equation (18.71) implies that all the lagged variables Yt - 1, Xt - 1, Zt - 1, Yt - 2, Xt - 2,  
Zt - 2, care candidates Bor being valid instruments (they satisBy the exogeneity 
condition). Moreover, because ut - 1 = Yt - 1 - b0 - b1Xt - 1, the moment condi-
tion in Equation (18.71) is equivalent to E(ut 0 ut - 1, Xt - 1, Zt - 1, ut - 2, Xt - 2,
Zt - 2, c) = 0. Because ut is serially uncorrelated, HAC estimation oB H is 
unnecessary. The theory oB GMM presented in this section, including eBBicient 
GMM estimation and the GMM J-statistic, thereBore applies directly to time 
series applications with moment conditions oB the Borm in Equation (18.71), under 
the hypothesis that the moment condition in Equation (18.71) is, in Bact, correct.

  Summary

 1. The linear multiple regression model in matrix Borm is Y = XB + U , where 
Y is the n * 1 vector oB observations on the dependent variable, X is the 
n * (k + 1) matrix oB n observations on the k + 1 regressors (including a 
constant), B is the k + 1 vector oB unknown parameters, and U is the n * 1 
vector oB error terms.
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 2. The OLS estimator is Bn = (X�X) -1X�Y . Under the Birst Bour least squares 
assumptions in Key Concept 18.1, Bn  is consistent and asymptotically nor-
mally distributed. IB in addition the errors are homoskedastic, then the con-
ditional variance oB Bn  is var(Bn  
  X) = s2

u(X�X)-1.
 3. General linear restrictions on B can be written as the q equations RB = r, 

and this Bormulation can be used to test joint hypotheses involving multiple 
coeBBicients or to construct conBidence sets Bor elements oB B.

 4. When the regression errors are i.i.d. and normally distributed, condi-
tional on X, B has an exact normal distribution and the homoskedasticity- 
only t- and F-statistics have exact tn - k - 1and Fq, n - k - 1  distributions, 
respectively.

 5. The Gauss–Markov theorem says that, iB the errors are homoskedastic and 
conditionally uncorrelated across observations and iB E(ui|X) = 0, the OLS 
estimator is eBBicient among linear conditionally unbiased estimators (that 
is, OLS is BLUE).

 6. IB the error covariance matrix 훀 is not proportional to the identity matrix, 
and iB 훀 is known or can be estimated, then the GLS estimator is asymp-
totically more eBBicient than OLS. However, GLS requires that, in general, 
ui be uncorrelated with all observations on the regressors, not just with Xi, 
as is required by OLS, an assumption that must be evaluated careBully in 
applications.

 7. The TSLS estimator is a member oB the class oB GMM estimators oB 
the linear model. In GMM, the coeBBicients are estimated by mak-
ing the sample covariance between the regression error and the 
exogenous variables as small as possible—speciBically, by solving 
 min b3(Y - Xb)�Z4A3Z�(Y - Xb)4 , where A is a weight matrix. The 
asymptotically eBBicient GMM estimator sets A = 3E(ZiZi

′u2
i )4-1. When 

the errors are homoskedastic, the asymptotically eBBicient GMM estima-
tor in the linear IV regression model is TSLS.

Key Terms

Gauss–Markov conditions Bor 
multiple regression (720)  

Gauss–Markov theorem Bor multiple 
regression (721)  

generalized least squares  
(GLS) (723)  

inBeasible GLS (726)  
Beasible GLS (726)  
generalized method oB moments 

(GMM) (734)  
eBBicient GMM (735)  
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heteroskedasticity-robust  
J-statistic (736) 

GMM J-statistic (736)  

mean vector (750)  
covariance matrix (750)  

Review the Concepts

 18.1 A researcher studying the relationship between earnings and gen-
der Bor a group oB workers speciBies the regression model Yi = 
b0 + X1ib1 + X2ib2 + ui, where X1i is a binary variable that equals 1 iB 
the ith person is a Bemale and X2i is a binary variable that equals 1 iB the ith 
person is a male. Write the model in the matrix Borm oB Equation (18.2) 
Bor a hypothetical set oB n = 5 observations. Show that the columns oB X 
are linearly dependent so that X does not have Bull rank. Explain how you 
would respeciBiy the model to eliminate the perBect multicollinearity.

 18.2 You are analyzing a linear regression model with 500 observations and one 
regressor. Explain how you would construct a conBidence interval Bor b1 iB:

 a. Assumptions #1 through #4 in Key Concept 18.1 are true, but you 
think Assumption #5 or #6 might not be true.

 b. Assumptions #1 through #5 are true, but you think Assumption #6 
might not be true. (Give two ways to construct the conBidence interval.)

 c. Assumptions #1 through #6 are true.

 18.3 Suppose that Assumptions #1 through #5 in Key Concept 18.1 are true 
but that Assumption #6 is not. Does the result in Equation (18.31) hold? 
Explain.

  18.4 Can you compute the BLUE estimator oB B iB Equation (18.41) holds and 
you do not know 훀? What iB you know 훀?

 18.5 Construct an example oB a regression model that satisBies the assumption 
E(ui  
  Xi) = 0 but Bor which E(U  
  X ) ≠ 0n.

