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3

Linear Algebra: Vectors, Matrices, and

Operations

3.1 Objectives

This chapter covers the mechanics of vector and matrix manipulation and

the next chapter approaches the topic from a more theoretical and conceptual

perspective. The objective for readers of this chapter is not only to learn the

mechanics of performing algebraic operations on these mathematical forms but

also to start seeing them as organized collections of numerical values where

the manner in which they are put together provides additional mathematical

information. Thebestway to do this is to perform the operations oneself. Linear

algebra is fun. Really! In general, the mechanical operations are nothing more

than simple algebraic steps that anybody can perform: addition, subtraction,

multiplication, and division. The only real abstraction required is “seeing” the

rectangular nature of the objects in the sense of visualizing operations at a high

level rather than getting buried in the algorithmic details.

When one reads high visibility journals in the social sciences, matrix alge-

bra (a near synonym) is ubiquitous. Why is that? Simply because it lets us

express extensive models in quite readable notation. Consider the following

linear statistical model specification [from real work, Powers and Cox (1997)].

They are relating political blame to various demographic and regional political
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variables:

for i = 1 to n, (BLAMEFIRST )Yi =

β0 + β1CHANGELIV + β2BLAMECOMM + β3INCOME

+ β4FARMER + β5OWNER + β6BLUESTATE

+ β7WHITESTATE + β8FORMMCOMM + β9AGE

+ β10SQAGE + β11SEX + β12SIZEPLACE

+ β13EDUC + β14FINHS + β15ED ∗HS

+ β16RELIG+ β17NATION +Ei

This expression is way too complicated to be useful! It would be easy for a

reader interested in the political argument to get lost in the notation. In matrix

algebra form this is simplyY = Xβ + . In fact, even for very large datasets

and very large model specifications (many data variables of interest), this form

is exactly the same; we simply indicate the size of these objects. This is not

just a convenience (although it really is convenient). Because we can notate

large groups of numbers in an easy-to-read structural form, we can concentrate

more on the theoretically interesting properties of the analysis.

While this chapter providesmany of the foundations for workingwith matri-

ces in social sciences, there is one rather technical omission that some readers

may want to worry about later. All linear algebra is based on properties that

define a field. Essentially this means that logical inconsistencies that could

have otherwise resulted from routine calculations have been precluded. Inter-

ested readers are referred to Billingsley (1995), Chung (2000), or Grimmett and

Stirzaker (1992).

3.2 Working with Vectors

Vector. A vector is just a serial listing of numbers where the order matters. So
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we can store the first four positive integers in a single vector, which can be

a row vector: v = [1, 2, 3, 4], or a column vector: v =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

2

3

4

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where v is the name for this new object. Order matters in the sense that the two

vectors above are different, for instance, from

v∗ = [4, 3, 2, 1], v∗ =

⎡

⎢⎢⎢⎢⎢⎢⎣

4

2

3

1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

It is a convention that vectors are designated in bold type and individual val-

ues, scalars, are designated in regular type. Thus v is a vector with elements

v1, v2, v3, v4, and v would be some other scalar quantity. This gets a little con-

fusing where vectors are themselves indexed: v1,v2,v3,v4 would indicate

four vectors, not four scalars. Usually, however, authors are quite clear about

which form they mean.

Substantively it does notmatter whetherwe consider a vector to be of column

or row form, but it does matter when performing some operations. Also, some

disciplines (notably economics) tend to default to the column form. In the row

form, it is equally common to see spacing used instead of commas as delimiters:

[1 2 3 4]. Also, the contents of these vectors can be integers, rational or

irrational numbers, and even complex numbers; there are no restrictions.

So what kinds of operations can we do with vectors? The basic operands

are very straightforward: addition and subtraction of vectors as well as mul-

tiplication and division by a scalar. The following examples use the vectors

u = [3, 3, 3, 3] and v = [1, 2, 3, 4]

� Example 3.1: Vector Addition Calculation.

u+ v = [u1 + v1, u2 + v2, u3 + v3, u4 + v4] = [4, 5, 6, 7].
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� Example 3.2: Vector Subtraction Calculation.

u− v = [u1 − v1, u2 − v2, u3 − v3, u4 − v4] = [2, 1, 0,−1].

� Example 3.3: Scalar Multiplication Calculation.

3× v = [3 × v1, 3× v2, 3× v3, 3× v4] = [3, 6, 9, 12].

� Example 3.4: Scalar Division Calculation.

v ÷ 3 = [v1/3, v2/3, v3/3, v4/3] =
1

3
,
2

3
, 1,
4

3
.

So operations with scalars are performed on every vector element in the

same way. Conversely, the key issue with addition or subtraction between two

vectors is that the operation is appliedonly to the correspondingvector elements

as pairs: the first vector elements together, the second vector elements together,

and so on. There is one concern, however. With this scheme, the vectors

have to be exactly the same size (same number of elements). This is called

conformable in the sense that thefirst vectormust be of a size that conformswith

the second vector; otherwise they are (predictably) called nonconformable. In

the examples above both u and v are 1× 4 (row) vectors (alternatively called

length k = 4 vectors), meaning that they have one row and four columns.

Sometimes size is denoted beneath the vectors:

u
1×4
+ v
1×4
.

It should then be obvious that there is no logical way of adding a 1× 4 vector

to a 1 × 5 vector. Note also that this is not a practical consideration with

scalar multiplication or division as seen above, because we apply the scalar

identically to each elementof the vectorwhenmultiplying: s(u1, u2, . . . , uk) =

(su1, su2, . . . , suk).
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There are a couple of “special” vectors that are frequently used. These are

1 and 0, which contain all 1’s or 0’s, respectively. As well shall soon see,

there are a larger number of “special” matrices that have similarly important

characteristics.

It is easy to summarize the formal properties of the basic vector operations.

Consider the vectors u,v,w, which are identically sized, and the scalars s and

t. The following intuitive properties hold.

Elementary Formal Properties of Vector Algebra

� Commutative Property u+ v = (v + u)

� Additive Associative Property (u+ v) +w = u+ (v +w)

� Vector Distributive Property s(u+ v) = su+ sv

� Scalar Distributive Property (s+ t)u = su+ tu

� Zero Property u+ 0 = u⇐⇒ u− u = 0

� Zero Multiplicative Property 0u = 0

� Unit Rule 1u = u

� Example 3.5: Illustrating Basic Vector Calculations. Here is a numer-

ical case that shows several of the properties listed above. Define s = 3,

t = 1, u = [2, 4, 8], and v = [9, 7, 5]. Then:
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(s + t)(v + u) sv+ tv+ su+ tu

(3 + 1)([9, 7, 5] + [2, 4, 8]) 3[9, 7, 5] + 1[9, 7, 5] + 3[2, 4, 8] + 1[2, 4, 8]

4[11, 11, 13] [27, 21, 15] + [9, 7, 5] + [6, 12, 24]+ [2, 4, 8]

[44, 44, 52] [44, 44, 52]

Multiplication of vectors is not quite so straightforward,and there are actually

different forms of multiplication tomake matters evenmore confusing. We will

start with the two most important and save some of the other forms for the last

section of this chapter.

Vector Inner Product. The inner product, also called the dot product, of

two vectors, results in a scalar (and so it is also called the scalar product). The

inner product of two conformable vectors of arbitrary length k is the sum of the

item-by-item products:

u · v = [u1v1 + u2v2 + · · ·ukvk] =
k

i=1

uivi.

It might be somewhat surprising to see the return of the summation notation

here (Σ, as described on page 11), but it makes a lot of sense since running

through the two vectors is just a mechanical additive process. For this reason,

it is relatively common, though possibly confusing, to see vector (and later

matrix) operations expressed in summation notation.

� Example 3.6: Simple Inner Product Calculation. A numerical example

of an inner product multiplication is given by

u · v = [3, 3, 3] · [1, 2, 3] = [3 · 1 + 3 · 2 + 3 · 3] = 18.

When the inner product of two vectors is zero, we say that the vectors are

orthogonal,whichmeans they are at a right angle to eachother (wewill bemore

visual about this inChapter 4). The notation for the orthogonality of two vectors

is u ⊥ v iffu ·v = 0. As an example of orthogonality, consideru = [1, 2,−3],
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and v = [1, 1, 1]. As with the more basic addition and subtraction or scalar

operations, there are formal properties for inner products:

Inner Product Formal Properties of Vector Algebra

Commutative Property u · v = v · u

Associative Property s(u · v) = (su) · v = u · (sv)

Distributive Property (u+ v) ·w = u ·w + v ·w

Zero Property u · 0 = 0

Unit Rule 1u = u

Unit Rule 1u =
k

i=1 ui, for u of length k

Example 3.7: Vector InnerProductCalculations. This exampledemon-

strates the first three properties above. Define s = 5, u = [2, 3, 1], v =

[4, 4, 4], and w = [−1, 3,−4]. Then:

s(u+ v) ·w sv ·w+ su ·w

5([2, 3, 1] + [4, 4, 4]) · [−1, 3,−4] 5[4, 4, 4] · [−1, 3,−4]

+5[2, 3, 1] · [−1, 3,−4]

5([6, 7, 5]) · [−1, 3,−4] [20, 20, 20] · [−1, 3,−4]

+[10, 15, 5] · [−1, 3,−4]

[30, 35, 25] · [−1, 3,−4] −40 + 15

−25 −25
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Vector Cross Product. The cross product of two vectors (sometimes called

the outer product, although this term is better reserved for a slightly different

operation; see the distinction below) is slightly more involved than the inner

product, in both calculation and interpretation. This is mostly because the

result is a vector instead of a scalar. Mechanically, the cross product of two

conformable vectors of length k = 3 is

u× v = [u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1] ,

meaning that the first element is a difference equation that leaves out the first

elements of the original two vectors, and the second and third elements proceed

accordingly. In the more general sense, we perform a series of “leave one

out” operations that is more extensive than above because the suboperations

are themselves cross products.

Fig. 3.1. Vector Cross Product Illustration

w1 = u2v3 − v3u2
u1 u2 u3

v1 v2 v3

w1 w2 w3

Figure 3.1 gives the intuition behind this product. First the u and v vectors

are stacked on top of each other in the upper part of the illustration. The process

of calculating the first vector value of the cross product, which we will call w1,

is done by “crossing” the elements in the solid box: u2v3 indicated by the

first arrow and u3v2 indicated by the second arrow. Thus we see the result for
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Fig. 3.2. The Right-Hand Rule Illustrated

u
v

w

w1 as a difference between these two individual components. This is actually

the determinant of the 2 × 2 submatrix, which is an important principle

considered in some detail in Chapter 4.

Interestingly, the resulting vector from a cross product is orthogonal to both

of the original vectors in the direction of the so-called “right-hand rule.” This

handy rule says that if you hold your hand as you would when hitchhiking, the

curledfingersmake up the original vectors and the thumb indicates the direction

of the orthogonal vector that results from a cross product. In Figure 3.2 you

can imagine your right hand resting on the plane with the fingers curling to the

left () and the thumb facing upward.

For vectors u,v,w, the cross product properties are given by
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Cross Product Formal Properties of Vector Algebra

Commutative Property u× v = −v× u

Associative Property s(u× v) = (su)× v = u× (sv)

Distributive Property u× (v +w) = (u× v) + (u×w)

Zero Property u× 0 = 0× u = 0

Self-Orthogonality u× u = 0

Example 3.8: Cross Product Calculation. Returning to the simple nu-

merical example from before, we now calculate the cross product instead of

the inner product:

u× v = [3, 3, 3]× [1, 2, 3]

= [(3)(3)− (3)(2), (3)(1)− (3)(3), (3)(2)− (3)(1)] = [3,−6, 3].

We can then check the orthogonality as well:

[3, 3, 3] · [3,−6, 3] = 0 [1, 2, 3] · [3,−6, 3] = 0.

Sometimes the distinction between row vectors and column vectors is im-

portant. While it is often glossed over, vector multiplication should be done

in a conformable manner with regard to multiplication (as opposed to addition

discussed above) where a row vector multiplies a column vector such that their

adjacent “sizes” match: a (1 × k) vector multiplying a (k × 1) vector for k
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elements in each. This operation is now an inner product:

[v1, v2, . . . , vk]
1×k

×

⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

uk

⎤

⎥⎥⎥⎥⎥⎥⎦

k×1

.

This adjacency above comes from the k that denotes the columns of v and the

k that denotes the rows of u and manner by which they are next to each other.

Thus an inner product multiplication operation is implied here, even if it is not

directly stated. An outer product would be implied by this type of adjacency:
⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

uk

⎤

⎥⎥⎥⎥⎥⎥⎦

k×1

× [v1, v2, . . . , vk]
1×k

,

where the 1’s are next to each other. So the cross product of two vectors

is a vector, and the outer product of two conformable vectors is a matrix: a

rectangular grouping of numbers that generalizes the vectors we have been

working with up until now. This distinction helps us to keep track of the

objective. Mechanically, this is usually easy. To be completely explicit about

these operations we can also use the vector transpose, which simply converts

a row vector to a column vector, or vice versa, using the apostrophe notation:

⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

uk

⎤

⎥⎥⎥⎥⎥⎥⎦

k×1

= [u1, u2, . . . , uk]
1×k

, [u1, u2, . . . , uk]
1×k

=

⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

uk

⎤

⎥⎥⎥⎥⎥⎥⎦

k×1

.

This is essentially book-keeping with vectors and we will not worry about it

extensively in this text, but as we will see shortly it is important with matrix

operations. Also, note that the order of multiplication now matters.
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� Example 3.9: Outer Product Calculation. Once again using the simple

numerical forms, we now calculate the outer product instead of the cross

product:

u× v =

⎡

⎢⎢⎢⎣

1

2

3

⎤

⎥⎥⎥⎦ [3, 3, 3] =

⎡

⎢⎢⎢⎣

3 3 3

6 6 6

9 9 9

⎤

⎥⎥⎥⎦ .

And to show that order matters, consider:

u× v =

⎡

⎢⎢⎢⎣

3

3

3

⎤

⎥⎥⎥⎦ [1, 2, 3] =

⎡

⎢⎢⎢⎣

3 6 9

3 6 9

3 6 9

⎤

⎥⎥⎥⎦
.

3.2.1 Vector Norms

Measuring the “length” of vectors is a surprisingly nuanced topic. This is

because there are different ways to consider Cartesian length in the dimension

implied by the size (number of elements) of the vector. It is obvious, for

instance, that (5, 5, 5) should be considered longer than (1, 1, 1), but it is not

clear whether (4, 4, 4) is longer than (3,−6, 3). The standard version of the

vector norm for an n-length vector is given by

v = (v21 + v
2
2 + · · ·+ v2n)

1
2 = (v · v) 12 .

In this way, the vector norm can be thought of as the distance of the vector from

the origin. Using the formula for v we can now calculate the vector norm

for (4, 4, 4) and (3,−6, 3):

(4, 4, 4) = 42 + 42 + 42 = 6.928203

(3,−6, 3) = 32 + (−6)2 + 32 = 7.348469.

