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Astate implements tough new penalties on drunk drivers: What is the effect 
on highway fatalities? A school district cuts the size of its elementary school 

classes: What is the effect on its students’ standardized test scores? You successfully 
complete one more year of college classes: What is the effect on your future 
earnings?

All three of these questions are about the unknown effect of changing one 
variable, X (X being penalties for drunk driving, class size, or years of schooling), on 
another variable, Y (Y being highway deaths, student test scores, or earnings).

This chapter introduces the linear regression model relating one variable, X, to 
another, Y. This model postulates a linear relationship between X and Y; the slope of 
the line relating X and Y is the effect of a one-unit change in X on Y. Just as the mean 
of Y is an unknown characteristic of the population distribution of Y, the slope of the 
line relating X and Y is an unknown characteristic of the population joint distribution 
of X and Y. The econometric problem is to estimate this slope—that is, to estimate the 
effect on Y of a unit change in X—using a sample of data on these two variables.

This chapter describes methods for estimating this slope using a random sample 
of data on X and Y. For instance, using data on class sizes and test scores from 
different school districts, we show how to estimate the expected effect on test scores 
of reducing class sizes by, say, one student per class. The slope and the intercept of 
the line relating X and Y can be estimated by a method called ordinary least squares 
(OLS).

4.1 The Linear Regression Model

The superintendent of an elementary school district must decide whether to hire 
additional teachers and she wants your advice. If she hires the teachers, she will 
reduce the number of students per teacher (the student–teacher ratio) by two. 
She faces a trade-off. Parents want smaller classes so that their children can 
receive more individualized attention. But hiring more teachers means spending 
more money, which is not to the liking of those paying the bill! So she asks you: 
If she cuts class sizes, what will the effect be on student performance?

4
Linear Regression 
with One Regressor
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In many school districts, student performance is measured by standardized 
tests, and the job status or pay of some administrators can depend in part on how 
well their students do on these tests. We therefore sharpen the superintendent’s 
question: If she reduces the average class size by two students, what will the effect 
be on standardized test scores in her district?

A precise answer to this question requires a quantitative statement about changes. 
If the superintendent changes the class size by a certain amount, what would she 
expect the change in standardized test scores to be? We can write this as a math-
ematical relationship using the Greek letter beta, bClassSize, where the subscript 
ClassSize distinguishes the effect of changing the class size from other effects. Thus,

bClassSize =
change in TestScore

change in ClassSize
=
∆TestScore
∆ClassSize

, (4.1)

where the Greek letter ∆ (delta) stands for “change in.” That is, bClassSize is the 
change in the test score that results from changing the class size divided by the 
change in the class size.

If you were lucky enough to know bClassSize, you would be able to tell the 
superintendent that decreasing class size by one student would change district-
wide test scores by bClassSize. You could also answer the superintendent’s actual 
question, which concerned changing class size by two students per class. To do so, 
rearrange Equation (4.1) so that

∆TestScore = bClassSize * ∆ClassSize. (4.2)

Suppose that bClassSize = -0.6. Then a reduction in class size of two students per 
class would yield a predicted change in test scores of (-0.6) * (-2) = 1.2; that 
is, you would predict that test scores would rise by 1.2 points as a result of the 
reduction in class sizes by two students per class.

Equation (4.1) is the definition of the slope of a straight line relating test 
scores and class size. This straight line can be written

TestScore = b0 + bClassSize * ClassSize, (4.3)

where b0 is the intercept of this straight line and, as before, bClassSize is the slope. 
According to Equation (4.3), if you knew b0 and bClassSize, not only would you be 
able to determine the change in test scores at a district associated with a change
in class size, but you also would be able to predict the average test score itself for 
a given class size.
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When you propose Equation (4.3) to the superintendent, she tells you that 
something is wrong with this formulation. She points out that class size is just one 
of many facets of elementary education and that two districts with the same class 
sizes will have different test scores for many reasons. One district might have bet-
ter teachers or it might use better textbooks. Two districts with comparable class 
sizes, teachers, and textbooks still might have very different student populations; 
perhaps one district has more immigrants (and thus fewer native English speak-
ers) or wealthier families. Finally, she points out that even if two districts are the 
same in all these ways they might have different test scores for essentially random 
reasons having to do with the performance of the individual students on the day 
of the test. She is right, of course; for all these reasons, Equation (4.3) will not hold 
exactly for all districts. Instead, it should be viewed as a statement about a rela-
tionship that holds on average across the population of districts.

A version of this linear relationship that holds for each district must incorpo-
rate these other factors influencing test scores, including each district’s unique 
characteristics (for example, quality of their teachers, background of their stu-
dents, how lucky the students were on test day). One approach would be to list 
the most important factors and to introduce them explicitly into Equation (4.3) 
(an idea we return to in Chapter 6). For now, however, we simply lump all these 
“other factors” together and write the relationship for a given district as

TestScore = b0 + bClassSize * ClassSize + other factors. (4.4)

Thus the test score for the district is written in terms of one component, 
b0 + bClassSize * ClassSize, that represents the average effect of class size on scores 
in the population of school districts and a second component that represents all 
other factors.

Although this discussion has focused on test scores and class size, the idea 
expressed in Equation (4.4) is much more general, so it is useful to introduce more 
general notation. Suppose you have a sample of n districts. Let Yi be the average 
test score in the ith district, let Xi be the average class size in the ith district, and let 
ui denote the other factors influencing the test score in the ith district. Then Equa-
tion (4.4) can be written more generally as

Yi = b0 + b1Xi + ui, (4.5)

for each district (that is, i = 1, c, n), where b0 is the intercept of this line and b1

is the slope. [The general notation b1 is used for the slope in Equation (4.5) instead 
of bClassSize because this equation is written in terms of a general variable Xi.]
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Equation (4.5) is the linear regression model with a single regressor, in which 
Y is the dependent variable and X is the independent variable or the regressor.

The first part of Equation (4.5), b0 + b1Xi, is the population regression line
or the population regression function. This is the relationship that holds between 
Y and X on average over the population. Thus, if you knew the value of X, accord-
ing to this population regression line you would predict that the value of the 
dependent variable, Y, is b0 + b1X.

The intercept b0 and the slope b1 are the coefficients of the population regres-
sion line, also known as the parameters of the population regression line. 
The slope b1 is the change in Y associated with a unit change in X. The intercept 
is the value of the population regression line when X = 0; it is the point at which the 
population regression line intersects the Y axis. In some econometric applications, 
the intercept has a meaningful economic interpretation. In other applications, the 
intercept has no real-world meaning; for example, when X is the class size, strictly 
speaking the intercept is the predicted value of test scores when there are no stu-
dents in the class! When the real-world meaning of the intercept is nonsensical, it 
is best to think of it mathematically as the coefficient that determines the level of 
the regression line.