MMecCBL6b C6B h:lD yCu G:H 6 B:HH:F GF69:

MyEconLab   If your exam were tomorrow, would you be ready? For each chapter,  
 MyeconL.b Practice Tests and Study Plan help you prepare for your exams. 
You can also find the Exercises and all Review the Concepts Questions available now in MyeconL.b. 
To see how it works, turn to the MyeconL.b spread on the inside front cover of this book and then 
go to www.my2conl.b.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.<2.rson5ig52r2d.com/stock_w.tson.
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Exercises

 18.1 Consider the population regression oB test scores against income and the 
square oB income in Equation (8.1).

 a. Write the regression in Equation (8.1) in the matrix Borm oB Equation 
(18.5). DeBine Y, X, U, and B.

 b. Explain how to test the null hypothesis that the relationship between 
test scores and income is linear against the alternative that it is qua-
dratic. Write the null hypothesis in the Borm oB Equation (18.20). 
What are R, r, and q?

 18.2 Suppose that a sample oB n = 20 households has the sample means and 
sample covariances below Bor a dependent variable and two regressors:

 a. Calculate the OLS estimates oB b0, b1, and b2. Calculate s2
un. Calculate 

the R2 oB the regression.

 b. Suppose that all six assumptions in Key Concept 18.1 hold. Test the 
hypothesis that b1 = 0 at the 5% signiBicance level.

 18.3 Let W be an m * 1 vector with covariance matrix 횺W , where 횺W  is Binite 
and positive deBinite. Let c be a nonrandom m * 1 vector and let Q = c�W.

 a. Show that var(Q) = c�횺W  c.

 b. Suppose that c ≠ 0m. Show that 0 < var(Q) 6 ∞ .

 18.4 Consider the regression model Yi = b0 + b1Xi + ui Brom Chapter 4 and 
assume that the least squares assumptions in Key Concept 4.3 hold.

 a. Write the model in the matrix Borm given in Equations (18.2) and (18.4).

 b. Show that Assumptions #1 through #4 in Key Concept 18.1 are satisBied.

 c. Use the general Bormula Bor Bn  in Equation (18.11) to derive the 
expressions Bor bn0 and bn1 given in Key Concept 4.2.

 d. Show that the (1, 1) element oB 횺Bn in Equation (18.13) is equal to the 
expression Bor s2

bn 0
 given in Key Concept 4.4.

    

S6mDl: M:6Bs

S6mDl: CCv6F>6Bc:s  

Y X1 X2

Y 6.39 0.26 0.22 0.32

X1 7.24   0.80 0.28

X2 4.00     2.40
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 18.5 Let PX and MX be as deBined in Equations (18.24) and (18.25).

 a. Prove that PXMX = 0n * n and that PX and MX are idempotent.

 b. Derive Equations (18.27) and (18.28).

 c. Show that rank(PX) = k + 1 and rank(MX) = n − k − 1. [Hint: 
First solve Exercise 18.10 and then use the Bact that trace(AB) =
trace(BA) Bor conBormable matrices A and B.]

 18.6 Consider the regression model in matrix Borm, Y = XB + WG + U , 
where X is an n * k1 matrix oB regressors and W is an n * k2 matrix oB 
regressors. Then, as shown in Exercise 18.17, the OLS estimator Bn  can 
be expressed

Bn = (X�MWX )-1(X�MWY ).

  Now let bnBV
1  be the “binary variable” Bixed eBBects estimator computed 

by estimating Equation (10.11) by OLS and let bnDM
1  be the “de-meaning” 

Bixed eBBects estimator computed by estimating Equation (10.14) by OLS, 
in which the entity-speciBic sample means have been subtracted Brom X 
and Y. Use the expression Bor Bn  given above to prove that bnBV

1 = bnDM
1 . 

[Hint: Write Equation (10.11) using a Bull set oB Bixed eBBects, D1i, D2i, . . . , 
Dni and no constant term. Include all oB the Bixed eBBects in W. Write out 
the matrix MWX.]

 18.7 Consider the regression model Yi = b1Xi + b2Wi + ui, where Bor simplicity 
the intercept is omitted and all variables are assumed to have a mean oB zero. 
Suppose that Xi is distributed independently oB (Wi, ui) but Wi and ui might be 
correlated and let bn1 and bn2 be the OLS estimators Bor this model. Show that

 a. Whether or not Wi and ui are correlated, bn1 ¡
p
b1.

 b. IB Wi and ui are correlated, then bn2 is inconsistent.

 c. Let bnr1 be the OLS estimator Brom the regression oB Y on X (the 
restricted regression that excludes W). Will bn1 have a smaller asymp-
totic variance than bnr1, allowing Bor the possibility that Wi and ui are 
correlated? Explain.

 18.8 Consider the regression model Yi = b0 + b1Xi + ui, where u1 = u�1 and 
ui = 0.5ui-1 + u�i  Bor i = 2, 3, . . . , n. Suppose that u�i are i.i.d. with mean 0 
and variance 1 and are distributed independently oB Xj Bor all i and j.

 a. Derive an expression Bor E(UU′) = 훀.
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 b. Explain how to estimate the model by GLS without explicitly invert-
ing the matrix 훀. (Hint: TransBorm the model so that the regression 
errors are u�1, u�2, c, u�n.)