So the second vector is actually longer by this measure. Consider the following

properties of the vector norm (notice the reoccurrence of the dot product in the

Multiplication Form):
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Properties of the Standard Vector Norm

� Vector Norm ||u||2 = u · u

� Difference Norm ||u− v||2 = ||u||2 − 2(u · v) + ||v||2

� Multiplication Norm ||u× v|| = ||u||2||v||2 − (u · v)2

� Example 3.10: Difference Norm Calculation. As an illustration of the

second property above we now include a numerical demonstration. Suppose

u = [−10, 5] and v = [3, 3]. Then:

||u− v||2 ||u||2 − 2(u · v) + ||v||2

||[−10, 5]− [3, 3]||2 ||[−10, 5]||2 − 2([−10, 5] · [3, 3]) + ||[3, 3]||2

||[−13, 2]||2 (100) + (25)− 2(−30+ 15) + (9) + (9)

169 + 4 125 + 30 + 18

173 173

� Example 3.11: Multiplication Norm Calculation. The third property

is also easy to demonstrate numerically. Suppose u = [−10, 5, 1] and

v = [3, 3, 3]. Then:
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||u× v|| ||u||2||v||2 − (u · v)2

||[−10, 5, 1]× [3, 3, 3]|| ||[−10, 5, 1]||2||[3, 3, 3]||2

−([−10, 5, 1] · [3, 3, 3])2

||[(15)− (3), (3)− (−30), (−30)− (15)]|| ((100 + 25 + 1)(9 + 9+ 9)

−(−30 + 15+ 3)2

(144) + (1089) + (2025) (3402− 144)

3258 3258

Interestingly, norming can also be applied to find the n-dimensional distance

between the endpoints of two vectors starting at the origin with a variant of the

Pythagorean Theorem known as the law of cosines:

v −w 2 = v 2 + w 2 − 2 v w cos θ,

where θ is the angle from thew vector to the v vectormeasured in radians. This

is also called the cosine rule and leads to the property that cos(θ) = vw
v w

.

� Example 3.12: Votes in the House of Commons. Casstevens (1970)

looked at legislative cohesion in the British House of Commons. Prime

Minister David LloydGeorge claimed onApril 9, 1918 that the French Army

was stronger on January 1, 1918 than on January 1, 1917 (a statement that

generated considerable controversy). Subsequently the leader of the Liberal

Party moved that a select committee be appointed to investigate claims by

the military that George was incorrect. The resulting motion was defeated

by the following vote: Liberal Party 98 yes, 71 no; Labour Party 9 yes, 15

no; Conservative Party 1 yes, 206 no; others 0 yes, 3 no. The difficult in

analyzing this vote is the fact that 267Members of Parliament (MPs) did not

vote. So do we include them in the denominator when making claims about
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voting patterns? Casstevens says no because large numbers of abstentions

mean that such indicators are misleading. He alternatively looked at party

cohesion for the two large parties as vector norms:

L = (98, 71) = 121.0165

C = (1, 206) = 206.0024.

From this we get the obvious conclusion that the Conservatives are more

cohesive because their vector has greater magnitude. More interestingly,

we can contrast the two parties by calculating the angle between these two

vectors (in radians) using the cosine rule:

θ = arccos
(98, 71) · ((1, 206)
121.070× 206.002 = 0.9389,

which is about 54 degrees. Recall that arccos is the inverse function to cos.

It is hard to say exactly how dramatic this angle is, but if we were analyzing

a series of votes in a legislative body, this type of summary statistic would

facilitate comparisons.

Actually, the norm used above is themost commonly used form of a p-norm:

v p = (|v1|p + |v2|p + · · ·+ |vn|p)
1
p , p ≥ 0,

where p = 2 so far. Other important cases include p = 1 and p =∞:

v ∞ = max
1≤i≤n

|xi|,

that is, just the maximum vector value. Whenever a vector has a p-norm of

1, it is called a unit vector. In general, if p is left off the norm, then one can

safely assume that it is the p = 2 form discussed above. Vector p-norms have

the following properties:
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Properties of Vector Norms, Length-n

� Triangle Inequality v +w ≤ v + w

� Hölder’s Inequality for 1p +
1
q = 1, |v ·w| ≤ v p w q

� Cauchy-Schwarz Ineq. |v ·w| ≤ v 2 w 2

� Cosine Rule cos(θ) = vw
v w

� Vector Distance d(v,w) = v−w

� Scalar Property sv = |s| v

� Example 3.13: Hölder’s Inequality Calculation. As a revealing me-

chanical demonstration that Hölders’ Inequality holds,set p = 3 and q = 3/2

for the vectors v = [−1, 3] andw = [2, 2], respectively. Hölder’s Inequality

uses |v ·w| to denote the absolute value of the dot product. Then:

v 3 = (| − 1|3 + |3|3)
1
3 = 3.036589

w 3 = (|2|
3
2 + |2| 32 ) 23 = 3.174802

|v ·w| = |(−1)(2) + (3)(2)| = 4 < (3.036589)(3.174802) = 9.640569.

� Example 3.14: The Political Economy of Taxation. While taxation is

known to be an effective policy tool for democratic governments, it is also

a very difficult political solution for many politicians because it can be un-

popular and controversial. Swank and Steinmo (2002) looked at factors that

lead to changes in tax policies in “advanced capitalist” democracies with

the idea that factors like internationalization of economies, political pressure
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from budgets, and within-country economic factors are influential. They

found that governments have a number of constraints on their ability to en-

act significant changes in tax rates, even when there is pressure to increase

economic efficiency.

As part of this study the authors provided a total taxation from labor and

consumption as a percentage of GDP in the form of two vectors: one for

1981 and another for 1995. These are reproduced as

Nation 1981 1995

Australia 30 31

Austria 44 42

Belgium 45 46

Canada 35 37

Denmark 45 51

Finland 38 46

France 42 44

Germany 38 39

Ireland 33 34

Italy 31 41

Japan 26 29

Netherlands 44 44

New Zealand 34 38

Norway 49 46

Sweden 50 50

Switzerland 31 34

United Kingdom 36 36

United States 29 28

A natural question to ask is, how much have taxation rates changed over

the 14-year period for these countries collectively? The difference in mean

averages, 38 versus 40, is not terribly revealing because it “washes out”

important differences since some countries increased and other decreased.

That is, what does a 5% difference in average change in total taxation over

GDP say about how these countries changed as a groupwhen some countries
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changed very little and some made considerable changes? Furthermore,

when changes go in opposite directions it lowers the overall sense of an

effect. In other words, summaries like averages are not goodmeasureswhen

we want some sense of net change.

One way of assessing total country change is employing the difference

norm to compare aggregate vector difference.

||t1995 − t1981||
2 = t�1995 · t1995 − 2(t

�

1995 · t1981) + t
�

1981 · t1981

=

2

666666666666666666666666666666666666666664
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+
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777777777777777777777777777777777777777775

= 260

So what does this mean? For comparison, we can calculate the same vector

norm except that instead of using t1995, we will substitute a vector that

increases the 1981 uniformly levels by 10% (a hypothetical increase of 10%

for every country in the study):

t̂1981 = 1.1t1981 = [33.0, 48.4, 49.5, 38.5, 49.5, 41.8, 46.2, 41.8, 36.3

34.1, 28.6, 48.4, 37.4, 53.9, 55.0, 34.1, 39.6, 31.9].
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This allows us to calculate the following benchmark difference:

||t̂1981 − t1981||2 = 265.8.

So now it is clear that the observed vector difference for total country change

from1981 to 1995 is actually similar to a 10% across-the-board change rather

than a 5% change implied by the vector means. In this sense we get a true

multidimensional sense of change.

3.3 So What Is the Matrix?

Matrices are all around us: A matrix is nothing more than a rectangular ar-

rangement of numbers. It is a way to individually assign numbers, now called

matrix elements or entries, to specified positions in a single structure, referred

to with a single name. Just as we saw that the order in which individual en-

tries appear in the vector matters, the ordering of values within both rows and

columns now matters. It turns out that this requirement adds a considerable

amount of structure to the matrix, some of which is not immediately apparent

(as we will see).

Matrices have two definabledimensions, the numberof rows and the number

of columns, whereas vectors only have one, and we denote matrix size by

row × column. Thus a matrix with i rows and j columns is said to be of

dimension i × j (by convention rows comes before columns). For instance,

a simple (and rather uncreative) 2 × 2 matrix named X (like vectors, matrix

names are bolded) is given by:

X
2×2
=

⎡

⎣ 1 2

3 4

⎤

⎦ .

Note that matrices can also be explicitly notated with size.

Two things are important here. First, these four numbers are now treated

together as a single unit: They are grouped together in the two-row by two-

column matrix object. Second, the positioning of the numbers is specified.
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That is, the matrixX is different than the following matrices:

W =

⎡

⎣ 1 3

2 4

⎤

⎦ , Y =

⎡

⎣ 3 4

1 2

⎤

⎦ , Z =

⎡

⎣ 4 3

2 1

⎤

⎦ ,

as well as many others. Like vectors, the elements of a matrix can be integers,

real numbers, or complex numbers. It is, however, rare to find applications that

call for the use of matrices of complex numbers in the social sciences.

The matrix is a system. We can refer directly to the specific elements of a

matrix by using subscripting of addresses. So, for instance, the elements

of X are given by x11 = 1, x12 = 2, x21 = 3, and x22 = 4. Obviously this

is much more powerful for larger matrix objects and we can even talk about

arbitrary sizes. The element addresses of a p × n matrix can be described for

large values of p and n by

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 · · · · · · x1(p−1) x1p

x21 x22 · · · · · · x2(p−1) x2p
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

x(n−1)1 x(n−1)2 · · · · · · x(n−1)(p−1) x(n−1)p
xn1 xn2 · · · · · · xn(p−1) xnp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using this notation we can now define matrix equality. Matrix A is equal

to matrix B if and only if every element of A is equal to the corresponding

element of B: A = B ⇐⇒ aij = bij ∀i, j . Note that “subsumed” in this

definition is the requirement that the two matrices be of the same dimension

(same number of rows, i, and columns, j).

order-k

3.3.1 Some Special Matrices

There are some matrices that are quite routinely used in quantitative social

science work. The most basic of these is the square matrix, which is, as the
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name implies, a matrix with the same number of rows and columns. Because

one number identifies the complete size of the square matrix, we can say that

a k × k matrix (for arbitrary size k) is a matrix of order-k. Square matrices

can contain any values and remain square: The square property is independent

of the contents. A very general square matrix form is the symmetric matrix.

This is a matrix that is symmetric across the diagonal from the upper left-hand

corner to the lower right-hand corner. More formally,X is a symmetric matrix

iff aij = aji ∀i, j . Here is an unimaginative example of a symmetric matrix:

X =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

2 8 5 6

3 5 1 7

4 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎦
.

A matrix can also be skew-symmetric if it has the property that the rows and

column switching operationwould provide the samematrix except for the sign.

For example,

X =

⎡

⎢⎢⎢⎣

0 −1 2

1 0 −3

−2 3 0

⎤

⎥⎥⎥⎦ .

By the way, the symmetric property does not hold for the other diagonal, the

one from the upper right-hand side to the lower left-hand side.

Just as the symmetric matrix is a special case of the square matrix, the di-

agonal matrix is a special case of the symmetric matrix (and therefore of the

square matrix, too). A diagonal matrix is a symmetric matrix with all zeros on

the off-diagonals (the values where i = j). If the (4× 4)Xmatrix above were

a diagonal matrix, it would look like

X =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 8 0 0

0 0 1 0

0 0 0 8

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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We can also define the diagonal matrix more generally with just a vector. A

diagonal matrix with elements [d1, d2, . . . , dn−1, dn] is the matrix

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 0 0

0 d2 0 0 0

0 0
. . . 0 0

0 0 0 dn−1 0

0 0 0 0 dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A diagonal matrix can have any values on the diagonal, but all of the other

values must be zero. A very important special case of the diagonal matrix is

the identity matrix, which has only the value 1 for each diagonal element:

di = 1, ∀i. A 4× 4 version is

I =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Thismatrix form is always given the name I, and it is sometimes denoted to give

size: I4×4 or even just I(4). A seemingly similar, but actually very different,

matrix is the J matrix, which consists of all 1’s:

J =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

given here in a 4 × 4 version. As we shall soon see, the identity matrix is

very commonly used because it is the matrix equivalent of the scalar number

1, whereas the J matrix is not (somewhat surprisingly). Analogously, the zero
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matrix is a matrix of all zeros, the 4× 4 case being

0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

also given as a 4×4matrix. Consider for a moment that the zeromatrix and the

Jmatrix here are also square, symmetric, diagonal, and particular named cases.

Yet neither of these twomust have these properties as both can be nonsquare

as well: i = j.

This is a good time to also introduce a special nonsymmetric square matrix

called the triangularmatrix. This is a matrix with all zeros above the diagonal,

lower triangular, or all zeros below the diagonal, upper triangular. Two

versions based on the first square matrix given above are

XLT =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

2 8 0 0

3 5 1 0

4 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎦
, XUT =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

0 8 5 6

0 0 1 7

0 0 0 8

⎤

⎥⎥⎥⎥⎥⎥⎦
,

whereLT designates “lower triangular” and UT designates “upper triangular.”

This general form plays a special role in matrix decomposition: factoring

matrices into multiplied components. This is also a common form in more

pedestrian circumstances. Map books often tabulate distances between sets of

cities in an upper triangular or lower triangular form because the distance from

Miami to New York is also the distance from New York to Miami.

� Example 3.15: MarriageSatisfaction. Sociologists who studymarriage

often focus on indicators of self-expressed satisfaction. Unfortunately mari-

tal satisfaction is sufficiently complex and sufficiently multidimensional that

single measurements are often insufficient to get a full picture of underly-

ing attitudes. Consequently, scholars such as Norton (1983) ask multiple
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questions designed to elicit varied expressions of marital satisfaction and

therefore care a lot about the correlation between these. A correlation (de-

scribed in detail in Chapter 8) showshow“tightly” two measures changewith

each other over a range from −1 to 1, with 0 being no evidence of moving

together. His correlation matrix provides the correlational structure between

answers to the following questions according to scaleswhere higher numbers

mean that the respondent agrees more (i.e., 1 is strong disagreement with the

statement and 7 is strong agreement with the statement). The questions are

Measurement Valid
Question Scale Cases

We have a good marriage 7-point 428

My relationship with my
partner is very stable 7-point 429

Our marriage is strong 7-point 429

My relationship with my
partner makes me happy 7-point 429

I really feel like part
of a team with my partner 7-point 426

The degree of happiness,
everything considered 10-point 407

Since the correlation between two variables is symmetric, it does not make

sense to give a correlation matrix between these variables across a full matrix

because the lower triangle will simply mirror the upper triangle and make

the display more congested. Consequently, Norton only needs to show a

triangular version of the matrix:
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(1)

(2)

(3)

(4)

(5)

(6)

(1) (2) (3) (4) (5) (6)
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.85 0.83 0.83 0.74 0.76

1.00 0.82 0.86 0.72 0.77

1.00 0.78 0.68 0.70

1.00 0.71 0.76

1.00 0.69

1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Interestingly, these analyzed questions all correlate highly (a 1 means a

perfectly positive relationship). The question that seems to covary greatly

with the others is the first (it is phrased somewhat as a summary, after all).

Notice that strength of marriage and part of a team covary less than any

others (a suggestive finding). This presentation is a bit different from an

upper triangular matrix in the sense discussed above because we have just

deliberately omitted redundant information, rather than the rest of matrix

actually having zero values.

3.4 Controlling the Matrix

Aswith vectorswecan performarithmetic and algebraic operations onmatrices.

In particular addition, subtraction, and scalar operations are quite simple. Ma-

trix addition and subtraction are performed only for two conformable matrices

by performing the operation on an element-by-element basis for correspond-

ing elements, so the number of rows and columns must match. Multiplication

or division by a scalar proceeds exactly in the way that it did for vectors by

affecting each element by the operation.
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� Example 3.16: Matrix Addition.

