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C hapter 5 ended on a worried note. Although school districts with lower  
student–teacher ratios tend to have higher test scores in the California data 

set, perhaps students from districts with small classes have other advantages that 
help them perform well on standardized tests. Could this have produced misleading 
results, and, if so, what can be done?

Omitted factors, such as student characteristics, can, in fact, make the ordinary 
least squares (OLS) estimator of the effect of class size on test scores misleading or, 
more precisely, biased. This chapter explains this “omitted variable bias” and intro-
duces multiple regression, a method that can eliminate omitted variable bias. The 
key idea of multiple regression is that if we have data on these omitted variables, 
then we can include them as additional regressors and thereby estimate the effect 
of one regressor (the student–teacher ratio) while holding constant the other vari-
ables (such as student characteristics).

This chapter explains how to estimate the coefficients of the multiple linear 
regression model. Many aspects of multiple regression parallel those of regression 
with a single regressor, studied in Chapters 4 and 5. The coefficients of the multiple 
regression model can be estimated from data using OLS; the OLS estimators in  
multiple regression are random variables because they depend on data from a  
random sample; and in large samples the sampling distributions of the OLS estimators 
are approximately normal.

 6.1 Omitted Variable Bias

By ocusing only on the student–teacher ratio, the empirical analysis in Chapters 
4 and 5 ignored some potentially important determinants o  test scores by collect-
ing their in luences in the regression error term. These omitted actors include 
school characteristics, such as teacher quality and computer usage, and student 
characteristics, such as amily background. We begin by considering an omitted 
student characteristic that is particularly relevant in Cali ornia because o  its large 
immigrant population: the prevalence in the school district o  students who are 
still learning English.
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By ignoring the percentage o  English learners in the district, the OLS estima-
tor o  the slope in the regression o  test scores on the student–teacher ratio could 
be biased; that is, the mean o  the sampling distribution o  the OLS estimator 
might not equal the true e ect on test scores o  a unit change in the student–
teacher ratio. Here is the reasoning. Students who are still learning English might 
per orm worse on standardized tests than native English speakers. I  districts with 
large classes also have many students still learning English, then the OLS regres-
sion o  test scores on the student–teacher ratio could erroneously ind a correla-
tion and produce a large estimated coe icient, when in act the true causal e ect 
o  cutting class sizes on test scores is small, even zero. Accordingly, based on the 
analysis o  Chapters 4 and 5, the superintendent might hire enough new teachers 
to reduce the student–teacher ratio by 2, but her hoped- or improvement in test 
scores will ail to materialize i  the true coe icient is small or zero.

A look at the Cali ornia data lends credence to this concern. The correlation 
between the student–teacher ratio and the percentage o  English learners (stu-
dents who are not native English speakers and who have not yet mastered Eng-
lish) in the district is 0.19. This small but positive correlation suggests that districts 
with more English learners tend to have a higher student–teacher ratio (larger 
classes). I  the student–teacher ratio were unrelated to the percentage o  English 
learners, then it would be sa e to ignore English pro iciency in the regression o  
test scores against the student–teacher ratio. But because the student–teacher 
ratio and the percentage o  English learners are correlated, it is possible that the 
OLS coe icient in the regression o  test scores on the student–teacher ratio 
re lects that in luence.

Definition of Omitted Variable Bias
I  the regressor (the student–teacher ratio) is correlated with a variable that has 
been omitted rom the analysis (the percentage o  English learners) and that 
determines, in part, the dependent variable (test scores), then the OLS estimator 
will have omitted variable bias.

Omitted variable bias occurs when two conditions are true: (1) when the 
omitted variable is correlated with the included regressor and (2) when the omit-
ted variable is a determinant o  the dependent variable. To illustrate these condi-
tions, consider three examples o  variables that are omitted rom the regression 
o  test scores on the student–teacher ratio.

Example #1: Percentage of English learners. Because the percentage o  English 
learners is correlated with the student–teacher ratio, the irst condition or omitted 
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variable bias holds. It is plausible that students who are still learning English will 
do worse on standardized tests than native English speakers, in which case the 
percentage o  English learners is a determinant o  test scores and the second con-
dition or omitted variable bias holds. Thus the OLS estimator in the regression 
o  test scores on the student–teacher ratio could incorrectly re lect the in luence 
o  the omitted variable, the percentage o  English learners. That is, omitting the 
percentage o  English learners may introduce omitted variable bias.

Example #2: Time of day of the test. Another variable omitted rom the analysis 
is the time o  day that the test was administered. For this omitted variable, it is 
plausible that the irst condition or omitted variable bias does not hold but that 
the second condition does. For example, i  the time o  day o  the test varies rom 
one district to the next in a way that is unrelated to class size, then the time o  day 
and class size would be uncorrelated so the irst condition does not hold. Conversely, 
the time o  day o  the test could a ect scores (alertness varies through the school 
day), so the second condition holds. However, because in this example the time o  
day the test is administered is uncorrelated with the student–teacher ratio, the 
student–teacher ratio could not be incorrectly picking up the “time o  day” e ect. 
Thus omitting the time o  day o  the test does not result in omitted variable bias.

Example #3: Parking lot space per pupil. Another omitted variable is parking lot 
space per pupil (the area o  the teacher parking lot divided by the number o  
students). This variable satis ies the irst but not the second condition or omitted 
variable bias. Speci ically, schools with more teachers per pupil probably have 
more teacher parking space, so the irst condition would be satis ied. However, 
under the assumption that learning takes place in the classroom, not the parking 
lot, parking lot space has no direct e ect on learning; thus the second condition 
does not hold. Because parking lot space per pupil is not a determinant o  test 
scores, omitting it rom the analysis does not lead to omitted variable bias.

Omitted variable bias is summarized in Key Concept 6.1.

Omitted variable bias and the first least squares assumption. Omitted variable 
bias means that the irst least squares assumption—that E(ui Xi) = 0, as listed in 
Key Concept 4.3—is incorrect. To see why, recall that the error term ui in the 
linear regression model with a single regressor represents all actors, other than 
Xi, that are determinants o  Yi. I  one o  these other actors is correlated with Xi, 
this means that the error term (which contains this actor) is correlated with Xi. 
In other words, i  an omitted variable is a determinant o  Yi, then it is in the error 
term, and i  it is correlated with Xi, then the error term is correlated with Xi. 
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Because ui and Xi are correlated, the conditional mean o  ui given Xi is nonzero. 
This correlation there ore violates the irst least squares assumption, and the con-
sequence is serious: The OLS estimator is biased. This bias does not vanish even 
in very large samples, and the OLS estimator is inconsistent.

A Formula for Omitted Variable Bias
The discussion o  the previous section about omitted variable bias can be sum-
marized mathematically by a ormula or this bias. Let the correlation between Xi 
and ui be corr(Xi, ui) = rXu. Suppose that the second and third least squares 
assumptions hold, but the irst does not because rXu is nonzero. Then the OLS 
estimator has the limit (derived in Appendix 6.1)

 bn1 ¡
p
b1 + rXu

su

sX
. (6.1)

That is, as the sample size increases, bn1 is close to b1 + rXu(su  >  sX) with increas-
ingly high probability.

The ormula in Equation (6.1) summarizes several o  the ideas discussed 
above about omitted variable bias:

 1. Omitted variable bias is a problem whether the sample size is large or small. 
Because bn1 does not converge in probability to the true value b1, bn1 is biased 
and inconsistent; that is, bn1 is not a consistent estimator o  b1 when there is 
omitted variable bias. The term rXu(su  >  sX) in Equation (6.1) is the bias in 
bn1 that persists even in large samples.

Omi d V ri bl  Bi s in R gr ssion  
wi   Singl  R gr ssor

Omitted variable bias is the bias in the OLS estimator that arises when the regres-
sor, X, is correlated with an omitted variable. For omitted variable bias to occur, 
two conditions must be true:

 1. X is correlated with the omitted variable.

 2. The omitted variable is a determinant o  the dependent variable, Y.

Key ConCept

6.1
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 2. Whether this bias is large or small in practice depends on the correlation 
 rXu between the regressor and the error term. The larger  0rXu 0  is, the larger 
the bias.

 3. The direction o  the bias in bn1 depends on whether X and u are positively 
or negatively correlated. For example, we speculated that the percentage o  
students learning English has a negative e ect on district test scores (stu-
dents still learning English have lower scores), so that the percentage o  
English learners enters the error term with a negative sign. In our data, the 
raction o  English learners is positively correlated with the student–teacher 

 t  M z  eff c : om d V bl  B s?

A study published in Nature in 1993 (Rauscher, 

Shaw, and Ky, 1993) suggested that listening 

to Mozart or 10 to 15 minutes could temporarily 

raise your IQ by 8 or 9 points. That study made big 

news—and politicians and parents saw an easy way 

to make their children smarter. For a while, the state 

o  Georgia even distributed classical music CDs to 

all in ants in the state.

What is the evidence or the “Mozart e ect”? A 

review o  dozens o  studies ound that students who 

take optional music or arts courses in high school 

do, in act, have higher English and math test scores 

than those who don’t.1 A closer look at these stud-

ies, however, suggests that the real reason or the 

better test per ormance has little to do with those 

courses. Instead, the authors o  the review suggested 

that the correlation between testing well and taking 

art or music could arise rom any number o  things. 

For example, the academically better students might 

have more time to take optional music courses or 

more interest in doing so, or those schools with a 

deeper music curriculum might just be better schools 

across the board.

In the terminology o  regression, the estimated 

relationship between test scores and taking optional 

music courses appears to have omitted variable bias. 

By omitting actors such as the student’s innate abil-

ity or the overall quality o  the school, studying 

music appears to have an e ect on test scores when 

in act it has none.

So is there a Mozart e ect? One way to ind 

out is to do a randomized controlled experiment. 

(As discussed in Chapter 4, randomized controlled 

experiments eliminate omitted variable bias by 

randomly assigning participants to “treatment” and 

“control” groups.) Taken together, the many con-

trolled experiments on the Mozart e ect ail to show 

that listening to Mozart improves IQ or general 

test per ormance. For reasons not ully understood, 

however, it seems that listening to classical music 

does help temporarily in one narrow area: old-

ing paper and visualizing shapes. So the next time 

you cram or an origami exam, try to it in a little  

Mozart, too.

1See the all/winter 2000 issue o  Journal of Aesthetic 
Education 34, especially the article by Ellen Winner and 
Monica Cooper (pp. 11–76) and the one by Lois Hetland 
(pp. 105–148).
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ratio (districts with more English learners have larger classes). Thus the student–
teacher ratio (X ) would be negatively correlated with the error term (u), so 
rXu 6 0 and the coe fcient on the student–teacher ratio bn1 would be biased 
toward a negative number. In other words, having a small percentage o  
English learners is associated both with high test scores and low student–
teacher ratios, so one reason that the OLS estimator suggests that small 
classes improve test scores may be that the districts with small classes have 
ewer English learners.

Addressing Omitted Variable Bias by Dividing  
the Data into Groups
What can you do about omitted variable bias? Our superintendent is considering 
increasing the number o  teachers in her district, but she has no control over the 
raction o  immigrants in her community. As a result, she is interested in the e ect 

o  the student–teacher ratio on test scores, holding constant other actors, includ-
ing the percentage o  English learners. This new way o  posing her question sug-
gests that, instead o  using data or all districts, perhaps we should ocus on 
districts with percentages o  English learners comparable to hers. Among this 
subset o  districts, do those with smaller classes do better on standardized tests?

Table 6.1 reports evidence on the relationship between class size and test 
scores within districts with comparable percentages o  English learners. Districts 
are divided into eight groups. First, the districts are broken into our categories 

taBLe 6.1  Diff r nc s in t s  Scor s for C liforni  Sc ool Dis ric s wi  Low nd hig   
S ud n –t c r R ios, by  p rc n g  of englis  L rn rs in  Dis ric

 S ud –t c   

r  < 20 

S ud –t c   

r  ≥ 20

D ff c   t s  Sc s,  

L w vs. h g  Str

 av g   

t s  Sc

 

n

av g   

t s  Sc

 

n

 

D ff c

 

t-s s c

All districts 657.4 238 650.0 182 7.4 4.04

Percentage o  English learners

6 1.9% 664.5 76 665.4 27 -0.9 -0.30

1.9–8.8% 665.2 64 661.8 44 3.3 1.13

8.8–23.0% 654.9 54 649.7 50 5.2 1.72

7 23.0% 636.7 44 634.8 61 1.9 0.68
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that correspond to the quartiles o  the distribution o  the percentage o  English 
learners across districts. Second, within each o  these our categories, districts are 
urther broken down into two groups, depending on whether the student–teacher 

ratio is small (STR 6 20) or large (STR Ú 20).
The irst row in Table 6.1 reports the overall di erence in average test scores 

between districts with low and high student–teacher ratios, that is, the di erence 
in test scores between these two groups without breaking them down urther into 
the quartiles o  English learners. (Recall that this di erence was previously 
reported in regression orm in Equation (5.18) as the OLS estimate o  the coe i-
cient on Di in the regression o  TestScore on Di, where Di is a binary regressor that 
equals 1 i  STRi 6 20 and equals 0 otherwise.) Over the ull sample o  420 districts, 
the average test score is 7.4 points higher in districts with a low student–teacher 
ratio than a high one; the t-statistic is 4.04, so the null hypothesis that the mean test 
score is the same in the two groups is rejected at the 1% signi icance level.

The inal our rows in Table 6.1 report the di erence in test scores between 
districts with low and high student–teacher ratios, broken down by the quartile o  
the percentage o  English learners. This evidence presents a di erent picture. O  
the districts with the ewest English learners (6 1.9% ), the average test score or 
those 76 with low student–teacher ratios is 664.5 and the average or the 27 with 
high student–teacher ratios is 665.4. Thus, or the districts with the ewest English 
learners, test scores were on average 0.9 points lower in the districts with low 
student–teacher ratios! In the second quartile, districts with low student–teacher 
ratios had test scores that averaged 3.3 points higher than those with high student–
teacher ratios; this gap was 5.2 points or the third quartile and only 1.9 points or 
the quartile o  districts with the most English learners. Once we hold the percent-
age o  English learners constant, the di erence in per ormance between districts 
with high and low student–teacher ratios is perhaps hal  (or less) o  the overall 
estimate o  7.4 points.

At irst this inding might seem puzzling. How can the overall e ect o  test 
scores be twice the e ect o  test scores within any quartile? The answer is that the 
districts with the most English learners tend to have both the highest student– 
teacher ratios and the lowest test scores. The di erence in the average test score 
between districts in the lowest and highest quartile o  the percentage o  English 
learners is large, approximately 30 points. The districts with ew English learners 
tend to have lower student–teacher ratios: 74% (76 o  103) o  the districts in the 
irst quartile o  English learners have small classes (STR 6 20), while only 42% 

(44 o  105) o  the districts in the quartile with the most English learners have small 
classes. So, the districts with the most English learners have both lower test scores 
and higher student–teacher ratios than the other districts.
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This analysis rein orces the superintendent’s worry that omitted variable bias 
is present in the regression o  test scores against the student–teacher ratio. By 
looking within quartiles o  the percentage o  English learners, the test score di -
erences in the second part o  Table 6.1 improve on the simple di erence-o -

means analysis in the irst line o  Table 6.1. Still, this analysis does not yet provide 
the superintendent with a use ul estimate o  the e ect on test scores o  changing 
class size, holding constant the raction o  English learners. Such an estimate can 
be provided, however, using the method o  multiple regression.

 6.2 The Multiple Regression Model

The multiple regression model extends the single variable regression model o  
Chapters 4 and 5 to include additional variables as regressors. This model permits 
estimating the e ect on Yi o  changing one variable (X1i) while holding the other 
regressors (X2i, X3i, and so orth) constant. In the class size problem, the multiple 
regression model provides a way to isolate the e ect on test scores (Yi) o  the 
student–teacher ratio (X1i) while holding constant the percentage o  students in 
the district who are English learners (X2i).

The Population Regression Line
Suppose or the moment that there are only two independent variables, X1i and 
X2i. In the linear multiple regression model, the average relationship between 
these two independent variables and the dependent variable, Y, is given by the 
linear unction

 E(Yi X1i = x1, X2i = x2) = b0 + b1x1 + b2x2, (6.2)

where E(Yi X1i = x1, X2i = x2) is the conditional expectation o  Yi given that 
X1i = x1 and X2i = x2. That is, i  the student–teacher ratio in the ith district (X1i) 
equals some value x1 and the percentage o  English learners in the ith district 
(X2i) equals x2, then the expected value o  Yi given the student–teacher ratio and 
the percentage o  English learners is given by Equation (6.2).

Equation (6.2) is the population regression line or population regression func-
tion in the multiple regression model. The coe icient b0 is the intercept; the coe -
icient b1 is the slope coefficient of X1i or, more simply, the coefficient on X1i; and 

the coe icient b2 is the slope coefficient of X2i or, more simply, the coefficient on 
X2i. One or more o  the independent variables in the multiple regression model 
are sometimes re erred to as control variables.
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The interpretation o  the coe icient b1 in Equation (6.2) is di erent than it 
was when X1i was the only regressor: In Equation (6.2), b1 is the e ect on Y o  a 
unit change in X1, holding X2 constant or controlling for X2.

This interpretation o  b1 ollows rom the de inition that the expected e ect 
on Y o  a change in X1, ∆X1, holding X2 constant, is the di erence between the 
expected value o  Y when the independent variables take on the values X1 + ∆X1 
and X2 and the expected value o  Y when the independent variables take on the 
values X1 and X2. Accordingly, write the population regression unction in 
Equation (6.2) as Y = b0 + b1X1 + b2X2 and imagine changing X1 by the amount 
∆X1 while not changing X2, that is, while holding X2 constant. Because X1 has 
changed, Y will change by some amount, say ∆Y. A ter this change, the new value 
o  Y, Y + ∆Y, is

 Y + ∆Y = b0 + b1(X1 + ∆X1) + b2X2. (6.3)

An equation or ∆Y in terms o  ∆X1 is obtained by subtracting the equation 
Y = b0 + b1X1 + b2X2 rom Equation (6.3), yielding ∆Y = b1∆X1. Rearranging 
this equation shows that

 b1 =
∆Y
∆X1

 holding X2 constant. (6.4)

The coe icient b1 is the e ect on Y (the expected change in Y ) o  a unit change 
in X1, holding X2 ixed. Another phrase used to describe b1 is the partial effect on 
Y o  X1, holding X2 ixed.

The interpretation o  the intercept in the multiple regression model, b0, is 
similar to the interpretation o  the intercept in the single-regressor model: It is the 
expected value o  Yi when X1i and X2i are zero. Simply put, the intercept b0 deter-
mines how ar up the Y axis the population regression line starts.

