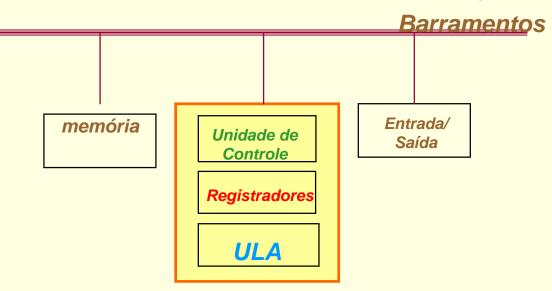
Departamento de Engenharia Elétrica e de Computação EESC-USP

SEL-0415 Introdução à Organização de Computadores

Estrutura de um Computador

Aula 6

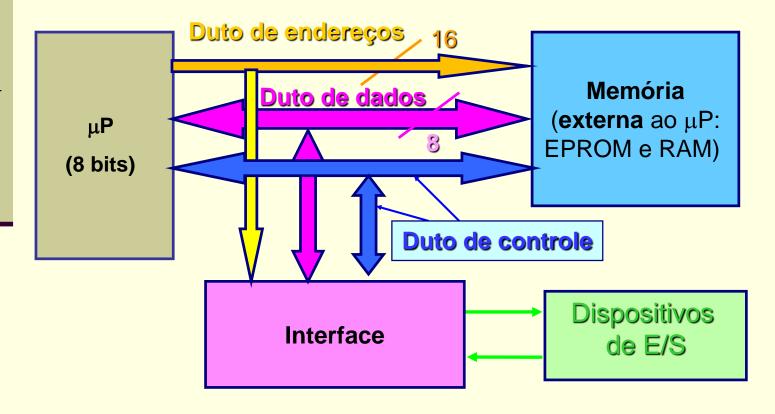
Profa. Luiza Maria Romeiro Codá


INTRODUÇÃO

- Organização → implementação do hardware, componentes, construção dos dispositivos → Pouco importante ao programador;
- Arquitetura → Tamanho das memórias e barramentos, conjunto de instruções, modos de endereçamentos → Muito importante ao programador;
 - Ex. O fabricante define elementos da <u>arquitetura</u> de uma família de processadores, cada um com uma diferente <u>organização</u>, que afeta seu desempenho e custo: Família Intel MCS-51

PRINCÍPIOS

A arquitetura de um computador consiste de 4 partes principais:


- Unidade Central de Processamento (CPU)
- Memória
- Dispositivos de entrada/saída.
- Dispositivos de conexão (barramentos)

Unidade Central de Processamento ou Microprocessador (CPU)

Microcomputador de 8 bits Arquitetura de Von Neumann

Diagrama em blocos mostrando um microprocessador (µP) de 8 bits, interligado às demais unidades funcionais :

Função de cada bloco:

μP (ou CPU):

- executa instruções lidas da memória de Programa (ROM ou EEPROM)
- controla todo o fluxo de informação no duto de dados

(gera sinais de /RD e /WR)

Monitora os demais blocos do sistema

Memória

Há dois tipos principais:

Memória ROM(EEPROM) - é do tipo não volátil, somente de leitura e contém o conjunto de instruções (programa) do sistema.

Memória RAM: é do tipo volátil, de leitura e gravação, é usada para **armazenamento dos dados** gerados durante a execução do programa

Função de cada bloco (continuação):

Barramentos:

Permitem o tráfego de dados e instruções entre os diversos componentes do computador

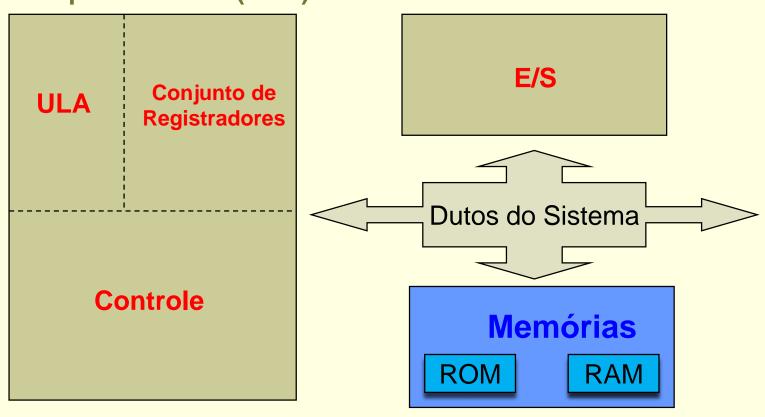
Dispositivos de E/S:

Permitem a comunicação do uP com o meio externo

Interfaces:

adequam os sinais do uP aos dispositivos de I/O no que se refere a tensão, corrente, frequência, etc.