X =

⎡

⎣ 1 2

3 4

⎤

⎦ , Y =

⎡

⎣ −2 2

0 1

⎤

⎦

X+Y =

⎡

⎣ 1− 2 2 + 2

3 + 0 4 + 1

⎤

⎦ =

⎡

⎣ −1 4

3 5

⎤

⎦ .

� Example 3.17: Matrix Subtraction.

X =

⎡

⎣ 1 2

3 4

⎤

⎦ , Y =

⎡

⎣ −2 2

0 1

⎤

⎦

X−Y =

⎡

⎣ 1− (−2) 2− 2

3− 0 4− 1

⎤

⎦ =

⎡

⎣ 3 0

3 3

⎤

⎦ .

� Example 3.18: Scalar Multiplication.

X =

⎡

⎣ 1 2

3 4

⎤

⎦ , s = 5

s ×X =

⎡

⎣ 5× 1 5 × 2

5× 3 5 × 4

⎤

⎦ =

⎡

⎣ 5 10

15 20

⎤

⎦ .

� Example 3.19: Scalar Division.

X =

⎡

⎣ 1 2

3 4

⎤

⎦ , s = 5

X÷ s =

⎡

⎣ 1÷ 5 2 ÷ 5

3÷ 5 4 ÷ 5

⎤

⎦ =

⎡

⎢⎣
1
5

2
5

3
5

4
5

⎤

⎥⎦ .

One special case is worth mentioning. A common implied scalar multipli-

cation is the negative of a matrix, −X. This is a shorthand means for saying

that every matrix element inX is multiplied by −1.
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These are the most basic matrix operations and obviously consist of nothing

more than being careful about performing each individual elemental operation.

As with vectors, we can summarize the arithmetic properties as follows.

Properties of (Conformable) Matrix Manipulation

� Commutative Property X+Y = Y +X

� Additive Associative Property (X+Y) + Z = X+ (Y + Z)

� Matrix Distributive Property s(X+Y) = sX+ sY

� Scalar Distributive Property (s+ t)X = sX+ tX

� Zero Property X+ 0 = X and X−X = 0

� Example 3.20: Matrix Calculations. This example illustrates several

of the properties above where s = 7, t = 2, X =

⎡

⎣ 2 0

1 1

⎤

⎦, and Y =

⎡

⎣ 3 4

0 −1

⎤

⎦. The left-hand side is

(s+ t)(X+Y) = (7 + 2)

⎛

⎝

⎡

⎣ 2 0

1 1

⎤

⎦+

⎡

⎣ 3 4

0 −1

⎤

⎦

⎞

⎠

= 9

⎡

⎣ 5 4

1 0

⎤

⎦ =

⎡

⎣ 45 36

9 0

⎤

⎦ ,
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and the right-hand side is

tY+sY + tX+ sX

= 2

⎡

⎣ 3 4

0 −1

⎤

⎦+ 7

⎡

⎣ 3 4

0 −1

⎤

⎦+ 2

⎡

⎣ 2 0

1 1

⎤

⎦+ 7

⎡

⎣ 2 0

1 1

⎤

⎦

=

⎡

⎣ 6 8

0 −2

⎤

⎦+

⎡

⎣ 21 28

0 −7

⎤

⎦+

⎡

⎣ 4 0

2 2

⎤

⎦+

⎡

⎣ 14 0

7 7

⎤

⎦

=

⎡

⎣ 45 36

9 0

⎤

⎦ .

Matrix multiplication is necessarily more complicated than these simple

operations. The first issue is conformability. Twomatrices are conformable for

multiplication if the number of columns in the first matrix match the number

of rows in the second matrix. Note that this implies that the order of mul-

tiplication matters with matrices. This is the first algebraic principle

that deviates from the simple scalar world that we all learned early on in life.

To be specific, suppose that X is size k × n and Y is size n × p. Then the

multiplication operation given by

X
(k×n)

Y
(n×p)

is valid because the inner numbers match up, but the multiplication operation

given by

Y
(n×p)

X
(k×n)

is not unless p = k. Furthermore, the inner dimension numbers of the operation

determine conformability and the outer dimension numbers determine the size

of the resulting matrix. So in the example of XY above, the resulting matrix

would be of size k × p. To maintain awareness of this order of operation
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distinction, we say that X pre-multiplies Y or, equivalently, that Y post-

multipliesX.

Sohow ismatrixmultiplication done? Inan attempt to be somewhat intuitive,

we can think about the operation in vector terms. ForXk×n andYn×p, we

take each of the n row vectors inX and perform a vector inner product with the

n column vectors inY. This operation starts with performing the inner product

of the first row in X with the first column in Y and the result will be the first

element of the product matrix. Consider a simple case of two arbitrary 2 × 2

matrices:

XY =

⎡

⎣
x11 x12

x21 x22

⎤

⎦

⎡

⎣
y11 y12

y21 y22

⎤

⎦

=

⎡

⎣
(x11 x12) · (y11 y21) (x11 x12) · (y12 y22)

(x21 x22) · (y11 y21) (x21 x22) · (y12 y22)

⎤

⎦

=

⎡

⎣
x11y11 + x12y21 x11y12 + x12y22

x21y11 + x22y21 x21y12 + x22y22

⎤

⎦ .

Perhaps we can make this more intuitive visually. Suppose that we notate the

four values of the final matrix asXY[1, 1],XY[1, 2],XY[2, 1],XY[2, 2] cor-

responding to their position in the 2 × 2 product. Then we can visualize how

the rows of the first matrix operate against the columns of the second matrix to

produce each value:

x11 x12

x11 x12

y11

y21
=XY[1, 1],

x11 x12

x11 x12

y12

y22
=XY[1, 2],
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x21 x22

x21 x22

y11

y21
=XY[2, 1],

x21 x22

x21 x22

y12

y22
=XY[2, 2].

While it helps to visualize the process in this way, we can also express the

product in a more general, but perhaps intimidating, scalar notation for an

arbitrary-sized operation:

X
(k×n)

Y
(n×p)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
i=1 x1iyi1

n
i=1 x1iyi2 · · · n

i=1 x1iyip

n
i=1 x2iyi1

n
i=1 x2iyi2 · · · n

i=1 x2iyip

...
. . .

...

n
i=1 xkiyi1 · · · · · · n

i=1 xkiyip

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To further clarify, now performmatrix multiplication with some actual values.

Starting with the matrices

X =

⎡

⎣ 1 2

3 4

⎤

⎦ , Y =

⎡

⎣ −2 2

0 1

⎤

⎦ ,

calculate

XY =

⎡

⎣ (1 2) · (−2 0) (1 2) · (2 1)

(3 4) · (−2 0) (3 4) · (2 1)

⎤

⎦

=

⎡

⎣ (1)(−2) + (2)(0) (1)(2) + (2)(1)

(3)(−2) + (4)(0) (3)(2) + (4)(1)

⎤

⎦

=

⎡

⎣ −2 4

−6 10

⎤

⎦ .

As before with such topics, we consider the properties of matrix multiplica-

tion:
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Properties of (Conformable) Matrix Multiplication

� Associative Property (XY)Z = X(YZ)

� Additive Distributive Property (X+Y)Z = XZ+YZ

� Scalar Distributive Property sXY = (Xs)Y

= X(sY) = XYs

� Zero Property X0 = 0

� Example 3.21: LU Matrix Decomposition. Many square matrices can

be decomposed as the product of lower and upper triangular matrices. This

is a very general finding that we will return to and extend in the next chapter.

The principle works like this for the matrixA:

A
(p×p)

= L
(p×p)

U
(p×p)

,

where L is a lower triangular matrix and U is an upper triangular matrix

(sometimes a permutation matrix is also required; see the explanation of

permutation matrices below).

Consider the following example matrix decomposition according to this

scheme:
⎡

⎢⎢⎢⎣

2 3 3

1 2 9

1 1 12

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1.0 0 0

0.5 1 0

0.5 −1 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

2 3.0 3.0

0 0.5 7.5

0 0.0 18.0

⎤

⎥⎥⎥⎦
.

This decomposition is very useful for solving systems of equations because

much of the mechanical work is already done by the triangularization.

Now thatwe have seen howmatrixmultiplication is performed,we can return

to the principle that pre-multiplication is different than post-multiplication. In
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the case discussed we could perform one of these operations but not the other,

so the difference was obvious. What about multiplying two square matrices?

Both orders ofmultiplication are possible, but it turns out that except for special

cases the result will differ. In fact, we need only provide one particular case to

prove this point. Consider the matricesX andY:

XY =

⎡

⎣ 1 2

3 4

⎤

⎦

⎡

⎣ 0 1

1 0

⎤

⎦ =

⎡

⎣ 2 1

4 3

⎤

⎦

YX =

⎡

⎣ 0 1

1 0

⎤

⎦

⎡

⎣ 1 2

3 4

⎤

⎦ =

⎡

⎣ 3 4

1 2

⎤

⎦ .

This is a very simple example, but the implications are obvious. Even in

cases where pre-multiplication and post-multiplication are possible, these are

different operations and matrix multiplication is not commutative.

Recall also the claim that the identity matrix I is operationally equivalent to

1 in matrix terms rather than the seemingly more obvious Jmatrix. Let us now

test this claim on a simple matrix, first with I:

XI =

⎡

⎣ 1 2

3 4

⎤

⎦

⎡

⎣ 1 0

0 1

⎤

⎦

=

⎡

⎣ (1)(1) + (2)(0) (1)(0) + (2)(1)

(3)(1) + (4)(0) (3)(0) + (4)(1)

⎤

⎦ =

⎡

⎣ 1 2

3 4

⎤

⎦ ,

and then with J :

XJ2 =

⎡

⎣ 1 2

3 4

⎤

⎦

⎡

⎣ 1 1

1 1

⎤

⎦

=

⎡

⎣ (1)(1) + (2)(1) (1)(1) + (2)(1)

(3)(1) + (4)(1) (3)(1) + (4)(1)

⎤

⎦ =

⎡

⎣ 3 3

7 7

⎤

⎦ .

The result here is interesting; post-multiplying by I returns theX matrix to its

original form, but post-multiplyingby J produces a matrix where values are the

sum by row. What about pre-multiplication? Pre-multiplying by I also returns
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the original matrix (see the Exercises), but pre-multiplying by J gives

J2X =

⎡

⎣ 1 1

1 1

⎤

⎦

⎡

⎣ 1 2

3 4

⎤

⎦

=

⎡

⎣ (1)(1) + (1)(3) (1)(2) + (1)(4)

(1)(1) + (1)(3) (1)(2) + (1)(4)

⎤

⎦ =

⎡

⎣ 4 6

4 6

⎤

⎦ ,

which is now the sum down columns assigned as row values. This means that

the J matrix can be very useful in calculations (including linear regression

methods), but it does not work as a “one” in matrix terms. There is also a very

interesting multiplicative property of the J matrix, particularly for nonsquare

forms:

J
(p×n)

J
(n×k)

= n J
(p×k)

.

Basic manipulations of the identity matrix can provide forms that are enor-

mously useful inmatrixmultiplication calculations. Suppose we wish to switch

two rows of a specificmatrix. To accomplish this we canmultiply by an identity

matrix where the placement of the 1 values is switched:

⎡

⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

x11 x12 x13

x31 x32 x33

x21 x22 x23

⎤

⎥⎥⎥⎦ .

This pre-multiplyingmatrix is called apermutationmatrix because it permutes

thematrix that it operates on. Interestingly, a permutationmatrix can be applied

to a conformable vector with the obvious results.

The effect of changing a single 1 value to some other scalar is fairly obvious:

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 0 s

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

x11 x12 x13

x21 x22 x23

sx31 sx32 sx33

⎤

⎥⎥⎥⎦ ,
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but the effect of changing a single 0 value is not:

⎡

⎢⎢⎢⎣

1 0 s

0 1 0

0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

x11 + sx31 x12 + sx32 x13 + sx33

x21 x22 x23

x31 x32 x33

⎤

⎥⎥⎥⎦ .

� Example 3.22: Matrix Permutation Calculation. Consider the follow-

ing example of permutation with an off-diagonal nonzero value:
⎡

⎢⎢⎢⎣

1 0 3

0 0 1

0 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

3 2 3

7 0 1

3 3 3

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

(1 · 3 + 0 · 7 + 3 · 3) (1 · 2 + 0 · 0 + 3 · 3) (1 · 3 + 0 · 1 + 3 · 3)

(0 · 3 + 0 · 7 + 1 · 3) (0 · 2 + 0 · 0 + 1 · 3) (0 · 3 + 0 · 1 + 1 · 3)

(0 · 3 + 1 · 7 + 0 · 3) (0 · 2 + 1 · 0 + 0 · 3) (0 · 3 + 1 · 1 + 0 · 3)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

12 11 12

3 3 3

7 0 1

⎤

⎥⎥⎥⎦ ,

which shows the switching of rows two and three as well as the confinement

of multiplication by 3 to the first row.

3.5 Matrix Transposition

Another operation that is commonly performedon a singlematrix is transposi-

tion. We saw this before in the context of vectors: switching between column

and row forms. For matrices, this is slightly more involved but straightforward

to understand: simply switch rows and columns. The transpose of an i × j
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matrixX is the j × i matrixX , usually called “X prime” (sometimes denoted

XT though). For example,

X =

⎡

⎣ 1 2 3

4 5 6

⎤

⎦ =

⎡

⎢⎢⎢⎣

1 4

2 5

3 6

⎤

⎥⎥⎥⎦ .

In this way the inner structure of the matrix is preserved but the shape of the

matrix is changed. An interesting consequence is that transposition allows us

to calculate the “square” of some arbitrary-sized i × j matrix: X X is always

conformable, as is XX , even if i = j. We can also be more precise about

the definition of symmetric and skew-symmetric matrices. Consider now some

basic properties of transposition.

Properties of Matrix Transposition

� Invertibility (X ) = X

� Additive Property (X+Y) = X +Y

� Multiplicative Property (XY) = Y X

� General Multiplicative Property (X1X2 . . .Xn−1Xn)

= XnXn−1 . . .X2X1

� Symmetric Matrix X = X

� Skew-Symmetric Matrix X = −X

Note, in particular, from this list that the multiplicative property of transpo-

sition reverses the order of the matrices.
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� Example 3.23: Calculations with Matrix Transpositions. Suppose we

have the three matrices:

X =

⎡

⎣ 1 0

3 7

⎤

⎦ Y =

⎡

⎣ 2 3

2 2

⎤

⎦ Z =

⎡

⎣ −2 −2

1 0

⎤

⎦ .

Then the following calculation of (XY + Z) = Z +YX illustrates the

invertibility, additive, and multiplicative properties of transposition. The

left-hand side is

(XY + Z) =

⎛

⎝

⎡

⎣ 1 0

3 7

⎤

⎦

⎡

⎣ 2 3

2 2

⎤

⎦ +

⎡

⎣ −2 −2

1 0

⎤

⎦

⎞

⎠

=

⎛

⎝

⎡

⎣ 2 2

27 20

⎤

⎦+

⎡

⎣ −2 −2

1 0

⎤

⎦

⎞

⎠

=

⎛

⎝

⎡

⎣ 0 0

28 20

⎤

⎦

⎞

⎠ ,

and the right-hand side is

Z +YX =

⎡

⎣ −2 −2

1 0

⎤

⎦ +

⎡

⎣ 2 3

2 2

⎤

⎦

⎡

⎣ 1 0

3 7

⎤

⎦

=

⎡

⎣ −2 1

−2 0

⎤

⎦+

⎡

⎣ 2 27

2 20

⎤

⎦

=

⎡

⎣ 0 28

0 20

⎤

⎦ .