 18.9 This exercise shows that the OLS estimator oB a subset oB the regres-
sion coeBBicients is consistent under the conditional mean independence 
assumption stated in Appendix 7.2. Consider the multiple regression 
model in matrix Borm Y = XB + WG + U , where X and W are, respec-
tively, n * k1 and n * k2 matrices oB regressors. Let X�i  and W�i  denote the  
ith rows oB X and W [as in Equation (18.3)]. Assume that (i) E(ui|Xi, Wi) = 

W′i D, where D is a k2 * 1 vector oB unknown parameters; (ii) (Xi, Wi, Yi)  
are i.i.d.; (iii) (X i, Wi, ui) have Bour Binite, nonzero moments;  
and (iv) there is no perBect multicollinearity. These are Assumptions 
#1 through #4 oB Key Concept 18.1, with the conditional mean inde-
pendence assumption (i) replacing the usual conditional mean zero 
assumption.

 a. Use the expression Bor Bn  given in Exercise 18.6 to write Bn - B = 
(n-1X�MWX )-1(n-1X�MWU ).

 b. Show that n-1X�MWX ¡p
횺XX - 횺XW횺-1

WW횺WX, where 횺XX =  
E(XiX�i  ), 횺XW = E(XiW�i ), and so Borth. [The matrix An ¡

p
A iB 

An,ij ¡
p

Aij Bor all i, j, where An,ij and Aij are the (i, j) elements oB 
An and A.]

 c. Show that assumptions (i) and (ii) imply that E(U|X, W) = WD.

 d. Use (c) and the law oB iterated expectations to show that 

n-1X�MWU ¡p
0k1 * 1.

 e. Use (a) through (d) to conclude that, under conditions (i) through (iv), 
Bn ¡p

B.

 18.10 Let C be a symmetric idempotent matrix.

 a. Show that the eigenvalues oB C are either 0 or 1. (Hint: Note that Cq = gq 
implies 0 = Cq - gq = CCq - gq = gCq - gq = g2q - gq and 
solve Bor G.)

 b. Show that trace(C) = rank(C).

 c. Let d be an n * 1 vector. Show that d�Cd Ú 0.

 18.11 Suppose that C is an n * n symmetric idempotent matrix with rank r and 
let V ∼ N(0n, In).
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 a. Show that C = A A′, where A is n * r with A′A = Ir. (Hint: C is 
positive semideBinite and can be written as Q횲Q�, as explained in 
Appendix 18.1.)

 b. Show that A�V ∼ N10r, Ir2.
 c. Show that V�CV ∼ x2

r.

 18.12 a.  Show that B �Eff.GMM is the eBBicient GMM estimator—that is, that 
B �Eff.GMM in Equation (18.66) is the solution to Equation (18.65).

 b. Show that 2n1BnEff.GMM - B �Eff.GMM2 ¡p
0.

 c. Show that JGMM ¡d
x2

m - k. 

 18.13 Consider the problem oB minimizing the sum oB squared residuals, subject 
to the constraint that Rb = r, where R is q * (k + 1) with rank q. Let B�  
be the value oB b that solves the constrained minimization problem.

 a. Show that the Lagrangian Bor the minimization problem is  
L(b, G) = (Y − Xb)� (Y − Xb) + G�(Rb − r), where G is a q * 1  
vector oB Lagrange multipliers.

 b. Show that B� = Bn - (X�X)-1R�[R(X�X)-1R�]-1(RBn - r).

 c. Show that (Y - XB�)�(Y - XB�) - (Y - XBn)(Y - XBn) =  
(RBn - r)�[R(X�X)-1R�]-1(RBn - r).

 d. Show that F�  in Equation (18.36) is equivalent to the homoskedasticity- 
only F-statistic in Equation (7.13). 

 18.14 Consider the regression model Y = XB + U. Partition X as [X1 X2] and B 
as [B�1 B�2]�, where X1 has k1 columns and X2 has k2 columns. Suppose that 
X�2Y = 0k2 * 1. Let R = [Ik1

 0k1 * k2
].

 a. Show that Bn �(X�X)Bn = (RBn)�[R(X�X)-1R]-1(RBn).

 b. Consider the regression described in Equation (12.17). Let W =
[1 W1 W2 c Wr], where 1 is an n * 1 vector oB ones, W1 is the 
n * 1 vector with ith element W1i, and so Borth. Let UnTSLS denote the 
vector oB two-stage least squares residuals.

 i. Show that W�UnTSLS = 0.

 ii. Show that the method Bor computing the J-statistic described in Key 
Concept 12.6 (using a homoskedasticity-only F-statistic) and the 
Bormula in Equation (18.63) produce the same value Bor the J-statistic. 
[Hint: Use the results in (a), (b, i), and Exercise 18.13.]
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 18.15 (Consistency oB clustered standard errors.) Consider the panel data model Yit = 
bXit + ai + uit, where all variables are scalars. Assume that Assumptions #1, #2,  
and #4 in Key Concept 10.3 hold and strengthen Assumption #3 so that Xit and 
uit have eight nonzero Binite moments. Let M = IT -T -1II�, where I is a T * 1 
vector oB ones. Also let Yi = (Yi1 Yi2 g YiT)�, Xi = (Xi1 Xi2 g XiT)�, 
ui = (ui1 ui2 g uiT)�, Y�i = MYi, X

�
i = MXi, and u�i = Mui. For the 

asymptotic calculations in this problem, suppose that T is Bixed and n ¡ ∞ .