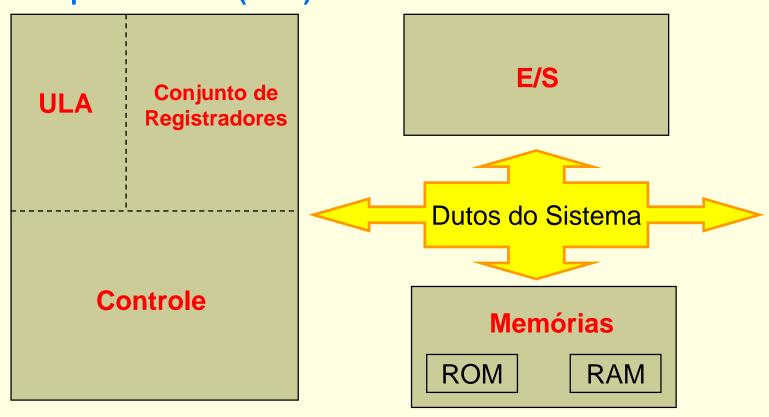
"O programa que direciona as atividades da CPU é armazenado na mesma memória em que estão os dados, que devem ser manipulados pelo programa"


o computador é uma máquina de programas armazenados sequencialmente executados

Sistema Microprocessado: 1. Memórias

Sistema Microprocessado: 1. MEMÓRIAS

Microprocessador (CPU)


Sistema Microprocessado: 1. MEMÓRIAS

- Memória de Programa (Tipo ROM ou EEPROM)
 - Instruções
 - Dados não-voláteis
- Memória de Dados (Tipo RAM)
 - Registradores Especiais (SFR Special Function Registers)
 - Dados temporários (GPR General Purpose Registers)

Sistema Microprocessado: 2. Barramentos

Modelo de Von Neumann: 2. Barramentos ou Dutos

Microprocessador (CPU)

Sistema Microprocessado: 2. BARRAMENTOS

- Canal de comunicação entre o microprocessador e os periféricos e memórias
- Todos periféricos e memória compartilham o mesmo canal de comunicação
- P comunica-se apenas com um didpoditivo ou memória por vez
- Tamanho ⇒ determina quantos bits podem ser transmitidos por vez (ex.: barramento de dados de16 bits, de 32 bits...)
- Controle: temporizador interno à CPU

OBS: O duto ou barramento são divididos em três partes: barramento de dados, barramento de endereçamento e barramento de controle¹⁷

Sistema Microprocessado: 2. BARRAMENTOS______

Duto de Endereços

é gerado pelo microprocessador

constituído por Ne bits de endereço. Exemplo para Ne = 16 bits:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

MSB

Representação:

define a máxima capacidade de endereçamento do μP (Espaço de Endereçamento):

 2^{16} = 64 Kbytes, onde 1 Kbytes = 1024 bytes

destina-se ao <u>endereçamento</u> e <u>seleção</u> de memórias e dispositivos de E/S

Sistema Microprocessado: 2. BARRAMENTOS______

Duto de Dados

É bidirecional : <u>o microprocessador</u> pode gravar ou ler dados de memórias ou dispositivos de I/O

Define o tamanho da palavra de memória Nd a ser usada Exemplo para Nd = 8 bits:

D7 D6 D5 D4 D3 D2 D1 D0

(podem trafegar valores entre **00**H e **FF**H)

Tipo de Informação que trafega nesse duto:

- Instrução (código binário do programa ling. de máquina)
- Dados (temporários)

Sistema Microprocessado: 2. BARRAMENTOS

Duto de Controle

Contém sinais diversos:

- Controle de leitura e escrita
- entrada para solicitar estado de espera (aumentar duração de ciclos de leitura e escrita)
- entradas para solicitação de interrupção
- entradas para solicitação de DMA (Direct Memory Access)

Cada microprocessador pode ter parte desse conjunto de sinais no duto de controle, todos eles, ou ainda algum outro sinal específico.