3.6 Advanced Topics

This section contains a set of topics that are less frequently used in the social

sciences but may appear in some literatures. Readers may elect to skip this

section or use it for reference only.
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3.6.1 Special Matrix Forms

An interesting type of matrix that we did not discuss before is the idempotent

matrix. This is a matrix that has the multiplication property

XX = X2 = X

and therefore the property

X
n = XX · · ·X = X, n ∈ I+

(i.e., n is some positive integer). Obviously the identity matrix and the zero

matrix are idempotent, but the somewhatweird truth is that there are lots of other

idempotentmatrices as well. This emphasizes how differentmatrix algebra can

be from scalar algebra. For instance, the following matrix is idempotent, but

you probably could not guess so by staring at it:
⎡

⎢
⎢
⎢
⎣

−1 1 −1

2 −2 2

4 −4 4

⎤

⎥
⎥
⎥
⎦

(try multiplying it). Interestingly, if a matrix is idempotent, then the difference

between this matrix and the identity matrix is also idempotent because

(I−X)2 = I2 − 2X+X2 = I− 2X+X = (I−X).

We can test this with the example matrix above:

(I −X)2 =

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎣

−1 1 −1

2 −2 2

4 −4 4

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

2

=

⎡

⎢
⎢
⎢
⎣

2 −1 1

−2 3 −2

−4 4 −3

⎤

⎥
⎥
⎥
⎦

2

=

⎡

⎢
⎢
⎢
⎣

2 −1 1

−2 3 −2

−4 4 −3

⎤

⎥
⎥
⎥
⎦
.

Relatedly, a square nilpotent matrix is one with the property thatXn = 0, for

a positive integer n. Clearly the zero matrix is nilpotent, but others exist as
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well. A basic 2× 2 example is the nilpotent matrix
⎡

⎣ 1 1

−1 −1

⎤

⎦ .

Another particularistic matrix is a involutory matrix, which has the property

that when squared it produces an identity matrix. For example,
⎡

⎣ −1 0

0 1

⎤

⎦
2

= I,

although more creative forms exist.

3.6.2 Vectorization of Matrices

Occasionally it is convenient to rearrange a matrix into vector form. The most

commonway to do this is to “stack” vectors from thematrix on top of eachother,

beginning with the first column vector of the matrix, to form one long column

vector. Specifically, to vectorize an i× j matrixX, we consecutively stack the

j-length column vectors to obtain a single vector of length ij. This is denoted

vec(X) and has some obvious properties, such as svec(X) = vec(sX) for

some vector s and vec(X+Y) = vec(X)+ vec(Y) for matrices conformable

by addition. Returning to our simple example,

vec

⎡

⎣ 1 2

3 4

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

3

2

4

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Interestingly, it is not true that vec(X) = vec(X ) since the latter would stack

rows instead of columns. And vectorization of products is considerably more

involved (see the next section).

A final, and sometimes important, type of matrix multiplication is the Kro-

necker product (also called the tensor product ), which comes up naturally

in the statistical analyses of time series data (data recorded on the same mea-

sures of interest at different points in time). This is a slightly more abstract
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process but has the advantage that there is no conformability requirement. For

the i× j matrixX and k× matrixY, a Kronecker product is the (ik)× (j )

matrix

X⊗Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11Y x12Y · · · · · · x1jY

x21Y x22Y · · · · · · x2jY
...

...
. . .

...
...

...
. . .

...

xi1Y xi2Y · · · · · · xijY

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is different than

Y ⊗X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11X y12X · · · · · · y1jX

y21X y22X · · · · · · y2jX
...

...
. . .

...
...

...
. . .

...

yi1X yi2X · · · · · · y1jX

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As an example, consider the following numerical case.

� Example 3.24: Kronecker Product. A numerical example of a Kro-

necker product follows for a (2 × 2) by (2 × 3) case:

X =

⎡

⎣ 1 2

3 4

⎤

⎦ ,
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Y =

⎡

⎣ −2 2 3

0 1 3

⎤

⎦

X⊗Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⎡

⎣ −2 2 3

0 1 3

⎤

⎦ 2

⎡

⎣ −2 2 3

0 1 3

⎤

⎦

3

⎡

⎣ −2 2 3

0 1 3

⎤

⎦ 4

⎡

⎣ −2 2 3

0 1 3

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 2 3 −4 4 6

0 1 3 0 2 6

−6 6 9 −8 8 12

0 3 9 0 4 12

⎤

⎥⎥⎥⎥⎥⎥⎦
,

which is clearly different from the operation performed in reverse order:

Y ⊗X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

⎡

⎣ 1 2

3 4

⎤

⎦ 2

⎡

⎣ 1 2

3 4

⎤

⎦ 3

⎡

⎣ 1 2

3 4

⎤

⎦

0

⎡

⎣ 1 2

3 4

⎤

⎦ 1

⎡

⎣ 1 2

3 4

⎤

⎦ 3

⎡

⎣ 1 2

3 4

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 −4 2 4 3 6

−6 −8 6 8 9 12

0 0 1 2 3 6

0 0 3 4 9 12

⎤

⎥⎥⎥⎥⎥⎥⎦
,

even though the resulting matrices are of the same dimension.
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The vectorize function above has a product that involves the Kronecker func-

tion. For i×jmatrixX and j×kmatrixY, weget vec(XY) = (I⊗X)vec(Y),

where I is an identity matrix of order i. For three matrices this is only slightly

more complex: vec(XYZ) = (Z ⊗X)vec(Y), for k× matrixZ. Kronecker

products have some other interesting properties as well (matrix inversion is

discussed in the next chapter):

Properties of Kronecker Products

� Trace tr(X⊗Y) = trX⊗ trY

� Transpose (X⊗Y) = X ⊗Y

� Inversion (X⊗Y)−1 = X−1 ⊗Y−1

� Products (X⊗Y)(W ⊗ Z) = XW ⊗YZ

� Associative (X⊗Y) ⊗W = X⊗ (Y ⊗W)

� Distributive (X+Y) ⊗W = (X⊗W) + (Y ⊗W)

Here the notation tr() denotes the “trace,” which is just the sum of the diagonal

values going from the uppermost left value to the lowermost right value, for

square matrices. Thus the trace of an identity matrix would be just its order.

This is where we will pick up next in Chapter 4.
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� Example 3.25: Distributive PropertyofKronecker Products Calcula-

tion. Given the following matrices:

X =

⎡

⎣ 1 1

2 5

⎤

⎦ Y =

⎡

⎣ −1 −3

1 1

⎤

⎦ W =

⎡

⎣ 2 −2

3 0

⎤

⎦ ,

we demonstrate that (X+Y)⊗W = (X⊗W)+(X⊗W). The left-hand

side is

(X+Y)⊗W =

⎛

⎝

⎡

⎣ 1 1

2 5

⎤

⎦+

⎡

⎣ −1 −3

1 1

⎤

⎦

⎞

⎠⊗

⎡

⎣ 2 −2

3 0

⎤

⎦

=

⎡

⎣ 0 −2

3 6

⎤

⎦⊗

⎡

⎣ 2 −2

3 0

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎡

⎣ 2 −2

3 0

⎤

⎦ −2

⎡

⎣ 2 −2

3 0

⎤

⎦

3

⎡

⎣ 2 −2

3 0

⎤

⎦ 6

⎡

⎣ 2 −2

3 0

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 −4 4

0 0 −6 0

6 −6 12 −12

9 0 18 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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and the right-hand side, (X⊗W) + (X⊗W), is

=

⎛

⎝

⎡

⎣ 1 1

2 5

⎤

⎦⊗

⎡

⎣ 2 −2

3 0

⎤

⎦

⎞

⎠+

⎛

⎝

⎡

⎣ −1 −3

1 1

⎤

⎦⊗

⎡

⎣ 2 −2

3 0

⎤

⎦

⎞

⎠

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⎡

⎣ 2 −2

3 0

⎤

⎦ 1

⎡

⎣ 2 −2

3 0

⎤

⎦

2

⎡

⎣ 2 −2

3 0

⎤

⎦ 5

⎡

⎣ 2 −2

3 0

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

⎡

⎣ 2 −2

3 0

⎤

⎦ −3

⎡

⎣ 2 −2

3 0

⎤

⎦

1

⎡

⎣ 2 −2

3 0

⎤

⎦ 1

⎡

⎣ 2 −2

3 0

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which simplifies down to

=

⎡

⎢⎢⎢⎢⎢⎢⎣

2 −2 2 −2

3 0 3 0

4 −4 10 −10

6 0 15 0

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 2 −6 6

−3 0 −9 0

2 −2 2 −2

3 0 3 0

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 −4 4

0 0 −6 0

6 −6 12 −12

9 0 18 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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3.7 New Terminology

conformable, 85

diagonal matrix, 102

dimensions, 100

dot product, 87

entries, 100

equitable matrix, 127

field, 83

Hadamard product, 129

idempotent matrix, 118

identity matrix, 103

involutory matrix, 119

Jordan product, 130

Kronecker product, 119

law of cosines, 95

Lie product, 130

lower triangular, 104

matrix, 100

matrix decomposition, 104

matrix elements, 100

matrix equality, 101

matrix multiplication, 109

nilpotent matrix, 118

nonconformable, 85

order-k, 101

orthogonal, 87

outer product, 89

permutation matrix, 114

p-norm, 96

post-multiplies, 110

pre-multiplies, 110

scalar product, 87

skew-symmetric, 102

square matrix, 101

symmetric matrix, 102

transposition, 115

triangular matrix, 104

unit vector, 96

upper matrix, 104

vector, 83

vector cross product, 89

vector inner (dot) product, 87

vector norm, 93

vector transpose, 92

vectorize function, 119

zero matrix, 104
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Exercises

3.1 Perform the following vector multiplication operations:

[1 1 1] · [a b c]

[1 1 1]× [a b c]

[−1 1 −1] · [4 3 12]

[−1 1 −1]× [4 3 12]

[0 9 0 11] · [123.98211 6 −6392.38743 −5]

[123.98211 6 −6392.38743 −5] · [0 9 0 11] .

3.2 Recalculate the two outer product operations in Example 3.2 only

by using the vector (−1) × [3, 3, 3] instead of [3, 3, 3]. What is the

interpretation of the result with regard to the direction of the resulting

row and column vectors compared with those in the example?

3.3 Show that v − w 2 = v 2 + w 2 − 2 v w cos θ implies

cos(θ) = vw
v w

.

3.4 What happens when you calculate the difference norm (||u− v||2 =

||u||2 − 2(u · v) + ||v||2) for two orthogonal vectors? How is this

different from the multiplication norm for two such vectors?

3.5 Explain why the perpendicularity property is a special case of the

triangle inequality for vector p-norms.

3.6 For p-norms, explain why the Cauchy-Schwarz inequality is a special

case of Hölder’s inequality.

3.7 Show that pre-multiplication and post-multiplication with the identity

matrix are equivalent.

3.8 Recall that an involutorymatrix is one that has the characteristicX2 =

I. Can an involutory matrix ever be idempotent?

3.9 For the following matrix, calculateXn for n = 2, 3, 4, 5. Write a rule
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for calculating higher values of n.

X =

⎡

⎢⎢⎢⎣

0 0 1

0 1 0

1 0 1

⎤

⎥⎥⎥⎦ .

3.10 Perform the following vector/matrix multiplications:
⎡

⎢⎢⎢⎣

1 1
2 2

1 1
3 5

1 1 2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

0.1

0.2

0.3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

9

7

5

⎤

⎥⎥⎥⎦

9 7 5

⎡

⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

3 3 1

3 1 3

1 3 3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1
3

1
3

1
3

⎤

⎥⎥⎥⎦ .

3.11 Perform the following matrix multiplications:

⎡

⎣ 3 −3

−3 3

⎤

⎦

⎡

⎣2 1

0 0

⎤

⎦

⎡

⎢⎢⎢⎣

0 1 1

1 0 1

1 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

4 7

3 0

1 2

⎤

⎥⎥⎥⎦

⎡

⎣3 1 −2

6 3 4

⎤

⎦

⎡

⎢⎢⎢⎣

4 7

3 0

1 2

⎤

⎥⎥⎥⎦

⎡

⎣ 1 0

−3 1

⎤

⎦

⎡

⎣1 0

3 1

⎤

⎦

⎡

⎢⎢⎢⎣

−1 −9

−1 −4

1 2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

−4 −4

−1 0

−3 −8

⎤

⎥⎥⎥⎦

⎡

⎣ 0 0

0 ∞

⎤

⎦

⎡

⎣ 1 1

−1 −1

⎤

⎦ .

3.12 An equitable matrix is a square matrix of order n where all entries

are positive and for any three values i, j, k < n, xijxjk = xik. Show

that for equitable matrices of order n,X2 = nX . Give an example of

an equitable matrix.
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3.13 Communication within work groups can sometimes be studied by

looking analytically at individual decisionprocesses. RobyandLanzetta

(1956) studied at this process by constructing three matrices: OR,

which maps six observations to six possible responses; PO, which in-

dicates which type of person from three is a source of information for

each observation; andPR, whichmapswho is responsible of the three

for each of the six responses. They give these matrices (by example)

as

OR =

O1

O2

O3

O4

O5

O6

R1 R2 R3 R4 R5 R6
0
BBBBBBBBBBBBB@

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

1 0 0 0 0 1

1

CCCCCCCCCCCCCA

.

PO =
P1

P2

P3

O1 O2 O3 O4 O5 O6
0

BBB@

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 1

1

CCCA
.

PR =

R1

R2

R3

R4

R5

R6

P1 P2 P3
0

BBBBBBBBBBBBB@

1 0 0

1 0 1

0 1 0

0 1 0

0 0 1

0 0 1

1
CCCCCCCCCCCCCA

.
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The claim is that multiplying thesematrices in the orderOR, PO, PR

produces a personnel-only matrix (OPR) that reflects “the degree of

operator interdependence entailed in a given task and personnel struc-

ture” where the total number of entries is proportional to the system

complexity, the entries along themain diagonal show how autonomous

the relevant agent is, and off-diagonals show sources of information in

the organization. Performmatrix multiplication in this order to obtain

the OPR matrix using transformations as needed where your final

matrix has a zero in the last entry of the first row. Which matrix most

affects the diagonal values of OPR when it is manipulated?

3.14 Singer and Spilerman (1973) used matrices to show social mobility

between classes. These are stochastic matrices indicating different

social class categories where the rows must sum to 1. In this construc-

tion a diagonal matrixmeans that there is no social mobility. Test their

claim that the followingmatrix is the cube root of a stochastic matrix:

P
1
3 =

⎛

⎝
1
2
(1 − 1/ 3 − 1

3
1
2
(1 + 1/ 3 − 1

3

1
2 (1 + 1/

3 − 13
1
2 (1 − 1/

3 − 13 .

⎞

⎠

3.15 Element-by-element matrix multiplication is a Hadamard product

(and sometimes called a Schur product), and it is denoted with either

“∗” or “ ” (and occasionally “◦”) This element-wise process means

that ifX andY are arbitrary matrices of identical size, the Hadamard

product isX Ywhose ijth element (XYij ) isXijYij . It is trivial to

see thatX Y = Y X (an interesting exception to general matrix

multiplication properties), but show that for two nonzero matrices

tr(X Y) = tr(X) · tr(Y). For some nonzero matrix X what does

I X do? For an order k Jmatrix, is tr(J J) different from tr(JJ)?