 a. Show that the Bixed eBBects estimator oB b Brom Section 10.3 can be 

written as bn = (gn
i=1X
�

i�X
�

i)-1gn
i=1X
�

i�Y
�

i.

 b. Show that bn - b = (gn
i=1X
�

i�X
�

i)
-1gn

i=1X
�

i�ui. (Hint: M is idempotent.)

 c. Let QX
� = T -1E(X� i�X

�
i) and QnX� =

1
nTg

n
i=1g

T
t=1X
�2

it. Show that QnX� ¡
p

QX
�.

 d. Let hi = X��iui  >  2T and s2
h = var(hi). Show that 1

ngn
i=1hi   ¡

d N(0, s2
h).

 e. Use your answers to (b) through (d) to prove Equation (10.25); that 
is, show that 2nT(bn - b) ¡d N(0, s2

h>Q
2  
X
� ).

 f. Let s�2
h,clustered be the inBeasible clustered variance estimator, 

computed using the true errors instead oB the residuals so that  
s�2
h,clustered =

1
nTg

n
i=1(X��i ui)

2. Show that s�2
h,clustered ¡

p
s2
h.

 g. Let u�n1 = Y�i - bnX
�

i and sn2
h, clustered =

n
n - 1 1

nTg
n
i=1(X� i

= u�ni)2 [this is  
Equation (10.27) in matrix Borm]. Show that sn2

h, clustered ¡
p
s2
h.  

[Hint: Use an argument like that used in Equation (17.16) to show 
that sn 2

h, clustered - s�2
h, clustered ¡

p
0 and then use your answer  

to (B).]

 18.16 This exercise takes up the problem oB missing data discussed in Section 
9.2. Consider the regression model Yi = Xib + ui, i = 1, c, n, where 
all variables are scalars and the constant term/intercept is omitted Bor 
convenience.

 a. Suppose that the least squares assumptions in Key Concept 4.3 are 
satisBied. Show that the least squares estimator oB b is unbiased and 
consistent.

 b. Now suppose that some oB the observations are missing. Let Ii denote 
a binary random variable that indicates the nonmissing observations; 
that is, Ii = 1 iB observation i is not missing and Ii = 0 iB observation 
i is missing. Assume that {Ii, Xi, ui} are i.i.d.
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 i. Show that the OLS estimator can be written as

bn = aa
n

i= 1
IiXiXi� b

-1

aa
n

i= 1
IiXiYib = b + aa

n

i= 1
IiXiXi� b

-1

aa
n

i= 1
IiXiuib .

 ii. Suppose that data are missing, “completely at random,” in the 
sense that Pr(Ii = 1 0Xi,ui) = p, where p is a constant. Show that bn 
is unbiased and consistent.

 iii. Suppose that the probability that the ith observation is missing 
depends oB Xi, but not on ui; that is, Pr(Ii = 1 0Xi, ui) = p(Xi). 
Show that bn is unbiased and consistent.

 iv. Suppose that the probability that the ith observation is missing 
depends on both Xi and ui; that is, Pr(Ii = 1 0Xi, ui) = p(Xi, ui). Is 
bn unbiased? Is bn consistent? Explain.

 c. Suppose that b = 1 and that Xi and ui are mutually independent 
standard normal random variables [so that both Xi and ui are dis-
tributed N(0, 1)]. Suppose that Ii = 1 when Yi Ú 0, but Ii = 0 when 
Yi 6 0. Is bn unbiased? Is bn consistent? Explain. 

 18.17 Consider the regression model in matrix Borm Y = XB + WG + U , 
where X and W are matrices oB regressors and B and G are vectors oB 
unknown regression coeBBicients. Let X� = MWX  and Y� = MWY , where 
MW = I - W(W�W)-1W .

 a. Show that the OLS estimators oB B and G can be written as

Bn

Gn
=

X�X X�W
W�X W�W

 -1 X�Y
W�Y

 b. Show that

X�X X�W
W�X W�W

-1

= c (X�MWX)-1 - (X�MWX)-1X�W(W�W)-1

-(W�W)-1W�X(X�MWX)-1 (W�W)-1 + (W�W)-1W�X(X�MWX)-1X�W(W�W)-1 d .

  (Hint: Show that the product oB the two matrices is equal to the iden-
tity matrix.)
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 c. Show that Bn = (X�MWX)-1X�MWY .

 d. The Frisch–Waugh theorem (Appendix 6.2) says that Bn =  
(X��X�)-1X��Y�. Use the result in (c) to prove the Frisch–Waugh  
theorem.

 a p p e n d i x

 18.1 Summary of Matrix Algebra

This appendix summarizes vectors, matrices, and the elements oB matrix algebra used in 

Chapter 1. The purpose oB this appendix is to review some concepts and deBinitions Brom 

a course in linear algebra, not to replace such a course.

Definitions of Vectors and Matrices
A vector is a collection oB n numbers or elements, collected either in a column (a column 

vector) or in a row (a row vector). The n-dimensional column vector b and the n-dimensional 

row vector c are

b =  ≥

b1

b2

f
bn

¥  and c = 3c1 c2 g cn4,

where b1 is the Birst element oB b and in general bi is the ith element oB b.

Throughout, a boldBace symbol denotes a vector or matrix.