Sistema Microprocessado: 2. Barramentos

Tipos:

Síncronos

- Sincronizadas com um sinal de clock
- Implementação mais simples
- Todos os dispositivos devem se comunicar com a mesma velocidade
- Desvantagem: se há diferença de velocidade entre os dispositivos conectados

Assíncronos

- Sem clock
- Vantagem: cada dispositivo pode se comunicar com uma velocidade diferente
- Implementação mais complexa: regras (protocolos) para início e término de comunicação

Sistema Microprocessado: 3. CPU / Microprocessador

Microprocessador X Microcontrolador

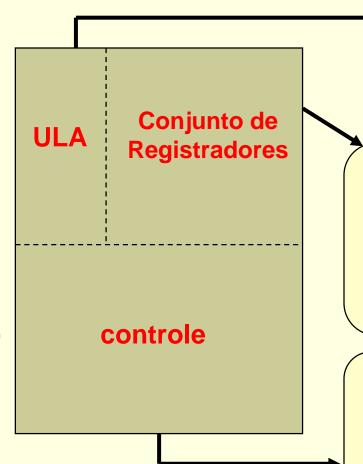
Microprocessador

é um dispositivo lógico programável em um único chip de silício (concebido sob a tecnologia VLSI, ULSI ou GSI) e é composto de 3 partes principais: ULA, conjunto de registradores, unidade de controle.

- capacidade de executar operações lógicas, aritméticas, e de controle (CPU).
- Inclui CPU + encapsulamento

Microprocessador X Microcontrolador

- Microprocessadores precisam ser interligados com memória do tipo ROM e RAM, além dos dispositivos de E/S, para se tornarem operacionais
- Microcontroladores são dispositivos que possuem em um único chip: microprocessador, memórias, barramentos, dispositivos de E/S e interfaces (para interligar periféricos);


Microprocessador X Microcontrolador

Microcontrolador → é um circuito integrado que possui internamente um microprocessador e todos os periféricos essenciais ao seu funcionamento, como:

- Memória de programa geralmente uma memória do tipo ROM onde serão armazenadas as informações de programa,
- Memória de dados geralmente uma memória do tipo RAM, onde ficarão armazenadas as informações de dados que o programa ira utilizar.
- Portas paralelas de entrada e saída
- Temporizadores
- Conversores A/D e D/A
- Lógica para controle de interrupção
- Comunicação serial

- Dispositivo de lógica programável usado para:
 - Controlar processos
 - Ligar/desligar dispositivos
- Opera com 0s e 1s, controlado por um CLOCK
- O μP executa um programa que se encontra em memória do tipo ROM (ou EEPROM)
- Programa (armazenado em memória) ⇒ contém conjunto de instruções em padrão binário ⇒ Linguagem de máquina
- A execução é <u>sequencial</u>: uma única instrução por vez é executada.
- Cada μP tem seu próprio conjunto de instruções.

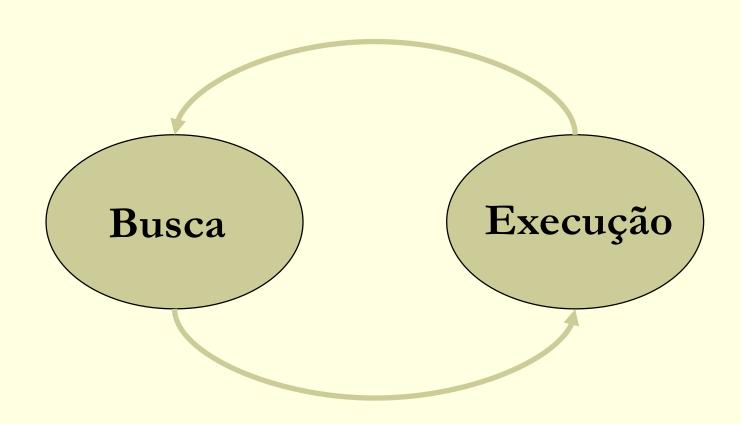
3. CPU / MICROPROCESSADOR

operações aritméticas (adição, subtração...) e operações lógicas (E, OU, OU EXCLUSIVO...)