Show why or why not.
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3.16 For the following LU matrix decomposition, find the permutation ma-

trix P that is necessary:
⎡

⎢⎢⎢⎣

1 3 7

1 1 12

4 2 9

⎤

⎥⎥⎥⎦ = P

⎡

⎢⎢⎢⎣

1.00 0.0 0

0.25 1.0 0

0.25 0.2 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

4 2.0 9.00

0 2.5 4.75

0 0.0 8.80

⎤

⎥⎥⎥⎦ .

3.17 Prove that the product of an idempotent matrix is idempotent.

3.18 In the process of developing multilevel models of sociological data

DiPrete and Grusky (1990) and others performed the matrix calcula-

tionsΦ = X(I⊗∆µ)X +Σ , whereΣ is a T ×T diagonal matrix

with values σ21 , σ
2
2 , . . . , σ

2
T ; X is an arbitrary (here) nonzero n × T

matrix with n > T ; and∆µ is a T × T diagonal matrix with values

σ2µ1 , σ
2
µ2
, . . . , σ2µT . Perform this calculation to show that the result

is a “block diagonal” matrix and explain this form. Use generic xij

values or some other general form to denote elements ofX. Does this

say anything about the Kronecker product using an identity matrix?

3.19 Calculate the LU decomposition of the matrix [ 2 34 7 ] using your pre-

ferred software such as with the lu function of the Matrix library in

the R environment. Reassemble the matrix by doing themultiplication

without using software.

3.20 The Jordan product for matrices is defined by

X ∗Y = 1
2
(XY +YX),

and the Lie product from group theory is

XxY = XY −YX

(both assuming conformable X and Y). The Lie product is also

sometimes denoted with [X,Y]. Prove the identity relating stan-

dard matrix multiplication to the Jordan and Lie forms: XY =

[X ∗Y] + [XxY/2].
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3.21 Demonstrate the inversion property for Kronecker products, (X ⊗

Y)−1 = X−1 ⊗Y−1, with the following matrices:

X =

⎡

⎣ 9 1

2 8

⎤

⎦ , Y =

⎡

⎣ 2 −5 1

2 1 7

⎤

⎦ .

3.22 Vectorize the followingmatrix and find the vector norm. Can you think

of any shortcuts that would make the calculations less repetitious?

X̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1

2 4 3

3 1 2

4 3 6

5 5 5

6 7 6

7 9 9

8 8 8

9 8 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.23 For two vectors in R3 using 1 = cos2 θ + sin2 θ and u × v 2 =

u 2 v 2−u2 ·v2, show that the norm of the cross product between

two vectors, u and v, is: u× v = u v sin(θ).
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Linear Algebra Continued: Matrix Structure

4.1 Objectives

This chapter introduces more theoretical and abstract properties of vectors and

matrices. We already (by now!) know the mechanics of manipulating these

forms, and it is important to carry on to a deeper understandingof the properties

asserted by specific row and column formations. The last chapter gave some

of the algebraic basics of matrix manipulation, but this is really insufficient for

understanding the full scope of linear algebra. Importantly, there are charac-

teristics of a matrix that are not immediately obvious from just looking at its

elements and dimension. The structure of a given matrix depends not only on

the arrangement of numbers within its rectangular arrangement, but also on the

relationship between these elements and the “size” of the matrix. The idea of

size is left vague for the moment, but we will shortly see that there are some

very specific ways to claim size for matrices, and these have important theo-

retical properties that define how a matrix works with other structures. This

chapter demonstrates some of these properties by providing information about

the internal dynamics of matrix structure. Some of these topics are a bit more

abstract than those in the last chapter.

132
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4.2 Space and Time

We have already discussed basic Euclidean geometric systems in Chapter 1.

Recall that Cartesian coordinate systems define real-measured axes whereby

points are uniquely defined in the subsequent space. So in a Cartesian plane

defined by R2, points define an ordered pair designating a unique position on

this 2-space. Similarly, an ordered triple defines a unique point inR3 3-space.

Examples of these are given in Figure 4.1.

Fig. 4.1. Visualizing Space

x

y

x and y in 2−space

x y

z

x,y, and z in 3−space

What this figure showswith the lines is that the ordered pair or ordered triple

defines a “path” in the associated space that uniquely arrives at a single point.

Observe also that in both cases the path illustrated in the figure begins at the

origin of the axes. So we are really defining a vector from the zero point to

the arrival point, as shown in Figure 4.2.

Wait! This looks like a figure for illustrating the Pythagorean Theorem (the

little squares are reminders that these angles are right angles). So if we wanted

to get the length of the vectors, it would simply be x2 + y2 in the first panel

and x2 + y2 + z2 in the second panel. This is the intuition behind the basic

vector norm in Section 3.2.1 of the last chapter.
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Fig. 4.2. Visualizing Vectors in Spaces

(x,y)

(x,y) in 2−space

(x,y,z)

(x,y,z) in 3−space

Thinking broadly about the two vectors in Figure 4.2, they take up an amount

of “space” in the sense that they definea triangular planar region boundedby the

vector itself and its two (left panel) or three (right panel)projections against the

axes where the angle on the axis from this projection is necessarily a right angle

(hence the reason that these are sometimes called orthogonal projections).

Projections define how far along that axis the vector travels in total. Actually

a projection does not have be just along the axes: We can project a vector v

against another vector u with the following formula:

p = projection of v on to u =
u · v
u

u

u
.

This is shown in Figure 4.3. We can think of the second fraction on the right-

hand side above as the unit vector in the direction of u, so the first fraction is

a scalar multiplier giving length. Since the right angle is preserved, we can

also think about rotating this arrangement until v is lying on the x-axis. Then

it will be the same type of projection as before. Recall from before that two

vectors at right angles, such as Cartesian axes, are called orthogonal. It should
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be reasonably easy to see now that orthogonal vectors produce zero-length

projections.

Fig. 4.3. Vector Projection, Addition, and Subtraction

u

v

v+u

v−u

p

Another interesting case is when one vector is simply a multiple of another,

say (2, 4) and (4, 8). The lines are then called collinear and the idea of a

projection does not make sense. The plot of these vectors would be along the

exact same line originating at zero, and we are thus adding no new geometric

information. Therefore the vectors still consume the same space.

Also shown in Figure 4.3 are the vectors that result from v+u andv−uwith

angle θ between them. The area of the parallelogramdefined by the vectorv+u

shown in the figure is equal to the absolute value of the length of the orthogonal

vector that results from the cross product: u×v. This is related to the projection

in the following manner: Call h the length of the line defining the projection

in the figure (going from the point p to the point v). Then the parallelogram

has size that is height times length: h u from basic geometry. Because the

triangle created by the projection is a right triangle, from the trigonometry rules
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in Chapter 2 (page 55) we get h = v sin θ, where θ is the angle between u

and v. Substituting we get u×v = u v sin θ (from an exercise in the last

chapter). Therefore the size of the parallelogram is |v + u| since the order of

the cross product could make this negative. Naturally all these principles apply

in higher dimension as well.

These ideas get only slightly more complicated when discussing matrices

because we can think of them as collections of vectors rather than as purely

rectangular structures. The column space of an i × j matrix X consists of

every possible linear combination of the j columns inX, and the row space of

the same matrix consists of every possible linear combination of the i rows in

X. This can be expressed more formally for the i× j matrixX as

• Column Space:

all column vectors x.1,x.2, . . . ,x.j ,

and scalars s1, s2, . . . , sj

producing vectors s1x.1 + s2x.2 + · · ·+ sjx.j

• Row Space:

all row vectors x1.,x2., . . . ,xi.,

and scalars s1, s2, . . . , si

producing vectors s1x1. + s2x2. + · · ·+ sixi.,

wherex.k denotes the kth column vector of x andxk. denotes the kth rowvector

ofx. It is now clear that the column space here consists of i-dimensional vectors

and the row space consists of j-dimensional vectors. Note that the expression

of space exactly fits the definition of a linear function given on page 24 in

Chapter 1. This is why the field is called linear algebra. To make this process

more practical, we return to our most basic example: The column space of the

matrix [ 1 23 4 ] includes (but is not limited to) the following resulting vectors:

3

⎡

⎣ 1

3

⎤

⎦+ 1

⎡

⎣ 2

4

⎤

⎦ =

⎡

⎣ 5

13

⎤

⎦ , 5

⎡

⎣ 1

3

⎤

⎦+ 0

⎡

⎣ 2

4

⎤

⎦ =

⎡

⎣ 5

15

⎤

⎦ .
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� Example 4.1: LinearTransformation ofVoterAssessments. One diffi-

cult problem faced by analysts of surveydata is that respondents often answer

ordered questions based on their own interpretation of the scale. This means

that an answer of “strongly agree” may have different meanings across a

survey because individuals anchor against different response points, or they

interpret the spacing between categories differently. Aldrich and McKelvey

(1977) approached this problem by applying a linear transformation to data

on the placement of presidents on a spatial issue dimension (recall the spa-

tial representation in Figure 1.1). The key to their thinking was that while

respondent i places candidate j at Xij on an ordinal scale from the survey

instrument, such as a 7-point “dove” to “hawk” measure, their real view was

Yij along some smoother underlying metric with finer distinctions. Aldrich

and McKelvey gave this hypothetical example for three voters:

Placement of Candidate Position on the Vietnam War, 1968

Dove 1 2 3 4 5 6 7 Hawk

Voter 1 H,J,N W V

Voter 2 H J N,V W

Voter 2 V H J,N W

Y

H=Humphrey, J=Johnson, N=Nixon, W=Wallace, V=Voter

The graphic for Y above is done to suggest a noncategorical measure such

as alongR. To obtain a picture of this latent variable, Aldrich andMcKelvey

suggested a linear transformation for each voter to relate observed categorical

scale to this underlying metric: ci + ωiXij . Thus the perceived candidate
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positions for voter i are given by

Yi =

⎡

⎢⎢⎢⎢⎢⎢⎣

ci + ωiXi1

ci + ωiXi2
...

ci + ωiXiJ

⎤

⎥⎥⎥⎥⎥⎥⎦
,

which gives a better vector of estimates for the placement of all J candidates

by respondent i because it accounts for individual-level “anchoring” by each

respondent, ci. Aldrich andMcKelvey then estimated each of the values of c

and ω. The value of this linear transformation is that it allows the researchers

to see beyond the limitations of the categorical survey data.

Now let x.1,x.2, . . . ,x.j be a set of column vectors in Ri (i.e., they are all

length i). We say that the set of linear combinations of these vectors (in the

sense above) is the span of that set. Furthermore, any additional vector in

Ri is spanned by these vectors if and only if it can be expressed as a linear

combination of x.1,x.2, . . . ,x.j . It should be somewhat intuitive that to span

Ri here j ≥ imust be true. Obviously the minimal condition is j = i for a set

of linearly independent vectors, and in this case we then call the set a basis.

This brings us to a more general discussion focused on matrices rather than

on vectors. A linear space,X, is the nonempty set of matrices such that remain

closed under linear transformation:

• IfX1,X2, . . . ,Xn are in X,

• and s1, s2, . . . , sn are any scalars,

• thenXn+1 = s1X1 + s2X2 + · · · + snXn is in X.

That is, linear combinations of matrices in the linear space have to remain in

this linear space. In addition, we can define linear subspaces that represent

some enclosed region of the full space. Obviously column and row spaces as

discussed above also comprise linear spaces. Except for the pathological case

where the linear space consists only of a nullmatrix, every linear space contains

an infinite number of matrices.
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Okay, so we still need some more terminology. The span of a finite set of

matrices is the set of all matrices that can be achieved by a linear combination

of the original matrices. This is confusing because a span is also a linear space.

Where it is useful is in determining a minimal set of matrices that span a given

linear space. In particular, the finite set of linearly independent matrices

in a given linear space that span the linear space is called a basis for this linear

space (note the word “a” here since it is not unique). That is, it cannot be made

a smaller set because it would lose the ability to produce parts of the linear

space, and it cannot be made a larger set because it would then no longer be

linearly independent.

Let us make this more concrete with an example. A 3× 3 identity matrix is

clearly a basis forR3 (the three-dimensional space of real numbers) because any

three-dimensional coordinate, [r1, r2, r3] can be produced by multiplication of

I by three chosen scalars. Yet, the matrices defined by
1 0 0
0 0 1
0 0 1

and
1 0 0 0
0 1 0 0
0 0 1 1

do

not qualify as a basis (although the second still spans R3).

4.3 The Trace and Determinant of a Matrix

We have already noticed that the diagonals of a square matrix have special

importance, particularly in the context of matrix multiplication. As mentioned

in Chapter 3, a very simple way to summarize the overall magnitude of the

diagonals is the trace. The trace of a square matrix is simply the sum of the

diagonal values tr(X) = k
i=1 xii and is usually denoted tr(X) for the trace of

square matrix X. The trace can reveal structure in some surprising ways. For

instance, an i× j matrixX is a zero matrix iff tr(A A) = 0 (see the Exercises).

In terms of calculation, the trace is probably the easiest matrix summary. For

example,

tr

⎛

⎝ 1 2

3 4

⎞

⎠ = 1 + 4 = 5 tr

⎛

⎝ 12
1
2

9 1
3

⎞

⎠ = 12+ 1
3
=
37

3
.



140 Linear Algebra Continued: Matrix Structure

One property of the trace has implications in statistics: tr(X X) is the sum of

the square of every value in the matrix X. This is somewhat counterintuitive,

so now we will do an illustrative example:

tr

⎛

⎝

⎡

⎣ 1 2

1 3

⎤

⎦

⎡

⎣ 1 2

1 3

⎤

⎦

⎞

⎠ = tr

⎛

⎝ 2 5

5 13

⎞

⎠ = 15 = 1 + 1 + 4 + 9.

In general, though, the matrix trace has predictable properties:

Properties of (Conformable) Matrix Trace Operations

� Identity Matrix tr(In) = n

� Zero Matrix tr(0) = 0

� Square JMatrix tr(Jn) = n

� Scalar Multiplication tr(sX) = str(X)

� Matrix Addition tr(X+Y) = tr(X) + tr(Y)

� Matrix Multiplication tr(XY) = tr(YX)

� Transposition tr(X ) = tr(X)

Another important, but more difficult to calculate, matrix summary is the

determinant. The determinant uses all of the values of a square matrix to

provide a summary of structure, not just the diagonal like the trace. First let us

look at how to calculate the determinant for just 2 × 2 matrices, which is the

difference in diagonal products:

det(X) = |X| =
x11 x12

x21 x22
= x11x22 − x12x21.
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The notation for a determinant is expressed as det(X) or |X|. Some simple

numerical examples are

1 2

3 4
= (1)(4)− (2)(3) = −2

10 1
2

4 1
= (10)(1)− 1

2
(4) = 8

2 3

6 9
= (2)(9)− (3)(6) = 0.

The last case, where the determinant is found to be zero, is an important case

as we shall see shortly.

Unfortunately, calculatingdeterminantsgetsmuchmore involvedwith square

matrices larger than 2×2. First we need to define a submatrix. The submatrix

is simply a form achieved by deleting rows and/or columns of a matrix, leaving

the remaining elements in their respective places. So for the matrix X, notice

the following submatrices whose deleted rows and columns are denoted by

subscripting:

X =

⎡

⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎤

⎥⎥⎥⎥⎥⎥⎦
,

X[11] =

⎡

⎢⎢⎢⎣

x22 x23 x24

x32 x33 x34

x42 x43 x44

⎤

⎥⎥⎥⎦ , X[24] =

⎡

⎢⎢⎢⎣

x11 x12 x13

x31 x32 x33

x41 x42 x43

⎤

⎥⎥⎥⎦ .