The Population Multiple Regression Model
The population regression line in Equation (6.2) is the relationship between Y and 
X1 and X2 that holds on average in the population. Just as in the case o  regression 
with a single regressor, however, this relationship does not hold exactly because 
many other actors in luence the dependent variable. In addition to the student–
teacher ratio and the raction o  students still learning English, or example, test 
scores are in luenced by school characteristics, other student characteristics, and 
luck. Thus the population regression unction in Equation (6.2) needs to be aug-
mented to incorporate these additional actors.
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Just as in the case o  regression with a single regressor, the actors that deter-
mine Yi in addition to X1i and X2i are incorporated into Equation (6.2) as an 
“error” term ui. This error term is the deviation o  a particular observation (test 
scores in the ith district in our example) rom the average population relationship. 
Accordingly, we have

 Yi = b0 + b1X1i + b2X2i + ui, i = 1, c, n, (6.5)

where the subscript i indicates the ith o  the n observations (districts) in the sample.
Equation (6.5) is the population multiple regression model when there are 

two regressors, X1i and X2i.
In regression with binary regressors, it can be use ul to treat b0 as the coe i-

cient on a regressor that always equals 1; think o  b0 as the coe icient on X0i, 
where X0i = 1 or i = 1, c, n. Accordingly, the population multiple regression 
model in Equation (6.5) can alternatively be written as

 Yi = b0X0i + b1X1i + b2X2i + ui, where X0i = 1, i = 1, c, n. (6.6)

The variable X0i is sometimes called the constant regressor because it takes on the 
same value—the value 1— or all observations. Similarly, the intercept, b0, is 
sometimes called the constant term in the regression.

The two ways o  writing the population regression model, Equations (6.5) and 
(6.6), are equivalent.

The discussion so ar has ocused on the case o  a single additional variable, 
X2. In practice, however, there might be multiple actors omitted rom the single-
regressor model. For example, ignoring the students’ economic background might 
result in omitted variable bias, just as ignoring the raction o  English learners did. 
This reasoning leads us to consider a model with three regressors or, more gener-
ally, a model that includes k regressors. The multiple regression model with k 
regressors, X1i, X2i, c, Xki, is summarized as Key Concept 6.2.

The de initions o  homoskedasticity and heteroskedasticity in the multiple 
regression model are extensions o  their de initions in the single-regressor model. 
The error term ui in the multiple regression model is homoskedastic i  the variance 
o  the conditional distribution o  ui given X1i, c, Xki, var(ui X1i, c, Xki), is 
constant or i = 1, c, n and thus does not depend on the values o  X1i, c, Xki. 
Otherwise, the error term is heteroskedastic.

The multiple regression model holds out the promise o  providing just 
what the superintendent wants to know: the e ect o  changing the student–
teacher ratio, holding constant other actors that are beyond her control. 
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These actors include not just the percentage o  English learners, but other 
measurable actors that might a ect test per ormance, including the economic 
background o  the students. To be o  practical help to the superintendent, 
however, we need to provide her with estimates o  the unknown population 
coe icients b0, c, bk o  the population regression model calculated using a 
sample o  data. Fortunately, these coe icients can be estimated using ordinary 
least squares.

 6.3 The OLS Estimator in Multiple Regression

This section describes how the coe icients o  the multiple regression model can 
be estimated using OLS.

t  Mul i l  R gr ssion Mod l

The multiple regression model is

 Yi = b0 + b1X1i + b2X2i + g + bkXki + ui, i = 1, c, n, (6.7)

where

• Yi is ith observation on the dependent variable; X1i, X2i, c, Xki are the ith 
observations on each o  the k regressors; and ui is the error term.

• The population regression line is the relationship that holds between Y and 
the X’s on average in the population:

E(Y X1i = x1, X2i = x2, c, Xki = xk) = b0 + b1x1 + b2x2 +g + bk xk.

• b1 is the slope coe icient on X1, b2 is the coe icient on X2, and so on. The 
coe icient b1 is the expected change in Yi resulting rom changing X1i by 
one unit, holding constant X2i, c, Xki. The coe icients on the other X’s are 
interpreted similarly.

• The intercept b0 is the expected value o  Y when all the X’s equal 0. The 
intercept can be thought o  as the coe icient on a regressor, X0i, that equals 
1 or all i.

Key ConCept

6.2
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The OLS Estimator
Section 4.2 shows how to estimate the intercept and slope coe icients in the single-
regressor model by applying OLS to a sample o  observations o  Y and X. The 
key idea is that these coe icients can be estimated by minimizing the sum o  
squared prediction mistakes, that is, by choosing the estimators b0 and b1 so as to 
minimize gn

i= 1(Yi - b0 - b1Xi)
2. The estimators that do so are the OLS estima-

tors, bn0 and bn1.
The method o  OLS also can be used to estimate the coe icients b0, b1, c, bk  

in the multiple regression model. Let b0, b1, c, bk be estimates o  b0, b1, c, bk. 
The predicted value o  Yi, calculated using these estimates, is b0 + b1X1i + g+
bkXki, and the mistake in predicting Yi is Yi - (b0 + b1X1i + g + bkXki) =
Yi - b0 - b1X1i - g - bkXki. The sum o  these squared prediction mistakes 
over all n observations is thus

 a
n

i= 1
(Yi - b0 - b1X1i - g - bkXki)

2. (6.8)

The sum o  the squared mistakes or the linear regression model in Expression 
(6.8) is the extension o  the sum o  the squared mistakes given in Equation (4.6) 
or the linear regression model with a single regressor.

The estimators o  the coe icients b0, b1, c, bk that minimize the sum o  
squared mistakes in Expression (6.8) are called the ordinary least squares (OLS) 
estimators of B0, B1, c, Bk. The OLS estimators are denoted bn0, bn1, c, bnk.

The terminology o  OLS in the linear multiple regression model is the same 
as in the linear regression model with a single regressor. The OLS regression line 
is the straight line constructed using the OLS estimators: bn0 + bn1X1 + g + bnkXk. 
The predicted value o  Yi given X1i, c, Xki, based on the OLS regression line, is 
Yn i = bn0 + bn1X1i +g + bnkXki. The OLS residual or the ith observation is the 
di erence between Yi and its OLS predicted value; that is, the OLS residual is 
un i = Yi - Yn i.

The OLS estimators could be computed by trial and error, repeatedly trying 
di erent values o  b0, c, bk until you are satis ied that you have minimized the 
total sum o  squares in Expression (6.8). It is ar easier, however, to use explicit 
ormulas or the OLS estimators that are derived using calculus. The ormulas or 

the OLS estimators in the multiple regression model are similar to those in Key 
Concept 4.2 or the single-regressor model. These ormulas are incorporated into 
modern statistical so tware. In the multiple regression model, the ormulas are 
best expressed and discussed using matrix notation, so their presentation is 
de erred to Section 18.1.
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The de initions and terminology o  OLS in multiple regression are summa-
rized in Key Concept 6.3.

Application to Test Scores and  
the Student–Teacher Ratio
In Section 4.2, we used OLS to estimate the intercept and slope coe icient o  the 
regression relating test scores (TestScore) to the student–teacher ratio (STR), 
using our 420 observations or Cali ornia school districts; the estimated OLS 
regression line, reported in Equation (4.11), is

 TestScore = 698.9 - 2.28 * STR. (6.11)

Our concern has been that this relationship is misleading because the student–
teacher ratio might be picking up the e ect o  having many English learners in 
districts with large classes. That is, it is possible that the OLS estimator is subject 
to omitted variable bias.

We are now in a position to address this concern by using OLS to estimate a 
multiple regression in which the dependent variable is the test score (Yi) and 
there are two regressors: the student–teacher ratio (X1i) and the percentage o  

t  OLS es im ors, pr dic d V lu s, nd R sidu ls  
in  Mul i l  R gr ssion Mod l

The OLS estimators bn0, bn1, c, bnk are the values o  b0, b1, c, bk that minimize 
the sum o  squared prediction mistakes gn

i= 1(Yi - b0 - b1X1i -g - bkXki)
2. 

The OLS predicted values Yn i and residuals un i are

 Yn i = bn0 + bn1X1i +g + bnkXki, i = 1, c, n, and (6.9)

 un i = Yi - Yn i, i = 1, c, n. (6.10)

The OLS estimators bn0, bn1, c, bnk and residual un i are computed rom a sample 
o  n observations o  (X1i, c, Xki, Yi ), i = 1, c, n. These are estimators o  the 
unknown true population coe icients b0, b1, c, bk and error term, ui.

Key ConCept

6.3
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English learners in the school district (X2i) or our 420 districts (i = 1, c, 420). 
The estimated OLS regression line or this multiple regression is

 TestScore = 686.0 - 1.10 * STR - 0.65 * PctEL, (6.12)

where PctEL is the percentage o  students in the district who are English learners. 
The OLS estimate o  the intercept (bn0) is 686.0, the OLS estimate o  the coe i-
cient on the student–teacher ratio (bn1) is -1.10, and the OLS estimate o  the 
coe icient on the percentage English learners (bn2) is -0.65.

The estimated e ect on test scores o  a change in the student–teacher ratio in 
the multiple regression is approximately hal  as large as when the student–teacher 
ratio is the only regressor: In the single-regressor equation [Equation (6.11)], a unit 
decrease in the STR is estimated to increase test scores by 2.28 points, but in the 
multiple regression equation [Equation (6.12)], it is estimated to increase test scores 
by only 1.10 points. This di erence occurs because the coe icient on STR in the 
multiple regression is the e ect o  a change in STR, holding constant (or controlling 
or) PctEL, whereas in the single-regressor regression, PctEL is not held constant.

These two estimates can be reconciled by concluding that there is omitted 
variable bias in the estimate in the single-regressor model in Equation (6.11). In 
Section 6.1, we saw that districts with a high percentage o  English learners tend 
to have not only low test scores but also a high student–teacher ratio. I  the rac-
tion o  English learners is omitted rom the regression, reducing the student–
teacher ratio is estimated to have a larger e ect on test scores, but this estimate 
re lects both the e ect o  a change in the student–teacher ratio and the omitted 
e ect o  having ewer English learners in the district.

We have reached the same conclusion that there is omitted variable bias in 
the relationship between test scores and the student–teacher ratio by two di er-
ent paths: the tabular approach o  dividing the data into groups (Section 6.1) and 
the multiple regression approach [Equation (6.12)]. O  these two methods, mul-
tiple regression has two important advantages. First, it provides a quantitative 
estimate o  the e ect o  a unit decrease in the student–teacher ratio, which is what 
the superintendent needs to make her decision. Second, it readily extends to more 
than two regressors so that multiple regression can be used to control or measur-
able actors other than just the percentage o  English learners.

The rest o  this chapter is devoted to understanding and using OLS in the 
multiple regression model. Much o  what you learned about the OLS estimator 
with a single regressor carries over to multiple regression with ew or no modi ica-
tions, so we will ocus on that which is new with multiple regression. We begin by 
discussing measures o  it or the multiple regression model.
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 6.4 Measures of Fit in Multiple Regression

Three commonly used summary statistics in multiple regression are the standard 
error o  the regression, the regression R2, and the adjusted R2 (also known as R 2). 
All three statistics measure how well the OLS estimate o  the multiple regression 
line describes, or “ its,” the data.

The Standard Error of the Regression (SER)
The standard error o  the regression (SER) estimates the standard deviation o  
the error term ui. Thus the SER is a measure o  the spread o  the distribution o  
Y around the regression line. In multiple regression, the SER is

 SER = sun = 3s2
nu  where s2

nu =
1

n - k - 1
 a

n

i= 1
un2

i =
SSR

n - k - 1
 (6.13)

and where SSR is the sum o  squared residuals, SSR = gn
i= 1 un2

i .
The only di erence between the de inition in Equation (6.13) and the de ini-

tion o  the SER in Section 4.3 or the single-regressor model is that here the divi-
sor is n - k - 1 rather than n - 2. In Section 4.3, the divisor n - 2 (rather than n) 
adjusts or the downward bias introduced by estimating two coe icients (the slope 
and intercept o  the regression line). Here, the divisor n - k - 1 adjusts or the 
downward bias introduced by estimating k + 1 coe icients (the k slope coe icients 
plus the intercept). As in Section 4.3, using n - k - 1 rather than n is called a 
degrees-o - reedom adjustment. I  there is a single regressor, then k = 1, so the 
ormula in Section 4.3 is the same as in Equation (6.13). When n is large, the e ect 

o  the degrees-o - reedom adjustment is negligible.

The R2

The regression R2 is the raction o  the sample variance o  Yi explained by (or 
predicted by) the regressors. Equivalently, the R2 is 1 minus the raction o  the 
variance o  Yi not explained by the regressors.

The mathematical de inition o  the R2 is the same as or regression with a 
single regressor:

 R2 =
ESS
TSS

= 1 -
SSR
TSS

, (6.14)

where the explained sum o  squares is ESS = gn
i= 1(Yn i - Y)2 and the total sum 

o  squares is TSS = gn
i= 1(Yi - Y )2.
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In multiple regression, the R2 increases whenever a regressor is added, 
unless the estimated coe icient on the added regressor is exactly zero. To see 
this, think about starting with one regressor and then adding a second. When 
you use OLS to estimate the model with both regressors, OLS inds the values 
o  the coe icients that minimize the sum o  squared residuals. I  OLS happens 
to choose the coe icient on the new regressor to be exactly zero, then the SSR 
will be the same whether or not the second variable is included in the regression. 
But i  OLS chooses any value other than zero, then it must be that this value 
reduced the SSR relative to the regression that excludes this regressor. In prac-
tice, it is extremely unusual or an estimated coe icient to be exactly zero, so in 
general the SSR will decrease when a new regressor is added. But this means 
that the R2 generally increases (and never decreases) when a new regressor is 
added.

The “Adjusted R2”
Because the R2 increases when a new variable is added, an increase in the R2 does 
not mean that adding a variable actually improves the it o  the model. In this 
sense, the R2 gives an in lated estimate o  how well the regression its the data. 
One way to correct or this is to de late or reduce the R2 by some actor, and this 
is what the adjusted R2, or R 2, does.

The adjusted R2, or R 2, is a modi ied version o  the R2 that does not neces-
sarily increase when a new regressor is added. The R 2 is

 R 2 = 1 -
n - 1

n - k - 1
  
SSR
TSS

= 1 -
s2
nu

s2
Y

. (6.15)

The di erence between this ormula and the second de inition o  the R2 in Equa-
tion (6.14) is that the ratio o  the sum o  squared residuals to the total sum o  
squares is multiplied by the actor (n - 1) >  (n - k - 1). As the second expres-
sion in Equation (6.15) shows, this means that the adjusted R2 is 1 minus the ratio 
o  the sample variance o  the OLS residuals [with the degrees-o - reedom correc-
tion in Equation (6.13)] to the sample variance o  Y.

There are three use ul things to know about the R 2. First, (n - 1) >  (n - k - 1) 
is always greater than 1, so R 2 is always less than R2.

Second, adding a regressor has two opposite e ects on the R 2. On the one 
hand, the SSR alls, which increases the R 2. On the other hand, the actor 
(n - 1) >  (n - k - 1) increases. Whether the R 2 increases or decreases depends 
on which o  these two e ects is stronger.
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Third, the R 2 can be negative. This happens when the regressors, taken 
together, reduce the sum o  squared residuals by such a small amount that this 
reduction ails to o set the actor (n - 1) >  (n - k - 1).

Application to Test Scores
Equation (6.12) reports the estimated regression line or the multiple regression 
relating test scores (TestScore) to the student–teacher ratio (STR) and the per-
centage o  English learners (PctEL). The R2 or this regression line is R2 = 0.426, 
the adjusted R2 is R 2 = 0.424, and the standard error o  the regression is 
SER = 14.5.

Comparing these measures o  it with those or the regression in which PctEL 
is excluded [Equation (5.8)] shows that including PctEL in the regression 
increased the R2 rom 0.051 to 0.426. When the only regressor is STR, only a small 
raction o  the variation in TestScore is explained; however, when PctEL is added 

to the regression, more than two- i ths (42.6%) o  the variation in test scores is 
explained. In this sense, including the percentage o  English learners substantially 
improves the it o  the regression. Because n is large and only two regressors 
appear in Equation (6.12), the di erence between R2 and adjusted R2 is very small 
(R2 = 0.426 versus R 2 = 0.424).

The SER or the regression excluding PctEL is 18.6; this value alls to 14.5 
when PctEL is included as a second regressor. The units o  the SER are points on 
the standardized test. The reduction in the SER tells us that predictions about 
standardized test scores are substantially more precise i  they are made using the 
regression with both STR and PctEL than i  they are made using the regression 
with only STR as a regressor.

Using the R2 and adjusted R2. The R 2 is use ul because it quanti ies the extent 
to which the regressors account or, or explain, the variation in the dependent 
variable. Nevertheless, heavy reliance on the R 2 (or R2) can be a trap. In appli-
cations, “maximize the R 2” is rarely the answer to any economically or statisti-
cally meaning ul question. Instead, the decision about whether to include a 
variable in a multiple regression should be based on whether including that 
variable allows you better to estimate the causal e ect o  interest. We return 
to the issue o  how to decide which variables to include—and which to 
exclude—in Chapter 7. First, however, we need to develop methods or quan-
ti ying the sampling uncertainty o  the OLS estimator. The starting point or 
doing so is extending the least squares assumptions o  Chapter 4 to the case o  
multiple regressors.
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 6.5 The Least Squares Assumptions  
in Multiple Regression

There are four least squares assumptions in the multiple regression model. The 
first three are those of Section 4.3 for the single regressor model (Key Concept 
4.3), extended to allow for multiple regressors, and these are discussed only 
briefly. The fourth assumption is new and is discussed in more detail.

Assumption #1: The Conditional Distribution of ui 
Given X1i , X2i , c, Xki Has a Mean of Zero
The first assumption is that the conditional distribution of ui given X1i, c, Xki 
has a mean of zero. This assumption extends the first least squares assumption 
with a single regressor to multiple regressors. This assumption means that some-
times Yi is above the population regression line and sometimes Yi is below the 
population regression line, but on average over the population Yi falls on the 
population regression line. Therefore, for any value of the regressors, the expected 
value of ui is zero. As is the case for regression with a single regressor, this is the 
key assumption that makes the OLS estimators unbiased. We return to omitted 
variable bias in multiple regression in Section 7.5.

Assumption #2: (X1i , X2i , c, Xki ,Yi), i = 1, c, n,  
Are i.i.d.
The second assumption is that (X1i, c, Xki,Yi ), i = 1, c, n, are independently 
and identically distributed (i.i.d.) random variables. This assumption holds automati-
cally if the data are collected by simple random sampling. The comments on this 
assumption appearing in Section 4.3 for a single regressor also apply to multiple 
regressors.

Assumption #3: Large Outliers Are Unlikely
The third least squares assumption is that large outliers—that is, observations 
with values far outside the usual range of the data—are unlikely. This assumption 
serves as a reminder that, as in single-regressor case, the OLS estimator of the 
coefficients in the multiple regression model can be sensitive to large outliers.