Identificados por letras (A, B, C, RI, etc..)
Utilizados para armazenar dados temporariamente durante a execução de um programa ou para controle interno.
Acessíveis através das instruções

Gera os sinais necessários de controle e temporização (CK) para todas operações Controle do fluxo de dados entre μ **P**, memórias e periféricos

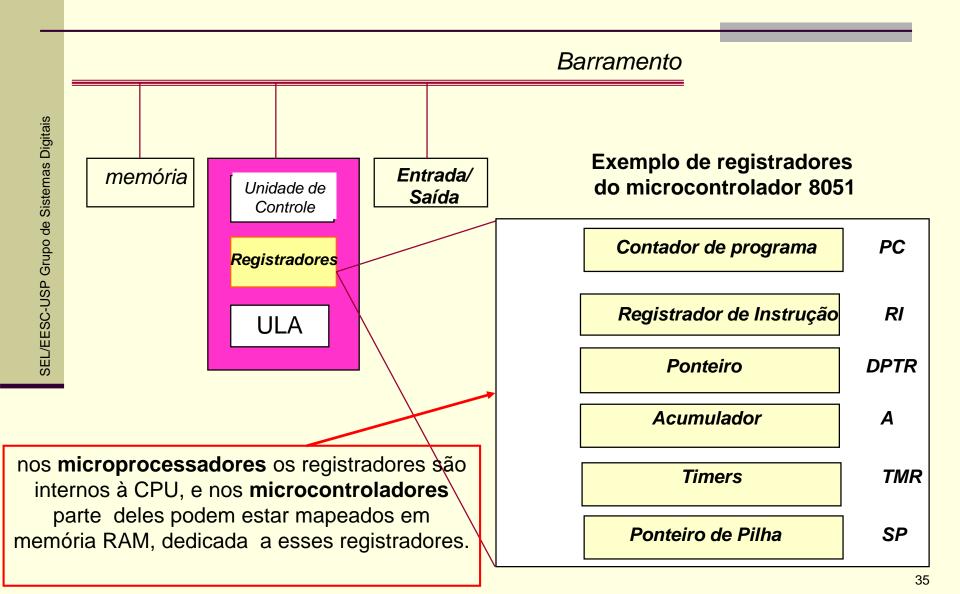
ULA:


- Operações lógicas e aritméticas: soma, subtração, AND, OR, NAND, NOR, XOR, CMA, CMP;
- Flags: bits que sinalizam os resultados de operações lógicas e aritméticas.

Flags ⇒ bits indicadores de estado da ULA:

- contidos no registrador PSW (Palavra de Status do Programa – "Program Status Word")
- são colocados em "1" ou "0" dependendo do resultado das operações da CPU
- algumas instruções testam flags para ver se elas devem ser executadas
- flags típicas: SIGN, CARRY, ZERO, OVERFLOW
- bit de flag usualmente se refere ao estado do acumulador A
- bit de sinal = MSB do A após a operação da ULA

Clock (CK):


- Gera sinais de sincronismo interno;
- Permite sequência ordenada de eventos;
- Ciclo de máquina: tem a duração de vários períodos de CK. (Ex. 8051 = 12 pulsos; PIC = 4 pulsos)
- A busca de uma instrução na memória e sua execução, pode gastar um ou mais ciclos de máquina (depende da arquitetura do μP)

Ciclos de Máquina

Registradores

- Normalmente são internos à CPU, alta velocidade
- permitem o armazenamento de valores temporários,
 intermediários ou informações de comando
- Cada um tem uma função própria

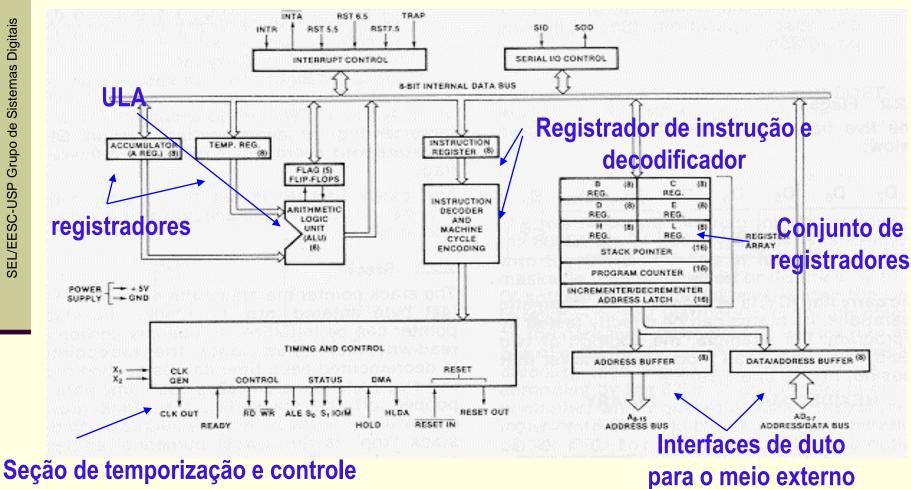
3. Microprocessador / CPU

registrador e memória principal

- Registradores se localizam no interior de um microprocessador, enquanto a memória principal é externa à CPU;
- Um registrador armazena um número limitado de bits, geralmente uma palavra de memória;
- Em algumas arquiteturas, alguns "registradores" têm funções específicas, geralmente de configuração e operação do microprocessador, que são chamados de SFRs (SFR Special Function Register);