To generalize further for n× n matrices we first need to define the following:

The ijthminor ofX for xij , |X[ij]| is the determinant of the (n−1)× (n− 1)

submatrix that results from taking the ith row and jth column out. Continuing,

the cofactor of X for xij is the minor signed in this way: (−1)i+j |X[ij]|. To



142 Linear Algebra Continued: Matrix Structure

exhaust the entire matrix we cycle recursively through the columns and take

sums with a formula that multiplies the cofactor by the determining value:

det(X) =
n

j=1

(−1)i+jxij |X[ij]|

for some constant i. This is not at all intuitive, and in fact there are some

subtleties lurking in there (maybe I should have taken the blue pill). First,

recursivemeans that the algorithm is applied iteratively through progressively

smaller submatrices X[ij]. Second, this means that we lop off the top row

and multiply the values across the resultant submatrices without the associated

column. Actually we can pick any row or column to perform this operation,

because the results will be equivalent. Rather than continue to pick apart this

formula in detail, just look at the application to a 3× 3 matrix:

x11 x12 x13

x21 x22 x23

x31 x32 x33

= (+1)x11
x22 x23

x32 x33
+(−1)x12

x11 x13

x31 x33
+(+1)x13

x11 x12

x21 x22
.

Now the problem is easy because the subsequent three determinant calculations

are on 2× 2 matrices. Here we picked the first row as the starting point as per

the standard algorithm. In the bad old days before ubiquitous and powerful

computers people who performed these calculations by hand first looked to

start with rows or columns with lots of zeros because each one would mean

that the subsequent contribution was automatically zero and did not need to

be calculated. Using this more general process means that one has to be more

careful about the alternating signs in the sum since picking the row or column

to “pivot” on determines the order. For instance, here are the signs for a 7× 7
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matrix produced from the sign on the cofactor:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + − + − +

− + − + − + −

+ − + − + − +

− + − + − + −

+ − + − + − +

− + − + − + −

+ − + − + − +

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

� Example 4.2: Structural Shortcuts. There are a number of tricks for

calculating the determinants of matrices of this magnitude and greater, but

mostly these are relics from slide rule days. Sometimes the shortcuts are

revealing about matrix structure. Ishizawa (1991), in looking at the return

to scale of public inputs and its effect on the transformation curve of an

economy, needed to solve a system of equations by taking the determinant

of the matrix
⎡

⎢⎢⎢⎢⎢⎢⎣

1 k1 0 0

2 k2 0 0

LDw LDr
1 2

KDw KDr k1 k2

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where these are all abbreviations for longer vectors or complex terms. We

can start by being very mechanical about this:

det = 1

⎡

⎢⎢⎢⎣

k2 0 0

LDr
1 2

KDr k1 k2

⎤

⎥⎥⎥⎦− k
1

⎡

⎢⎢⎢⎣

2 0 0

LDw
1 2

KDw k1 k2

⎤

⎥⎥⎥⎦ .

The big help here was the two zeros on the top row that meant that we could

stop our 4×4 calculations after two steps. Fortunately this trick works again

because we have the same structure remaining in the 3 × 3 case. Let us

be a bit more strategic though and define the 2 × 2 lower right matrix as
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D =
1 2

k1 k2
, so that we get the neat simplification

det = 1k2|D| − k1 2|D| = ( 1k2 − k1 2)|D| = |D|2.

Because of the squaring operations here this is guaranteed to be positive,

which was substantively important to Ishizawa.

The trace and the determinant have interrelated uses and special properties as

well. For instance, Kronecker products on square matrices have the properties

tr(X⊗Y) = tr(X)tr(Y), and |X⊗Y| = |X| |Y|j for the j× j matrixX and

the × matrixY (note the switching of exponents). There are some general

properties of determinants to keep in mind:

Properties of (n× n) Matrix Determinants

� Diagonal Matrix |D| = n
i=1Dii

� (Therefore) Identity Matrix |I| = 1

� Triangular Matrix |θ| = n
i=1 θii

(upper or lower)

� Scalar Times Diagonal |sD| = sn|D|

� Transpose Property |X| = |X |

� JMatrix |J| = 0
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It helps some people to think abstractly

about the meaning of a determinant. If

the columns of an n × n matrix X are

treated asvectors, then the area of the par-

allelogram created by an n-dimensional

space of these vectors is the absolute

value of the determinant ofX, where the

vectors originate at zero and the oppo-

site point of the parallelogram is deter-

mined by the product of the columns (a

cross product of these vectors, as in Sec-

tion 4.2). Okay, maybe that is a bit too

abstract! Now view the determinant of

the 2×2matrix [ 1 23 4 ]. The resulting paral-

lelogram looks like thefigure on the right.

This figure indicates that the determinant

is somehow a description of the size of a

matrix in the geometric sense. Suppose

that our examplematrixwere slightly dif-

ferent, say [ 1 22 4 ].

Spatial Representation

of a Determinant

1 2 3

3

4

8

This does not seem like a very drastic change, yet it is quite fundamentally

different. It is not too hard to see that the size of the resulting parallelogram

would be zero since the two column (or row) vectors would be right on top of

each other in thefigure, that is, collinear. We know this also almost immediately

from looking at the calculation of the determinant (ad− bc). Here we see that

two lines on top of each other produce no area. What does this mean? It means

that the column dimension exceeds the offered “information” provided by this

matrix form since the columns are simply scalar multiples of each other.
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4.4 Matrix Rank

The ideas just described are actually more important than they might appear

at first. An important characteristic of any matrix is its rank. Rank tells us

the “space” in terms of columns or rows that a particular matrix occupies, in

other words, how much unique information is held in the rows or columns of

a matrix. For example, a matrix that has three columns but only two columns

of unique information is given by
0 1
1 1
1 1

. This is also true for the matrix
0 1
1 1
2 2

,

because the third column is just two times the second column and therefore has

no new relational information to offer.

More specifically, when any one column of a matrix can be produced by

nonzero scalar multiples of other columns added, then we say that the matrix is

not full rank (sometimes called short rank). In this case at least one column

is linearly dependent. This simply means that we can produce the relative

relationships defined by this column from the other columns and it thus adds

nothing to our understanding of the relationships defined by the matrix. One

way to look at this is to say that the matrix in question does not “deserve” its

number of columns.

Conversely, the collection of vectors determined by the columns is said to

be linearly independent columns if the only set of scalars, s1, s2, . . . , sj ,

that satisfies s1x.1 + s2x.2 + · · · + sjx.j = 0 is a set of all zero values,

s1 = s2 = . . . = sj = 0. This is just another way of looking at the same idea

since such a condition means that we cannot reproduce one column vector

from a linear combination of the others.

Actually this emphasis on columns is somewhat unwarranted because the

rank of a matrix is equal to the rank of its transpose. Therefore, everything just

said about columns can also be said about rows. To restate, the row rank of

any matrix is also its column rank. This is a very important result and

is proven in virtually every text on linear algebra. What makes this somewhat

confusing is additional terminology. An (i× j) matrix is full column rank if

its rank equals the number of columns, and it is full row rank if its rank equals
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its number of rows. Thus, if i > j, then the matrix can be full column rank

but never full row rank. This does not necessarily mean that it has to be full

column rank just because there are fewer columns than rows.

It should be clear from the example that a (square) matrix is full rank if and

only if it has a nonzero determinant. This is the same thing as saying that a

matrix is full rank if it is nonsingular or invertible (see Section 4.6 below).

This is a handy way to calculate whether a matrix is full rank because the linear

dependencywithin can be subtle (unlike our example above). In the next section

we will explore matrix features of this type.

� Example 4.3: Structural Equation Models. In their text Hanushek and

Jackson (1977, Chapter 9) provided a technical overview of structural equa-

tionmodels where systems of equations are assumed to simultaneously affect

each other to reflect endogenous social phenomena. Often these models are

described in matrix terms, such as their example (p. 265)

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ24 1 γ26 0 −1

0 −1 γ56 0 0

0 γ65 −1 0 0

β34 0 β36 0 β32

β44 0 β46 0 β42

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Without doing any calculations we can see that this matrix is of rank less

than 5 because there is a column of all zeros. We can also produce this result

by calculating the determinant, but that is too much trouble. Matrix determi-

nants are not changed by multiplying the matrix by an identity in advance,

multiplyingby apermutationmatrix in advance,or by taking transformations.
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Therefore we can get a matrix

A
∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ24 1 γ26 0 −1

0 −1 γ56 0 0

0 γ65 −1 0 0

β34 0 β36 0 β32

β44 0 β46 0 β42

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

1 −1 γ65 0 0

γ26 γ56 −1 β36 β46

γ24 0 0 β34 β44

−1 0 0 β32 β42

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

that is immediately identifiable as having a zero determinant by the general

determinant form given on page 142 because each ith minor (the matrix that

remains when the ith row and column are removed) is multiplied by the ith

value on the first row.

Some rank properties are more specialized. An idempotent matrix has the

property that

rank(X) = tr(X),

and more generally, for any square matrix with the property that A2 = sA, for

some scalar s

srank(X) = tr(X).

To emphasize that matrix rank is a fundamental principle, we now give some

standard properties related to other matrix characteristics.
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Properties of Matrix Rank

� Transpose rank(X) = rank(X )

� Scalar Multiplication rank(sX) = rank(X)
(nonzero scalars)

� Matrix Addition rank(X+Y) ≤ rank(X) + rank(Y)

� Consecutive Blocks rank[XY] ≤ rank(X) + rank(Y)
rank [XY ] ≤ rank(X) + rank(Y)

� Diagonal Blocks rank [X 00 Y ] = rank(X) + rank(Y)

� Kronecker Product rank(X⊗Y) = rank(X)rank(Y)

4.5 Matrix Norms

Recall that the vectors norm is a measure of length:

v = (v21 + v
2
2 + · · ·+ v2n)

1
2 = (v v)

1
2 .

We have seen matrix “size” as described by the trace, determinant, and rank.

Additionally, we can describematrices by norming, butmatrix norms are a little

bit more involved than the vector norms we saw before. There are two general

types, the trace norm (sometimes called the Euclidean norm or the Frobenius

norm):

X F =

⎡

⎣
i j

|xij |2
⎤

⎦

1
2

(the square root of the sum of each element squared), and the p-norm:

X p = max
v p

Xv p,
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which is defined with regard to the unit vector v whose length is equal to the

number of columns in X. For p = 1 and an I × J matrix, this reduces to

summing absolute values down columns and taking the maximum:

X 1 = max
J

I

i=1

|xij |.

Conversely, the infinity version of the matrix p-norm sums across rows before

taking the maximum:

X ∞ = max
I

J

j=1

|xij |.

Like the infinity form of the vector norm, this is somewhat unintuitive because

there is no apparent use of a limit. There are some interesting properties of

matrix norms:

Properties of Matrix Norms, Size (i× j)

� Constant Multiplication kX = |k| X

� Addition X+Y ≤ X + Y

� Vector Multiplication Xv p ≤ X p v p

� Norm Relation X 2 ≤ X F ≤
√
j X 2

� Unit Vector Relation X Xv = ( X 2)
2v

� P-norm Relation X 2 ≤ X 1 X ∞

� Schwarz Inequality |X ·Y| ≤ X Y ,
where |X ·Y| = tr(X Y)
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� Example 4.4: Matrix Norm Sum Inequality. Given matrices

X =

⎡

⎣ 3 2

5 1

⎤

⎦ and Y =

⎡

⎣ −1 −2

3 4

⎤

⎦ ,

observe that

X+Y ∞ X ∞ + Y ∞

⎡

⎣ 2 0

8 5

⎤

⎦

∞

max(5, 6) +max(3, 7)

max(2, 13) 13,

showing the second property above.

� Example 4.5: Schwarz Inequality for Matrices. Using the sameX and

Y matrices and the p = 1 norm, observe that

|X ·Y| X 1 Y 1

(12) + (0) max(8, 3) ·max(4, 6)

showing that the inequality holds: 12 < 48. This is a neat property because

it shows a relationship between the trace and matrix norm.

4.6 Matrix Inversion

Just like scalars have inverses, some square matrices have a matrix inverse.

The inverse of a matrixX is denotedX−1 and defined by the property

XX−1 = X−1X = I.

That is, when a matrix is pre-multiplied or post-multiplied by its inverse the re-

sult is an identity matrix of the same size. For example, consider the following

matrix and its inverse:

⎡

⎣ 1 2

3 4

⎤

⎦

⎡

⎣ −2.0 1.0

1.5 −0.5

⎤

⎦ =

⎡

⎣ −2.0 1.0

1.5 −0.5

⎤

⎦

⎡

⎣ 1 2

3 4

⎤

⎦ =

⎡

⎣ 1 0

0 1

⎤

⎦



152 Linear Algebra Continued: Matrix Structure

Not all square matrices are invertible. A singular matrix cannot be inverted,

and often “singular” and “noninvertible” are used as synonyms. Usuallymatrix

inverses are calculated by computer softwarebecause it is quite time-consuming

with reasonably large matrices. However, there is a very nice trick for imme-

diately inverting 2× 2 matrices, which is given by

X =

⎡

⎣ x11 x12

x21 x22

⎤

⎦

X−1 = det(X)−1

⎡

⎣ x22 −x12
−x21 x11

⎤

⎦ .

Amatrix inverse is unique: There is only one matrix that meets the multiplica-

tive condition above for a nonsingular square matrix.

For inverting largermatrices there is a process based onGauss-Jordan elim-

ination that makes use of linear programming to invert the matrix. Although

matrix inversion would normally be done courtesy of software for nearly all

problems in the social sciences, the process of Gauss-Jordan elimination is a

revealing insight into inversion because it highlights the “inverse” aspect with

the role of the identitymatrix as the linear algebra equivalent of 1. Start with the

matrix of interest partitioned next to the identity matrix and allow the following

operations:

• Any row may be multiplied or divided by a scalar.

• Any two rows may be switched.

• Any row may be multiplied or divided by a scalar and then added to another

row. Note: This operation does not change the original row; its multiple is

used but not saved.
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Of course the goal of these operations has not yet been given. We want to

iteratively apply these steps until the identity matrix on the right-hand side is

on the left-hand side. So the operations are done with the intent of zeroing out

the off-diagonals on the left matrix of the partition and then dividing to obtain

1’s on the diagonal. During this process we do not care about what results on

the right-hand side until the end, when this is known to be the inverse of the

original matrix.

Let’s perform this process on a 3× 3 matrix:

⎡

⎢⎢⎢⎣

1 2 3

4 5 6

1 8 9

⎤

⎥⎥⎥⎦

1 0 0

0 1 0

0 0 1

⎤

⎥⎥⎥⎦ .

Nowmultiply the first row by −4, adding it to the second row, and multiply the

first row by −1, adding it to the third row:

⎡

⎢⎢⎢⎣

1 2 3

0 −3 −6

0 6 6

⎤

⎥⎥⎥⎦

1 0 0

−4 1 0

−1 0 1

⎤

⎥⎥⎥⎦ .

Multiply the second row by 12 , adding it to the first row, and simply add this

same row to the third row:

⎡

⎢⎢⎢⎣

1 1
2 0

0 −3 −6

0 3 0

⎤

⎥⎥⎥⎦

−1 1
2 0

−4 1 0

−5 1 1

⎤

⎥⎥⎥⎦ .

Multiply the third row by − 16 , adding it to the first row, and add the third row

(un)multiplied to the second row:
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⎡

⎢⎢⎢⎣

1 0 0

0 0 −6

0 3 0

⎤

⎥⎥⎥⎦

− 16
1
3 − 16

−9 2 1

−5 1 1

⎤

⎥⎥⎥⎦ .