The term ui in Equation (4.5) is the error term. The error term incorporates 
all of the factors responsible for the difference between the ith district’s average 
test score and the value predicted by the population regression line. This error 
term contains all the other factors besides X that determine the value of the 
dependent variable, Y, for a specific observation, i. In the class size example, these 
other factors include all the unique features of the ith district that affect the per-
formance of its students on the test, including teacher quality, student economic 
background, luck, and even any mistakes in grading the test.

The linear regression model and its terminology are summarized in Key 
Concept 4.1.

Figure 4.1 summarizes the linear regression model with a single regressor for 
seven hypothetical observations on test scores (Y) and class size (X). The popula-
tion regression line is the straight line b0 + b1X . The population regression line 
slopes down (b1 6 0), which means that districts with lower student–teacher 
ratios (smaller classes) tend to have higher test scores. The intercept b0 has a math-
ematical meaning as the value of the Y axis intersected by the population regression 
line, but, as mentioned earlier, it has no real-world meaning in this example.

Because of the other factors that determine test performance, the hypotheti-
cal observations in Figure 4.1 do not fall exactly on the population regression line. 
For example, the value of Y for district #1, Y1, is above the population regression 
line. This means that test scores in district #1 were better than predicted by the 
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Terminology for the Linear Regression Model 
with a Single Regressor

The linear regression model is

Yi = b0 + b1Xi + ui,

where

the subscript i runs over observations, i = 1, c, n;

Yi is the dependent variable, the regressand, or simply the left-hand variable;

Xi is the independent variable, the regressor, or simply the right-hand variable;

b0 + b1X  is the population regression line or the population regression function;

b0 is the intercept of the population regression line;

b1 is the slope of the population regression line; and

ui is the error term.

KEY CONCEPT

4.1

FIGURE 4.1 Scatterplot of Test Score vs. Student–Teacher Ratio 
(Hypothetical Data)
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population regression line, so the error term for that district, u1, is positive. In 
contrast, Y2 is below the population regression line, so test scores for that district 
were worse than predicted, and u2 6 0.

Now return to your problem as advisor to the superintendent: What is the 
expected effect on test scores of reducing the student–teacher ratio by two students 
per teacher? The answer is easy: The expected change is (-2) * bClassSize.
But what is the value of bClassSize?

4.2 Estimating the Coefficients
of the Linear Regression Model

In a practical situation such as the application to class size and test scores, the 
intercept b0 and slope b1 of the population regression line are unknown. There-
fore, we must use data to estimate the unknown slope and intercept of the popu-
lation regression line.

This estimation problem is similar to others you have faced in statistics. For 
example, suppose you want to compare the mean earnings of men and women 
who recently graduated from college. Although the population mean earnings are 
unknown, we can estimate the population means using a random sample of male 
and female college graduates. Then the natural estimator of the unknown popula-
tion mean earnings for women, for example, is the average earnings of the female 
college graduates in the sample.

The same idea extends to the linear regression model. We do not know the 
population value of bClassSize, the slope of the unknown population regression line 
relating X (class size) and Y (test scores). But just as it was possible to learn about 
the population mean using a sample of data drawn from that population, so is it 
possible to learn about the population slope bClassSize using a sample of data.

The data we analyze here consist of test scores and class sizes in 1999 in 420 
California school districts that serve kindergarten through eighth grade. The test 
score is the districtwide average of reading and math scores for fifth graders. Class 
size can be measured in various ways. The measure used here is one of the broadest, 
which is the number of students in the district divided by the number of teachers—
that is, the districtwide student–teacher ratio. These data are described in more 
detail in Appendix 4.1.

Table 4.1 summarizes the distributions of test scores and class sizes for this sam-
ple. The average student–teacher ratio is 19.6 students per teacher, and the standard 
deviation is 1.9 students per teacher. The 10th percentile of the distribution of the 
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student–teacher ratio is 17.3 (that is, only 10% of districts have student–teacher 
ratios below 17.3), while the district at the 90th percentile has a student–teacher 
ratio of 21.9.

A scatterplot of these 420 observations on test scores and the student–teacher 
ratio is shown in Figure 4.2. The sample correlation is -0.23, indicating a weak 
negative relationship between the two variables. Although larger classes in this 
sample tend to have lower test scores, there are other determinants of test scores 
that keep the observations from falling perfectly along a straight line.

Despite this low correlation, if one could somehow draw a straight line 
through these data, then the slope of this line would be an estimate of bClassSize

TABLE 4.1 Summary of the Distribution of Student–Teacher Ratios and Fifth-Grade 
Test Scores for 420 K–8 Districts in California in 1999

      Percentile

 
Average

Standard

Deviation

10% 25% 40% 50%

(median)

60% 75% 90%

Student–teacher ratio 

Test score

  19.6

654.2

  1.9

19.1

  17.3

630.4

  18.6

640.0

  19.3

649.1

  19.7

654.5

  20.1

659.4

  20.9

666.7

  21.9

679.1

FIGURE 4.2 Scatterplot of Test Score vs. Student–Teacher Ratio (California School District Data)
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based on these data. One way to draw the line would be to take out a pencil 
and a ruler and to “eyeball” the best line you could. While this method is easy, 
it is very unscientific, and different people will create different estimated 
lines.

How, then, should you choose among the many possible lines? By far the 
most common way is to choose the line that produces the “least squares” fit to 
these data—that is, to use the ordinary least squares (OLS) estimator.

The Ordinary Least Squares Estimator
The OLS estimator chooses the regression coefficients so that the estimated 
regression line is as close as possible to the observed data, where closeness is 
measured by the sum of the squared mistakes made in predicting Y given X.

As discussed in Section 3.1, the sample average, Y, is the least squares estimator of 
the population mean, E(Y); that is, Y minimizes the total squared estimation mistakes 
gn

i= 1(Yi - m)2 among all possible estimators m [see Expression (3.2)].
The OLS estimator extends this idea to the linear regression model. Let b0 and 

b1 be some estimators of b0 and b1. The regression line based on these estimators is 
b0 + b1X, so the value of Yi predicted using this line is b0 + b1Xi. Thus the mistake 
made in predicting the ith observation is Yi - (b0 + b1Xi) = Yi - b0 - b1Xi.  
The sum of these squared prediction mistakes over all n observations is

a
n

i= 1
(Yi - b0 - b1Xi)

2. (4.6)

The sum of the squared mistakes for the linear regression model in Expression 
(4.6) is the extension of the sum of the squared mistakes for the problem of 
estimating the mean in Expression (3.2). In fact, if there is no regressor, then 
b1 does not enter Expression (4.6) and the two problems are identical except 
for the different notation [m in Expression (3.2), b0 in Expression (4.6)]. Just 
as there is a unique estimator, Y , that minimizes the Expression (3.2), so is 
there a unique pair of estimators of b0 and b1 that minimize Expression (4.6).