The assumption that large outliers are unlikely is made mathematically pre-
cise by assuming that X1i, c, Xki, and Yi have nonzero finite fourth moments: 
0 6 E(X4

1i) 6 ∞ , c, 0 6 E(X4
ki) 6 ∞  and 0 6 E(Y4

i ) 6 ∞ . Another way to 
state this assumption is that the dependent variable and regressors have finite 
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kurtosis. This assumption is used to derive the properties o  OLS regression sta-
tistics in large samples.

Assumption #4: No Perfect Multicollinearity
The ourth assumption is new to the multiple regression model. It rules out an 
inconvenient situation, called per ect multicollinearity, in which it is impos-
sible to compute the OLS estimator. The regressors are said to exhibit perfect 
multicollinearity, (or to be per ectly multicollinear) i  one o  the regressors is 
a per ect linear unction o  the other regressors. The ourth least squares 
assumption is that the regressors are not per ectly multicollinear.

Why does per ect multicollinearity make it impossible to compute the OLS 
estimator? Suppose you want to estimate the coe icient on STR in a regression 
o  TestScorei on STRi and PctELi, except that you make a typographical error and 
accidentally type in STRi a second time instead o  PctELi; that is, you regress 
TestScorei on STRi and STRi. This is a case o  per ect multicollinearity because 
one o  the regressors (the irst occurrence o  STR) is a per ect linear unction o  
another regressor (the second occurrence o  STR). Depending on how your so t-
ware package handles per ect multicollinearity, i  you try to estimate this regres-
sion the so tware will do one o  two things: Either it will drop one o  the occurrences 
o  STR or it will re use to calculate the OLS estimates and give an error message. 
The mathematical reason or this ailure is that per ect multicollinearity produces 
division by zero in the OLS ormulas.

At an intuitive level, per ect multicollinearity is a problem because you are 
asking the regression to answer an illogical question. In multiple regression, the 
coe icient on one o  the regressors is the e ect o  a change in that regressor, hold-
ing the other regressors constant. In the hypothetical regression o  TestScore on 
STR and STR, the coe icient on the irst occurrence o  STR is the e ect on test 
scores o  a change in STR, holding constant STR. This makes no sense, and OLS 
cannot estimate this nonsensical partial e ect.

The solution to per ect multicollinearity in this hypothetical regression is sim-
ply to correct the typo and to replace one o  the occurrences o  STR with the 
variable you originally wanted to include. This example is typical: When per ect 
multicollinearity occurs, it o ten re lects a logical mistake in choosing the regres-
sors or some previously unrecognized eature o  the data set. In general, the solu-
tion to per ect multicollinearity is to modi y the regressors to eliminate the 
problem.

Additional examples o  per ect multicollinearity are given in Section 6.7, 
which also de ines and discusses imper ect multicollinearity.
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The least squares assumptions or the multiple regression model are summa-
rized in Key Concept 6.4.

 6.6 The Distribution of the OLS Estimators  
in Multiple Regression

Because the data di er rom one sample to the next, di erent samples produce di -
erent values o  the OLS estimators. This variation across possible samples gives rise 

to the uncertainty associated with the OLS estimators o  the population regression 
coe icients, b0, b1, c, bk. Just as in the case o  regression with a single regressor, 
this variation is summarized in the sampling distribution o  the OLS estimators.

Recall rom Section 4.4 that, under the least squares assumptions, the OLS 
estimators (bn0 and bn1) are unbiased and consistent estimators o  the unknown 
coe icients (b0 and b1) in the linear regression model with a single regressor. In 
addition, in large samples, the sampling distribution o  bn0 and bn1 is well approxi-
mated by a bivariate normal distribution.

These results carry over to multiple regression analysis. That is, under the 
least squares assumptions o  Key Concept 6.4, the OLS estimators bn0, bn1, c, bnk 
are unbiased and consistent estimators o  b0, b1, c, bk in the linear multiple 

t  L s  Squ r s assum ions in  Mul i l   
R gr ssion Mod l

Yi = b0 + b1X1i + b2X2i + g + bkXki + ui, i = 1, c, n, 

where

 1. ui has conditional mean zero given X1i, X2i, c, Xki; that is,

E(ui X1i, X2i, c, Xki) = 0

 2. (X1i, X2i, c, Xki, Yi), i = 1, c, n, are independently and identically distrib-
uted (i.i.d.) draws rom their joint distribution.

 3. Large outliers are unlikely: X1i, c, Xki and Yi have nonzero inite ourth 
moments.

 4. There is no per ect multicollinearity.

Key ConCept

6.4
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regression model. In large samples, the joint sampling distribution o  bn0, bn1, c, bnk 
is well approximated by a multivariate normal distribution, which is the extension 
o  the bivariate normal distribution to the general case o  two or more jointly 
normal random variables (Section 2.4).

Although the algebra is more complicated when there are multiple regressors, 
the central limit theorem applies to the OLS estimators in the multiple regression 
model or the same reason that it applies to Y and to the OLS estimators when 
there is a single regressor: The OLS estimators bn0, bn1, c, bnk are averages o  the 
randomly sampled data, and i  the sample size is su iciently large, the sampling 
distribution o  those averages becomes normal. Because the multivariate normal 
distribution is best handled mathematically using matrix algebra, the expressions 
or the joint distribution o  the OLS estimators are de erred to Chapter 18.

Key Concept 6.5 summarizes the result that, in large samples, the distribution 
o  the OLS estimators in multiple regression is approximately jointly normal. In 
general, the OLS estimators are correlated; this correlation arises rom the correlation 
between the regressors. The joint sampling distribution o  the OLS estimators is 
discussed in more detail or the case that there are two regressors and homoskedastic 
errors in Appendix (6.2), and the general case is discussed in Section 18.2.

 6.7 Multicollinearity

As discussed in Section 6.5, per ect multicollinearity arises when one o  the regressors 
is a per ect linear combination o  the other regressors. This section provides some 
examples o  per ect multicollinearity and discusses how per ect multicollinearity can 
arise, and can be avoided, in regressions with multiple binary regressors. Imper ect 
multicollinearity arises when one o  the regressors is very highly correlated—but not 
per ectly correlated—with the other regressors. Unlike per ect multicollinearity, 
imper ect multicollinearity does not prevent estimation o  the regression, nor does it 
imply a logical problem with the choice o  regressors. However, it does mean that one 
or more regression coe icients could be estimated imprecisely.

L rg -S m l  Dis ribu ion of bn0, bn1, c, bnk

I  the least squares assumptions (Key Concept 6.4) hold, then in large samples 
the OLS estimators bn0, bn1, c, bnk are jointly normally distributed and each bnj is 
distributed N(bj, s

2
nbj

), j = 0, c, k.

Key ConCept

6.5
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Examples of Perfect Multicollinearity
We continue the discussion o  per ect multicollinearity rom Section 6.5 by exam-
ining three additional hypothetical regressions. In each, a third regressor is added 
to the regression o  TestScorei on STRi and PctELi in Equation (6.12).

Example #1: Fraction of English learners. Let FracELi be the raction o  English 
learners in the ith district, which varies between 0 and 1. I  the variable FracELi were 
included as a third regressor in addition to STRi and PctELi, the regressors would be 
per ectly multicollinear. The reason is that PctEL is the percentage o  English learn-
ers, so that PctELi = 100 * FracELi or every district. Thus one o  the regressors 
(PctELi) can be written as a per ect linear unction o  another regressor (FracELi).

Because o  this per ect multicollinearity, it is impossible to compute the OLS 
estimates o  the regression o  TestScorei on STRi, PctELi, and FracELi. At an 
intuitive level, OLS ails because you are asking, What is the e ect o  a unit 
change in the percentage o  English learners, holding constant the fraction o  English 
learners? Because the percentage o  English learners and the raction o  English 
learners move together in a per ect linear relationship, this question makes no 
sense and OLS cannot answer it.

Example #2: “Not very small” classes. Let NVSi be a binary variable that equals 1 
i  the student–teacher ratio in the ith district is “not very small,” speci ically, NVSi 
equals 1 i  STRi Ú 12 and equals 0 otherwise. This regression also exhibits per ect 
multicollinearity, but or a more subtle reason than the regression in the previous 
example. There are in act no districts in our data set with STRi 6 12; as you can 
see in the scatterplot in Figure 4.2, the smallest value o  STR is 14. Thus NVSi = 1 
or all observations. Now recall that the linear regression model with an intercept 

can equivalently be thought o  as including a regressor, X0i, that equals 1 or all i, 
as shown in Equation (6.6). Thus we can write NVSi = 1 * X0i or all the obser-
vations in our data set; that is, NVSi can be written as a per ect linear combination 
o  the regressors; speci ically, it equals X0i.

This illustrates two important points about per ect multicollinearity. First, 
when the regression includes an intercept, then one o  the regressors that can be 
implicated in per ect multicollinearity is the constant regressor X0i. Second, per ect 
multicollinearity is a statement about the data set you have on hand. While it is 
possible to imagine a school district with ewer than 12 students per teacher, there 
are no such districts in our data set so we cannot analyze them in our regression.

Example #3: Percentage of English speakers. Let PctESi be the percentage o  
“English speakers” in the ith district, de ined to be the percentage o  students who 
are not English learners. Again the regressors will be per ectly multicollinear. 
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Like the previous example, the per ect linear relationship among the regressors 
involves the constant regressor X0i: For every district, PctESi = 100 - PctELi =
100 * X0i - PctELi, because X0i = 1 or all i.

This example illustrates another point: Per ect multicollinearity is a eature o  the 
entire set o  regressors. I  either the intercept (that is, the regressor X0i) or PctELi were 
excluded rom this regression, the regressors would not be per ectly multicollinear.

The dummy variable trap. Another possible source o  per ect multicollinearity arises 
when multiple binary, or dummy, variables are used as regressors. For example, sup-
pose you have partitioned the school districts into three categories: rural, suburban, 
and urban. Each district alls into one (and only one) category. Let these binary vari-
ables be Rurali, which equals 1 or a rural district and equals 0 otherwise; Suburbani; 
and Urbani. I  you include all three binary variables in the regression along with a 
constant, the regressors will be per ect multicollinearity: Because each district belongs 
to one and only one category, Rurali +Suburbani + Urbani = 1 = X0i, where X0i 
denotes the constant regressor introduced in Equation (6.6). Thus, to estimate the 
regression, you must exclude one o  these our variables, either one o  the binary 
indicators or the constant term. By convention, the constant term is retained, in which 
case one o  the binary indicators is excluded. For example, i  Rurali were excluded, 
then the coe icient on Suburbani would be the average di erence between test scores 
in suburban and rural districts, holding constant the other variables in the regression.

In general, i  there are G binary variables, i  each observation alls into one 
and only one category, i  there is an intercept in the regression, and i  all G binary 
variables are included as regressors, then the regression will ail because o  per ect 
multicollinearity. This situation is called the dummy variable trap. The usual way 
to avoid the dummy variable trap is to exclude one o  the binary variables rom 
the multiple regression, so only G - 1 o  the G binary variables are included as 
regressors. In this case, the coe icients on the included binary variables represent 
the incremental e ect o  being in that category, relative to the base case o  the 
omitted category, holding constant the other regressors. Alternatively, all G 
binary regressors can be included i  the intercept is omitted rom the regression.

Solutions to perfect multicollinearity. Per ect multicollinearity typically arises 
when a mistake has been made in speci ying the regression. Sometimes the mis-
take is easy to spot (as in the irst example) but sometimes it is not (as in the 
second example). In one way or another, your so tware will let you know i  you 
make such a mistake because it cannot compute the OLS estimator i  you have.

When your so tware lets you know that you have per ect multicollinearity, it 
is important that you modi y your regression to eliminate it. Some so tware is 
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unreliable when there is per ect multicollinearity, and at a minimum you will be 
ceding control over your choice o  regressors to your computer i  your regressors 
are per ectly multicollinear.

Imperfect Multicollinearity
Despite its similar name, imper ect multicollinearity is conceptually quite di er-
ent rom per ect multicollinearity. Imperfect multicollinearity means that two or 
more o  the regressors are highly correlated in the sense that there is a linear 
unction o  the regressors that is highly correlated with another regressor. Imper-
ect multicollinearity does not pose any problems or the theory o  the OLS esti-

mators; indeed, a purpose o  OLS is to sort out the independent in luences o  the 
various regressors when these regressors are potentially correlated.

I  the regressors are imper ectly multicollinear, then the coe icients on at least 
one individual regressor will be imprecisely estimated. For example, consider the 
regression o  TestScore on STR and PctEL. Suppose we were to add a third regres-
sor, the percentage o  the district’s residents who are irst-generation immigrants. 
First-generation immigrants o ten speak English as a second language, so the vari-
ables PctEL and percentage immigrants will be highly correlated: Districts with 
many recent immigrants will tend to have many students who are still learning 
English. Because these two variables are highly correlated, it would be di icult to 
use these data to estimate the partial e ect on test scores o  an increase in PctEL, 
holding constant the percentage immigrants. In other words, the data set provides 
little in ormation about what happens to test scores when the percentage o  Eng-
lish learners is low but the raction o  immigrants is high, or vice versa. I  the least 
squares assumptions hold, then the OLS estimator o  the coe icient on PctEL in 
this regression will be unbiased; however, it will have a larger variance than i  the 
regressors PctEL and percentage immigrants were uncorrelated.

The e ect o  imper ect multicollinearity on the variance o  the OLS estimators 
can be seen mathematically by inspecting Equation (6.17) in Appendix (6.2), which 
is the variance o  bn1 in a multiple regression with two regressors (X1 and X2) or 
the special case o  a homoskedastic error. In this case, the variance o  bn1 is inversely 
proportional to 1 - r2

X1,X2
, where rX1, X2

 is the correlation between X1 and X2. The 
larger the correlation between the two regressors, the closer this term is to zero and 
the larger is the variance o  bn1. More generally, when multiple regressors are 
imper ectly multicollinear, the coe icients on one or more o  these regressors will 
be imprecisely estimated—that is, they will have a large sampling variance.

Per ect multicollinearity is a problem that o ten signals the presence o  a 
logical error. In contrast, imper ect multicollinearity is not necessarily an error, 
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but rather just a eature o  OLS, your data, and the question you are trying to 
answer. I  the variables in your regression are the ones you meant to include—the 
ones you chose to address the potential or omitted variable bias—then imper ect 
multicollinearity implies that it will be di icult to estimate precisely one or more 
o  the partial e ects using the data at hand.

 6.8 Conclusion

Regression with a single regressor is vulnerable to omitted variable bias: I  an 
omitted variable is a determinant o  the dependent variable and is correlated with 
the regressor, then the OLS estimator o  the slope coe icient will be biased and 
will re lect both the e ect o  the regressor and the e ect o  the omitted variable. 
Multiple regression makes it possible to mitigate omitted variable bias by includ-
ing the omitted variable in the regression. The coe icient on a regressor, X1, in 
multiple regression is the partial e ect o  a change in X1, holding constant the 
other included regressors. In the test score example, including the percentage o  
English learners as a regressor made it possible to estimate the e ect on test 
scores o  a change in the student–teacher ratio, holding constant the percentage 
o  English learners. Doing so reduced by hal  the estimated e ect on test scores 
o  a change in the student–teacher ratio.

The statistical theory o  multiple regression builds on the statistical theory o  
regression with a single regressor. The least squares assumptions or multiple regres-
sion are extensions o  the three least squares assumptions or regression with a single 
regressor, plus a ourth assumption ruling out per ect multicollinearity. Because the 
regression coe icients are estimated using a single sample, the OLS estimators have 
a joint sampling distribution and there ore have sampling uncertainty. This sampling 
uncertainty must be quanti ied as part o  an empirical study, and the ways to do so 
in the multiple regression model are the topic o  the next chapter.

Summary

 1. Omitted variable bias occurs when an omitted variable (1) is correlated with 
an included regressor and (2) is a determinant o  Y.

 2. The multiple regression model is a linear regression model that includes 
multiple regressors, X1, X2, c, Xk. Associated with each regressor is a 
regression coe icient, b1, b2, c, bk. The coe icient b1 is the expected 
change in Y associated with a one-unit change in X1, holding the other 
regressors constant. The other regression coe icients have an analogous 
interpretation.
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 3. The coefficients in multiple regression can be estimated by OLS. When the 
four least squares assumptions in Key Concept 6.4 are satisfied, the OLS esti-
mators are unbiased, consistent, and normally distributed in large samples.

 4. Perfect multicollinearity, which occurs when one regressor is an exact linear 
function of the other regressors, usually arises from a mistake in choosing 
which regressors to include in a multiple regression. Solving perfect multi-
collinearity requires changing the set of regressors.

 5. The standard error of the regression, the R2, and the R 2 are measures of fit 
for the multiple regression model.
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Review the Concepts

 6.1 A researcher is interested in the effect on test scores of computer usage. 
Using school district data like that used in this chapter, she regresses district 
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average test scores on the number o  computers per student. Will bn1 be an 
unbiased estimator o  the e ect on test scores o  increasing the number 
o  computers per student? Why or why not? I  you think bn1 is biased, is it 
biased up or down? Why?

 6.2 A multiple regression includes two regressors: Yi = b0 + b1X1i + b2X2i + ui. 
What is the expected change in Y i  X1 increases by 3 units and X2 is 
unchanged? What is the expected change in Y i  X2 decreases by 5 units 
and X1 is unchanged? What is the expected change in Y i  X1 increases by 
3 units and X2 decreases by 5 units?

 6.3 How does R 2 di er rom R2? Why is R 2 use ul in a regression model with 
multiple regressors?

 6.4 Explain why two per ectly multicollinear regressors cannot be included 
in a linear multiple regression. Give two examples o  a pair o  per ectly 
multicollinear regressors.

 6.5 Explain why it is di icult to estimate precisely the partial e ect o  X1, hold-
ing X2 constant, i  X1 and X2 are highly correlated.

Exercises

The irst our exercises re er to the table o  estimated regressions on page 209, 
computed using data or 2012 rom the CPS. The data set consists o  in ormation on 
7440 ull-time, ull-year workers. The highest educational achievement or each 
worker was either a high school diploma or a bachelor’s degree. The workers’ 
ages ranged rom 25 to 34 years. The data set also contains in ormation on the 
region o  the country where the person lived, marital status, and number o  chil-
dren. For the purposes o  these exercises, let

AHE = average hourly earnings (in 2012 dollars)
College = binary variable (1 i  college, 0 i  high school)
Female = binary variable (1 i  emale, 0 i  male)
Age = age (in years)
Ntheast = binary variable (1 i  Region = Northeast, 0 otherwise)
Midwest = binary variable (1 i  Region = Midwest, 0 otherwise)
South = binary variable (1 i  Region = South, 0 otherwise)
West = binary variable (1 i  Region = West, 0 otherwise)

 6.1 Compute R 2 or each o  the regressions.
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 6.2 Using the regression results in column (1):

 a. Do workers with college degrees earn more, on average, than workers 
with only high school degrees? How much more?

 b. Do men earn more than women, on average? How much more?