A matrix is a collection, or an array, oB numbers or elements in which the elements are 

laid out in columns and rows. The dimension oB a matrix is n * m, where n is the number 

oB rows and m is the number oB columns. The n * m matrix A is

A = ≥

a11 a12 g a1m

a21 a22 g a2m

f f f f
an1 an2 g anm

¥ ,

where aij is the (i, j) element oB A, that is, aij is the element that appears in the ith row and jth 

column. An n * m matrix consists oB n row vectors or, alternatively, oB m column vectors.

To distinguish one-dimensional numbers Brom vectors and matrices, a one-dimensional 

number is called a scalar.
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Types of Matrices
Square, symmetric, and diagonal matrices.  A matrix is said to be square iB the number oB 

rows equals the number oB columns. A square matrix is said to be symmetric iB its (i, j) ele-

ment equals its (j, i) element. A diagonal matrix is a square matrix in which all the oBB- 

diagonal elements equal zero; that is, iB the square matrix A is diagonal, then aij = 0 Bor i ≠ j.

Special matrices.  An important matrix is the identity matrix, In, which is an n * n diago-

nal matrix with ones on the diagonal. The null matrix, 0n *m, is the n * m matrix with all 

elements equal to zero.

The transpose.  The transpose oB a matrix switches the rows and the columns. That is, the 

transpose oB a matrix turns the n * m matrix A into the m * n matrix, which is denoted 

by A�, where the (i, j) element oB A becomes the (j, i) element oB A�; said diBBerently, the 

transpose oB the matrix A turns the rows oB A into the columns oB A�. IB aij is the (i, j) 

element oB A, then A� (the transpose oB A) is

A� = ≥

a11 a21 g an1

a12 a22 g an2

f f f f
a1m a2m g anm

¥ .

The transpose oB a vector is a special case oB the transpose oB a matrix. Thus the transpose 

oB a vector turns a column vector into a row vector; that is, iB b is an n * 1 column vector, 

then its transpose is the 1 * n row vector

b� =  3b1 b2 g bn4.

The transpose oB a row vector is a column vector.

Elements of Matrix Algebra: Addition and Multiplication
Matrix addition.  Two matrices A and B that have the same dimensions (Bor example, that 

are both n * m) can be added together. The sum oB two matrices is the sum oB their ele-

ments; that is, iB C = A + B, then cij = aij + bij. A special case oB matrix addition is vec-

tor addition: IB a and b are both n * 1 column vectors, then their sum c = a + b is the 

element-wise sum; that is, ci = ai + bi.

Vector and matrix multiplication.  Let a and b be two n * 1 column vectors. Then the 

product oB the transpose oB a (which is itselB a row vector) with b is a�b = gn
i= 1aibi. Apply-

ing this deBinition with b = a yields a�a = gn
i= 1 a

2
i .

Similarly, the matrices A and B can be multiplied together iB they are conBormable—

that is, iB the number oB columns oB A equals the number oB rows oB B. SpeciBically, suppose 
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that A has dimension n * m and B has dimension m * r. Then the product oB A and B is 

an n * r matrix, C; that is, C = AB, where the (i, j) element oB C is cij = g
m
k= 1aikbkj. Said 

diBBerently, the (i, j) element oB AB is the product oB multiplying the row vector that is the 

ith row oB A with the column vector that is the j th column oB B.

The product oB a scalar d with the matrix A has the (i, j) element daij; that is, each 

element oB A is multiplied by the scalar d.

Some useful properties of matrix addition and multiplication.  Let A and B be matrices. 

Then:

 a. A + B = B + A;

 b. (A + B) + C = A + (B + C);

 c. (A + B)� = A� + B�;

 d. If A is n * m, then AIm = A and InA = A;

 e. A(BC) = (AB)C;

 f. (A + B)C = AC + BC; and

 g. (AB)� = B�A�.

In general, matrix multiplication does not commute; that is, in general AB ≠ BA, 

although there are some special cases in which matrix multiplication commutes; Bor exam-

ple, iB A and B are both n * n diagonal matrices, then AB = BA.

Matrix Inverse, Matrix Square Roots, and Related Topics
The matrix inverse. Let A be a square matrix. Assuming that it exists, the inverse oB the 

matrix A is deBined as the matrix Bor which A−1A = In. IB in Bact the inverse matrix A−1 

exists, then A is said to be invertible or nonsingular. IB both A and B are invertible, then 

(AB)−1 = B−1A−1.

Positive definite and positive semidefinite matrices. Let V be an n * n square matrix. 

Then V is positive definite iB c�Vc 7 0 Bor all nonzero n * 1 vectors c. Similarly, V is 

positive semidefinite iB c�Vc Ú 0 Bor all nonzero n * 1 vectors c. IB V is positive deBinite, 

then it is invertible.

Linear independence.  The n * 1 vectors a1 and a2 are linearly independent iB there do not exist 

nonzero scalars c1 and c2 such that c1a1 + c2a2 = 0n * 1. More generally, the set oB k vectors 

a1, a2, c, ak are linearly independent iB there do not exist nonzero scalars c1, c2, c, ck such 

that c1a1 + c2a2 +g+  ckak = 0n * 1.
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The rank of a matrix.  The rank oB the n * m matrix A is the number oB linearly independ-

ent columns oB A. The rank oB A is denoted rank(A). IB the rank oB A equals the number 

oB columns oB A, then A is said to have Bull column rank. IB the n * m matrix A has Bull 

column rank, then there does not exist a nonzero m * 1 vector c such that Ac = 0n * 1. IB 

A is n * n with rank(A) = n, then A is nonsingular. IB the n * m matrix A has Bull column 

rank, then A�A is nonsingular.