The estimators of the intercept and slope that minimize the sum of squared 
mistakes in Expression (4.6) are called the ordinary least squares (OLS) estima-
tors of b0 and b1.

OLS has its own special notation and terminology. The OLS estimator of b0

is denoted bn0, and the OLS estimator of b1 is denoted bn1. The OLS regression line,
also called the sample regression line or sample regression function, is the straight 
line constructed using the OLS estimators: bn0 + bn1X. The predicted value of Yi
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given Xi, based on the OLS regression line, is Yn i = bn0 + bn1Xi. The residual for the 
ith observation is the difference between Yi and its predicted value: un i = Yi - Yn i.

The OLS estimators, bn0 and bn1, are sample counterparts of the population 
coefficients, b0 and b1. Similarly, the OLS regression line bn0 + bn1X is the sample 
counterpart of the population regression line b0 + b1X, and the OLS residuals un i

are sample counterparts of the population errors ui.
You could compute the OLS estimators bn0 and bn1 by trying different values 

of b0 and b1 repeatedly until you find those that minimize the total squared mis-
takes in Expression (4.6); they are the least squares estimates. This method would 
be quite tedious, however. Fortunately, there are formulas, derived by minimiz-
ing Expression (4.6) using calculus, that streamline the calculation of the OLS 
estimators.

The OLS formulas and terminology are collected in Key Concept 4.2. These 
formulas are implemented in virtually all statistical and spreadsheet programs. 
These formulas are derived in Appendix 4.2.

The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope b1 and the intercept b0 are

bn1 =
a
n

i= 1
(Xi - X)(Yi - Y)

a
n

i= 1
(Xi - X)2

=
sXY

s2
X

(4.7)

bn0 = Y - bn1X. (4.8)

The OLS predicted values Yn i and residuals un i are

Yn i = bn0 + bn1Xi, i = 1, c, n (4.9)

un i = Yi - Yn i, i = 1, c, n. (4.10)

The estimated intercept (bn0), slope (bn1), and residual (un i) are computed from a 
sample of n observations of Xi and Yi, i = 1, c, n. These are estimates of the 
unknown true population intercept (b0), slope (b1), and error term (ui).

KEY CONCEPT

4.2
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OLS Estimates of the Relationship Between Test 
Scores and the Student–Teacher Ratio
When OLS is used to estimate a line relating the student–teacher ratio to test 
scores using the 420 observations in Figure 4.2, the estimated slope is -2.28 and 
the estimated intercept is 698.9. Accordingly, the OLS regression line for these 
420 observations is

TestScore = 698.9 - 2.28 * STR, (4.11)

where TestScore is the average test score in the district and STR is the student–
teacher ratio. The “N” over TestScore in Equation (4.11) indicates that it is the 
predicted value based on the OLS regression line. Figure 4.3 plots this OLS 
regression line superimposed over the scatterplot of the data previously shown in 
Figure 4.2.

The slope of -2.28 means that an increase in the student–teacher ratio by one 
student per class is, on average, associated with a decline in districtwide test scores 
by 2.28 points on the test. A decrease in the student–teacher ratio by two students 
per class is, on average, associated with an increase in test scores of 4.56 points 
3= -2 * (-2.28)4. The negative slope indicates that more students per teacher 
(larger classes) is associated with poorer performance on the test.

FIGURE 4.3 The Estimated Regression Line for the California Data
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It is now possible to predict the districtwide test score given a value of the student–
teacher ratio. For example, for a district with 20 students per teacher, the predicted 
test score is 698.9 - 2.28 * 20 = 653.3. Of course, this prediction will not be exactly 
right because of the other factors that determine a district’s performance. But the 
regression line does give a prediction (the OLS prediction) of what test scores would 
be for that district, based on their student–teacher ratio, absent those other factors.

Is this estimate of the slope large or small? To answer this, we return to the 
superintendent’s problem. Recall that she is contemplating hiring enough teach-
ers to reduce the student–teacher ratio by 2. Suppose her district is at the median 
of the California districts. From Table 4.1, the median student–teacher ratio is 
19.7 and the median test score is 654.5. A reduction of two students per class, from 
19.7 to 17.7, would move her student–teacher ratio from the 50th percentile to 
very near the 10th percentile. This is a big change, and she would need to hire 
many new teachers. How would it affect test scores?

According to Equation (4.11), cutting the student–teacher ratio by 2 is pre-
dicted to increase test scores by approximately 4.6 points; if her district’s test 
scores are at the median, 654.5, they are predicted to increase to 659.1. Is this 
improvement large or small? According to Table 4.1, this improvement would 
move her district from the median to just short of the 60th percentile. Thus a 
decrease in class size that would place her district close to the 10% with the small-
est classes would move her test scores from the 50th to the 60th percentile. 
According to these estimates, at least, cutting the student–teacher ratio by a large 
amount (two students per teacher) would help and might be worth doing depend-
ing on her budgetary situation, but it would not be a panacea.

What if the superintendent were contemplating a far more radical change, 
such as reducing the student–teacher ratio from 20 students per teacher to 5? 
Unfortunately, the estimates in Equation (4.11) would not be very useful to her. 
This regression was estimated using the data in Figure 4.2, and, as the figure 
shows, the smallest student–teacher ratio in these data is 14. These data contain 
no information on how districts with extremely small classes perform, so these 
data alone are not a reliable basis for predicting the effect of a radical move to 
such an extremely low student–teacher ratio.

Why Use the OLS Estimator?
There are both practical and theoretical reasons to use the OLS estimators bn0 and 
bn1. Because OLS is the dominant method used in practice, it has become the com-
mon language for regression analysis throughout economics, finance (see “The 
‘Beta’ of a Stock” box), and the social sciences more generally. Presenting results 
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using OLS (or its variants discussed later in this book) means that you are “speak-
ing the same language” as other economists and statisticians. The OLS formulas 
are built into virtually all spreadsheet and statistical software packages, making 
OLS easy to use.

Afundamental idea of modern finance is that an 

investor needs a financial incentive to take a 

risk. Said differently, the expected return1 on a risky 

investment, R, must exceed the return on a safe, or 

risk-free, investment, Rf . Thus the expected excess 

return, R - Rf , on a risky investment, like owning 

stock in a company, should be positive.

At first it might seem like the risk of a stock 

should be measured by its variance. Much of that 

risk, however, can be reduced by holding other 

stocks in a “portfolio”—in other words, by diversify-

ing your financial holdings. This means that the right 

way to measure the risk of a stock is not by its vari-

ance but rather by its covariance with the market.