 6.3 Using the regression results in column (2):

 a. Is age an important determinant o  earnings? Explain.

 b. Sally is a 29-year-old emale college graduate. Betsy is a 34-year-old 
emale college graduate. Predict Sally’s and Betsy’s earnings.

 6.4 Using the regression results in column (3):

 a. Do there appear to be important regional di erences?

 b. Why is the regressor West omitted rom the regression? What would 
happen i  it were included?

R sul s of R gr ssions of av r g  hourly e rnings on G nd r nd educ ion 
Bin ry V ri bl s nd O r C r c ris ics, Using 2012 D  from  Curr n  
po ul ion Surv y

D d  v bl : v g  u l  gs (ahe).

r g ss (1) (2) (3)

College 1X12 8.31 8.32 8.34

Female 1X22 -3.85 -3.81 -3.80

Age 1X32   0.51 0.52

Northeast 1X42     0.18

Midwest 1X52     -1.23

South 1X62     -0.43

Intercept 17.02 1.87 2.05

Summ  S s cs

SER 9.79 9.68 9.67

R2 0.162 0.180 0.182

R2      

n 7440 7440 7440
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 c. Juanita is a 28-year-old emale college graduate rom the South. Jenni er 
is a 28-year-old emale college graduate rom the Midwest. Calculate 
the expected di erence in earnings between Juanita and Jenni er.

 6.5 Data were collected rom a random sample o  220 home sales rom a com-
munity in 2013. Let Price denote the selling price (in $1000), BDR denote 
the number o  bedrooms, Bath denote the number o  bathrooms, Hsize 
denote the size o  the house (in square eet), Lsize denote the lot size (in 
square eet), Age denote the age o  the house (in years), and Poor denote 
a binary variable that is equal to 1 i  the condition o  the house is reported 
as “poor.” An estimated regression yields

Price = 119.2 + 0.485BDR + 23.4Bath + 0.156Hsize + 0.002Lsize
+ 0.090Age - 48.8Poor, R 2 = 0.72, SER = 41.5.

 a. Suppose that a homeowner converts part o  an existing amily room 
in her house into a new bathroom. What is the expected increase in 
the value o  the house?

 b. Suppose that a homeowner adds a new bathroom to her house, 
which increases the size o  the house by 100 square eet. What is the 
expected increase in the value o  the house?

 c. What is the loss in value i  a homeowner lets his house run down so 
that its condition becomes “poor”?

 d. Compute the R2 or the regression.

 6.6 A researcher plans to study the causal e ect o  police on crime, using data 
rom a random sample o  U.S. counties. He plans to regress the county’s 

crime rate on the (per capita) size o  the county’s police orce.

 a. Explain why this regression is likely to su er rom omitted variable 
bias. Which variables would you add to the regression to control or 
important omitted variables?

 b. Use your answer to (a) and the expression or omitted variable bias 
given in Equation (6.1) to determine whether the regression will 
likely over- or underestimate the e ect o  police on the crime rate. 
(That is, do you think that bn1 7 b1 or bn1 6 b1 ?)

 6.7 Critique each o  the ollowing proposed research plans. Your critique 
should explain any problems with the proposed research and describe how 
the research plan might be improved. Include a discussion o  any additional 
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data that need to be collected and the appropriate statistical techniques or 
analyzing those data.

 a. A researcher is interested in determining whether a large aerospace 
irm is guilty o  gender bias in setting wages. To determine potential 

bias, the researcher collects salary and gender in ormation or all o  the 
irm’s engineers. The researcher then plans to conduct a “di erence in 

means” test to determine whether the average salary or women is  
signi icantly less than the average salary or men.

 b. A researcher is interested in determining whether time spent in prison 
has a permanent e ect on a person’s wage rate. He collects data on  
a random sample o  people who have been out o  prison or at least  
15 years. He collects similar data on a random sample o  people who 
have never served time in prison. The data set includes in ormation 
on each person’s current wage, education, age, ethnicity, gender, tenure 
(time in current job), occupation, and union status, as well as whether 
the person has ever been incarcerated. The researcher plans to estimate 
the e ect o  incarceration on wages by regressing wages on an indicator 
variable or incarceration, including in the regression the other potential 
determinants o  wages (education, tenure, union status, and so on).

 6.8 A recent study ound that the death rate or people who sleep 6 to 7 hours 
per night is lower than the death rate or people who sleep 8 or more hours. 
The 1.1 million observations used or this study came rom a random sur-
vey o  Americans aged 30 to 102. Each survey respondent was tracked or 
4 years. The death rate or people sleeping 7 hours was calculated as the 
ratio o  the number o  deaths over the span o  the study among people 
sleeping 7 hours to the total number o  survey respondents who slept 7 
hours. This calculation was then repeated or people sleeping 6 hours and 
so on. Based on this summary, would you recommend that Americans who 
sleep 9 hours per night consider reducing their sleep to 6 or 7 hours i  they 
want to prolong their lives? Why or why not? Explain.

 6.9 (Yi, X1i, X2i) satis y the assumptions in Key Concept 6.4. You are interested 
in b1, the causal e ect o  X1 on Y. Suppose that X1 and X2 are uncorrelated. 
You estimate b1 by regressing Y onto X1 (so that X2 is not included in the 
regression). Does this estimator su er rom omitted variable bias? Explain.

 6.10 (Yi, X1i, X2i) satis y the assumptions in Key Concept 6.4; in addition, 
var(ui X1i, X2i) = 4 and var(X1i) = 6. A random sample o  size n = 400 
is drawn rom the population.
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 a. Assume that X1 and X2 are uncorrelated. Compute the variance o  bn1. 
[Hint: Look at Equation (6.17) in Appendix 6.2.]

 b. Assume that corr(X1, X2) = 0.5. Compute the variance o  bn1.

 c. Comment on the ollowing statements: “When X1 and X2 are corre-
lated, the variance o  bn1 is larger than it would be i  X1 and X2 were 
uncorrelated. Thus, i  you are interested in b1, it is best to leave X2 
out o  the regression i  it is correlated with X1.”

 6.11 (Requires calculus) Consider the regression model

Yi = b1X1i + b2X2i + ui

  or i = 1, c, n. (Notice that there is no constant term in the regression.) 
Following analysis like that used in Appendix (4.2):

 a. Speci y the least squares unction that is minimized by OLS.

 b. Compute the partial derivatives o  the objective unction with respect 
to b1 and b2.

 c. Suppose that gn
i= 1X1iX2i = 0. Show that bn1 = g

n
i= 1X1iYi  >  gn

i= 1X2
1i.

 d. Suppose that gn
i= 1X1iX2i ≠ 0. Derive an expression or bn1 as a unc-

tion o  the data (Yi, X1i, X2i), i = 1, c, n.

 e. Suppose that the model includes an intercept: Yi = b0 + b1X1i +
b2X2i + ui. Show that the least squares estimators satis y bn0 =  
Y - bn1X1 - bn2X2.

 f. As in (e), suppose that the model contains an intercept. Also  
suppose that gn

i= 1(X1i - X1)(X2i - X2) = 0. Show that bn1 =
gn

i= 1(X1i - X1)(Yi - Y )>gn
i= 1(X1i - X1)2. How does this compare 

to the OLS estimator o  b1 rom the regression that omits X2?

Empirical Exercises

(Only two empirical exercises or this chapter are given in the text, but you can 
ind more on the text website, http://www.pearsonhighered.com/stock_watson/.)

 E6.1 Use the Birthweight_Smoking data set introduced in Empirical Exercise 
E5.3 to answer the ollowing questions.

 a. Regress Birthweight on Smoker. What is the estimated e ect o  smoking 
on birth weight?
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 b. Regress Birthweight on Smoker, Alcohol, and Nprevist.

 i. Using the two conditions in Key Concept 6.1, explain why the 
exclusion o  Alcohol and Nprevist could lead to omitted variable 
bias in the regression estimated in (a).

 ii. Is the estimated e ect o  smoking on birth weight substantially 
di erent rom the regression that excludes Alcohol and Nprevist? 
Does the regression in (a) seem to su er rom omitted variable 
bias?

 iii. Jane smoked during her pregnancy, did not drink alcohol, and 
had 8 prenatal care visits. Use the regression to predict the birth 
weight o  Jane’s child.

 iv. Compute R2 and R 2. Why are they so similar?

 c. Estimate the coe icient on Smoking or the multiple regression 
model in (b), using the three-step process in Appendix (6.3) (the 
Frisch-Waugh theorem). Veri y that the three-step process yields the 
same estimated coe icient or Smoking as that obtained in (b).

 d. An alternative way to control or prenatal visits is to use the binary 
variables Tripre0 through Tripre3. Regress Birthweight on Smoker, 
Alcohol, Tripre0, Tripre2, and Tripre3.

 i. Why is Tripre1 excluded rom the regression? What would happen 
i  you included it in the regression?

 ii. The estimated coe icient on Tripre0 is large and negative. What 
does this coe icient measure? Interpret its value.

 iii. Interpret the value o  the estimated coe icients on Tripre2 and 
Tripre3.

 iv. Does the regression in (d) explain a larger raction o  the variance 
in birth weight than the regression in (b)?

 E6.2 Using the data set Growth described in Empirical Exercise E4.1, but 
excluding the data or Malta, carry out the ollowing exercises.

 a. Construct a table that shows the sample mean, standard deviation, 
and minimum and maximum values or the series Growth, Trade-
Share, YearsSchool, Oil, Rev_Coups, Assassinations, and RGDP60. 
Include the appropriate units or all entries.

 b. Run a regression o  Growth on TradeShare, YearsSchool, Rev_Coups, 
Assassinations, and RGDP60. What is the value o  the coe icient on 
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Rev_Coups? Interpret the value o  this coe icient. Is it large or small 
in a real-world sense?

 c. Use the regression to predict the average annual growth rate or a 
country that has average values or all regressors.

 d. Repeat (c) but now assume that the country’s value or TradeShare is 
one standard deviation above the mean.

 e. Why is Oil omitted rom the regression? What would happen i  it 
were included?

 a p p e n D i x

 6.1 Derivation of Equation (6.1)

This appendix presents a derivation o  the ormula or omitted variable bias in Equation (6.1). 

Equation (4.30) in Appendix (4.3) states

 bn1 = b1 +

1
na

n

i= 1
(Xi - X )ui

1
na

n

i= 1
(Xi - X)2

. (6.16)

Under the last two assumptions in Key Concept 4.3, (1>n)gn
i= 1(Xi - X )2 ¡p

s 2
X and 

(1>n)gn
i= 1(Xi - X )ui ¡

p
 cov(ui, Xi) = rXususX. Substitution o  these limits into Equa-

tion (6.16) yields Equation (6.1).

 a p p e n D i x

 6.2 Distribution of the OLS Estimators  
When There Are Two Regressors and  
Homoskedastic Errors

Although the general ormula or the variance o  the OLS estimators in multiple regression 

is complicated, i  there are two regressors (k = 2) and the errors are homoskedastic, then 

the ormula simpli ies enough to provide some insights into the distribution o  the OLS 

estimators.
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Because the errors are homoskedastic, the conditional variance o  ui can be written as 

var(ui 0  X1i, X2i) = s2
u. When there are two regressors, X1i and X2i, and the error term is 

homoskedastic, in large samples the sampling distribution o  bn1 is N(b1, s
2
bn1

) where the 

variance o  this distribution, s2
bn1

, is

 s2
nb1
=

1
na

1

1 - r2
X1, X2

b
s2

u

s2
X1

, (6.17)

where rX1, X2
 is the population correlation between the two regressors X1 and X2 and s2

X1
 

is the population variance o  X1.

The variance s2
nb1

 o  the sampling distribution o  bn1 depends on the squared correla-

tion between the regressors. I  X1 and X2 are highly correlated, either positively or 

negatively, then r2
X1, X2

 is close to 1, and thus the term 1 - r2
X1, X2

 in the denominator o  

Equation (6.17) is small and the variance o  bn1 is larger than it would be i  rX1,  X2
 were 

close to 0.

Another eature o  the joint normal large-sample distribution o  the OLS estimators 

is that bn1 and bn2 are in general correlated. When the errors are homoskedastic, the correla-

tion between the OLS estimators bn1 and bn2 is the negative o  the correlation between the 

two regressors:

 corr(bn1, bn2) = -rX1, X2
. (6.18)

 a p p e n D i x

 6.3 The Frisch–Waugh Theorem

The OLS estimator in multiple regression can be computed by a sequence o  shorter 

regressions. Consider the multiple regression model in Equation (6.7). The OLS estimator 

o  b1 can be computed in three steps:

1. Regress X1 on X2, X3,c , Xk, and let X1 denote the residuals rom this regression;

2. Regress Y on X2, X3,c , Xk, and let Y  denote the residuals rom this regression; and

3. Regress Y  on X1,

where the regressions include a constant term (intercept). The Frisch-Waugh theorem 

states that the OLS coe icient in step 3 equals the OLS coe icient on X1 in the multiple 

regression model [Equation (6.7)].

This result provides a mathematical statement o  how the multiple regression coe i-

cient bn1 estimates the e ect on Y o  X1, controlling or the other X’s: Because the irst two 



216 ChapteR 6  Linear Regression with Multiple Regressors

regressions (steps 1 and 2) remove rom Y and X1 their variation associated with the other 

X’s, the third regression estimates the e ect on Y o  X1 using what is le t over a ter remov-

ing (controlling or) the e ect o  the other X’s. The Frisch-Waugh theorem is proven in 

Exercise 18.17.

This theorem suggests how Equation (6.17) can be derived rom Equation (5.27). 

Because bn1 is the OLS regression coe icient rom the regression o  Y  onto X1, Equation (5.27) 

suggests that the homoskedasticity-only variance o  bn1 is s  

2
nb1
= s  

2
u

ns  

2∼
X1

, where s2
X1

 is the

variance o  X1. Because X1 is the residual rom the regression o  X1 onto X2 (recall that 

Equation (6.17) pertains to the model with k = 2 regressors), Equation (6.15) implies that 

s2
X1
= (1 - R 2X1, X2

)s2
X1

, where R 2X1, X2
 is the adjusted R2 rom the regression o  X1 onto X2. 

Equation (6.17) ollows rom s2
X1
¡p

s2
X∼1

, R 2
X1, X2

¡p
r 2

X1, X2
 and s2

X1
¡p

s 2
X1

.
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As discussed in Chapter 6, multiple regression analysis provides a way to mitigate 

the problem of omitted variable bias by including additional regressors, thereby 
controlling for the effects of those additional regressors. The coefficients of the multiple 
regression model can be estimated by OLS. Like all estimators, the OLS estimator has sam-
pling uncertainty because its value differs from one sample to the next.

This chapter presents methods for quantifying the sampling uncertainty of the OLS 
estimator through the use of standard errors, statistical hypothesis tests, and confidence 
intervals. One new possibility that arises in multiple regression is a hypothesis that 
simultaneously involves two or more regression coefficients. The general approach to 
testing such “joint” hypotheses involves a new test statistic, the F-statistic.

Section 7.1 extends the methods for statistical inference in regression with a 
single regressor to multiple regression. Sections 7.2 and 7.3 show how to test 
hypotheses that involve two or more regression coefficients. Section 7.4 extends 
the notion of confidence intervals for a single coefficient to confidence sets for mul-
tiple coefficients. Deciding which variables to include in a regression is an impor-
tant practical issue, so Section 7.5 discusses ways to approach this problem. In 
Section 7.6, we apply multiple regression analysis to obtain improved estimates of 
the effect on test scores of a reduction in the student–teacher ratio using the 
California test score data set.

7.1 Hypothesis Tests and Confidence Intervals 
for a Single Coefficient

This section describes how to compute the standard error, how to test hypotheses, 
and how to construct confidence intervals for a single coefficient in a multiple 
regression equation.

Standard Errors for the OLS Estimators
Recall that, in the case of a single regressor, it was possible to estimate the variance 
of the OLS estimator by substituting sample averages for expectations, which 

Hypothesis Tests and 
Confidence Intervals 
in Multiple Regression
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led to the estimator sn 2
b1

 given in Equation (5.4). Under the least squares assump-
tions, the law of large numbers implies that these sample averages converge to 
their population counterparts, so, for example, sn 2

b1
>s2
b1
¡p 1. The square root 

of sn 2
b1

 is the standard error of bn1, SE(bn1), an estimator of the standard deviation 
of the sampling distribution of bn1.

All this extends directly to multiple regression. The OLS estimator bnj of the 
jth regression coefficient has a standard deviation, and this standard deviation is 
estimated by its standard error, SE(bnj). The formula for the standard error is most 
easily stated using matrices (see Section 18.2). The important point is that, as far 
as standard errors are concerned, there is nothing conceptually different between 
the single- or multiple-regressor cases. The key ideas—the large-sample normal-
ity of the estimators and the ability to estimate consistently the standard deviation 
of their sampling distribution—are the same whether one has one, two, or 
12 regressors.

Hypothesis Tests for a Single Coefficient
Suppose that you want to test the hypothesis that a change in the student–teacher 
ratio has no effect on test scores, holding constant the percentage of English learn-
ers in the district. This corresponds to hypothesizing that the true coefficient b1 on 
the student–teacher ratio is zero in the population regression of test scores on STR
and PctEL. More generally, we might want to test the hypothesis that the true coef-
ficient bj on the jth regressor takes on some specific value, bj,0. The null value bj,0
comes either from economic theory or, as in the student–teacher ratio example, 
from the decision-making context of the application. If the alternative hypothesis is 
two-sided, then the two hypotheses can be written mathematically as

H0 : bj = bj,0 vs.H1 : bj ≠ bj,0 (two-sided alternative). (7.1)

For example, if the first regressor is STR, then the null hypothesis that changing 
the student–teacher ratio has no effect on class size corresponds to the null 
hypothesis that b1 = 0 (so b1,0 = 0). Our task is to test the null hypothesis H0

against the alternative H1 using a sample of data.
Key Concept 5.2 gives a procedure for testing this null hypothesis when there 

is a single regressor. The first step in this procedure is to calculate the standard error 
of the coefficient. The second step is to calculate the t-statistic using the general 
formula in Key Concept 5.1. The third step is to compute the p-value of the 
test using the cumulative normal distribution in Appendix Table 1 or, alterna-
tively, to compare the t-statistic to the critical value corresponding to the 

N

NN

N
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desired significance level of the test. The theoretical underpinnings of this proce-
dure are that the OLS estimator has a large-sample normal distribution that, 
under the null hypothesis, has as its mean the hypothesized true value and that 
the variance of this distribution can be estimated consistently.