The matrix square root.  Let V be an n * n square symmetric positive deBinite matrix. The 

matrix square root oB V is deBined to be an n * n matrix F such that F�F = V . The matrix 

square root oB a positive deBinite matrix will always exist, but it is not unique. The matrix 

square root has the property that FV -1F� = In. In addition, the matrix square root oB a 

positive deBinite matrix is invertible, so F�-1VF -1 = In.

Eigenvalues and eigenvectors.  Let A be an n * n matrix. IB the n * 1 vector q and the 

scalar l satisBy Aq = lq, where q�q = 1, then l is an eigenvalue oB A, and q is the eigen-

vector oB A associated with that eigenvalue. An n * n matrix has n eigenvalues, which 

need not take on distinct values, and n eigenvectors.

IB V is an n * n symmetric positive deBinite matrix, then all the eigenvalues oB V are 

positive real numbers, and all the eigenvectors oB V are real. Also, V can be written in 

terms oB its eigenvalues and eigenvectors as V = Q횲Q�, where 횲 is a diagonal n * n 

matrix with diagonal elements that equal the eigenvalues oB V, and Q is an n * n matrix 

consisting oB the eigenvectors oB V, arranged so that the ith column oB Q is the eigenvector 

corresponding to the eigenvalue that is the ith diagonal element oB 횲. The eigenvectors are 

orthonormal, so Q�Q = In.

Idempotent matrices.  A matrix C is idempotent iB C is square and CC = C. IB C is an 

n * n idempotent matrix that is also symmetric, then C is positive semideBinite and C 

has r eigenvalues that equal 1 and n − r eigenvalues that equal 0, where r = rank(C) 

(Exercise 18.10).

a p p e n d i x

 18.2 Multivariate Distributions

This appendix collects various deBinitions and Bacts about distributions oB vectors oB ran-

dom variables. We start by deBining the mean and covariance matrix oB the n-dimensional 

random variable V. Next we present the multivariate normal distribution. Finally, we sum-

marize some Bacts about the distributions oB linear and quadratic Bunctions oB jointly nor-

mally distributed random variables.
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The Mean Vector and Covariance Matrix
The Birst and second moments oB an m * 1 vector oB random variables, V =
(V1 V2  g Vm)�, are summarized by its mean vector and covariance matrix.

Because V is a vector, the vector oB its means—that is, its mean vector—is E(V) = MV. 

The ith element oB the mean vector is the mean oB the ith element oB V.

The covariance matrix oB V is the matrix consisting oB the variance var(Vi), i = 1, . . . , m, 

along the diagonal and the (i, j) oBB-diagonal elements cov(Vi, Vj). In matrix Borm, the 

covariance matrix 횺V  is

횺V = E[(V - MV)(V - MV)�] =
var(V1)
f

cov(Vm, V1)

g
f

g

cov(V1, Vm)
f

var(Vm)

. (18.72)

The Multivariate Normal Distribution
The m * 1 vector random variable V has a multivariate normal distribution with mean 

vector MV and covariance matrix 횺V  iB it has the joint probability density Bunction

 f(V ) =
1

2(2p)mdet(횺V)
 exp c -

1
2

 (V - MV)�횺-1
V (V - MV) d , (18.73)

where det(횺V) is the determinant oB the matrix 횺V . The multivariate normal distribution 

is denoted N(MV, 횺V).

An important Bact about the multivariate normal distribution is that iB two jointly 

normally distributed random variables are uncorrelated (equivalently, have a block-diagonal 

covariance matrix), then they are independently distributed. That is, let V1 and V2 be 

jointly normally distributed random variables with respective dimensions m1 * 1 and 

m2 * 1. Then iB cov(V1, V2) = E[(V1 - MV1
)(V2 - MV2

)�] = 0m1 *m2
, V1 and V2 are 

independent.

IB {Vi} are i.i.d. N(0, s2
v), then 횺V = s2

v  Im, and the multivariate normal distribution 

simpliBies to the product oB m univariate normal densities.

Distributions of Linear Combinations and Quadratic 
Forms of Normal Random Variables
Linear combinations oB multivariate normal random variables are themselves normally 

distributed, and certain quadratic Borms oB multivariate normal random variables have a 

chi-squared distribution. Let V be an m * 1 random variable distributed N(MV, 횺V), let A 
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and B be nonrandom a * m and b * m matrices, and let d be a nonrandom a * 1 vector. 

Then

 d + AV is distributed N(d + AMV, A횺VA�); (18.74)

 cov (AV, BV ) = A횺VB�; (18.75)

 iB A횺VB� = 0a * b, then AV and BV are independently distributed; and (18.76)

 (V - MV)�횺-1
V (V - MV) is distributed x2

m. (18.77)

Let U be an m-dimensional multivariate standard normal random variable with distribu-

tion N(0, Im). IB C is symmetric and idempotent, then

 U�CU has a x2
r  distribution, where r =  rank(C). (18.78)

Equation (18.78) is proven as Exercise 18.11.

a p p e n d i x

 18.3 Derivation of the Asymptotic Distribution of β n

This appendix provides the derivation oB the asymptotic normal distribution oB 2n(Bn - B) 

given in Equation (18.12). An implication oB this result is that Bn ¡p
B.