The capital asset pricing model (CAPM) formal-

izes this idea. According to the CAPM, the expected 

excess return on an asset is proportional to the 

expected excess return on a portfolio of all available 

assets (the “market portfolio”). That is, the CAPM 

says that

R - Rf = b(Rm - Rf), (4.12)

where Rm is the expected return on the market 

portfolio and b is the coefficient in the population 

regression of R - Rf  on Rm - Rf . In practice, the 

risk-free return is often taken to be the rate of inter-

est on short-term U.S. government debt. Accord-

ing to the CAPM, a stock with a b 6 1 has less risk 

than the market portfolio and therefore has a lower 

expected excess return than the market portfolio. In 

contrast, a stock with a b 7 1 is riskier than the mar-

ket portfolio and thus commands a higher expected 

excess return.

The “beta” of a stock has become a workhorse 

of the investment industry, and you can obtain esti-

mated betas for hundreds of stocks on investment 

firm websites. Those betas typically are estimated 

by OLS regression of the actual excess return on 

the stock against the actual excess return on a broad 

market index.

The table below gives estimated betas for seven 

U.S. stocks. Low-risk producers of consumer sta-

ples like Kellogg have stocks with low betas; riskier 

stocks have high betas.

The “Beta” of a Stock

1The return on an investment is the change in its price plus 
any payout (dividend) from the investment as a percentage 
of its initial price. For example, a stock bought on January 
1 for $100, which then paid a $2.50 dividend during the year 
and sold on December 31 for $105, would have a return of 
R = 3($105 - $100) + $2.504 > $100 = 7.5%.

Company Estimated B

Verizon (telecommunications) 0.0

Wal-Mart (discount retailer) 0.3

Kellogg (breakfast cereal) 0.5

Waste Management (waste disposal) 0.6

Google (information technology) 1.0

Ford Motor Company (auto producer) 1.3

Bank of America (bank) 2.2

Source: finance.yahoo.com.
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The OLS estimators also have desirable theoretical properties. They are anal-
ogous to the desirable properties, studied in Section 3.1, of Y as an estimator of 
the population mean. Under the assumptions introduced in Section 4.4, the OLS 
estimator is unbiased and consistent. The OLS estimator is also efficient among a 
certain class of unbiased estimators; however, this efficiency result holds under 
some additional special conditions, and further discussion of this result is deferred 
until Section 5.5.

4.3 Measures of Fit

Having estimated a linear regression, you might wonder how well that regression 
line describes the data. Does the regressor account for much or for little of the 
variation in the dependent variable? Are the observations tightly clustered around 
the regression line, or are they spread out?

The R2 and the standard error of the regression measure how well the OLS 
regression line fits the data. The R2 ranges between 0 and 1 and measures the 
fraction of the variance of Yi that is explained by Xi. The standard error of the 
regression measures how far Yi typically is from its predicted value.

The R2

The regression R2 is the fraction of the sample variance of Yi explained by (or 
predicted by) Xi. The definitions of the predicted value and the residual (see Key 
Concept 4.2) allow us to write the dependent variable Yi as the sum of the pre-
dicted value, Yn i, plus the residual un i:

Yi = Yn i + un i. (4.13)

In this notation, the R2 is the ratio of the sample variance of Yn i to the sample vari-
ance of Yi.

Mathematically, the R2 can be written as the ratio of the explained sum of 
squares to the total sum of squares. The explained sum of squares (ESS) is the 
sum of squared deviations of the predicted value,Yn i, from its average, and the 
total sum of squares (TSS) is the sum of squared deviations of Yi from its average:

ESS = a
n

i= 1
(Yn i - Y)2 (4.14)

TSS = a
n

i= 1
(Yi - Y)2. (4.15)
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Equation (4.14) uses the fact that the sample average OLS predicted value equals 
Y (proven in Appendix 4.3).

The R2 is the ratio of the explained sum of squares to the total sum of squares:

R2 =
ESS
TSS

. (4.16)

Alternatively, the R2 can be written in terms of the fraction of the variance of Yi

not explained by Xi. The sum of squared residuals, or SSR, is the sum of the 
squared OLS residuals:

SSR = a
n

i= 1
un2

i . (4.17)

It is shown in Appendix 4.3 that TSS = ESS + SSR. Thus the R2 also can be 
expressed as 1 minus the ratio of the sum of squared residuals to the total sum of 
squares:

R2 = 1 -
SSR
TSS

. (4.18)

Finally, the R2 of the regression of Y on the single regressor X is the square of the 
correlation coefficient between Y and X (Exercise 4.12).

The R2 ranges between 0 and 1. If bn1 = 0, then Xi explains none of the varia-
tion of Yi and the predicted value of Yi is Yn i = bn0 = Y [from Equation (4.8)]. In 
this case, the explained sum of squares is zero and the sum of squared residuals 
equals the total sum of squares; thus the R2 is zero. In contrast, if Xi explains all 
of the variation of Yi, then Yi = Yn i for all i and every residual is zero (that is, 
un i = 0), so that ESS = TSS and R2 = 1. In general, the R2 does not take on the 
extreme values of 0 or 1 but falls somewhere in between. An R2 near 1 indicates 
that the regressor is good at predicting Yi, while an R2 near 0 indicates that the 
regressor is not very good at predicting Yi.

The Standard Error of the Regression
The standard error of the regression (SER) is an estimator of the standard devia-
tion of the regression error ui. The units of ui and Yi are the same, so the SER is 
a measure of the spread of the observations around the regression line, measured 
in the units of the dependent variable. For example, if the units of the dependent 
variable are dollars, then the SER measures the magnitude of a typical deviation 
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from the regression line—that is, the magnitude of a typical regression error—in 
dollars.

Because the regression errors u1,c, un are unobserved, the SER is com-
puted using their sample counterparts, the OLS residuals un1,c, unn. The formula 
for the SER is

SER = su = 2su
2, where su

2 =
1

n - 2a
n

i= 1
un2

i =
SSR

n - 2
, (4.19)

where the formula for su
2 uses the fact (proven in Appendix 4.3) that the sample 

average of the OLS residuals is zero.
The formula for the SER in Equation (4.19) is similar to the formula for the 

sample standard deviation of Y given in Equation (3.7) in Section 3.2, except that 
Yi - Y in Equation (3.7) is replaced by un i and the divisor in Equation (3.7) is n - 1,
whereas here it is n - 2. The reason for using the divisor n - 2 here (instead of n)
is the same as the reason for using the divisor n - 1 in Equation (3.7): It corrects 
for a slight downward bias introduced because two regression coefficients were 
estimated. This is called a “degrees of freedom” correction because two coefficients 
were estimated (b0 and b1), two “degrees of freedom” of the data were lost, so the 
divisor in this factor is n - 2. (The mathematics behind this is discussed in Section 
5.6.) When n is large, the difference between dividing by n, by n - 1, or by n - 2
is negligible.