This underpinning is present in multiple regression as well. As stated in Key 
Concept 6.5, the sampling distribution of bnj is approximately normal. Under the 
null hypothesis the mean of this distribution is bj,0. The variance of this distribu-
tion can be estimated consistently. Therefore we can simply follow the same pro-
cedure as in the single-regressor case to test the null hypothesis in Equation (7.1).

The procedure for testing a hypothesis on a single coefficient in multiple 
regression is summarized as Key Concept 7.1. The t-statistic actually computed is 
denoted tact in this box. However, it is customary to denote this simply as t, and 
we adopt this simplified notation for the rest of the book.

Confidence Intervals for a Single Coefficient
The method for constructing a confidence interval in the multiple regression 
model is also the same as in the single-regressor model. This method is summa-
rized as Key Concept 7.2.

Testing the Hypothesis bj = bj,0
Against the Alternative bj Z bj,0

1. Compute the standard error of bnj, SE(bnj).

2. Compute the t-statistic,

t =
bnj - bj,0
SE(bnj)

. (7.2)

3. Compute the p-value,

p-value = 2Φ(- tact ), (7.3)

where tact is the value of the t-statistic actually computed. Reject the hypothesis at the 
5% significance level if the p-value is less than 0.05 or, equivalently, if tact 7 1.96.

The standard error and (typically) the t-statistic and p-value testing bj = 0 are 
computed automatically by regression software.

KEY CONCEPT

7.1
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The method for conducting a hypothesis test in Key Concept 7.1 and the 
method for constructing a confidence interval in Key Concept 7.2 rely on the 
large-sample normal approximation to the distribution of the OLS estimator bnj.
Accordingly, it should be kept in mind that these methods for quantifying the 
sampling uncertainty are only guaranteed to work in large samples.

Application to Test Scores and
the Student–Teacher Ratio
Can we reject the null hypothesis that a change in the student–teacher ratio has 
no effect on test scores, once we control for the percentage of English learners in 
the district? What is a 95% confidence interval for the effect on test scores of a 
change in the student–teacher ratio, controlling for the percentage of English 
learners? We are now able to find out. The regression of test scores against STR
and PctEL, estimated by OLS, was given in Equation (6.12) and is restated here 
with standard errors in parentheses below the coefficients:

TestScore = 686.0 - 1.10 * STR - 0.650 * PctEL.
(8.7) (0.43) (0.031)

(7.5)

To test the hypothesis that the true coefficient on STR is 0, we first need to com-
pute the t-statistic in Equation (7.2). Because the null hypothesis says that the true 
value of this coefficient is zero, the t-statistic is t = (-1.10 - 0) >0.43 = -2.54.

Confidence Intervals for a Single Coefficient 
in Multiple Regression

A 95% two-sided confidence interval for the coefficient bj is an interval that con-
tains the true value of bj with a 95% probability; that is, it contains the true value 
of bj in 95% of all possible randomly drawn samples. Equivalently, it is the set of 
values of bj that cannot be rejected by a 5% two-sided hypothesis test. When the 
sample size is large, the 95% confidence interval is

95% confidence interval for bj = 3bnj - 1.96SE(bnj), bn j + 1.96SE(bnj)4. (7.4)

A 90% confidence interval is obtained by replacing 1.96 in Equation (7.4) 
with 1.64.

KEY CONCEPT

7.2
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The associated p-value is 2Φ(-2.54) = 1.1%; that is, the smallest significance level 
at which we can reject the null hypothesis is 1.1%. Because the p-value is less than 
5%, the null hypothesis can be rejected at the 5% significance level (but not quite 
at the 1% significance level).

A 95% confidence interval for the population coefficient on STR is 
-1.10 { 1.96 * 0.43 = (-1.95, -0.26); that is, we can be 95% confident that the 
true value of the coefficient is between -1.95 and -0.26. Interpreted in the con-
text of the superintendent’s interest in decreasing the student–teacher ratio by 2, 
the 95% confidence interval for the effect on test scores of this reduction is 
(-1.95 * 2, -0.26 * 2) = (-3.90, -0.52).

Adding expenditures per pupil to the equation.  Your analysis of the multiple 
regression in Equation (7.5) has persuaded the superintendent that, based on the 
evidence so far, reducing class size will improve test scores in her district. Now, 
however, she moves on to a more nuanced question. If she is to hire more teach-
ers, she can pay for those teachers either through cuts elsewhere in the budget (no 
new computers, reduced maintenance, and so on) or by asking for an increase in 
her budget, which taxpayers do not favor. What, she asks, is the effect on test 
scores of reducing the student–teacher ratio, holding expenditures per pupil (and 
the percentage of English learners) constant?

This question can be addressed by estimating a regression of test scores on 
the student–teacher ratio, total spending per pupil, and the percentage of English 
learners. The OLS regression line is

TestScore = 649.6 - 0.29 * STR + 3.87 * Expn - 0.656 * PctEL,
(15.5) (0.48) (1.59) (0.032)

(7.6)

where Expn is total annual expenditures per pupil in the district in thousands of 
dollars.

The result is striking. Holding expenditures per pupil and the percentage of 
English learners constant, changing the student–teacher ratio is estimated to have 
a very small effect on test scores: The estimated coefficient on STR is -1.10 in 
Equation (7.5) but, after adding Expn as a regressor in Equation (7.6), it is only 
-0.29. Moreover, the t-statistic for testing that the true value of the coefficient is 
zero is now t = (-0.29 - 0) > 0.48 = -0.60, so the hypothesis that the population 
value of this coefficient is indeed zero cannot be rejected even at the 10% signifi-
cance level ( -0.60 6 1.64). Thus Equation (7.6) provides no evidence that hir-
ing more teachers improves test scores if overall expenditures per pupil are held 
constant.
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One interpretation of the regression in Equation (7.6) is that, in these Califor-
nia data, school administrators allocate their budgets efficiently. Suppose, counter-
factually, that the coefficient on STR in Equation (7.6) were negative and large. If 
so, school districts could raise their test scores simply by decreasing funding for 
other purposes (textbooks, technology, sports, and so on) and transferring those 
funds to hire more teachers, thereby reducing class sizes while holding expenditures 
constant. However, the small and statistically insignificant coefficient on STR in 
Equation (7.6) indicates that this transfer would have little effect on test scores. Put 
differently, districts are already allocating their funds efficiently.

Note that the standard error on STR increased when Expn was added, from 
0.43 in Equation (7.5) to 0.48 in Equation (7.6). This illustrates the general point, 
introduced in Section 6.7 in the context of imperfect multicollinearity, that cor-
relation between regressors (the correlation between STR and Expn is -0.62) can 
make the OLS estimators less precise.

What about our angry taxpayer? He asserts that the population values of both
the coefficient on the student–teacher ratio (b1) and the coefficient on spending 
per pupil (b2) are zero; that is, he hypothesizes that both b1 = 0 and b2 = 0.
Although it might seem that we can reject this hypothesis because the t-statistic 
testing b2 = 0 in Equation (7.6) is t = 3.87>1.59 = 2.43, this reasoning is flawed. 
The taxpayer’s hypothesis is a joint hypothesis, and to test it we need a new tool, 
the F-statistic.

7.2 Tests of Joint Hypotheses

This section describes how to formulate joint hypotheses on multiple regression 
coefficients and how to test them using an F-statistic.

Testing Hypotheses on Two or More Coefficients
Joint null hypotheses.  Consider the regression in Equation (7.6) of the test score 
against the student–teacher ratio, expenditures per pupil, and the percentage of 
English learners. Our angry taxpayer hypothesizes that neither the student–
teacher ratio nor expenditures per pupil have an effect on test scores, once we 
control for the percentage of English learners. Because STR is the first regressor 
in Equation (7.6) and Expn is the second, we can write this hypothesis mathemati-
cally as

H0: b1 = 0 and b2 = 0 vs.H1 : b1 ≠ 0 and >or b2 ≠ 0. (7.7)
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The hypothesis that both the coefficient on the student–teacher ratio (b1) and
the coefficient on expenditures per pupil (b2) are zero is an example of a joint 
hypothesis on the coefficients in the multiple regression model. In this case, the 
null hypothesis restricts the value of two of the coefficients, so as a matter of ter-
minology we can say that the null hypothesis in Equation (7.7) imposes two 
restrictions on the multiple regression model: b1 = 0 and b2 = 0.

In general, a joint hypothesis is a hypothesis that imposes two or more restric-
tions on the regression coefficients. We consider joint null and alternative hypoth-
eses of the form

H0: bj = bj,0, bm = bm,0,c, for a total of q restrictions, vs.
H1: one or more of the q restrictions under H0 does not hold, (7.8)

where bj, bm,c, refer to different regression coefficients and bj,0, bm,0,c, refer 
to the values of these coefficients under the null hypothesis. The null hypothesis 
in Equation (7.7) is an example of Equation (7.8). Another example is that, in a 
regression with k = 6 regressors, the null hypothesis is that the coefficients on the 
2nd, 4th, and 5th regressors are zero; that is, b2 = 0, b4 = 0, and b5 = 0 so that 
there are q = 3 restrictions. In general, under the null hypothesis H0 there are q
such restrictions.

If any one (or more than one) of the equalities under the null hypothesis H0

in Equation (7.8) is false, then the joint null hypothesis itself is false. Thus the 
alternative hypothesis is that at least one of the equalities in the null hypothesis 
H0 does not hold.

Why can’t I just test the individual coefficients one at a time?  Although it seems 
it should be possible to test a joint hypothesis by using the usual t-statistics to test 
the restrictions one at a time, the following calculation shows that this approach 
is unreliable. Specifically, suppose that you are interested in testing the joint null 
hypothesis in Equation (7.6) that b1 = 0 and b2 = 0. Let t1 be the t-statistic for 
testing the null hypothesis that b1 = 0 and let t2 be the t-statistic for testing the 
null hypothesis that b2 = 0. What happens when you use the “one-at-a-time” 
testing procedure: Reject the joint null hypothesis if either t1 or t2 exceeds 1.96 in 
absolute value?

Because this question involves the two random variables t1 and t2, answering 
it requires characterizing the joint sampling distribution of t1 and t2. As mentioned 
in Section 6.6, in large samples bn1 and bn2 have a joint normal distribution, so under 
the joint null hypothesis the t-statistics t1 and t2 have a bivariate normal distribu-
tion, where each t-statistic has mean equal to 0 and variance equal to 1.
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First consider the special case in which the t-statistics are uncorrelated and 
thus are independent. What is the size of the one-at-a-time testing procedure; that 
is, what is the probability that you will reject the null hypothesis when it is true? 
More than 5%! In this special case we can calculate the rejection probability of this 
method exactly. The null is not rejected only if both t1 … 1.96 and t2 … 1.96.
Because the t-statistics are independent, Pr( t1 … 1.96 and t2 … 1.96) =
Pr( t1 … 1.96) * Pr( t2 … 1.96) = 0.952 = 0.9025 = 90.25%. So the proba-
bility of rejecting the null hypothesis when it is true is 1 - 0.952 = 9.75%. This “one 
at a time” method rejects the null too often because it gives you too many chances: 
If you fail to reject using the first t-statistic, you get to try again using the second.

If the regressors are correlated, the situation is even more complicated. The 
size of the “one at a time” procedure depends on the value of the correlation 
between the regressors. Because the “one at a time” testing approach has the 
wrong size—that is, its rejection rate under the null hypothesis does not equal the 
desired significance level—a new approach is needed.

One approach is to modify the “one at a time” method so that it uses different 
critical values that ensure that its size equals its significance level. This method, 
called the Bonferroni method, is described in Appendix (7.1). The advantage of 
the Bonferroni method is that it applies very generally. Its disadvantage is that it 
can have low power: It frequently fails to reject the null hypothesis when in fact 
the alternative hypothesis is true.

Fortunately, there is another approach to testing joint hypotheses that is more 
powerful, especially when the regressors are highly correlated. That approach is 
based on the F-statistic.

The F-Statistic
The F-statistic is used to test joint hypothesis about regression coefficients. The 
formulas for the F-statistic are integrated into modern regression software. We first 
discuss the case of two restrictions, then turn to the general case of q restrictions.

The F-statistic with q = 2 restrictions.  When the joint null hypothesis has the two 
restrictions that b1 = 0 and b2 = 0, the F-statistic combines the two t-statistics 
t1 and t2 using the formula

F =
1
2
a
t21 + t22 - 2rn t1,t2t1t2

1 - rn2
t1,t2

b , (7.9)

where rn t1,t2 is an estimator of the correlation between the two t-statistics.
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To understand the F-statistic in Equation (7.9), first suppose that we know 
that the t-statistics are uncorrelated so we can drop the terms involving rn t1, t2. If so, 
Equation (7.9) simplifies and F = 1

2(t21 + t22); that is, the F-statistic is the average 
of the squared t-statistics. Under the null hypothesis, t1 and t2 are independent stan-
dard normal random variables (because the t-statistics are uncorrelated by assump-
tion), so under the null hypothesis F has an F2,∞  distribution (Section 2.4). Under 
the alternative hypothesis that either b1 is nonzero or b2 is nonzero (or both), then 
either t21 or t22 (or both) will be large, leading the test to reject the null hypothesis.

In general the t-statistics are correlated, and the formula for the F-statistic in 
Equation (7.9) adjusts for this correlation. This adjustment is made so that, under 
the null hypothesis, the F-statistic has an F2,∞  distribution in large samples 
whether or not the t-statistics are correlated.

The F-statistic with q restrictions.  The formula for the heteroskedasticity-robust 
F-statistic testing the q restrictions of the joint null hypothesis in Equation (7.8) 
is given in Section 18.3. This formula is incorporated into regression software, 
making the F-statistic easy to compute in practice.

Under the null hypothesis, the F-statistic has a sampling distribution that, in 
large samples, is given by the Fq,∞  distribution. That is, in large samples, under 
the null hypothesis

the F@statistic is distributed Fq,∞ . (7.10)

Thus the critical values for the F-statistic can be obtained from the tables of the 
Fq,∞  distribution in Appendix Table 4 for the appropriate value of q and the 
desired significance level.

Computing the heteroskedasticity-robust F-statistic in statistical software.  If the 
F-statistic is computed using the general heteroskedasticity-robust formula, its 
large-n distribution under the null hypothesis is Fq,∞  regardless of whether the 
errors are homoskedastic or heteroskedastic. As discussed in Section 5.4, for his-
torical reasons most statistical software computes homoskedasticity-only standard 
errors by default. Consequently, in some software packages you must select a 
“robust” option so that the F-statistic is computed using heteroskedasticity-robust 
standard errors (and, more generally, a heteroskedasticity-robust estimate of the 
“covariance matrix”). The homoskedasticity-only version of the F-statistic is dis-
cussed at the end of this section.

Computing the p-value using the F-statistic.  The p-value of the F-statistic can be 
computed using the large-sample Fq, ∞  approximation to its distribution. Let 
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Fact denote the value of the F-statistic actually computed. Because the F-statistic
has a large-sample Fq,∞  distribution under the null hypothesis, the p-value is

p@value = Pr3Fq,∞ 7 Fact4. (7.11)

The p-value in Equation (7.11) can be evaluated using a table of the Fq,∞ distribu-
tion (or, alternatively, a table of the x2

q distribution, because a x2
q-distributed ran-

dom variable is q times an Fq,∞-distributed random variable). Alternatively, the 
p-value can be evaluated using a computer, because formulas for the cumulative 
chi-squared and F distributions have been incorporated into most modern statistical 
software.

The “overall” regression F-statistic.  The “overall” regression F-statistic tests the 
joint hypothesis that all the slope coefficients are zero. That is, the null and alter-
native hypotheses are

H0 : b1 = 0, b2 = 0, c, bk = 0 vs. H1: bj ≠ 0, at least one j, j = 1, c, k.
(7.12)

Under this null hypothesis, none of the regressors explains any of the variation in 
Yi, although the intercept (which under the null hypothesis is the mean of Yi) can be 
nonzero. The null hypothesis in Equation (7.12) is a special case of the general null 
hypothesis in Equation (7.8), and the overall regression F-statistic is the F-statistic 
computed for the null hypothesis in Equation (7.12). In large samples, the overall 
regression F-statistic has an Fk,∞  distribution when the null hypothesis is true.

The F-statistic when q=1.  When q = 1, the F-statistic tests a single restriction. 
Then the joint null hypothesis reduces to the null hypothesis on a single regression 
coefficient, and the F-statistic is the square of the t-statistic.

Application to Test Scores
and the Student–Teacher Ratio
We are now able to test the null hypothesis that the coefficients on both the 
student–teacher ratio and expenditures per pupil are zero, against the alternative 
that at least one coefficient is nonzero, controlling for the percentage of English 
learners in the district.

To test this hypothesis, we need to compute the heteroskedasticity-robust 
F-statistic of the test that b1 = 0 and b2 = 0 using the regression of TestScore on 
STR, Expn, and PctEL reported in Equation (7.6). This F-statistic is 5.43. Under 
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the null hypothesis, in large samples this statistic has an F2,∞ distribution. The 5% 
critical value of the F2,∞ distribution is 3.00 (Appendix Table 4), and the 1% crit-
ical value is 4.61. The value of the F-statistic computed from the data, 5.43, exceeds 
4.61, so the null hypothesis is rejected at the 1% level. It is very unlikely that we 
would have drawn a sample that produced an F-statistic as large as 5.43 if the null 
hypothesis really were true (the p-value is 0.005). Based on the evidence in Equa-
tion (7.6) as summarized in this F-statistic, we can reject the taxpayer’s hypothesis 
that neither the student–teacher ratio nor expenditures per pupil have an effect 
on test scores (holding constant the percentage of English learners).

The Homoskedasticity-Only F-Statistic
One way to restate the question addressed by the F-statistic is to ask whether 
relaxing the q restrictions that constitute the null hypothesis improves the fit of 
the regression by enough that this improvement is unlikely to be the result merely 
of random sampling variation if the null hypothesis is true. This restatement sug-
gests that there is a link between the F-statistic and the regression R2: A large 
F-statistic should, it seems, be associated with a substantial increase in the R2. In 
fact, if the error ui is homoskedastic, this intuition has an exact mathematical 
expression. Specifically, if the error term is homoskedastic, the F-statistic can be 
written in terms of the improvement in the fit of the regression as measured either 
by the decrease in the sum of squared residuals or by the increase in the regression 
R2. The resulting F-statistic is referred to as the homoskedasticity-only F-statistic, 
because it is valid only if the error term is homoskedastic. In contrast, the hetero-
skedasticity-robust F-statistic computed using the formula in Section 18.3 is valid 
whether the error term is homoskedastic or heteroskedastic. Despite this signifi-
cant limitation of the homoskedasticity-only F-statistic, its simple formula sheds 
light on what the F-statistic is doing. In addition, the simple formula can be com-
puted using standard regression output, such as might be reported in a table that 
includes regression R2’s but not F-statistics.