Finally, just divide the second row by −6 and the third row by −3, and then

switch their places:

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤

⎥⎥⎥⎦

− 16
1
3 − 16

− 53
1
3

1
3

3
2
− 1
3
− 1
6

⎤

⎥⎥⎥⎦ ,

thus completing theoperation. This process alsohighlights the fact thatmatrices

are representations of linear equations. The operations we performed are linear

transformations, just like those discussed at the beginning of this chapter.

We already know that singular matrices cannot be inverted, but consider the

described inversion process applied to an obvious case:

⎡

⎣ 1 0

1 0

⎤

⎦ 1 0

0 1

⎤

⎦ .

It is easy to see that there is nothing that can be done to put a nonzero value

in the second column of the matrix to the left of the partition. In this way the

Gauss-Jordan process helps to illustrate a theoretical concept.

Most of the properties of matrix inversion are predictable (the last property

listed relies on the fact that the product of invertible matrices is always itself

invertible):
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Properties of n× n Nonsingular Matrix Inverse

� Diagonal Matrix D−1 has diagonal values
1/dii and zeros elsewhere.

� (Therefore) Identity Matrix I−1 = I

� (Non-zero) Scalar Multiplication (sX)−1 = 1
s
X−1

� Iterative Inverse (X−1)−1 = X

� Exponents X−n = (Xn)−1

� Multiplicative Property (XY)−1 = Y−1X−1

� Transpose Property (X )−1 = (X−1)

� Orthogonal Property IfX is orthogonal, then
X−1 = X

� Determinant |X−1| = 1/|X|

� Example 4.6: Calculating Regression Parameters. The classic “ordi-

nary least squares” method for obtaining regression parameters proceeds as

follows. Suppose that y is the outcome variable of interest andX is a matrix

of explanatory variables with a leading column of 1’s. What we would like

is the vector b̂ that contains the intercept and the regression slope, which is

calculated by the equation b̂ = (X X)−1X y, which might have seemed

hard before this point in the chapter. What we need to do then is just a series

of multiplications, one inverse, and two transposes.

To make the example more informative, we can look at some actual data

with two variables of interest (even though we could just do this in scalar al-

gebra since it is just a bivariateproblem). Governmentsoftenworry about the

economic condition of senior citizens for political and social reasons. Typ-
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ically in a large industrialized society, a substantial portion of these people

obtain the bulk of their income from government pensions. One impor-

tant question is whether there is enough support through these payments to

provide subsistence above the poverty rate. To see if this is a concern, the Eu-

ropean Union (EU) looked at this question in 1998 for the (then) 15 member

countries with two variables: (1) the median (EU standardized) income of

individuals age 65 and older as a percentage of the population age 0–64, and

(2) the percentage with income below 60% of the median (EU standardized)

income of the national population. The data from the European Household

Community Panel Survey are

Relative Poverty
Nation Income Rate
Netherlands 93.00 7.00
Luxembourg 99.00 8.00
Sweden 83.00 8.00
Germany 97.00 11.00
Italy 96.00 14.00
Spain 91.00 16.00
Finland 78.00 17.00
France 90.00 19.00
United.Kingdom 78.00 21.00
Belgium 76.00 22.00
Austria 84.00 24.00
Denmark 68.00 31.00
Portugal 76.00 33.00
Greece 74.00 33.00
Ireland 69.00 34.00

So the y vector is the second column of the table and theX matrix is the

first column along with the leading column of 1’s added to account for the

intercept (also called the constant, which explains the 1’s). The first quantity

that we want to calculate is

X X =

⎡

⎣ 15.00 1252

1252 105982

⎤

⎦ ,

which has the inverse

(X X)−1 =

⎡

⎣ 4.76838 −0.05633

−0.05633 0.00067

⎤

⎦ .
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So the final calculation is

"
4.76838 −0.05633
−0.05633 0.00067

#

2

6666666666666666666666666666666664

1 93

1 99

1 83

1 97

1 96

1 91

1 78

1 90

1 78

1 76

1 84

1 68

1 76
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1 69

3

7777777777777777777777777777777775

� 2

6666666666666666666666666666666664

7

8

8

11

14

16

17

19

21

22

24

31

33

33

34

3

7777777777777777777777777777777775

=

"
83.69279

−0.76469

#

These results are shown in Figure 4.4 for the 15 EU countries of the time,

with a line for the estimated underlying trend that has a slope ofm = −0.77

(rounded) and an intercept at b = 84 (also rounded). What does this mean?

It means that for a one-unit positive change (say from 92 to 93) in over-65

relative income, there will be an expected change in over-65 poverty rate of

−0.77 (i.e., a reduction). This is depicted in Figure 4.4.

Once oneunderstands linear regression inmatrix notation, it ismuch easier

to see what is happening. For instance, if there were a second explanatory

variable (there are many more than one in social science models), then it

would simply be an addition column of theXmatrix and all the calculations

would proceed exactly as we have done here.

4.7 Linear Systems of Equations

Abasic and common problem in appliedmathematics is the search for a solution,

x, to the system of simultaneous linear equations defined by

Ax = y,
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Fig. 4.4. Relative Income and Senior Poverty, EU Countries
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whereA ∈ Rp×q ,x ∈ Rq , andy ∈ Rp. If thematrixA is invertible, then there

exists a unique, easy-to-find, solution vector x = A−1y satisfying Ax = y.

Note that this shows the usefulness of a matrix inverse. However, if the system

of linear equations inAx = y is not consistent, then there exists no solution.

Consistency simply means that if a linear relationship exists in the rows of A,

it must also exist in the corresponding rows of y. For example, the following

simple system of linear equations is consistent:

⎡

⎣1 2

2 4

⎤

⎦x =

⎡

⎣3

6

⎤

⎦

because the second row is two times the first across (x|y). This implies that y is

contained in the linear span of the columns (range) ofA, denoted asy ∈ R(A).

Recall that a set of linearly independent vectors (i.e., the columns here) that span

a vector subspace is called a basis of that subspace. Conversely, the following
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system of linear equations is not consistent:

⎡

⎣1 2

2 4

⎤

⎦x =

⎡

⎣3

7

⎤

⎦ ,

because there is no solution for x that satisfies both rows. In the notation above

this is denoted y /∈ R(A), and it provides no further use without modification

of the original problem. It is worth noting, for purposes of the discussion below,

that if A−1 exists, then Ax = y is always consistent because there exist no

linear relationships in the rows ofA thatmust be satisfied in y. The inconsistent

case is the more common statistically in that a solution that minimizes the

squared sum of the inconsistencies is typically applied (ordinary least squares).

In addition to the possibilities of the general system of equationsAx = y

having a unique solution and no solution, this arbitrary system of equations

can also have an infinite number of solutions. In fact, the matrix [ 1 23 4 ] above is

such a case. For example, we could solve to obtain x = (1, 1) , x = (−1, 2) ,

x = (5,−1) , and so on. This occurs when the A matrix is singular: rank(A)

= dimension(R(A)) < q. When the A matrix is singular at least one column

vector is a linear combination of the others, and the matrix therefore contains

redundant information. In other words, there are q < q independent column

vectors inA.

� Example 4.7: Solving Systems of Equations by Inversion. Consider

the system of equations

2x1 − 3x2 = 4

5x1 + 5x2 = 3,

where x = [x1, x2], y = [4, 3] , andA = 2 −3
5 5 . First invertA:

A−1 =

⎡

⎣ 2 −3

5 5

⎤

⎦
−1

=

⎡

⎣ 0.2 0.12

−0.2 0.08

⎤

⎦ .
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Then, to solve for x we simply need to multiply this inverse by y:

A−1y =

⎡

⎣ 0.2 0.12

−0.2 0.08

⎤

⎦

⎡

⎣ 4

3

⎤

⎦ =

⎡

⎣ 0.16

−0.56

⎤

⎦ ,

meaning that x1 = 0.16 and x2 = −0.56.

4.8 Eigen-Analysis of Matrices

We start this section with a brief motivation. Apparently a single original popu-

lation undergoes genetic differentiationonce it is dispersed intonew geographic

regions. Furthermore, it is interesting anthropologically to compare the rate of

this genetic change with changes in nongenetic traits such as language, culture,

and use of technology. Sorenson andKenmore (1974) explored the genetic drift

of proto-agricultural people in the Eastern Highlands of New Guinea with the

idea that changes in horticulture and mountainous geography both determined

patterns of dispersion. This is an interesting study because it uses biological

evidence (nine alternative forms of a gene) to make claims about the related-

ness of groups that are geographically distinct but similar ethnohistorically and

linguistically. The raw genetic information can be summarized in a large ma-

trix, but the information in this form is not really the primary interest. To see

differences and similarities Sorenson and Kenmore transformed these variables

into just two individual factors (new composite variables) that appear to explain

the bulk of the genetic variation.
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Once that is

done it is easy to

graph the groups in

a single plot and

then look at similar-

ities geometrically.

This useful result is

shown in the figure

at right, where we

see the placement

of these linguis-

tic groups accord-

ing to the similar-

ity in blood-group

genetics. The tool

they used for turn-
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ing the large multidimensional matrix of unwieldy data into an intuitive two-

dimensional structure was eigenanalysis.

A useful and theoretically important feature of a given square matrix is the

set of eigenvalues associated with this matrix. Every p × p matrix X has p

scalar values, λi, i = 1, . . . , p, such that

Xhi = λihi

for some corresponding vector hi. In this decomposition,λi is called an eigen-

value of X and hi is called an eigenvector of X. These eigenvalues show

important structural features of the matrix. Confusingly, these are also called

the characteristic roots and characteristic vectors of X, and the process is

also called spectral decomposition.

The expression above can also be rewritten to produce the characteristic
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equation. Start with the algebraic rearrangement

(X− λiI)hi = 0.

If the p × p matrix in the parentheses has a zero determinant, then there exist

eigenvalues that are solutions to the equation:

|X− λiI| = 0.

� Example 4.8: Basic Eigenanalysis. A symmetric matrix X is given by

X =

⎡

⎢⎢⎢⎣

1.000 0.880 0.619

0.880 1.000 0.716

0.619 0.716 1.000

⎤

⎥⎥⎥⎦ .

The eigenvalues and eigenvectors are found by solving the characteristic

equation |X− λI| = 0. This produces the matrix

λI =

⎡

⎢⎢⎢⎣

2.482 0.00 0.000

0.000 0.41 0.000

0.000 0.00 0.108

⎤

⎥⎥⎥⎦

fromwhich we take the eigenvalues from the diagonal. Note the descending

order. To see the mechanics of this process more clearly, consider finding

the eigenvalues of

Y =

⎡

⎣3 −1

2 0

⎤

⎦ .

Todo this we expand and solve the determinant of the characteristic equation:

|Y − λI| = (3 − λ)(0 − λ)− (−2) = λ2 − 3λ+ 2

and the only solutions to this quadratic expression are λ1 = 1, λ2 = 2.

In fact, for a p × p matrix, the resulting characteristic equation will be a

polynomial of order p. This is why we had a quadratic expression here.

Unfortunately, the eigenvalues that result from the characteristic equation

can be zero, repeated (nonunique) values, or even complex numbers. However,
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all symmetric matrices like the 3 × 3 example above are guaranteed to have

real-valued eigenvalues.

Eigenvalues and eigenvectors are associated. That is, for each eigenvector

of a given matrixX there is exactly one corresponding eigenvalue such that

λ =
h Xh

h h
.

This uniqueness, however, is asymmetric. For each eigenvalue of the matrix

there is an infinite number of eigenvectors, all determined by scalar multiplica-

tion: If h is an eigenvector corresponding to the eigenvalue λ, then sh is also

an eigenvector corresponding to this same eigenvalue where s is any nonzero

scalar.

There are many interesting matrix properties related to eigenvalues. For

instance, the number of nonzero eigenvalues is the rank of the X, the sum of

the eigenvalues is the trace of X, and the product of the eigenvalues is the

determinant of X. From these principles it follows immediately that a matrix

is singular if and only if it has a zero eigenvalue, and the rank of the matrix is

the number of nonzero eigenvalues.

Properties of Eigenvalues for a Nonsingular (n× n) Matrix

� Inverse Property If λi is an eigenvalue ofX, then
1
λi

is an eigenvalue ofX−1

� Transpose Property X andX have the same eigenvalues

� Identity Matrix For I, λi = n

� Exponentiation If λi is an eigenvalue ofX, thenλki is an
eigenvalue ofXk and k a positive integer

It is also true that if there are no zero-value eigenvectors, then the eigen-
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values determine a basis for the space determined by the size of the matrix

(R2, R3, etc.). Even more interestingly, symmetric nonsingular matrices have

eigenvectors that are perpendicular (see the Exercises).

A notion related to eigenvalues is matrix conditioning. For a symmetric

definite matrix, the ratio of the largest eigenvalue to the smallest eigenvalue is

the condition number. If this number is large, then we say that the matrix

is “ill-conditioned,” and it usually has poor properties. For example, if the

matrix is nearly singular (but not quite), then the smallest eigenvalue will be

close to zero and the ratio will be large for any reasonable value of the largest

eigenvalue. As an example of this problem, in the use of matrix inversion to

solve systems of linear equations, an ill-conditionedAmatrix means that small

changes in A will produce large changes inA−1 and therefore the calculation

of x will differ dramatically.

� Example 4.9: Analyzing Social Mobility with Eigens. Duncan (1966)

analyzed social mobility between categories of employment (from the 1962

Current Population Survey) to produce probabilities for blacks and whites

[also analyzed in McFarland (1981) from which this discussion is derived].

This well-known finding is summarized in two transition matrices, indicat-

ing probabilities for changing between higher white collar, lower white

collar, higher manual, lower manual, and farm :

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.112 0.105 0.210 0.573 0.000

0.156 0.098 0.000 0.745 0.000

0.094 0.073 0.120 0.684 0.030

0.087 0.077 0.126 0.691 0.020

0.035 0.034 0.072 0.676 0.183

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.576 0.162 0.122 0.126 0.014

0.485 0.197 0.145 0.157 0.016

0.303 0.127 0.301 0.259 0.011

0.229 0.124 0.242 0.387 0.018

0.178 0.076 0.214 0.311 0.221

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the rows and columns are in the order of employment categories given.

So, for instance, 0.576 in the first row and first column of theW matrixmeans

that we expect 57.6% of the children of white higherwhite collar workerswill

themselves become higher white collar workers. Contrastingly, 0.573 in the

first row and fourth column of the B matrix means that we expect 57.4% of

the children of black lowermanual workers to become lowermanual workers

themselves.

A lot can be learned by staring at these matrices for some time, but what

tools will let us understand long-run trends built into the data? Since these

are transition probabilities, we could multiply one of these matrices to itself

a large number of times as a simulation of future events (this is actually

the topic of Chapter 9). It might be more convenient for answering simple

questions to use eigenanalysis to pull structure out of the matrix instead.

It turns out that the eigenvector produced from Xhi = λihi is the right

eigenvector because it sits on the right-hand side of X here. This is the

default, so when an eigenvector is referenced without any qualifiers, the

form derived above is the appropriate one. However, there is also the less-

commonly used left eigenvector produced from hiX = λihi and so-named

for the obvious reason. If X is a symmetric matrix, then the two vectors

are identical (the eigenvalues are the same in either case). If X is not sym-

metrical, they differ, but the left eigenvector can be produced from using

the transpose: X hi = λihi. The spectral component corresponding

to the ith eigenvalue is the square matrix produced from the cross product

of the right and left eigenvectors over the dot product of the right and left
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eigenvectors:

Si = hi,right × hi,left/hi,right · hi,left.