3. Microprocessador / CPU

- Ponteiros: são registradores que contem informação de endereço
 - Ponteiro de Programa : PC
 - Ponteiro de Dados : DPTR (microcontrolador 8051)
 - . Ponteiro de Pilha: SP


- <u>Pilha</u>: Área de Memória RAM para armazenamento de endereço de retorno de subrotina ou interrupção. Há também instruções que permitem o seu uso pelo programador
- O ponteiro SP indica qual a última posição em que foi armazenado um dado na pilha

3. Microprocessador / CPU

UC: Unidade de Controle

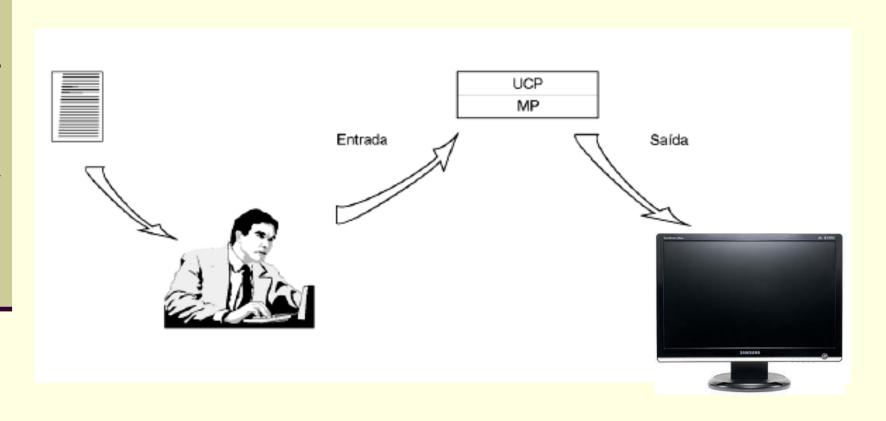
- Lê o opcode, que foi armazenado no IR (ou RI registrador de instruções);
- Elemento que garante a correta execução dos programas e a utilização dos dados corretos nas operações;
- Decodifica a instrução correspondente e gera os sinais para o processamento da mesma;
- Controla o acesso aos barramentos;
- Controla a execução de todas as operações no μP.

EXEMPLO de Microprocessador: **Intel 8085**

Sistema Microprocessado:

4. Dispositivos de E/S

Sistema Microprocessado: ENTRADA e SAÍDA (E/S) (I/O - *Input/Output*)


Função dos dispositivos de Entrada e Saída:

Inserção dos dados (programa)

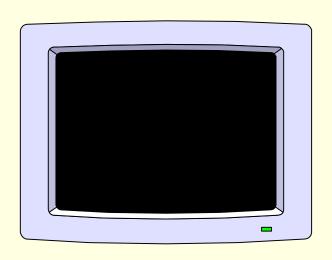
Apresentação dos resultados

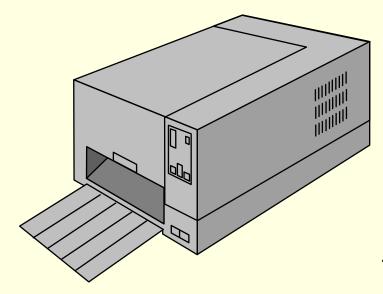
Comunicação Homem/Máquina

Sistema Microprocessado: ENTRADA e SAÍDA (E/S) (I/O - *Input/Output*)

Sistema Microprocessado: ENTRADA e SAÍDA (E/S) (I/O - *Input/Output*)