The homoskedasticity-only F-statistic is computed using a simple formula 
based on the sum of squared residuals from two regressions. In the first regression, 
called the restricted regression, the null hypothesis is forced to be true. When the 
null hypothesis is of the type in Equation (7.8), where all the hypothesized values 
are zero, the restricted regression is the regression in which those coefficients are 
set to zero; that is, the relevant regressors are excluded from the regression. In the 
second regression, called the unrestricted regression, the alternative hypothesis is 
allowed to be true. If the sum of squared residuals is sufficiently smaller in the unre-
stricted than the restricted regression, then the test rejects the null hypothesis.
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The homoskedasticity-only F-statistic is given by the formula

F =
(SSRrestricted - SSRunrestricted)>q
SSRunrestricted>(n - kunrestricted - 1)

, (7.13)

where SSRrestricted is the sum of squared residuals from the restricted regression, 
SSRunrestricted is the sum of squared residuals from the unrestricted regression, q is 
the number of restrictions under the null hypothesis, and kunrestricted is the number 
of regressors in the unrestricted regression. An alternative equivalent formula for 
the homoskedasticity-only F-statistic is based on the R2 of the two regressions:

F =
(R2
unrestricted - R2

restricted)>q
(1 - R2

unrestricted)(n - kunrestricted - 1)
. (7.14)

If the errors are homoskedastic, then the difference between the homoskedasticity-
only F-statistic computed using Equation (7.13) or (7.14) and the heteroskedasticity-
robust F-statistic vanishes as the sample size n increases. Thus, if the errors are 
homoskedastic, the sampling distribution of the homoskedasticity-only F-statistic
under the null hypothesis is, in large samples, Fq,∞.

These formulas are easy to compute and have an intuitive interpretation in 
terms of how well the unrestricted and restricted regressions fit the data. Unfor-
tunately, the formulas apply only if the errors are homoskedastic. Because homo-
skedasticity is a special case that cannot be counted on in applications with 
economic data, or more generally with data sets typically found in the social sci-
ences, in practice the homoskedasticity-only F-statistic is not a satisfactory substi-
tute for the heteroskedasticity-robust F-statistic.

Using the homoskedasticity-only F-statistic when n is small.   If the errors are 
homoskedastic and are i.i.d. normally distributed, then the homoskedasticity-only 
F-statistic defined in Equations (7.13) and (7.14) has an Fq,n - kunrestricted - 1 distribu-
tion under the null hypothesis. Critical values for this distribution, which depend 
on both q and n - kunrestricted - 1, are given in Appendix Table 5. As discussed in 
Section 2.4, the Fq,n - kunrestricted - 1 distribution converges to the Fq,∞ distribution 
as n increases; for large sample sizes, the differences between the two distribu-
tions are negligible. For small samples, however, the two sets of critical values 
differ.

Application to test scores and the student–teacher ratio.    To test the null 
hypothesis that the population coefficients on STR and Expn are 0, controlling for 
PctEL, we need to compute the R2 (or SSR) for the restricted and unrestricted 
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regression. The unrestricted regression has the regressors STR,Expn, and PctEL,
and is given in Equation (7.6); its R2 is 0.4366; that is, R2

unrestricted = 0.4366. The 
restricted regression imposes the joint null hypothesis that the true coefficients on 
STR and Expn are zero; that is, under the null hypothesis STR and Expn do not 
enter the population regression, although PctEL does (the null hypothesis does not 
restrict the coefficient on PctEL). The restricted regression, estimated by OLS, is

TestScore = 664.7 - 0.671 * PctEL, R2 = 0.4149,
(1.0) (0.032)

(7.15)

so R2
restricted = 0.4149. The number of restrictions is q = 2, the number of observa-

tions is n = 420, and the number of regressors in the unrestricted regression is 
k = 3. The homoskedasticity-only F-statistic, computed using Equation (7.14), is

F =
(0.4366 - 0.4149)>2

(1 - 0.4366)(420 - 3 - 1)
= 8.01.

Because 8.01 exceeds the 1% critical value of 4.61, the hypothesis is rejected at 
the 1% level using the homoskedasticity-only test.

This example illustrates the advantages and disadvantages of the homoskedasticity-
only F-statistic. Its advantage is that it can be computed using a calculator. Its disad-
vantage is that the values of the homoskedasticity-only and heteroskedasticity-robust 
F-statistics can be very different: The heteroskedasticity-robust F-statistic testing 
this joint hypothesis is 5.43, quite different from the less reliable homoskedasticity-
only value of 8.01.

7.3 Testing Single Restrictions 
Involving Multiple Coefficients

Sometimes economic theory suggests a single restriction that involves two or 
more regression coefficients. For example, theory might suggest a null hypothesis 
of the form b1 = b2; that is, the effects of the first and second regressor are the 
same. In this case, the task is to test this null hypothesis against the alternative that 
the two coefficients differ:

H0 : b1 = b2 vs.H1: b1 ≠ b2. (7.16)

This null hypothesis has a single restriction, so q = 1, but that restriction involves 
multiple coefficients (b1 and b2). We need to modify the methods presented so far 
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to test this hypothesis. There are two approaches; which is easier depends on your 
software.

Approach #1: Test the restriction directly.  Some statistical packages have a spe-
cialized command designed to test restrictions like Equation (7.16) and the result 
is an F-statistic that, because q = 1, has an F1,∞ distribution under the null hypoth-
esis. (Recall from Section 2.4 that the square of a standard normal random vari-
able has an F1,∞ distribution, so the 95% percentile of the F1,∞ distribution is 
1.962 = 3.84.)

Approach #2: Transform the regression.  If your statistical package cannot test 
the restriction directly, the hypothesis in Equation (7.16) can be tested using a 
trick in which the original regression equation is rewritten to turn the restriction 
in Equation (7.16) into a restriction on a single regression coefficient. To be con-
crete, suppose there are only two regressors, X1i and X2i, in the regression, so the 
population regression has the form

Yi = b0 + b1X1i + b2X2i + ui. (7.17)

Here is the trick: By subtracting and adding b2X1i, we have that b1X1i + b2X2i =
b1X1i - b2X1i + b2X1i + b2X2i = (b1 - b2)X1i + b2(X1i + X2i) = g1X1i + b2Wi,
where g1 = b1 - b2 and Wi = X1i + X2i. Thus the population regression in 
Equation (7.17) can be rewritten as

Yi = b0 + g1X1i + b2Wi + ui. (7.18)

Because the coefficient g1 in this equation is g1 = b1 - b2, under the null hypoth-
esis in Equation (7.16), g1 = 0, while under the alternative, g1 ≠ 0. Thus, by 
turning Equation (7.17) into Equation (7.18), we have turned a restriction on two 
regression coefficients into a restriction on a single regression coefficient.

Because the restriction now involves the single coefficient g1, the null hypoth-
esis in Equation (7.16) can be tested using the t-statistic method of Section 7.1. In 
practice, this is done by first constructing the new regressor Wi as the sum of the 
two original regressors, then estimating the regression of Yi on X1i and Wi. A 95% 
confidence interval for the difference in the coefficients b1 - b2 can be calculated 
as gn1 { 1.96 SE(gn1).

This method can be extended to other restrictions on regression equations 
using the same trick (see Exercise 7.9).

The two methods (Approaches #1 and #2) are equivalent, in the sense that 
the F-statistic from the first method equals the square of the t-statistic from the 
second method.
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Extension to q + 1.  In general, it is possible to have q restrictions under the null 
hypothesis in which some or all of these restrictions involve multiple coefficients. 
The F-statistic of Section 7.2 extends to this type of joint hypothesis. The F-statistic 
can be computed by either of the two methods just discussed for q = 1. Precisely 
how best to do this in practice depends on the specific regression software being 
used.

7.4 Confidence Sets for Multiple Coefficients

This section explains how to construct a confidence set for two or more regression 
coefficients. The method is conceptually similar to the method in Section 7.1 for 
constructing a confidence set for a single coefficient using the t-statistic, except 
that the confidence set for multiple coefficients is based on the F-statistic.

A 95% confidence set for two or more coefficients is a set that contains the 
true population values of these coefficients in 95% of randomly drawn samples. 
Thus a confidence set is the generalization to two or more coefficients of a confi-
dence interval for a single coefficient.

Recall that a 95% confidence interval is computed by finding the set of 
values of the coefficients that are not rejected using a t-statistic at the 5% sig-
nificance level. This approach can be extended to the case of multiple coefficients. 
To make this concrete, suppose you are interested in constructing a confidence 
set for two coefficients, b1 and b2. Section 7.2 showed how to use the F-statistic to 
test a joint null hypothesis that b1 = b1,0 and b2 = b2,0. Suppose you were to test 
every possible value of b1,0 and b2,0 at the 5% level. For each pair of candidates 
(b1,0, b2,0), you compute the F-statistic and reject it if it exceeds the 5% critical 
value of 3.00. Because the test has a 5% significance level, the true population 
values of b1 and b2 will not be rejected in 95% of all samples. Thus the set of val-
ues not rejected at the 5% level by this F-statistic constitutes a 95% confidence 
set for b1 and b2.

Although this method of trying all possible values of b1,0 and b2,0 works in 
theory, in practice it is much simpler to use an explicit formula for the confidence 
set. This formula for the confidence set for an arbitrary number of coefficients is 
based on the formula for the F-statistic. When there are two coefficients, the 
resulting confidence sets are ellipses.

As an illustration, Figure 7.1 shows a 95% confidence set (confidence ellipse) 
for the coefficients on the student–teacher ratio and expenditure per pupil, hold-
ing constant the percentage of English learners, based on the estimated regression 
in Equation (7.6). This ellipse does not include the point (0,0). This means that the 
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null hypothesis that these two coefficients are both zero is rejected using the 
F-statistic at the 5% significance level, which we already knew from Section 7.2. 
The confidence ellipse is a fat sausage with the long part of the sausage oriented 
in the lower-left/upper-right direction. The reason for this orientation is that the 
estimated correlation between bn1 and bn2 is positive, which in turn arises because 
the correlation between the regressors STR and Expn is negative (schools that 
spend more per pupil tend to have fewer students per teacher).

7.5 Model Specification for Multiple
Regression

The job of determining which variables to include in multiple regression—that is, 
the problem of choosing a regression specification—can be quite challenging, and 
no single rule applies in all situations. But do not despair, because some useful 
guidelines are available. The starting point for choosing a regression specification 
is thinking through the possible sources of omitted variable bias. It is important 
to rely on your expert knowledge of the empirical problem and to focus on obtain-
ing an unbiased estimate of the causal effect of interest; do not rely solely on 
purely statistical measures of fit such as the R2 or R2.

FIGURE 7.1 95% Confidence Set for Coefficients on STR and Expn from Equation (7.6)

The 95% confidence set for
the coefficients on STR (b1)

and Expn (b2) is an ellipse.

The ellipse contains the pairs

of values of b1 and b2 that

cannot be rejected using the
F-statistic at the 5%

significance level. The point

(b1, b2) = (0, 0) is not  

contained in the confidence 

set, so the null hypothesis
H0: b1 = 0 and b2 = 0

is rejected at the 5%

significance level.

Coefficient on STR (β1)

Coefficient on Expn (β2)

1

(b1, b2) = (–0.29, 3.87)

95% confidence set

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1

0

1

2

3

4

5

6

7

8

9

^ ^

(b1, b2) = (0, 0)1



7.5  Model Specification for Multiple Regression 233

Omitted Variable Bias in Multiple Regression
The OLS estimators of the coefficients in multiple regression will have omitted 
variable bias if an omitted determinant of Yi is correlated with at least one of the 
regressors. For example, students from affluent families often have more learning 
opportunities outside the classroom (reading material at home, travel, museum 
visits, etc.) than do their less affluent peers, which could lead to better test scores. 
Moreover, if the district is a wealthy one, then the schools will tend to have larger 
budgets and lower student–teacher ratios. If so, the availability of outside learning 
opportunities and the student–teacher ratio would be negatively correlated, and 
the OLS estimate of the coefficient on the student–teacher ratio would pick up 
the effect of outside learning opportunities, even after controlling for the percent-
age of English learners. In short, omitting outside learning opportunities (and 
other variables related to the students’ economic background) could lead to omit-
ted variable bias in the regression of test scores on the student–teacher ratio and 
the percentage of English learners.

The general conditions for omitted variable bias in multiple regression are 
similar to those for a single regressor: If an omitted variable is a determinant of 
Yi and if it is correlated with at least one of the regressors, then the OLS estimator 
of at least one of the coefficients will have omitted variable bias. The two condi-
tions for omitted variable bias in multiple regression are summarized in Key 
Concept 7.3.

At a mathematical level, if the two conditions for omitted variable bias are 
satisfied, then at least one of the regressors is correlated with the error term. This 
means that the conditional expectation of ui given X1i,c,Xki is nonzero, so the 
first least squares assumption is violated. As a result, the omitted variable bias 

Omitted Variable Bias in Multiple Regression

Omitted variable bias is the bias in the OLS estimator that arises when one or 
more included regressors are correlated with an omitted variable. For omitted 
variable bias to arise, two things must be true:

1. At least one of the included regressors must be correlated with the omitted 
variable.

2. The omitted variable must be a determinant of the dependent variable, Y.

KEY CONCEPT

7.3
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persists even if the sample size is large; that is, omitted variable bias implies that 
the OLS estimators are inconsistent.

The Role of Control Variables in Multiple Regression
So far, we have implicitly distinguished between a regressor for which we wish to 
estimate a causal effect—that is, a variable of interest—and control variables. We 
now discuss this distinction in more detail.

A control variable is not the object of interest in the study; rather it is a regres-
sor included to hold constant factors that, if neglected, could lead the estimated 
causal effect of interest to suffer from omitted variable bias. The least squares 
assumptions for multiple regression (Section 6.5) treat the regressors symmetri-
cally. In this subsection, we introduce an alternative to the first least squares 
assumption in which the distinction between a variable of interest and a control 
variable is explicit. If this alternative assumption holds, the OLS estimator of the 
effect of interest is unbiased, but the OLS coefficients on control variables are in 
general biased and do not have a causal interpretation.

For example, consider the potential omitted variable bias arising from omit-
ting outside learning opportunities from a test score regression. Although “out-
side learning opportunities” is a broad concept that is difficult to measure, those 
opportunities are correlated with the students’ economic background, which can 
be measured. Thus a measure of economic background can be included in a test 
score regression to control for omitted income-related determinants of test scores, 
like outside learning opportunities. To this end, we augment the regression of test 
scores on STR and PctEL with the percentage of students receiving a free or sub-
sidized school lunch (LchPct). Because students are eligible for this program if 
their family income is less than a certain threshold (approximately 150% of the 
poverty line), LchPct measures the fraction of economically disadvantaged chil-
dren in the district. The estimated regression is

TestScore = 700.2 - 1.00 * STR - 0.122 * PctEL - 0.547 * LchPct.
(5.6) (0.27) (0.033) (0.024)

(7.19)

Including the control variable LchPct does not substantially change any conclu-
sions about the class size effect: The coefficient on STR changes only slightly from 
its value of -1.10 in Equation (7.5) to -1.00 in Equation (7.19), and it remains 
statistically significant at the 1% level.

What does one make of the coefficient on LchPct in Equation (7.19)? That coef-
ficient is very large: The difference in test scores between a district with LchPct = 0%
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and one with LchPct = 50% is estimated to be 27.4 points 3= 0.547 * (50 - 0)4,
approximately the difference between the 75th and 25th percentiles of test scores 
in Table 4.1. Does this coefficient have a causal interpretation? Suppose that upon 
seeing Equation (7.19) the superintendent proposed eliminating the reduced-
price lunch program so that, for her district, LchPct would immediately drop to 
zero. Would eliminating the lunch program boost her district’s test scores? Com-
mon sense suggests that the answer is no; in fact, by leaving some students hungry, 
eliminating the reduced-price lunch program could have the opposite effect. But 
does it make sense to treat the coefficient on the variable of interest STR as 
causal, but not the coefficient on the control variable LchPct?

The distinction between variables of interest and control variables can be 
made mathematically precise by replacing the first least squares assumption of 
Key Concept 6.4—that is, the conditional mean-zero assumption—with an 
assumption called conditional mean independence. Consider a regression with 
two variables, in which X1i is the variable of interest and X2i is the control vari-
able. Conditional mean independence requires that the conditional expectation 
of ui given X1i and X2i does not depend on (is independent of) X1i, although it can 
depend on X2i. That is

E(ui X1i, X2i) = E(ui X2i) (conditional mean independence). (7.20)

As is shown in Appendix (7.2), under the conditional mean independence assump-
tion in Equation (7.20), the coefficient on X1i has a causal interpretation but the 
coefficient on X2i does not.

The idea of conditional mean independence is that once you control for 
X2i,X1i can be treated as if it were randomly assigned, in the sense that the con-
ditional mean of the error term no longer depends on X1i. Including X2i as a 
control variable makes X1i uncorrelated with the error term so that OLS can 
estimate the causal effect on Y1i of a change in X1i. The control variable, however, 
remains correlated with the error term, so the coefficient on the control variable 
is subject to omitted variable bias and does not have a causal interpretation.

The terminology of control variables can be confusing. The control variable 
X2i is included because it controls for omitted factors that affect Yi and are cor-
related with X1i and because it might (but need not) have a causal effect itself. 
Thus the coefficient on X1i is the effect on Yi of X1i, using the control variable X2i

both to hold constant the direct effect of X2i and to control for factors correlated with 
X2i. Because this terminology is awkward, it is conventional simply to say that the 
coefficient on X1i is the effect on Yi, controlling for X2i. When a control variable is 
used, it is controlling both for its own direct causal effect (if any) and for the effect 
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of correlated omitted factors, with the aim of ensuring that conditional mean inde-
pendence holds.

In the class size example, LchPct can be correlated with factors, such as learn-
ing opportunities outside school, that enter the error term; indeed, it is because of 
this correlation that LchPct is a useful control variable. This correlation between 
LchPct and the error term means that the estimated coefficient on LchPct does 
not have a causal interpretation. What the conditional mean independence 
assumption requires is that, given the control variables in the regression (PctEL
and LchPct), the mean of the error term does not depend on the student–teacher 
ratio. Said differently, conditional mean independence says that among schools 
with the same values of PctEL and LchPct, class size is “as if” randomly assigned: 
including PctEL and LchPct in the regression controls for omitted factors so that 
STR is uncorrelated with the error term. If so, the coefficient on the student–
teacher ratio has a causal interpretation even though the coefficient on LchPct
does not: For the superintendent struggling to increase test scores, there is no 
free lunch.

Model Specification in Theory and in Practice
In theory, when data are available on the omitted variable, the solution to omit-
ted variable bias is to include the omitted variable in the regression. In practice, 
however, deciding whether to include a particular variable can be difficult and 
requires judgment.