First consider the “denominator” matrix X�X  >  n = 1
ngn

i=1XiX�i  in Equation (18.15). The  

(j, l) element oB this matrix is 1
ngn

i=1 XjiXli. By the second assumption in Key Concept 18.1, 

Xi is i.i.d., so XjiXli is i.i.d. By the third assumption in Key Concept 18.1, each element oB 

Xi has Bour moments, so, by the Cauchy–Schwarz inequality (Appendix 17.2), XjiXli has two 

moments. Because XjiXli is i.i.d. with two moments, 1
ngn

i=1 XjiXli obeys the law oB large 

numbers, so 1
ngn

i= 1 Xji Xli ¡
p

E(Xji Xli). This is true Bor all the elements oB X�X  >  n, so 

X�X  >  n ¡p
E(XiX�i) = QX.

Next consider the “numerator” matrix in Equation (18.15), X�U  >  2n = 21
ngn

i= 1Vi, 

where Vi = Xiui. By the Birst assumption in Key Concept 18.1 and the law oB iterated 

expectations, E(Vi) = E[XiE(ui|Xi)] = 0k+1. By the second least squares assumption, 

Vi is i.i.d. Let c be a Binite k + 1 dimensional vector. By the Cauchy–Schwarz inequality, 

E[(c�Vi)
2] = E[(c�Xiui)

2] = E[(c�Xi)
2(ui)

2] … 2E[(c�Xi)
4]E(u4

i ), which is Binite by the 

third least squares assumption. This is true Bor every such vector c, so E(ViV�i) = 횺V  is 

Binite and, we assume, positive deBinite. Thus the multivariate central limit theorem oB Key 

Concept 18.2 applies to 21
ngn

i= 1Vi =
1

2n
X�U; that is,

 
1

2n
 X�U ¡d

N(0k + 1, 횺V). (18.79)
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The result in Equation (18.12) Bollows Brom Equations (18.15) and (18.79), the consist-

ency oB X�X  >  n, the Bourth least squares assumption (which ensures that (X�X)-1 exists), 

and Slutsky’s theorem.

a p p e n d i x

 18.4 Derivations of Exact Distributions of OLS Test 
Statistics with Normal Errors

This appendix presents the prooBs oB the distributions under the null hypothesis oB the 

homoskedasticity-only t-statistic in Equation (18.35) and the homoskedasticity-only F-statistic 

in Equation (18.37), assuming that all six assumptions in Key Concept 18.1 hold.

Proof of Equation (18.35)
IB (i) Z has a standard normal distribution, (ii) W has a x2

m distribution, and (iii) Z and W 

are independently distributed, then the random variable Z  >  2W  >  m has the t-distribution 

with m degrees oB Breedom (Appendix 17.1). To put t� in this Borm, notice that 

횺n bn = (s2
un  >  s2

u)횺Bn
 

  X. Then rewrite Equation (18.34) as

 t� =
(bnj - bj,0)>2(횺Bn 0X)jj

2W>(n - k - 1)
, (18.80)

where W = (n – k – 1)(sun
2 >su

2),  and let Z = (bnj - bj,0)>2(횺Bn 0X)jj and m = n − k − 1. 

With these deBinitions, t� = Z>2W>m. Thus, to prove the result in Equation (18.35), we 

must show (i) through (iii) Bor these deBinitions oB Z, W, and m.

 i.  An implication oB Equation (18.30) is that, under the null hypothesis, Z = 

(bnj - bj,0)>2(횺Bn 0X)jj has an exact standard normal distribution, which shows (i).

  ii. From Equation (18.31), W is distributed as x2
n - k - 1, which shows (ii).

iii. To show (iii), it must be shown that bnj and sun
2  are independently distributed.

From Equations (18.14) and (18.29), Bn - B = (X�X)-1X�U  and sun
2 = (MXU)�(MXU)>

(n - k - 1). Thus Bn - B and sun
2  are independent iB (X�X)-1X�U  and MXU are independ-

ent. Both (X�X)-1X�U  and MXU are linear combinations oB U, which has an N(0n * 1, s
2
uIn) 

distribution, conditional on X. But because MXX(X�X)-1 = 0n * (k + 1) [Equation (18.26)], it 

Bollows that (X�X)-1X�U  and MXU are independently distributed [Equation (18.76)]. Con-

sequently, under all six assumptions in Key Concept 18.1,

 Bn  and sun
2  are independently distributed, (18.81)

which shows (iii) and thus proves Equation (18.35).
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Proof of Equation (18.37)
The Fn1, n2

 distribution is the distribution oB (W1>n1)>(W2>n2), where (i) W1 is distributed 

x2
n1

; (ii) W2 is distributed x2
n2

; and (iii) W1 and W2 are independently distributed (Appendix 

17.1). To express F
�  in this Borm, let W1 = (RBn - r)�[R(X�X)-1R�s2

u]-1(RBn - r) and  

W2 = (n – k – 1)sun
2 >su

2 Substitution oB these deBinitions into Equation (18.36) shows that 

F� = (W1 >  q) >  [W2 >  (n - k - 1)]. Thus, by the deBinition oB the F distribution, F� has an 