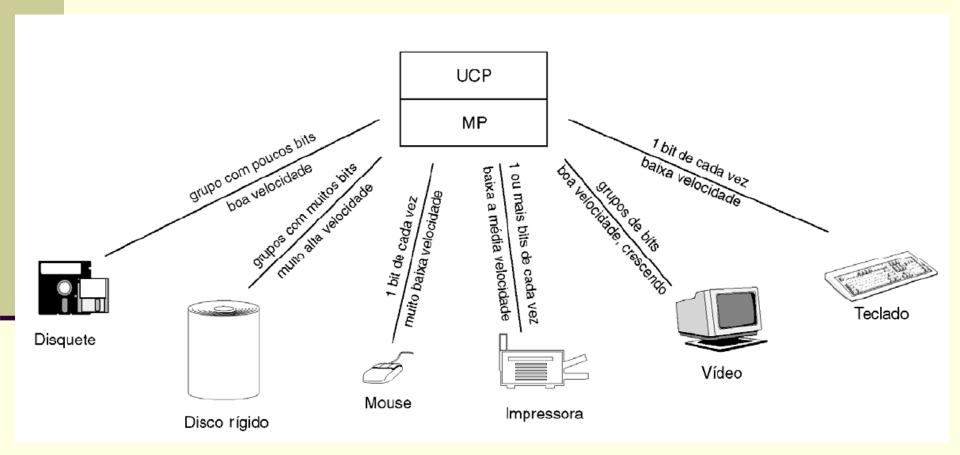
- Entrada → Dispositivos (geralmente baseados em chaves) por onde informações entram na memória
 - Ex.: Teclados, Portas
- Saída → Dispositivos que mostram o resultado da operação executada
 - Ex:
 - Monitores
 - Impressoras
 - > Armazenamento secundário...


Sistema Microprocessado: Dispositivos de Entrada


- Existem alguns que são especializados apenas em ENTRADA:
 - ➤ Teclado → Lê os caracteres digitados pelo usuário
 - ➤ MOUSE → Lê os movimentos e toque de botões
 - ▶ Drive de CD-ROM → Lê dados de discos CD-ROM
 - ➤ Microfone → Transmite sons para o computador
 - > SCANNER → Usado para "digitalizar" figuras ou fotos

Sistema Microprocessado: Dispositivos de Saída

- Outros especializados apenas em SAÍDA:
 - ➤ Vídeo → Mostra ao usuário, na tela caracteres e gráficos
 - ➤ Impressora → Imprime caracteres e gráficos
 - ➤ Alto-falante → Realiza comunicação com o usuário através de som


Sistema Microprocessado: Dispositivos de Entrada e Saída

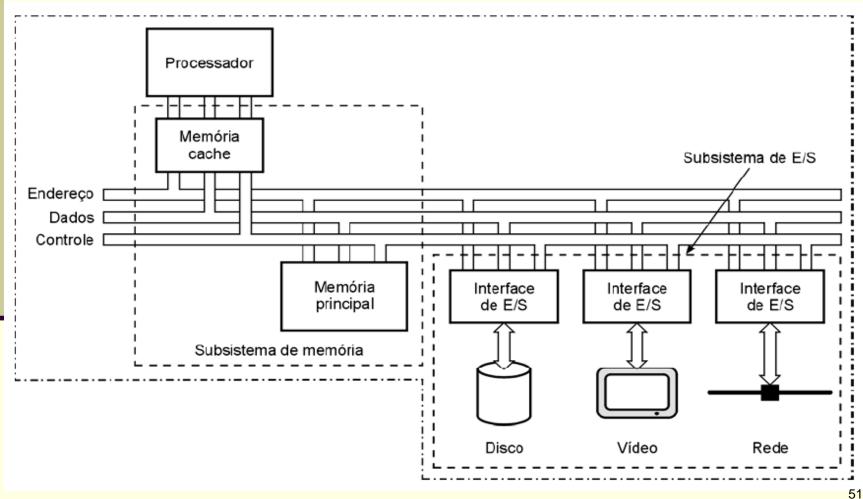
- Outros em ENTRADA E SAÍDA
 - Disco rígido Grava e lê dados
 - Pen drive Grava e lê dados em
 - ➤ CD-RW- Grava e lê dados em fitas magnéticas
 - MODEM Transmite e recebe dados pela linha telefônica