Our approach to the challenge of potential omitted variable bias is twofold. 
First, a core or base set of regressors should be chosen using a combination of 
expert judgment, economic theory, and knowledge of how the data were collected; 
the regression using this base set of regressors is sometimes referred to as a base 
specification. This base specification should contain the variables of primary inter-
est and the control variables suggested by expert judgment and economic theory. 
Expert judgment and economic theory are rarely decisive, however, and often the 
variables suggested by economic theory are not the ones on which you have data. 
Therefore the next step is to develop a list of candidate alternative specifications,
that is, alternative sets of regressors. If the estimates of the coefficients of interest 
are numerically similar across the alternative specifications, then this provides evi-
dence that the estimates from your base specification are reliable. If, on the other 
hand, the estimates of the coefficients of interest change substantially across speci-
fications, this often provides evidence that the original specification had omitted 
variable bias. We elaborate on this approach to model specification in Section 9.2 
after studying some tools for specifying regressions.
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Interpreting the R2 and the Adjusted R2 in Practice
An R2 or an R2 near 1 means that the regressors are good at predicting the values 
of the dependent variable in the sample, and an R2 or an R2 near 0 means that 
they are not. This makes these statistics useful summaries of the predictive ability 
of the regression. However, it is easy to read more into them than they deserve.

There are four potential pitfalls to guard against when using the R2 or R2:

1. An increase in the R2 or R2 does not necessarily mean that an added variable 
is statistically significant. The R2 increases whenever you add a regressor, 
whether or not it is statistically significant. The R2 does not always increase, 
but if it does, this does not necessarily mean that the coefficient on that added 
regressor is statistically significant. To ascertain whether an added variable is 
statistically significant, you need to perform a hypothesis test using the t-statistic.

2. A high R2 or R2 does not mean that the regressors are a true cause of 
the dependent variable. Imagine regressing test scores against parking lot 
area per pupil. Parking lot area is correlated with the student–teacher ratio, 
with whether the school is in a suburb or a city, and possibly with district 
income—all things that are correlated with test scores. Thus the regression 
of test scores on parking lot area per pupil could have a high R2 and R2, but 
the relationship is not causal (try telling the superintendent that the way to 
increase test scores is to increase parking space!).

3. A high R2 or R2 does not mean that there is no omitted variable bias. Recall 
the discussion of Section 6.1, which concerned omitted variable bias in the 
regression of test scores on the student–teacher ratio. The R2 of the regres-
sion never came up because it played no logical role in this discussion. Omit-
ted variable bias can occur in regressions with a low R2, a moderate R2, or a 
high R2. Conversely, a low R2 does not imply that there necessarily is omit-
ted variable bias.

4. A high R2 or R2 does not necessarily mean that you have the most appro-
priate set of regressors, nor does a low R2 or R2 necessarily mean that you 
have an inappropriate set of regressors. The question of what constitutes 
the right set of regressors in multiple regression is difficult, and we return 
to it throughout this textbook. Decisions about the regressors must weigh 
issues of omitted variable bias, data availability, data quality, and, most 
importantly, economic theory and the nature of the substantive questions 
being addressed. None of these questions can be answered simply by having 
a high (or low) regression R2 or R2.

These points are summarized in Key Concept 7.4.



238 CHAPTER 7 Hypothesis Tests and Confidence Intervals in Multiple Regression

7.6 Analysis of the Test Score Data Set

This section presents an analysis of the effect on test scores of the student–teacher 
ratio using the California data set. Our primary purpose is to provide an example 
in which multiple regression analysis is used to mitigate omitted variable bias. Our 
secondary purpose is to demonstrate how to use a table to summarize regression 
results.

Discussion of the base and alternative specifications.  This analysis focuses on 
estimating the effect on test scores of a change in the student–teacher ratio, hold-
ing constant student characteristics that the superintendent cannot control. Many 
factors potentially affect the average test score in a district. Some of these factors 
are correlated with the student–teacher ratio, so omitting them from the regres-
sion results in omitted variable bias. Because these factors, such as outside learn-
ing opportunities, are not directly measured, we include control variables that are 
correlated with these omitted factors. If the control variables are adequate in the 
sense that the conditional mean independence assumption holds, then the coef-
ficient on the student–teacher ratio is the effect of a change in the student–teacher 
ratio, holding constant these other factors.

Here we consider three variables that control for background characteristics 
of the students that could affect test scores: the fraction of students who are still 

R2 and R 2: What They Tell You—and What They Don’t

The R2 and R  2 tell you whether the regressors are good at predicting, or “explain-
ing,” the values of the dependent variable in the sample of data on hand. If the R2

(orR2) is nearly 1, then the regressors produce good predictions of the dependent 
variable in that sample, in the sense that the variance of the OLS residual is small 
compared to the variance of the dependent variable. If the R2 (or R2) is nearly 0, 
the opposite is true.

The R2 and R2 do NOT tell you whether:

1. An included variable is statistically significant,

2. The regressors are a true cause of the movements in the dependent variable,

3. There is omitted variable bias, or

4. You have chosen the most appropriate set of regressors.

KEY CONCEPT

7.4
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learning English, the percentage of students who are eligible for receiving a sub-
sidized or free lunch at school, and a new variable, the percentage of students in 
the district whose families qualify for a California income assistance program. 
Eligibility for this income assistance program depends in part on family income, 
with a lower (stricter) threshold than the subsidized lunch program. The final two 
variables thus are different measures of the fraction of economically disadvantaged 
children in the district (their correlation coefficient is 0.74). Theory and expert judg-
ment do not tell us which of these two variables to use to control for determinants 
of test scores related to economic background. For our base specification, we use 
the percentage eligible for a subsidized lunch, but we also consider an alternative 
specification that uses the fraction eligible for the income assistance program.

Scatterplots of tests scores and these variables are presented in Figure 7.2. 
Each of these variables exhibits a negative correlation with test scores. The correla-
tion between test scores and the percentage of English learners is -0.64; between test 
scores and the percentage eligible for a subsidized lunch is -0.87; and between 
test scores and the percentage qualifying for income assistance is -0.63.

What scale should we use for the regressors?  A practical question that arises in 
regression analysis is what scale you should use for the regressors. In Figure 7.2, 
the units of the variables are percent, so the maximum possible range of the data 
is 0 to 100. Alternatively, we could have defined these variables to be a decimal
fraction rather than a percent; for example, PctEL could be replaced by the fraction
of English learners, FracEL(= PctEL > 100), which would range between 0 and 1 
instead of between 0 and 100. More generally, in regression analysis some decision 
usually needs to be made about the scale of both the dependent and independent 
variables. How, then, should you choose the scale, or units, of the variables?

The general answer to the question of choosing the scale of the variables is to 
make the regression results easy to read and to interpret. In the test score applica-
tion, the natural unit for the dependent variable is the score of the test itself. In 
the regression of TestScore on STR and PctEL reported in Equation (7.5), the 
coefficient on PctEL is -0.650. If instead the regressor had been FracEL, the 
regression would have had an identical R2 and SER; however, the coefficient on 
FracEL would have been -65.0. In the specification with PctEL, the coefficient 
is the predicted change in test scores for a 1-percentage-point increase in English 
learners, holding STR constant; in the specification with FracEL, the coefficient 
is the predicted change in test scores for an increase by 1 in the fraction of English 
learners—that is, for a 100-percentage-point-increase—holding STR constant. 
Although these two specifications are mathematically equivalent, for the pur-
poses of interpretation the one with PctEL seems, to us, more natural.
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Another consideration when deciding on a scale is to choose the units of the 
regressors so that the resulting regression coefficients are easy to read. For exam-
ple, if a regressor is measured in dollars and has a coefficient of 0.00000356, it is 
easier to read if the regressor is converted to millions of dollars and the coefficient 
3.56 is reported.

Tabular presentation of result.  We are now faced with a communication prob-
lem. What is the best way to show the results from several multiple regressions 
that contain different subsets of the possible regressors? So far, we have presented 

FIGURE 7.2 Scatterplots of Test Scores vs. Three Student Characteristics

The scatterplots show a negative relationship between test scores and (a) the percentage of English learners (correla-

tion = -0.64), (b) the percentage of students qualifying for a reduced price lunch (correlation = -0.87); and (c) the 

percentage qualifying for income assistance (correlation = -0.63).
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regression results by writing out the estimated regression equations, as in Equa-
tions (7.6) and (7.19). This works well when there are only a few regressors and 
only a few equations, but with more regressors and equations this method of 
presentation can be confusing. A better way to communicate the results of several 
regressions is in a table.

Table 7.1 summarizes the results of regressions of the test score on various sets 
of regressors. Each column summarizes a separate regression. Each regression has 
the same dependent variable, test score. The entries in the first five rows are the 
estimated regression coefficients, with their standard errors below them in paren-
theses. The asterisks indicate whether the t-statistics, testing the hypothesis that the 
relevant coefficient is zero, is significant at the 5% level (one asterisk) or the 1% 
level (two asterisks). The final three rows contain summary statistics for the regres-
sion (the standard error of the regression, SER, and the adjusted R2, R2) and the 
sample size (which is the same for all of the regressions, 420 observations).

All the information that we have presented so far in equation format appears 
as a column of this table. For example, consider the regression of the test score 

TABLE 7.1 Results of Regressions of Test Scores on the Student–Teacher Ratio and Student 
Characteristic Control Variables Using California Elementary School Districts

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)

Student–teacher ratio (X1) -2.28** -1.10* -1.00** -1.31* -1.01*
      (0.52)  (0.43) (0.27)  (0.34)  (0.27)

Percent English learners (X2)   -0.650** -0.122** -0.488** -0.130**
        (0.031)  (0.033)   (0.030)   (0.036)

Percent eligible for subsidized lunch (X3)     -0.547*   -0.529*
       (0.024)      (0.038)

Percent on public income assistance (X4)       -0.790**    0.048
          (0.068)    (0.059)

Intercept   698.9** 686.0** 700.2** 698.0** 700.4**
  (10.4) (8.7) (5.6) (6.9) (5.5)

Summary Statistics

SER   18.58 14.46 9.08 11.65  9.08

R 2       0.049     0.424   0.773     0.626    0.773

n 420 420 420 420 420

These regressions were estimated using the data on K–8 school districts in California, described in Appendix (4.1). Heteroskedasticity-
robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the 
*5% level or **1% significance level using a two-sided test.
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against the student–teacher ratio, with no control variables. In equation form, this 
regression is

TestScore = 698.9 - 2.28 * STR, R 2 = 0.049, SER = 18.58, n = 420.
(10.4) (0.52)

(7.21)

All this information appears in column (1) of Table 7.1. The estimated coeffi-
cient on the student–teacher ratio (-2.28) appears in the first row of numerical 
entries, and its standard error (0.52) appears in parentheses just below the esti-
mated coefficient. The intercept (698.9) and its standard error (10.4) are given 
in the row labeled “Intercept.” (Sometimes you will see this row labeled “con-
stant” because, as discussed in Section 6.2, the intercept can be viewed as the 
coefficient on a regressor that is always equal to 1.) Similarly, the R2 (0.049), the 
SER (18.58), and the sample size n (420) appear in the final rows. The blank 
entries in the rows of the other regressors indicate that those regressors are not 
included in this regression.

Although the table does not report t-statistics, they can be computed from the 
information provided; for example, the t-statistic testing the hypothesis that the coef-
ficient on the student–teacher ratio in column (1) is zero is -2.28>0.52 = -4.38. This 
hypothesis is rejected at the 1% level, which is indicated by the double asterisk next 
to the estimated coefficient in the table.

Regressions that include the control variables measuring student characteris-
tics are reported in columns (2) through (5). Column (2), which reports the regres-
sion of test scores on the student–teacher ratio and on the percentage of English 
learners, was previously stated as Equation (7.5).

Column (3) presents the base specification, in which the regressors are the 
student–teacher ratio and two control variables, the percentage of English learners 
and the percentage of students eligible for a free lunch.

Columns (4) and (5) present alternative specifications that examine the effect 
of changes in the way the economic background of the students is measured. In 
column (4) the percentage of students on income assistance is included as a regres-
sor, and in column (5) both of the economic background variables are included.

Discussion of empirical results.  These results suggest three conclusions:

1. Controlling for these student characteristics cuts the effect of the student–
teacher ratio on test scores approximately in half. This estimated effect is 
not very sensitive to which specific control variables are included in the 
regression. In all cases the coefficient on the student–teacher ratio remains 
statistically significant at the 5% level. In the four specifications with control 
variables, regressions (2) through (5), reducing the student–teacher ratio 
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by one student per teacher is estimated to increase average test scores by 
approximately 1 point, holding constant student characteristics.

2. The student characteristic variables are potent predictors of test scores. The 
student–teacher ratio alone explains only a small fraction of the variation 
in test scores: The R 2 in column (1) is 0.049. The R 2 jumps, however, when 
the student characteristic variables are added. For example, the R 2 in the 
base specification, regression (3), is 0.773. The signs of the coefficients on 
the student demographic variables are consistent with the patterns seen in 
Figure 7.2: Districts with many English learners and districts with many poor 
children have lower test scores.

3. The control variables are not always individually statistically significant: 
In specification (5), the hypothesis that the coefficient on the percent-
age qualifying for income assistance is zero is not rejected at the 5% level 
(the t-statistic is -0.82). Because adding this control variable to the base 
specification (3) has a negligible effect on the estimated coefficient for the 
student–teacher ratio and its standard error, and because the coefficient 
on this control variable is not significant in specification (5), this additional 
control variable is redundant, at least for the purposes of this analysis.

7.7 Conclusion

Chapter 6 began with a concern: In the regression of test scores against the 
student–teacher ratio, omitted student characteristics that influence test scores 
might be correlated with the student–teacher ratio in the district, and, if so, the 
student–teacher ratio in the district would pick up the effect on test scores of these 
omitted student characteristics. Thus the OLS estimator would have omitted vari-
able bias. To mitigate this potential omitted variable bias, we augmented the 
regression by including variables that control for various student characteristics 
(the percentage of English learners and two measures of student economic back-
ground). Doing so cuts the estimated effect of a unit change in the student–teacher 
ratio in half, although it remains possible to reject the null hypothesis that the 
population effect on test scores, holding these control variables constant, is zero 
at the 5% significance level. Because they eliminate omitted variable bias arising 
from these student characteristics, these multiple regression estimates, hypothesis 
tests, and confidence intervals are much more useful for advising the superintendent 
than the single-regressor estimates of Chapters 4 and 5.

The analysis in this and the preceding chapter has presumed that the popula-
tion regression function is linear in the regressors—that is, that the conditional 
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expectation of Yi given the regressors is a straight line. There is, however, no 
particular reason to think this is so. In fact, the effect of reducing the student–
teacher ratio might be quite different in districts with large classes than in districts 
that already have small classes. If so, the population regression line is not linear 
in the X’s but rather is a nonlinear function of the X’s. To extend our analysis to 
regression functions that are nonlinear in the X’s, however, we need the tools 
developed in the next chapter.

Summary

1. Hypothesis tests and confidence intervals for a single regression coefficient 
are carried out using essentially the same procedures used in the one-vari-
able linear regression model of Chapter 5. For example, a 95% confidence 
interval for b1 is given by bn1{1.96 SE(bn1).

2. Hypotheses involving more than one restriction on the coefficients are called
joint hypotheses. Joint hypotheses can be tested using an F-statistic.

3. Regression specification proceeds by first determining a base specification cho-
sen to address concern about omitted variable bias. The base specification can be 
modified by including additional regressors that address other potential sources 
of omitted variable bias. Simply choosing the specification with the highest R2

can lead to regression models that do not estimate the causal effect of interest.
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Review the Concepts

7.1 Explain how you would test the null hypothesis that b1 = 0 in the multiple 
regression model Yi = b0 + b1X1i + b2X2i + ui. Explain how you would 
test the null hypothesis that b2 = 0. Explain how you would test the joint 
hypothesis that b1 = 0 and b2 = 0. Why isn’t the result of the joint test 
implied by the results of the first two tests?

7.2 Provide an example of a regression that arguably would have a high value 
of R2 but would produce biased and inconsistent estimators of the regres-
sion coefficient(s). Explain why the R2 is likely to be high. Explain why the 
OLS estimators would be biased and inconsistent.

7.3 What is a control variable, and how does it differ from a variable of inter-
est? Looking at Table 7.1, which variables are control variables? What 
is the variable of interest? Do coefficients on control variables measure 
causal effects? Explain.

Exercises

The first six exercises refer to the table of estimated regressions on page 246, 
computed using data for 2012 from the CPS. The data set consists of information 
on 7440 full-time, full-year workers. The highest educational achievement for each 
worker was either a high school diploma or a bachelor’s degree. The workers’ ages 
ranged from 25 to 34 years. The data set also contains information on the region of 
the country where the person lived, marital status, and number of children. For the 
purposes of these exercises, let

AHE = average hourly earnings (in 2012 dollars)

College = binary variable (1 if college, 0 if high school)

Female = binary variable (1 if female, 0 if male)

Age = age (in years)

Ntheast = binary variable (1 if Region = Northeast, 0 otherwise)

Midwest = binary variable (1 if Region = Midwest, 0 otherwise)

South = binary variable (1 if Region = South, 0 otherwise)

West = binary variable (1 if Region = West, 0 otherwise)

7.1 Add * (5%) and ** (1%) to the table to indicate the statistical significance 
of the coefficients.
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7.2 Using the regression results in column (1):
a. Is the college–high school earnings difference estimated from this 

regression statistically significant at the 5% level? Construct a 95% 
confidence interval of the difference.

b. Is the male–female earnings difference estimated from this regression 
statistically significant at the 5% level? Construct a 95% confidence 
interval for the difference.

7.3 Using the regression results in column (2):
a. Is age an important determinant of earnings? Use an appropriate sta-

tistical test and/or confidence interval to explain your answer.

b. Sally is a 29-year-old female college graduate. Betsy is a 34-year-old 
female college graduate. Construct a 95% confidence interval for the 
expected difference between their earnings.

7.4 Using the regression results in column (3):
a. Do there appear to be important regional differences? Use an appro-

priate hypothesis test to explain your answer.

Results of Regressions of Average Hourly Earnings on Gender and Education Binary 
Variables and Other Characteristics Using 2012 Data from the Current Population Survey

Dependent variable: average hourly earnings (AHE).

Regressor (1) (2) (3)

College (X1)   8.31 
  (0.23)

   8.32 
   (0.22)

   8.34 
   (0.22)

Female (X2) -3.85
   (0.23)

-3.81
   (0.22)

-3.80
   (0.22)

Age (X3)      0.51 
   (0.04)

   0.52 
   (0.04)

Northeast (X4)        0.18 
   (0.36)

Midwest (X5)     -1.23
         (0.31)

South (X6)     -0.43
   (0.30)

Intercept 17.02
  (0.17)

   1.87 
   (1.18)

   2.05 
   (1.18)

Summary Statistics and Joint Tests

F-statistic for regional effects = 0        7.38

SER   9.79    9.68    9.67

R2     0.162      0.180      0.182

n 7440 7440 7440
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b. Juanita is a 28-year-old female college graduate from the South. 
Molly is a 28-year-old female college graduate from the West. 
Jennifer is a 28-year-old female college graduate from the Midwest.

i.  Construct a 95% confidence interval for the difference in expected 
earnings between Juanita and Molly.

ii.  Explain how you would construct a 95% confidence interval for 
the difference in expected earnings between Juanita and Jennifer. 
(Hint: What would happen if you included West and excluded 
Midwest from the regression?)