Fq, n−k−1 distribution iB (i) through (iii) hold with n1 = q and n2 = n − k − 1.

 i.  Under the null hypothesis, RBn - r = R(Bn - B). Because Bn  has the conditional 

normal distribution in Equation (18.30) and because R is a nonrandom matrix, 

R(Bn - B) is distributed N(0q * 1, R(X�X)-1R�s2
u), conditional on X. Thus, by 

Equation (18.77) in Appendix 18.2, (RBn - r)�[R(X�X)R�s2
u]-1(RBn - r) is dis-

tributed x2
q, proving (i).

  ii. Requirement (ii) is shown in Equation (18.31).

iii.  It has already been shown that Bn - B and sun
2  are independently distributed [Equa-

tion (18.81)]. It Bollows that RBn - r and sun
2  are independently distributed, which 

in turn implies that W1 and W2 are independently distributed, proving (iii) and 

completing the prooB.

a p p e n d i x

 18.5 Proof of the Gauss–Markov Theorem 
for Multiple Regression

This appendix proves the Gauss–Markov theorem (Key Concept 18.3) Bor the multiple 

regression model. Let B� be a linear conditionally unbiased estimator oB B so that B� = A�Y  

and E(B�  
  X) = B, where A is an n * (k + 1) matrix that can depend on X and nonran-

dom constants. We show that var(c�Bn) … var(c�B�) Bor all k + 1 dimensional vectors c, 

where the inequality holds with equality only iB B� = Bn .
Because B�  is linear, it can be written as B� = A�Y = A�(XB + U ) = (A�X)B + A�U. 

By the Birst Gauss–Markov condition, E(U 0X) = 0n * 1, so E(B� 0X ) = (A′X)B, but because 

B
� is conditionally unbiased, E(B�  
  X) = B = (A�X )B, which implies that A�X = Ik + 1. 

Thus B� = B + A�U , so var(B� 0X ) = var(A�U 0X) = E(A�UU�A 0X) = A�E(UU� 0X)A =
Su

2A�A,  where the third equality Bollows because A can depend on X but not U, and the 

Binal equality Bollows Brom the second Gauss–Markov condition. That is, iB B� is linear and 

unbiased, then under the Gauss–Markov conditions,

 A�X = Ik + 1 and var(B� 0X) = su
2 A�A. (18.82)

The results in Equation (18.82) also apply to Bn  with A = An = X(X�X)-1, where (X�X)-1 

exists by the third Gauss–Markov condition.
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Now let A = An + D so that D is the diBBerence between the matrices A and An . 

Note that An�A = (X�X)-1X�A = (X�X)-1  [by Equation (18.82)] and An�An =  

(X�X)-1X�X(X�X)-1 = (X�X)-1, so  An �D = An �(A - An ) = An �A - An �An =  0(k +  1) * (k +  1). 

Substituting A = An + D into the Bormula Bor the conditional variance in Equation 

(18.82) yields

 var(B� 0X) = su
2(An + D)�(An + D) 

  = su
2[An �An + An �D + D�An + D�D]

  = su
2(X�X)- 1 + su

2D�D, (18.83)

where the Binal equality uses the Bacts An �An = (X�X)-1 and A�n D = 0(k +  1) * (k +  1).

Because var(Bn  
  X ) = s2
u(X�X)-1, Equations (18.82) and (18.83) imply that  

var(B� 0X) -  var(Bn 0X) = su
2D�D.  The diBBerence between the variances oB the two estima-

tors oB the linear combination c�B thus is

 var (c�B� 0X ) -  var(c�Bn 0X) =  su
2 c�D�Dc Ú 0. (18.84)

The inequality in Equation (18.84) holds Bor all linear combinations c�B, and the inequality 

holds with equality Bor all nonzero c only iB D = 0n * (k+1)—that is, iB A = An  or, equiva-

lently, B� = Bn . Thus c�Bn  has the smallest variance oB all linear conditionally unbiased esti-

mators oB c�B; that is, the OLS estimator is BLUE.

a p p e n d i x

 18.6 Proof of Selected Results for IV  
and GMM Estimation

The Efficiency of TSLS Under Homoskedasticity 
[Proof of Equation (18.62)]
When the errors ui are homoskedastic, the diBBerence between 횺IV

A  [Equation (18.61)] and 

횺TSLS [Equation (18.55)] is given by

횺IV
A - 횺TSLS = (QXZAQZX)-1QXZAQZZAQZX(QXZAQZX)-1s2

u - (QXZQ-1
ZZQZX)-1s2

u

= (QXZAQZX)-1QXZA[QZZ - QZX(QXZQ-1
ZZ QZX)-1QXZ]AQZX(QXZAQZX)-1s2

u, (18.85)

where the second term in brackets in the second equality Bollows Brom 

(QXZAQZX)-1QXZAQZX = I(k +  r +  1). Let F be the matrix square root oB QZZ, so QZZ = F�F 

and Q-1
ZZ = F -1F -1�. [The latter equality Bollows Brom noting that (F�F)-1 = F -1F�-1 and 

F�-1 = F -1�.] Then the Binal expression in Equation (18.85) can be rewritten to yield

 횺IV
A - 횺TSLS = (QXZAQZX)-1QXZAF�[I - F -1�QZX(QXZF -1F -1�QZX)-1QXZF -1]

 * FAQZX(QXZAQZX)-1s2
u, (18.86)