Application to the Test Score Data
Equation (4.11) reports the regression line, estimated using the California test 
score data, relating the standardized test score (TestScore) to the student–teacher 
ratio (STR). The R2 of this regression is 0.051, or 5.1%, and the SER is 18.6.

The R2 of 0.051 means that the regressor STR explains 5.1% of the variance 
of the dependent variable TestScore. Figure 4.3 superimposes this regression line 
on the scatterplot of the TestScore and STR data. As the scatterplot shows, the 
student–teacher ratio explains some of the variation in test scores, but much vari-
ation remains unaccounted for.

The SER of 18.6 means that standard deviation of the regression residuals is 
18.6, where the units are points on the standardized test. Because the standard 
deviation is a measure of spread, the SER of 18.6 means that there is a large spread 
of the scatterplot in Figure 4.3 around the regression line as measured in points on 
the test. This large spread means that predictions of test scores made using only 
the student–teacher ratio for that district will often be wrong by a large amount.

N N N

N
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What should we make of this low R2 and large SER? The fact that the R2 of 
this regression is low (and the SER is large) does not, by itself, imply that this 
regression is either “good” or “bad.” What the low R2 does tell us is that other 
important factors influence test scores. These factors could include differences in 
the student body across districts, differences in school quality unrelated to the 
student–teacher ratio, or luck on the test. The low R2 and high SER do not tell us 
what these factors are, but they do indicate that the student–teacher ratio alone 
explains only a small part of the variation in test scores in these data.

4.4 The Least Squares Assumptions

This section presents a set of three assumptions on the linear regression model 
and the sampling scheme under which OLS provides an appropriate estimator of 
the unknown regression coefficients, b0 and b1. Initially, these assumptions might 
appear abstract. They do, however, have natural interpretations, and understand-
ing these assumptions is essential for understanding when OLS will—and will 
not—give useful estimates of the regression coefficients.

Assumption #1: The Conditional Distribution 
of ui Given Xi Has a Mean of Zero
The first of the three least squares assumptions is that the conditional distribution 
of ui given Xi has a mean of zero. This assumption is a formal mathematical state-
ment about the “other factors” contained in ui and asserts that these other factors 
are unrelated to Xi in the sense that, given a value of Xi, the mean of the distribu-
tion of these other factors is zero.

This assumption is illustrated in Figure 4.4. The population regression is the 
relationship that holds on average between class size and test scores in the popu-
lation, and the error term ui represents the other factors that lead test scores at a 
given district to differ from the prediction based on the population regression line. 
As shown in Figure 4.4, at a given value of class size, say 20 students per class, 
sometimes these other factors lead to better performance than predicted (ui 7 0)
and sometimes to worse performance (ui 6 0), but on average over the popula-
tion the prediction is right. In other words, given Xi = 20, the mean of the distri-
bution of ui is zero. In Figure 4.4, this is shown as the distribution of ui being 
centered on the population regression line at Xi = 20 and, more generally, at 
other values x of Xi as well. Said differently, the distribution of ui, conditional on 
Xi = x, has a mean of zero; stated mathematically, E(ui Xi = x) = 0, or, in 
somewhat simpler notation, E(ui Xi) = 0.
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As shown in Figure 4.4, the assumption that E(ui Xi) = 0 is equivalent to 
assuming that the population regression line is the conditional mean of Yi given 
Xi (a mathematical proof of this is left as Exercise 4.6).

The conditional mean of u in a randomized controlled experiment. In a random-
ized controlled experiment, subjects are randomly assigned to the treatment 
group (X = 1) or to the control group (X = 0). The random assignment typically 
is done using a computer program that uses no information about the subject, 
ensuring that X is distributed independently of all personal characteristics of the 
subject. Random assignment makes X and u independent, which in turn implies 
that the conditional mean of u given X is zero.

In observational data, X is not randomly assigned in an experiment. Instead, 
the best that can be hoped for is that X is as if randomly assigned, in the precise 
sense that E(ui Xi) = 0. Whether this assumption holds in a given empirical 
application with observational data requires careful thought and judgment, and 
we return to this issue repeatedly.

FIGURE 4.4   The Conditional Probability Distributions and the Population 
Regression Line

The figure shows the conditional probability of test scores for districts with class sizes of 15, 20, 

and 25 students. The mean of the conditional distribution of test scores, given the student–

teacher ratio, E(Y X), is the population regression line. At a given value of X, Y is distributed 

around the regression line and the error, u = Y - (b0 + b1X), has a conditional mean of zero 
for all values of X.
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Correlation and conditional mean. Recall from Section 2.3 that if the conditional 
mean of one random variable given another is zero, then the two random variables 
have zero covariance and thus are uncorrelated [Equation (2.27)]. Thus the condi-
tional mean assumption E(ui Xi) = 0 implies that Xi and ui are uncorrelated, or 
corr(Xi, ui) = 0. Because correlation is a measure of linear association, this impli-
cation does not go the other way; even if Xi and ui are uncorrelated, the conditional 
mean of ui given Xi might be nonzero. However, if Xi and ui are correlated, then it 
must be the case that E(ui Xi) is nonzero. It is therefore often convenient to discuss 
the conditional mean assumption in terms of possible correlation between Xi and 
ui. If Xi and ui are correlated, then the conditional mean assumption is violated.

Assumption #2: (Xi, Yi), i = 1, . . . , n, Are
Independently and Identically Distributed
The second least squares assumption is that (Xi, Yi ), i = 1, c, n, are indepen-
dently and identically distributed (i.i.d.) across observations. As discussed in Sec-
tion 2.5 (Key Concept 2.5), this assumption is a statement about how the sample 
is drawn. If the observations are drawn by simple random sampling from a single 
large population, then (Xi, Yi ), i = 1, c, n, are i.i.d. For example, let X be the 
age of a worker and Y be his or her earnings, and imagine drawing a person at 
random from the population of workers. That randomly drawn person will have 
a certain age and earnings (that is, X and Y will take on some values). If a sample 
of n workers is drawn from this population, then (Xi, Yi ), i = 1, c, n, necessar-
ily have the same distribution. If they are drawn at random they are also distrib-
uted independently from one observation to the next; that is, they are i.i.d.

The i.i.d. assumption is a reasonable one for many data collection schemes. 
For example, survey data from a randomly chosen subset of the population typi-
cally can be treated as i.i.d.