7.5 The regression shown in column (2) was estimated again, this time using 
data from 1992 (4000 observations selected at random from the March 
1993 CPS, converted into 2012 dollars using the consumer price index). 
The results are

AHE = 1.26 + 8.66College - 4.24Female + 0.65Age, SER = 9.57, R2 = 0.21.
(1.60) (0.33) (0.29) (0.05)

Comparing this regression to the regression for 2012 shown in column (2), 
was there a statistically significant change in the coefficient on College?

7.6 Evaluate the following statement: “In all of the regressions, the coeffi-
cient on Female is negative, large, and statistically significant. This pro-
vides strong statistical evidence of gender discrimination in the U.S. labor 
market.”

7.7 Question 6.5 reported the following regression (where standard errors 
have been added):

Price = 119.2 + 0.485BDR + 23.4Bath + 0.156Hsize + 0.002Lsize
(23.9) (2.61) (8.94) (0.011) (0.00048)

+ 0.090Age - 48.8Poor, R 2 = 0.72, SER = 41.5
(0.311) (10.5)

a. Is the coefficient on BDR statistically significantly different from zero?

b. Typically five-bedroom houses sell for much more than two-bedroom 
houses. Is this consistent with your answer to (a) and with the regres-
sion more generally?

c. A homeowner purchases 2000 square feet from an adjacent lot. Construct 
a 99% confident interval for the change in the value of her house.
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d. Lot size is measured in square feet. Do you think that another scale 
might be more appropriate? Why or why not?

e. The F-statistic for omitting BDR and Age from the regression is 
F = 0.08. Are the coefficients on BDR and Age statistically different 
from zero at the 10% level?

7.8 Referring to Table 7.1 in the text:

a. Construct the R2 for each of the regressions.

b. Construct the homoskedasticity-only F-statistic for testing 
b3 = b4 = 0 in the regression shown in column (5). Is the statistic
significant at the 5% level?

c. Test b3 = b4 = 0 in the regression shown in column (5) using the 
Bonferroni test discussed in Appendix 7.1.

d. Construct a 99% confidence interval for b1 for the regression in
column (5).

7.9 Consider the regression model Yi = b0 + b1X1i + b2X2i + ui. Use Ap-
proach #2 from Section 7.3 to transform the regression so that you can use 
a t-statistic to test

a. b1 = b2.

b. b1 + 2b2 = 0.

c. b1 + b2 = 1. (Hint: You must redefine the dependent variable in the 
regression.)

7.10 Equations (7.13) and (7.14) show two formulas for the homoskedasticity-
only F-statistic. Show that the two formulas are equivalent.

7.11 A school district undertakes an experiment to estimate the effect of class 
size on test scores in second-grade classes. The district assigns 50% of its 
previous year’s first graders to small second-grade classes (18 students per 
classroom) and 50% to regular-size classes (21 students per classroom). 
Students new to the district are handled differently: 20% are randomly 
assigned to small classes and 80% to regular-size classes. At the end of 
the second-grade school year, each student is given a standardized exam. 
Let Yi denote the exam score for the ith student, X1i denote a binary 
variable that equals 1 if the student is assigned to a small class, and X2i

denote a binary variable that equals 1 if the student is newly enrolled. 
Let b1 denote the causal effect on test scores of reducing class size from 
regular to small.
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a. Consider the regression Yi = b0 + b1X1i + ui. Do you think that 
E(ui X1i) = 0? Is the OLS estimator of b1 unbiased and consistent? 
Explain.

b. Consider the regression Yi = b0 + b1X1i + b2X2i + ui. Do you 
think that E(ui X1i, X2i) depends on X1? Is the OLS estimator of b1

unbiased and consistent? Explain. Do you think that E(ui X1i, X2i)
depends on X2? Will the OLS estimator of b2 provide an unbiased 
and consistent estimate of the causal effect of transferring to a new 
school (that is, being a newly enrolled student)? Explain.

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website, http://www.pearsonhighered.com/stock_watson/.)

E7.1 Use the Birthweight_Smoking data set introduced in Empirical Exercise 
E5.3 to answer the following questions. To begin, run three regressions:

(1) Birthweight on Smoker

(2) Birthweight on Smoker, Alcohol, and Nprevist

(3) Birthweight on Smoker, Alcohol, Nprevist, and Unmarried

a. What is the value of the estimated effect of smoking on birth weight 
in each of the regressions?

b. Construct a 95% confidence interval for the effect of smoking on 
birth weight, using each of the regressions.

c. Does the coefficient on Smoker in regression (1) suffer from omitted 
variable bias? Explain.

d. Does the coefficient on Smoker in regression (2) suffer from omitted 
variable bias? Explain.

e. Consider the coefficient on Unmarried in regression (3).

 i. Construct a 95% confidence interval for the coefficient.

 ii. Is the coefficient statistically significant? Explain.

iii. Is the magnitude of the coefficient large? Explain.

iv.  A family advocacy group notes that the large coefficient suggests 
that public policies that encourage marriage will lead, on average, 
to healthier babies. Do you agree? (Hint: Review the discussion 
of control variables in Section 7.5. Discuss some of the various 
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factors that Unmarried may be controlling for and how this affects 
the interpretation of its coefficient.)

f. Consider the various other control variables in the data set. Which 
do you think should be included in the regression? Using a table like 
Table 7.1, examine the robustness of the confidence interval you con-
structed in (b). What is a reasonable 95% confidence interval for the 
effect of smoking on birth weight?

E7.2 In the empirical exercises on earning and height in Chapters 4 and 5, you esti-
mated a relatively large and statistically significant effect of a worker’s height 
on his or her earnings. One explanation for this result is omitted variable bias: 
Height is correlated with an omitted factor that affects earnings. For example, 
Case and Paxson (2008) suggest that cognitive ability (or intelligence) is the 
omitted factor. The mechanism they describe is straightforward: Poor nutri-
tion and other harmful environmental factors in utero and in early childhood 
have, on average, deleterious effects on both cognitive and physical develop-
ment. Cognitive ability affects earnings later in life and thus is an omitted 
variable in the regression.

a. Suppose that the mechanism described above is correct. Explain how 
this leads to omitted variable bias in the OLS regression of Earnings
on Height. Does the bias lead the estimated slope to be too large or 
too small? [Hint: Review Equation (6.1).]

If the mechanism described above is correct, the estimated effect of height 
on earnings should disappear if a variable measuring cognitive ability is included 
in the regression. Unfortunately, there isn’t a direct measure of cognitive ability 
in the data set, but the data set does include “years of education” for each indi-
vidual. Because students with higher cognitive ability are more likely to attend 
school longer, years of education might serve as a control variable for cognitive 
ability; in this case, including education in the regression will eliminate, or at 
least attenuate, the omitted variable bias problem.

Use the years of education variable (educ) to construct four indicator 
variables for whether a worker has less than a high school diploma (LT_
HS = 1 if educ 6 12, 0 otherwise), a high school diploma (HS = 1 if educ =
12, 0 otherwise), some college (Some_Col = 1 if 12 6 educ 6 16, 0 other-
wise), or a bachelor’s degree or higher (College = 1 if educ Ú 16, 0 otherwise).

b. Focusing first on women only, run a regression of (1) Earnings on 
Height and (2) Earnings on Height, including LT_HS, HS, and Some_
Col as control variables.
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 i.  Compare the estimated coefficient on Height in regressions (1) 
and (2). Is there a large change in the coefficient? Has it changed 
in a way consistent with the cognitive ability explanation? 
Explain.

 ii.  The regression omits the control variable College. Why?

iii.  Test the joint null hypothesis that the coefficients on the education 
variables are equal to zero.

iv.  Discuss the values of the estimated coefficients on LT_HS,HS,
and Some_Col. (Each of the estimated coefficients is negative, 
and the coefficient on LT_HS is more negative than the coefficient 
on HS, which in turn is more negative than the coefficient on 
Some_Col. Why? What do the coefficients measure?)

c. Repeat (b), using data for men.

 A P P E N D I X

7.1 The Bonferroni Test of a Joint Hypothesis

The method of Section 7.2 is the preferred way to test joint hypotheses in multiple regres-

sion. However, if the author of a study presents regression results but did not test a joint 

restriction in which you are interested and if you do not have the original data, then you 

will not be able to compute the F-statistic as in Section 7.2. This appendix describes a way 

to test joint hypotheses that can be used when you only have a table of regression results. 

This method is an application of a very general testing approach based on Bonferroni’s 

inequality.

The Bonferroni test is a test of a joint hypothesis based on the t-statistics for the individual 

hypotheses; that is, the Bonferroni test is the one-at-a-time t-statistic test of Section 7.2 done 

properly. The Bonferroni test of the joint null hypothesis b1 = b1,0 and b2 = b2,0 based on 

the critical value c 7 0, uses the following rule:

Accept if t1 … c and if t2 … c; otherwise, reject

(Bonferroni one-at-a-time t-statistic test)

(7.22)

where t1 and t2 are the t-statistics that test the restrictions on b1 and b2, respectfully.

The trick is to choose the critical value c in such a way that the probability that the 

one-at-a-time test rejects when the null hypothesis is true is no more than the desired 

significance level, say 5%. This is done by using Bonferroni’s inequality to choose the 

critical value c to allow both for the fact that two restrictions are being tested and for any 

possible correlation between t1 and t2.
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Bonferroni’s Inequality
Bonferroni’s inequality is a basic result of probability theory. Let A and B be events. Let 

A x B be the event “both A and B” (the intersection of A and B), and let A h B be the 

event “A or B or both” (the union of A and B). Then Pr(A h B) = Pr(A) + Pr(B) -
Pr(A x B). Because Pr(A x B) Ú 0, it follows that Pr(A h B) … Pr(A) + Pr(B).1 Now 

let A be the event that t1 7 c and B be the event that t2 7 c. Then the inequality 

Pr(A h B) … Pr(A) + Pr(B) yields

Pr( t1 7 c or t2 7 c or both) … Pr( t1 7 c) + Pr( t2 7 c). (7.23)

Bonferroni Tests
Because the event “ t1 7 c or t2 7 c or both” is the rejection region of the one-at-a-

time test, Equation (7.23) leads to a valid critical value for the one-at-a-time test. Under 

the null hypothesis in large samples, Pr( t1 7 c) = Pr( t2 7 c) = Pr( Z 7 c). Thus 

Equation (7.23) implies that, in large samples, the probability that the one-at-a-time test 

rejects under the null is

PrH0
 (one-at-a-time test rejects) … 2Pr( Z 7 c). (7.24)

The inequality in Equation (7.24) provides a way to choose a critical value c so that the prob-

ability of the rejection under the null hypothesis equals the desired significance level. The 

Bonferroni approach can be extended to more than two coefficients; if there are q restrictions 

under the null, the factor of 2 on the right-hand side in Equation (7.24) is replaced by q.

Table 7.2 presents critical values c for the one-at-a-time Bonferroni test for various 

significance levels and q = 2, 3, and 4. For example, suppose the desired significance level 

is 5% and q = 2. According to Table 7.2, the critical value c is 2.241. This critical value is 

1This inequality can be used to derive other interesting inequalities. For example, it implies that 
1 - Pr(A h B) Ú 1 - 3Pr(A) + Pr(B)4. Let Ac and Bc be the complements of A and B—that is, 
the events “not  A” and “not B.” Because the complement of A h B is Ac x Bc, 1 - Pr(A h B) =
Pr(Ac x Bc), which yields Bonferroni’s inequality, Pr(Ac x Bc) Ú 1 - 3Pr(A) + Pr(B)4.

TABLE 7.2 Bonferroni Critical Values c for the One-at-a-Time t-Statistic Test 
of a Joint Hypothesis

  Significance Level

Number of Restrictions (q) 10% 5% 1%

2 1.960 2.241 2.807

3 2.128 2.394 2.935

4 2.241 2.498 3.023
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the 1.25% percentile of the standard normal distribution, so Pr( Z 7 2.241) = 2.5%.

Thus Equation (7.24) tells us that, in large samples, the one-at-a-time test in Equa-

tion (7.22) will reject at most 5% of the time under the null hypothesis.

The critical values in Table 7.2 are larger than the critical values for testing a single 

restriction. For example, with q = 2, the one-at-a-time test rejects if at least one t-statistic

exceeds 2.241 in absolute value. This critical value is greater than 1.96 because it properly 

corrects for the fact that, by looking at two t-statistics, you get a second chance to reject the 

joint null hypothesis, as discussed in Section 7.2.

If the individual t-statistics are based on heteroskedasticity-robust standard errors, 

then the Bonferroni test is valid whether or not there is heteroskedasticity, but if the t-

statistics are based on homoskedasticity-only standard errors, the Bonferroni test is valid 

only under homoskedasticity.

Application to Test Scores
The t-statistics testing the joint null hypothesis that the true coefficients on test scores and 

expenditures per pupil in Equation (7.6) are, respectively, t1 = -0.60 and t2 = 2.43.

Although t1 6 2.241, because t2 7 2.241, we can reject the joint null hypothesis at the 

5% significance level using the Bonferroni test. However, both t1 and t2 are less than 2.807 

in absolute value, so we cannot reject the joint null hypothesis at the 1% significance level 

using the Bonferroni test. In contrast, using the F-statistic in Section 7.2, we were able to 

reject this hypothesis at the 1% significance level.

 A P P E N D I X

7.2 Conditional Mean Independence

This appendix shows that, under the assumption of conditional mean independence intro-

duced in Section 7.5 [Equation (7.20)], the OLS coefficient estimator is unbiased for the 

variable of interest but not for the control variable.

Consider a regression with two regressors, Yi = b0 + b1X1i + b2X2i + ui. If 

E(ui X1i, X2i) = 0, as would be true if X1i and X2i are randomly assigned in an experiment, 

then the OLS estimators bn1 and bn2 are unbiased estimators of the causal effects b1 and b2.

Now suppose that X1i is the variable of interest and X2i is a control variable that is 

correlated with omitted factors in the error term. Although the conditional mean zero 

assumption does not hold, suppose that conditional mean independence does so that 

E(ui X1i, X2i) = E(ui X2i). For convenience, further suppose that E(ui X2i) is linear in X2i

so that E(ui X2i) = g0 + g2X2i, where g0 and g1 are constants. (This linearity assumption is 

discussed below.) Define vi to be the difference between ui and the conditional expectation of 
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ui given X1i and X2i—that is, vi = ui - E(ui X1i, X2i)—so that vi has conditional mean zero: 

E(vi X1i, X2i) = E3ui - E(ui X1i, X2i) X1i, X2i4 = E(ui X1i, X2i) - E(ui X1i, X2i) = 0.

Thus,

Yi = b0 + b1X1i + b2X2i + ui
= b0 + b1X1i + b2X2i + E(ui X1i,X2i) + vi (using the definition of vi)
= b0 + b1X1i + b2X2i + E(ui X2i) + vi (using conditional mean independence)
= b0 + b1X1i + b2X2i + (g0 + g2X2i) + vi 3using linearity of E(ui X2i)4
= (b0 + g0) + b1X1i + (b2 + g2)X2i + vi (collecting terms)
= d0 + b1X1i + d2X2i + vi, (7.25)

where d0 = b0 + g0 and d2 = b2 + g2.

The error vi in Equation (7.25) has conditional mean zero; that is, E(vi X1i, X2i) = 0.

Therefore, the first least squares assumption for multiple regression applies to the final line 

of Equation (7.25), and if the other three least squares assumptions for multiple regression 

also hold, then the OLS regression of Yi on a constant, X1i, and X2i will yield unbiased and 

consistent estimators of d0, b1, and d2. Thus the OLS estimator of the coefficient on X1i is 

unbiased for the causal effect b1. However, the OLS estimator of the coefficient on X2i is 

not unbiased for b2 and instead estimates the sum of the causal effect b2 and the coefficient 

g2 arising from the correlation of the control variable X2i with the original error term ui.

The derivation in Equation (7.25) works for any value of b2, including zero. A variable 

X2i is a useful control variable if conditional mean independence holds; it need not have a 

direct causal effect on Yi.

The fourth line in Equation (7.25) uses the assumption that E(ui X2i) is linear in X2i.

As discussed in Section 2.4, this will be true if ui and X2i are jointly normally distributed. 

The assumption of linearity can be relaxed using methods discussed in Chapter 8. Exercise 

18.9 works through the steps in Equation (7.25) for multiple variables of interest and mul-

tiple control variables.

In terms of the example in Section 7.5 [the regression in Equation (7.19)], if X2i is 

LchPct, then b2 is the causal effect of the subsidized lunch program (b2 is positive if the 

program’s nutritional benefits improve test scores), g2 is negative because LchPct is nega-

tively correlated with (controls for) omitted learning advantages that improve test scores, 

and d2 = b2 + g2 would be negative if the omitted variable bias contribution through g2

outweights the positive causal effect b2.

To better understand the conditional mean independence assumption, return to the con-

cept of an ideal randomized controlled experiment. As discussed in Section 4.4, if X1i is ran-

domly assigned, then in a regression of Yi on X1i, the conditional mean zero assumption holds. 

If, however, X1i is randomly assigned, conditional on another variable X2i, then the conditional 

mean independence assumption holds, but if X2i is correlated with ui, the conditional mean zero 
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assumption does not. For example, consider an experiment to study the effect on grades in 

econometrics of mandatory versus optional homework. Among economics majors (X2i = 1),

75% are assigned to the treatment group (mandatory homework: X1i = 1), while among non-

economics majors (X2i = 0), only 25% are assigned to the treatment group. Because treatment 

is randomly assigned within majors and within nonmajors, ui is independent of X1i, given X2i,

so in particular, E(ui X1i, X2i) = E(ui X2i). If choice of major is correlated with other charac-

teristics (like prior math) that determine performance in an econometrics course, then 

E(ui X2i) ≠ 0, and the regression of the final exam grade (Yi) on X1i alone will be subject to 

omitted variable bias (X1i is correlated with major and thus with other omitted determinants 

of grade). Including major (X2i) in the regression eliminates this omitted variable bias (treat-

ment is randomly assigned, given major), making the OLS estimator of the coefficient on X1i

an unbiased estimator of the causal effect on econometrics grades of requiring homework. 

However, the OLS estimator of the coefficient on major is not unbiased for the causal effect of 

switching into economics because major is not randomly assigned and is correlated with other 

omitted factors that would not change (like prior math) were a student to switch majors.