This spectral decomposition into constituent components by eigenvalues is

especially revealing for probability matrices like the two above, where the

rows necessarily sum to 1.

Because of the probability structure of these matrices, the first eigenvalue

is always 1. The associated spectral components are

B = 0.09448605 0.07980742 0.1218223 0.6819610 0.02114880

W = 0.4293069 0.1509444 0.1862090 0.2148500 0.01840510. ,

where only a single row of this 5 × 5 matrix is given here because all rows

are identical (a result of λ1 = 1). The spectral values corresponding to the

first eigenvalue give the long-run (stable) proportions implied by the matrix

probabilities. That is, if conditions do not change, these will be the eventual

population proportions. So if themobility trends persevere, eventually a little

over two-thirds of the black population will be in lower manual occupations,

and less than 10% will be in each of the white collar occupational categories

(keep in mind that Duncan collected the data before the zenith of the civil

rights movement). In contrast, for whites, about 40% will be in the higher

white collar categorywith 15–20% in each of the other nonfarm occupational

groups.

Subsequent spectral components fromdecliningeigenvalues giveweighted

propensities for movement between individual matrix categories. The sec-

ond eigenvalue produces the most important indicator, followed by the third,

and so on. The second spectral components corresponding to the second

eigenvalues λ2,black = 0.177676, λ2,white = 0.348045 are
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B =

2

6666666664

1

1

1

1

1

1

0.063066 0.043929 0.034644 −0.019449 −0.122154
0.103881 0.072359 0.057065 −0.032037 −0.201211
−0.026499 −0.018458 −0.014557 0.008172 0.051327

−0.002096 −0.001460 −0.001151 0.000646 0.004059

−0.453545 −0.315919 −0.249145 0.139871 0.878486

1

1

1

1

1

1

3

7777777775

W =

2

6666666664

1

1

1

1

1

1

0.409172 0.055125 −0.187845 −0.273221 −0.002943
0.244645 0.032960 −0.112313 −0.163360 −0.001759

−0.3195779 −0.043055 0.146714 0.213396 0.002298

−0.6018242 −0.081080 0.276289 0.401864 0.004328

−1.2919141 −0.174052 0.593099 0.862666 0.009292

1

1

1

1

1

1

3

7777777775

Notice that the full matrix is given here because the rows now differ. McFar-

land noticed the structure highlighted herewith the boxes containing positive

values. For blacks there is a tendency for white collar status and higher man-

ual to be self-reinforcing: Once landed in the upper left 2 × 3 submatrix,

there is a tendency to remain and negative influences on leaving. The same

phenomenon applies for blacks to manual/farm labor: Once there it is more

difficult to leave. For whites the phenomenon is the same, except this barrier

effect puts higher manual in the less desirable block. This suggests a racial

differentiation with regard to higher manual occupations.

4.9 Quadratic Forms and Descriptions

This section describes a general attribute known as definiteness, although

this term means nothing on its own. The central question is what properties

does ann×nmatrixX possesswhenpre- and post-multipliedby a conformable

nonzero vector y ∈ Rn. The quadratic form of the matrixX is given by

y Xy = s,

where the result is some scalar, s. If s = 0 for every possible vector y, then

X can only be the null matrix. But we are really interested in more nuanced
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properties. The following table gives the standard descriptions.

Properties of the Quadratic, y Non-Null

Non-Negative Definite:
� positive definite y Xy > 0

� positive semidefinite y Xy ≥ 0

Non-Positive Definite:
� negative definite y Xy < 0

� negative semidefinite y Xy ≤ 0

We can also say that X is indefinite if it is neither nonnegative definite nor

nonpositive definite. The big result is worth stating with emphasis:

A positive definite matrix is always nonsingular.

Furthermore, a positive definite matrix is therefore invertible and the resulting

inverse will also be positive definite. Positive semidefinite matrices are some-

times singular and sometimes not. If such a matrix is nonsingular, then its

inverse is also nonsingular.

One theme that we keep returning to is the importance of the diagonal of a

matrix. It turns out that every diagonal element of a positive definite matrix is

positive, and every element of a negative definite matrix is negative. In addi-

tion, every element of a positive semidefinite matrix is nonnegative, and every

element of a negative semidefinite matrix is nonpositive. This makes sense

because we can switch properties between “negativeness” and “positiveness”

by simply multiplying the matrix by −1.

� Example 4.10: LDU Decomposition. In the last chapter we learned

about LU decomposition as a way to triangularize matrices. The vague
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caveat at the time was that this could be done to “many” matrices. The con-

dition, unstated at the time, is that the matrix must be nonsingular. We now

knowwhat that means, so it is now clear when LUdecomposition is possible.

More generally, though, any p× q matrix can be decomposed as follows:

A
(p×q)

= L
(p×p)

D
(p×q)

U
(q×q)

, where D =

⎡

⎣Dr×r 0

0 0

⎤

⎦ ,

where L (lower triangular) and U (upper triangular) are nonsingular (even

given a singular matrix A). The diagonal matrix Dr×r is unique and has

dimension and rank r that corresponds to the rank of A. If A is positive

definite, and symmetric, then Dr×r = D (i.e., r = q) and A = LDL with

unique L.

For example, consider the LDU decomposition of the 3× 3 unsymmetric,

positive definite matrix A:

A =

⎡

⎢⎢⎢⎣

140 160 200

280 860 1060

420 1155 2145

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 0 0

2 4 0

3 5 6

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

20 0 0

0 15 0

0 0 10

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

7 8 10

0 9 11

0 0 12

⎤

⎥⎥⎥⎦ .

Now look at the symmetric, positive definite matrix and its LDL’ decompo-

sition:

B =

⎡

⎢⎢⎢⎣

5 5 5

5 21 21

5 21 30

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 0 0

1 2 0

1 2 3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5 0 0

0 4 0

0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0 0

1 2 0

1 2 3

⎤

⎥⎥⎥⎦ ,

which shows the symmetric principle above.
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4.10 New Terminology

basis, 138

characteristic equation, 162

characteristic root, 161

characteristic vector, 161

closed, 410

cofactor, 141

collinear, 135

column space, 136

condition number, 164

Cramer’s rule, 177

determinant, 140

eigenvalue, 161

eigenvector, 161

full column rank, 146

full rank, 146

full row rank, 146

Gauss-Jordan elimination, 152

indefinite, 168

left eigenvector, 165

linear space, 138

linear subspace, 138

linearly dependent, 146

linearly independent, 146

matrix inverse, 151

minor, 141

orthogonal projections, 134

projections, 134

right eigenvector, 165

row space, 136

short rank, 146

span, 138

spectral decomposition, 161

submatrix, 141

trace, 139

trace norm, 149
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Exercises

4.1 For the matrix [ 3 52 0 ], show that the following vectors are or are not in

the column space:
⎡

⎣ 11

4

⎤

⎦ ,

⎡

⎣ 11

5

⎤

⎦ .

4.2 Demonstrate that two orthogonal vectors have zero-lengthprojections.

Use unit vectors to make this easier.

4.3 Obtain the determinant and trace of the followingmatrix. Think about

tricks to make the calculations easier.
⎡

⎢⎢⎢⎢⎢⎢⎣

6 6 1 0

0 4 0 1

4 2 1 1

1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

4.4 Prove that tr(XY) = tr(X)tr(Y), except for special cases.

4.5 In their formal study of models of group interaction, Bonacich and

Bailey (1971) looked at linear and nonlinear systems of equations

(their interest was in models that include factors such as free time,

psychological compatibility, friendliness, andcommon interests). One

of their conditions for a stable system was that the determinant of the

matrix ⎛

⎜⎜⎜⎝

−r a 0

0 −r a

1 0 −r

⎞

⎟⎟⎟⎠

must have a positive determinant for values of r and a. What is the

arithmetic relationship that must exist for this to be true.

4.6 Find the eigenvalues ofA =

⎡

⎣1 3

2 4

⎤

⎦ andA =

⎡

⎣1 4

2 −1

⎤

⎦.
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4.7 Calculate |B|, tr(B), and B−1 given B =

⎡

⎢⎢⎢⎣

1 0 4

0 2 0

0 0 3

⎤

⎥⎥⎥⎦.

4.8 (Hanushek and Jackson 1977). Given the matrices

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10

13

7

5

2

6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2

1 1 4

1 1 4

1 0 1

1 0 2

1 0 5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 1 4

0 1 4

1 0 1

1 0 2

1 0 5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

calculate b1 = (X1X1)
−1X1Y and b2 = (X2X2)

−1X2Y. How are

these vectors different? Similar?

4.9 Prove that the following matrix is or is not orthogonal:

B =

⎡

⎢⎢⎢⎣

1/3 2
√
2/3 0

2/3 −
√
2/6

√
2/2

−2/3
√
2/6

√
2/2

⎤

⎥⎥⎥⎦ .

4.10 Determine the rank of the following matrix:

⎡

⎢⎢⎢⎢⎢⎢⎣

1 2 0 1 0

2 4 1 0 0

0 0 1 −2 1

1 2 1 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

4.11 Clogg, Petkova, and Haritou (1995) give detailed guidance for decid-

ing between different linear regression models using the same data. In

this work they define the matricesX, which is n× (p+1) rank p+1,

and Z, which is n× (q + 1) rank q + 1, with p < q. They calculate

the matrix A = X X−XZ(Z Z)−1Z X −1
. Find the dimension

and rank of A.
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4.12 For each of the following matrices, find the eigenvalues and eigenvec-

tors:
⎡

⎣ 0 1

0 1

⎤

⎦

⎡

⎣ 1 2

−3 −4

⎤

⎦

⎡

⎣ 11 3

9 −4

⎤

⎦

⎡

⎢⎢⎢⎣

2 7 4

0 3 4

0 0 4

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 4 7

2 5 8

3 6 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

3 7 π

3 e 4

1 0 π

⎤

⎥⎥⎥⎦ .

4.13 Land (1980) develops a mathematical theory of social change based

on a model of underlying demographic accounts. The corresponding

population mathematical models are shown to help identify and track

changing social indicators, although no data are used in the article.

Label Lx as the number of people in a population that are between x

andx+1 years old. Then the squarematrixP oforder (ω+1)×(ω+1)

is given by

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .

L1/L0 0 0 0 . . .

0 L2/L1 0 0 . . .

0 0 L2/L1 0 . . .
...

...
...

. . . . . .

0 0 0 0 Lω/Lω−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ω is the assumed maximum lifespan and each of the nonzero

ratios gives the proportion of people living to the next age. The matrix

(I − P ) is theoretically important. Calculate its trace and inverse.

The inverse will be a lower triangular form with survivorship proba-

bilities as the nonzero values, and the column sums are standard life

expectations in the actuarial sense.

4.14 The Clement matrix is a symmetric, tridiagonal matrix with zero di-

agonal values. It is sometimes used to test algorithms for computing

inverses and eigenvalues. Compute the eigenvalues of the following
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4× 4 Clement matrix:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1.732051 0 0

1.732051 0 2.0 0

0 2.0 0 1.732051

0 0 1.732051 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

4.15 Consider the two matrices

X1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

5 2 5

2 1 2

3 2 3

2.95 1 3

⎤

⎥⎥⎥⎥⎥⎥⎦
X2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

5 2 5

2 1 2

3 2 3

2.99 1 3

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Givenhow similar these matrices are to each other,why is (X2 X2)−1

so different from (X1 X1)−1?

4.16 A Vandermonde matrix is a specialized matrix that occurs in a par-

ticular type of regression (polynomial). Find the determinant of the

following general Vandermonde matrix:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 v1 v21 v31 . . . vn−11 vn1

1 v2 v22 v32 . . . vn−12 vn2
...

...
...

...
...

1 vn−1 v2n−1 v3n−1 . . . vn−1n−1 vnn−1

1 vn v2n v3n . . . vn−1n vnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.17 A Hilbert matrix has elements xij = 1/(i + j − 1) for the entry in

row i and column j. Is this always a symmetric matrix? Is it always

positive definite?

4.18 Verify (replicate) the matrix calculations in the example with EU

poverty data on page 155.
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4.19 Solve the following systems of equations for x, y, and z:

x+ y + 2z = 2

3x− 2y + z = 1

y − z = 3

2x+ 3y − z = −8

x+ 2y − z = 2

−x− 4y + z = −6

x− y + 2z = 2

4x+ y − 2z = 10

x+ 3y + z = 0.

4.20 Show that the eigenvectors from the matrix [ 2 11 2 ] are perpendicular.

4.21 A matrix is an M-matrix if xij ≤ 0, ∀i = j, and all the elements of

the inverse (X−1) are nonnegative. Construct an example.

4.22 Williams and Griffin (1964) looked at executive compensation in the

following way. An allowable bonus to managers,B, is computed as a

percentage of net profit, P , before the bonus and before income taxes,

T . But a reciprocal relationship exists because the size of the bonus

affects net profit, and vice versa. They give the following example as

a system of equations. Solve.

B − 0.10P + 0.10T = 0

0.50B − 0.50P + T = 0

P = 100, 000.
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4.23 This question uses the following 8 × 8 matrix X of fiscal data by
country:

Australia

Britain

Canada

Denmark

Japan

Sweden

Switzerland

USA

x.1 x.2 x.3 x.4 x.5 x.6 x.7 x.8
0
BBBBBBBBBBBBBBBBBBBB@

3.3 9.9 5.41 5.57 5.15 5.35 5.72 6.24

5.8 11.4 4.81 4.06 4.48 4.59 4.79 5.24

12.1 9.9 2.43 2.24 2.82 4.29 4.63 5.65

12.0 12.5 2.25 2.15 2.42 3.66 4.26 5.01

4.1 2.0 0.02 0.03 0.10 1.34 1.32 1.43

2.2 4.9 1.98 2.55 2.17 3.65 4.56 2.20

−5.3 1.2 0.75 0.24 0.82 2.12 2.56 2.22

5.4 6.2 2.56 1.00 3.26 4.19 4.19 5.44

1

CCCCCCCCCCCCCCCCCCCCA

where x.1 is percent change in the money supply a year ago (narrow),

x.2 is percent change in themoney supplya year ago (broad),x.3 is the

3-month moneymarket rate (latest), x.4 is the 3-month moneymarket

rate (1 year ago), x.5 is the 2-year government bond rate, x.6 is the

10-year government bond rate (latest), x.7 is the 10-year government

bond rate (1 year ago), and x.8 is the corporate bond rate (source:

The Economist, January 29, 2005, page 97). We would expect

a number of these figures to be stable over time or to relate across

industrialized democracies. Test whether this makes the matrixX X

ill-conditioned by obtaining the condition number. What is the rank

ofX X. Calculate the determinant using eigenvalues. Do you expect

near collinearity here?

4.24 Show that the inverse relation for the matrix A below is true:

A−1 =

⎡

⎣ a b

c d

⎤

⎦
−1

=

⎡

⎣
d
e

−b
e

−c
e

a
e

⎤

⎦ .

Here e is the determinant ofA. Now apply this rule to invert the 2× 2

matrixX X from the n× 2 matrixX, which has a leading column of

1’s and a second column vector: [x11, x12, . . . , x1n].



Exercises 177

4.25 Another method for solving linear systems of equations of the form

A−1y = x is Cramer’s rule. Define Aj as the matrix where y is

plugged in for the jth column of A. Perform this for every column

1, . . . , q to produce q of these matrices, and the solution will be the

vector |A1|
A
, |A2|
A
, . . .

|Aq|
A

. Show that performing these steps on the

matrix in the example on page 159 gives the same answer.