Not all sampling schemes produce i.i.d. observations on (Xi, Yi), however. One 
example is when the values of X are not drawn from a random sample of the popu-
lation but rather are set by a researcher as part of an experiment. For example, 
suppose a horticulturalist wants to study the effects of different organic weeding 
methods (X) on tomato production (Y) and accordingly grows different plots of 
tomatoes using different organic weeding techniques. If she picks the techniques 
(the level of X) to be used on the ith plot and applies the same technique to the ith

plot in all repetitions of the experiment, then the value of Xi does not change from 
one sample to the next. Thus Xi is nonrandom (although the outcome Yi is random), 
so the sampling scheme is not i.i.d. The results presented in this chapter developed 
for i.i.d. regressors are also true if the regressors are nonrandom. The case of a 
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nonrandom regressor is, however, quite special. For example, modern experimen-
tal protocols would have the horticulturalist assign the level of X to the different 
plots using a computerized random number generator, thereby circumventing any 
possible bias by the horticulturalist (she might use her favorite weeding method 
for the tomatoes in the sunniest plot). When this modern experimental protocol 
is used, the level of X is random and (Xi, Yi) are i.i.d.

Another example of non-i.i.d. sampling is when observations refer to the 
same unit of observation over time. For example, we might have data on inven-
tory levels (Y) at a firm and the interest rate at which the firm can borrow (X),
where these data are collected over time from a specific firm; for example, they 
might be recorded four times a year (quarterly) for 30 years. This is an example 
of time series data, and a key feature of time series data is that observations falling 
close to each other in time are not independent but rather tend to be correlated 
with each other; if interest rates are low now, they are likely to be low next quar-
ter. This pattern of correlation violates the “independence” part of the i.i.d. 
assumption. Time series data introduce a set of complications that are best han-
dled after developing the basic tools of regression analysis, so we postpone discus-
sion of time series data until Chapter 14.

Assumption #3: Large Outliers Are Unlikely
The third least squares assumption is that large outliers—that is, observations with 
values of Xi, Yi, or both that are far outside the usual range of the data—are unlikely. 
Large outliers can make OLS regression results misleading. This potential sensitivity 
of OLS to extreme outliers is illustrated in Figure 4.5 using hypothetical data.

In this book, the assumption that large outliers are unlikely is made mathe-
matically precise by assuming that X and Y have nonzero finite fourth moments: 
0 6 E(X 4

i ) 6 ∞  and 0 6 E(Y4
i ) 6 ∞ . Another way to state this assumption is 

that X and Y have finite kurtosis.
The assumption of finite kurtosis is used in the mathematics that justify the 

large-sample approximations to the distributions of the OLS test statistics. For 
example, we encountered this assumption in Chapter 3 when discussing the con-
sistency of the sample variance. Specifically, Equation (3.9) states that the sample 
variance is a consistent estimator of the population variance s2

Y (s2
Y ¡

p
s2

Y). If 
Y1,c, Yn are i.i.d. and the fourth moment of Yi is finite, then the law of large 
numbers in Key Concept 2.6 applies to the average, 1

ngn
i= 1Y

2
i , a key step in the 

proof in Appendix 3.3 showing that s2
Y is consistent.

One source of large outliers is data entry errors, such as a typographical error 
or incorrectly using different units for different observations. Imagine collecting 
data on the height of students in meters, but inadvertently recording one student’s 
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height in centimeters instead. This would create a large outlier in the sample. One 
way to find outliers is to plot your data. If you decide that an outlier is due to a 
data entry error, then you can either correct the error or, if that is impossible, 
drop the observation from your data set.

Data entry errors aside, the assumption of finite kurtosis is a plausible one in 
many applications with economic data. Class size is capped by the physical capac-
ity of a classroom; the best you can do on a standardized test is to get all the ques-
tions right and the worst you can do is to get all the questions wrong. Because class 
size and test scores have a finite range, they necessarily have finite kurtosis. More 
generally, commonly used distributions such as the normal distribution have four 
moments. Still, as a mathematical matter, some distributions have infinite fourth 
moments, and this assumption rules out those distributions. If the assumption of 
finite fourth moments holds, then it is unlikely that statistical inferences using 
OLS will be dominated by a few observations.

Use of the Least Squares Assumptions
The three least squares assumptions for the linear regression model are summa-
rized in Key Concept 4.3. The least squares assumptions play twin roles, and we 
return to them repeatedly throughout this textbook.

FIGURE 4.5  The Sensitivity of OLS to Large Outliers
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Their first role is mathematical: If these assumptions hold, then, as is shown 
in the next section, in large samples the OLS estimators have sampling distribu-
tions that are normal. In turn, this large-sample normal distribution lets us develop 
methods for hypothesis testing and constructing confidence intervals using the 
OLS estimators.

Their second role is to organize the circumstances that pose difficulties for 
OLS regression. As we will see, the first least squares assumption is the most 
important to consider in practice. One reason why the first least squares assump-
tion might not hold in practice is discussed in Chapter 6, and additional reasons 
are discussed in Section 9.2.

It is also important to consider whether the second assumption holds in an applica-
tion. Although it plausibly holds in many cross-sectional data sets, the independence 
assumption is inappropriate for panel and time series data. Therefore, the regression 
methods developed under assumption 2 require modification for some applications 
with time series data. These modifications are developed in Chapters 10 and 14–16.

The third assumption serves as a reminder that OLS, just like the sample 
mean, can be sensitive to large outliers. If your data set contains large outliers, 
you should examine those outliers carefully to make sure those observations are 
correctly recorded and belong in the data set.

4.5 Sampling Distribution of the OLS
Estimators

Because the OLS estimators bn0 and bn1 are computed from a randomly drawn sam-
ple, the estimators themselves are random variables with a probability distribution—
the sampling distribution—that describes the values they could take over different 
possible random samples. This section presents these sampling distributions. 

The Least Squares Assumptions

Yi = b0 + b1Xi + ui, i = 1, c, n, where

1. The error term ui has conditional mean zero given Xi: E(ui Xi) = 0;

2. (Xi, Yi ), i = 1, c, n, are independent and identically distributed (i.i.d.) 
draws from their joint distribution; and

3. Large outliers are unlikely: Xi and Yi have nonzero finite fourth moments.

KEY CONCEPT

4.3
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In small samples, these distributions are complicated, but in large samples, they 
are approximately normal because of the central limit theorem.