Sistema de PC: Dispositivos de Entrada e Saída

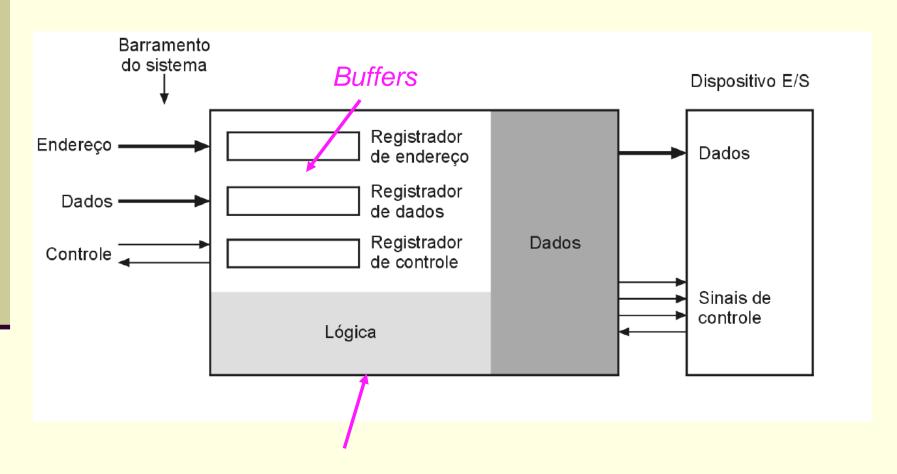
Dispositivos de Entrada e Saída para Controle de Processos

- Menos Tradicionais (microcontroladores)
 - > Sensores
 - ➤ Motores de Passo
 - > Fotocélulas
 - > Termostatos

Sistema Microprocessado: Interfaces de Entrada e Saída


Interfaces de (I/O)

■ Geralmente a CPU não pode se comunicar diretamente com os periféricos ⇒ a comunicação é feita com a ajuda de circuitos chamados de **Interfaces** ou **Módulos** de I/O


Funções:

- Presentes entre o barramento e o periférico
- Compatibilidade entre os dispositivos e o μP
- Controle da comunicação
- Ex.: controlador de vídeo, controlador de disco, etc...

Sistema Microprocessado: Interfaces de Entrada e Saída

Sistema Microprocessado Interface de Entrada e Saída

Operações de Entrada em Saída no Processador

Operações de I/O

Métodos para realização de operações de I/O

- Três tipos principais:
 - Programada (*Pooling*)
 - Interrupção
 - Acesso Direto à Memória (DMA)

EXEMPLO FIGURATIVO

O EMPREGADO ESTÁ LIMPANDO A CASA E TEM COMO FUNÇÃO RECEBER O RECADO DE QUEM LIGAR.

EXEMPLO FIGURATIVO

PROGRAMADA (ou Varredura)

(telefone SEM campainha): o empregado de tempos em tempos verifica se há alguém querendo lhe falar ao telefone

INTERRUPÇÃO (telefone COM campainha): o empregado pára de fazer o serviço quando o telefone toca, pois há alguém querendo lhe falar ao telefone

DMA - ACESSO DIRETO À MEMÓRIA

(telefone COM campainha e COM secretária eletrônica): o telefone toca, a secretária eletrônica armazena o recado e o empregado pára de fazer o serviço quando lhe convier para ouvir o recado.

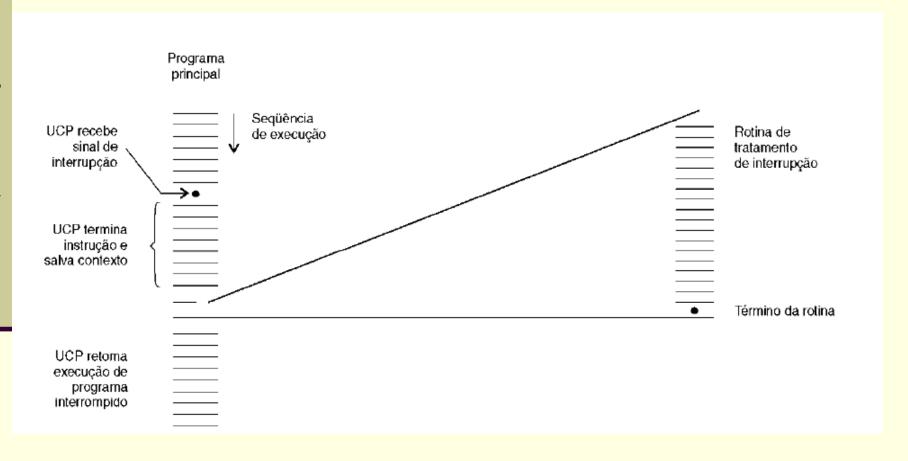
Varredura

I/O por Programa (Varredura)

- A CPU controla diretamente todas as etapas da comunicação
- O programa deve verificar os dispositivos de entrada e saída e parar o processamento durante a transmissão
- Subrotina de verificação dos dispositivos de entrada e saída
- ◆ Tempo de transmissão dos dispositivos de I/O são muito altos comparados ao µP
- Processo muito pouco eficiente