The Sampling Distribution of the OLS Estimators
Review of the sampling distribution of  Y. Recall the discussion in Sections 2.5 and 
2.6 about the sampling distribution of the sample average, Y, an estimator of the 
unknown population mean of Y, mY. Because Y is calculated using a randomly 
drawn sample, Y is a random variable that takes on different values from one 
sample to the next; the probability of these different values is summarized in its 
sampling distribution. Although the sampling distribution of Y can be complicated 
when the sample size is small, it is possible to make certain statements about it that 
hold for all n. In particular, the mean of the sampling distribution is mY, that is, 
E(Y) = mY, so Y is an unbiased estimator of mY. If n is large, then more can be said 
about the sampling distribution. In particular, the central limit theorem (Section 2.6) 
states that this distribution is approximately normal.

The sampling distribution of bn0 and bn1. These ideas carry over to the OLS estima-
tors bn0 and bn1 of the unknown intercept b0 and slope b1 of the population regres-
sion line. Because the OLS estimators are calculated using a random sample, bn0
and bn1 are random variables that take on different values from one sample to the 
next; the probability of these different values is summarized in their sampling 
distributions.

Although the sampling distribution of bn0 and bn1 can be complicated when the 
sample size is small, it is possible to make certain statements about it that hold for 
all n. In particular, the mean of the sampling distributions of bn0 and bn1 are b0 and 
b1. In other words, under the least squares assumptions in Key Concept 4.3,

E(bn0) = b0 and E(bn1) = b1; (4.20)

that is, bn0 and bn1 are unbiased estimators of b0 and b1. The proof that bn1 is unbiased 
is given in Appendix 4.3, and the proof that bn0 is unbiased is left as Exercise 4.7.

If the sample is sufficiently large, by the central limit theorem the sampling 
distribution of bn0 and bn1 is well approximated by the bivariate normal distribution 
(Section 2.4). This implies that the marginal distributions of bn0 and bn1 are normal in 
large samples.

This argument invokes the central limit theorem. Technically, the central limit 
theorem concerns the distribution of averages (like Y). If you examine the numerator 
in Equation (4.7) for bn1, you will see that it, too, is a type of average—not a simple 
average, like Y, but an average of the product, (Yi - Y)(Xi - X). As discussed 
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further in Appendix 4.3, the central limit theorem applies to this average so that, 
like the simpler average Y, it is normally distributed in large samples.

The normal approximation to the distribution of the OLS estimators in large 
samples is summarized in Key Concept 4.4. (Appendix 4.3 summarizes the deriva-
tion of these formulas.) A relevant question in practice is how large n must be for 
these approximations to be reliable. In Section 2.6, we suggested that n = 100 is 
sufficiently large for the sampling distribution of Y to be well approximated by a 
normal distribution, and sometimes smaller n suffices. This criterion carries over 
to the more complicated averages appearing in regression analysis. In virtually all 
modern econometric applications, n 7 100, so we will treat the normal approxi-
mations to the distributions of the OLS estimators as reliable unless there are 
good reasons to think otherwise.

The results in Key Concept 4.4 imply that the OLS estimators are consistent—
that is, when the sample size is large, bn0 and bn1 will be close to the true population 
coefficients b0 and b1 with high probability. This is because the variances s2

b0
 and  

s
2
b1

 of the estimators decrease to zero as n increases (n appears in the denominator 
of the formulas for the variances), so the distribution of the OLS estimators will be 
tightly concentrated around their means, b0 and b1, when n is large.

Another implication of the distributions in Key Concept 4.4 is that, in general, 
the larger is the variance of Xi, the smaller is the variance s2

b1
 of bn1. Mathemati-

cally, this implication arises because the variance of bn1 in Equation (4.21) is 
inversely proportional to the square of the variance of Xi: the larger is var(Xi), the 
larger is the denominator in Equation (4.21) so the smaller is s2

b1
. To get a better sense 

N
N

N

N

Large-Sample Distributions of bn0 and bn1

If the least squares assumptions in Key Concept 4.3 hold, then in large samples 
bn0 and bn1 have a jointly normal sampling distribution. The large-sample normal 
distribution of bn1 is N(b1, s2

b1
), where the variance of this distribution, s2

b1
, is

s
2
b1
=

1
n

var3(Xi - mX)ui4
3var(Xi)42

. (4.21)

The large-sample normal distribution of bn0 is N(b0, s2
b0

), where

s
2
b0
=

1
n

var(Hiui)

3E(H2
i )42

, where Hi = 1 - c
mX

E(X2
i )
dXi. (4.22)
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of why this is so, look at Figure 4.6, which presents a scatterplot of 150 artificial data 
points on X and Y. The data points indicated by the colored dots are the 75 observa-
tions closest to X. Suppose you were asked to draw a line as accurately as possible 
through either the colored or the black dots—which would you choose? It would be 
easier to draw a precise line through the black dots, which have a larger variance than 
the colored dots. Similarly, the larger the variance of X, the more precise is bn1.

The distributions in Key Concept 4.4 also imply that the smaller is the vari-
ance of the error ui, the smaller is the variance of bn1. This can be seen mathemat-
ically in Equation (4.21) because ui enters the numerator, but not denominator, 
of s2

b1
: If all ui were smaller by a factor of one-half but the X’s did not change, then 

sb1
 would be smaller by a factor of one-half and s2

b1
 would be smaller by a factor 

of one-fourth (Exercise 4.13). Stated less mathematically, if the errors are smaller 
(holding the X’s fixed), then the data will have a tighter scatter around the popu-
lation regression line so its slope will be estimated more precisely.

The normal approximation to the sampling distribution of bn0 and bn1 is a pow-
erful tool. With this approximation in hand, we are able to develop methods for 
making inferences about the true population values of the regression coefficients 
using only a sample of data.

N
N N

FIGURE 4.6  The Variance of Bn1 and the Variance of X
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4.6 Conclusion

This chapter has focused on the use of ordinary least squares to estimate the 
intercept and slope of a population regression line using a sample of n observa-
tions on a dependent variable, Y, and a single regressor, X. There are many ways 
to draw a straight line through a scatterplot, but doing so using OLS has several 
virtues. If the least squares assumptions hold, then the OLS estimators of the 
slope and intercept are unbiased, are consistent, and have a sampling distribution 
with a variance that is inversely proportional to the sample size n. Moreover, if n
is large, then the sampling distribution of the OLS estimator is normal.

These important properties of the sampling distribution of the OLS estimator 
hold under the three least squares assumptions.

The first assumption is that the error term in the linear regression model has 
a conditional mean of zero, given the regressor X. This assumption implies that 
the OLS estimator is unbiased.

The second assumption is that (Xi, Yi) are i.i.d., as is the case if the data are col-
lected by simple random sampling. This assumption yields the formula, presented in 
Key Concept 4.4, for the variance of the sampling distribution of the OLS estimator.