Interrupção

I/O por Interrupção


- A CPU aguarda a interface de I/O requisitar uma transmissão
- Enquanto isso o µP pode realizar outras tarefas
- Quando a interface está pronta para a transmissão ela avisa o µP
- O µP interrompe a atividade corrente e inicia a comunicação com o dispositivo de I/O
- Processo mais eficiente do que a operação por varredura, mas ainda sobrecarrega o µP durante a comunicação com o periférico 58

- 1. Atende à acontecimentos assíncronos (imprevisível);
- Não precisa esperar para que ele ocorra o microprocessador não deixa de ser utilizado para outras funções;
- 3. Pode ser interna ou externa
- 4. Interna: divisão por zero, overflow, etc.
- Externa: Interface de I/O

- Um evento qualquer envia um sinal de pedido de interrupção (INTERRUPT REQUEST – IRQ) ao µP por meio de uma linha de controle do barramento externo do sistema
- 7. O µP pode aceitar ou rejeitar o pedido, gerando um sinal de reconhecimento de interrupção (INTERRUPT ACKNOWLEDGE -IACK) numa linha de controle do barramento externo do sistema
- O μP pára a execução do programa (via hardware), grava o endereço de retorno (PC+1) na pilha e atende à subrotina de interrupção
- Após a execução da subrotina de interrupção, microprocessador volta ao ponto onde parou no programa principal
- 10. Nem sempre é possível prever o local exato de retorno da interrupção

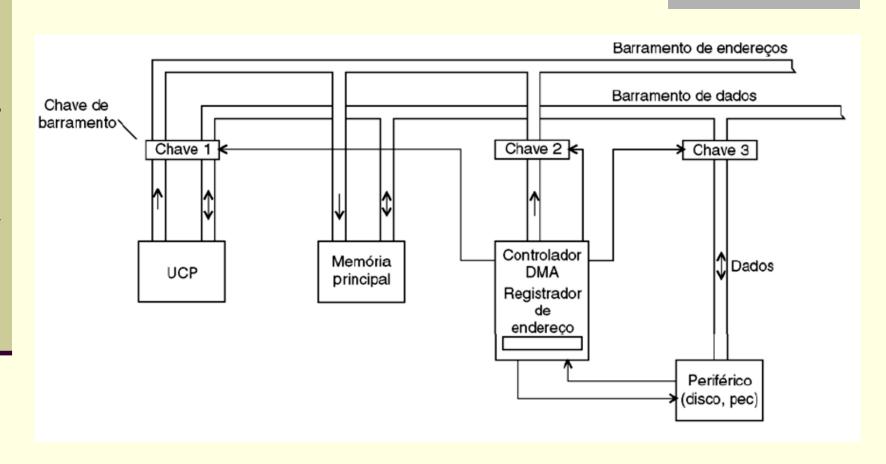
Diferença entre uma subrotina convencional e a subrotina de interrupção:

- A subrotina convencional é chamada por uma instrução do microprocessador (instrução CALL), em posições definidas pelo programador, no programa principal.
- a subrotina de interrupção está relacionada à ocorrência de um evento que pode ser imprevisível.

•quando uma aplicação de microcomputador começa a se tornar mais complexa, as perdas de tempo começam a se tornar mais críticas. Se levar 50 microssegundos para ler um dado de um dispositivo externo e mais 50 microssegundos para transmitir um dado para o mesmo dispositivo externo, então um sistema microcomputador poderia executar uma centena de transferências de dados por segundo, mas não sobraria tempo para fazer mais nada.

Portanto, existirão diversas aplicações onde o desperdício de tempo em processamento de interrupções se tornaria intolerável.

DMA


I/O por DMA (Direct Memory Access)

- Permite a movimentação de dados entre os dispositivos de I/O e a memória do microcomputador sem envolver o processador nesta transferência
- Processo mais eficiente do que todos os outros, pois não utiliza o μP e não sobrecarrega o barramento.

DMA - ACESSO DIRETO À MEMÓRIA

- Dispositivo de hardware dedicado à operação de transferência de dados entre um dispositivo de I/O e a memória;
- Coloca a saída do microprocessador em estado de alta impedância (desligado) para permitir a um dispositivo externo o Acesso Direto à Memória – Bus Request
- Acesso direto à memória (DMA) permite uma forma mais rápida de mover dados entre as portas de I/O e a memória.

DMA - ACESSO DIRETO À MEMÓRIA