The third assumption is that large outliers are unlikely. Stated more formally, 
X and Y have finite fourth moments (finite kurtosis). The reason for this assump-
tion is that OLS can be unreliable if there are large outliers. Taken together, the 
three least squares assumptions imply that the OLS estimator is normally distrib-
uted in large samples as described in Key Concept 4.4.

The results in this chapter describe the sampling distribution of the OLS esti-
mator. By themselves, however, these results are not sufficient to test a hypoth-
esis about the value of b1 or to construct a confidence interval for b1. Doing so 
requires an estimator of the standard deviation of the sampling distribution—that 
is, the standard error of the OLS estimator. This step—moving from the sam-
pling distribution of bn1 to its standard error, hypothesis tests, and confidence 
intervals—is taken in the next chapter.

Summary

1. The population regression line, b0 + b1X , is the mean of Y as a function of 
the value of X. The slope, b1, is the expected change in Y associated with 
a one-unit change in X. The intercept, b0, determines the level (or height) 
of the regression line. Key Concept 4.1 summarizes the terminology of the 
population linear regression model.
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2. The population regression line can be estimated using sample observations 
(Yi, Xi), i = 1, c, n by ordinary least squares (OLS). The OLS estimators 
of the regression intercept and slope are denoted bn0 and bn1.

3. The R2 and standard error of the regression (SER) are measures of how close the 
values of Yi are to the estimated regression line. The R2 is between 0 and 1, with 
a larger value indicating that the Yi’s are closer to the line. The standard error of 
the regression is an estimator of the standard deviation of the regression error.

4. There are three key assumptions for the linear regression model: (1) The
regression errors, ui, have a mean of zero, conditional on the regressors Xi;  
(2) the sample observations are i.i.d. random draws from the population; and 
(3) large outliers are unlikely. If these assumptions hold, the OLS estimators 
bn0 and bn1 are (1) unbiased, (2) consistent, and (3) normally distributed when 
the sample is large.
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Review the Concepts

4.1 Explain the difference between bn1 and b1; between the residual un i and the 
regression error ui; and between the OLS predicted value Yn i and E(Yi Xi).

4.2 For each least squares assumption, provide an example in which the assump-
tion is valid and then provide an example in which the assumption fails.

4.3 SER and R2 are “measures of fit” for a regression. Explain how SER mea-
sures the fit of a regression. What are the units of SER? Explain how R2

measures the fit of a regression. What are the units of R2?

4.4 Sketch a hypothetical scatterplot of data for an estimated regression with 
R2 = 0.9. Sketch a hypothetical scatterplot of data for a regression with 
R2 = 0.5.

Exercises

4.1 Suppose that a researcher, using data on class size (CS) and average test 
scores from 100 third-grade classes, estimates the OLS regression:

   TestScore = 520.4 - 5.82 * CS, R2 = 0.08, SER = 11.5.

a. A classroom has 22 students. What is the regression’s prediction for 
that classroom’s average test score?

b. Last year a classroom had 19 students, and this year it has 23 students. 
What is the regression’s prediction for the change in the classroom 
average test score?

c. The sample average class size across the 100 classrooms is 21.4. What 
is the sample average of the test scores across the 100 classrooms? 
(Hint: Review the formulas for the OLS estimators.)

d. What is the sample standard deviation of test scores across the 100 
classrooms? (Hint: Review the formulas for the R2 and SER.)

4.2 Suppose that a random sample of 200 20-year-old men is selected from a 
population and that these men’s height and weight are recorded. A regres-
sion of weight on height yields

    Weight = -99.41 + 3.94 * Height, R2 = 0.81, SER = 10.2,

where Weight is measured in pounds and Height is measured in inches.
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a. What is the regression’s weight prediction for someone who is 70 in. tall? 
65 in. tall? 74 in. tall?

b. A man has a late growth spurt and grows 1.5 in. over the course of a year. 
What is the regression’s prediction for the increase in this man’s weight?

c. Suppose that instead of measuring weight and height in pounds and 
inches, these variables are measured in centimeters and kilograms. 
What are the regression estimates from this new centimeter–kilogram 
regression? (Give all results, estimated coefficients, R2, and SER.)

4.3 A regression of average weekly earnings (AWE, measured in dollars) on age 
(measured in years) using a random sample of college-educated full-time 
workers aged 25–65 yields the following:

AWE = 696.7 + 9.6 * Age, R2 = 0.023, SER = 624.1.

a. Explain what the coefficient values 696.7 and 9.6 mean.

b. The standard error of the regression (SER) is 624.1. What are the units 
of measurement for the SER? (Dollars? Years? Or is SER unit-free?)

c. The regression R2 is 0.023. What are the units of measurement for the 
R2? (Dollars? Years? Or is R2 unit-free?)

d. What does the regression predict will be the earnings for a 25-year-old 
worker? For a 45-year-old worker?

e. Will the regression give reliable predictions for a 99-year-old worker? 
Why or why not?

f. Given what you know about the distribution of earnings, do you 
think it is plausible that the distribution of errors in the regression 
is normal? (Hint: Do you think that the distribution is symmetric or 
skewed? What is the smallest value of earnings, and is it consistent 
with a normal distribution?)

g. The average age in this sample is 41.6 years. What is the average 
value of AWE in the sample? (Hint: Review Key Concept 4.2.)

4.4 Read the box “The ‘Beta’ of a Stock” in Section 4.2.

a. Suppose that the value of b is greater than 1 for a particular stock. 
Show that the variance of (R - Rf) for this stock is greater than the 
variance of (Rm - Rt).

b. Suppose that the value of b is less than 1 for a particular stock. Is it 
possible that variance of (R - Rf) for this stock is greater than the 
variance of (Rm - Rt)? (Hint: Don’t forget the regression error.)
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c. In a given year, the rate of return on 3-month Treasury bills is 2.0% 
and the rate of return on a large diversified portfolio of stocks (the 
S&P 500) is 5.3%. For each company listed in the table in the box, 
use the estimated value of b to estimate the stock’s expected rate of 
return.

4.5 A professor decides to run an experiment to measure the effect of time 
pressure on final exam scores. He gives each of the 400 students in his 
course the same final exam, but some students have 90 minutes to com-
plete the exam, while others have 120 minutes. Each student is randomly 
assigned one of the examination times, based on the flip of a coin. Let 
Yi denote the number of points scored on the exam by the ith student 
(0 … Yi … 100), let Xi denote the amount of time that the student has to 
complete the exam (Xi = 90 or 120), and consider the regression model 
Yi = b0 + b1Xi + ui.

a. Explain what the term ui represents. Why will different students have 
different values of ui?

b. Explain why E(ui Xi) = 0 for this regression model.

c. Are the other assumptions in Key Concept 4.3 satisfied? Explain.

d. The estimated regression is Yn i = 49 + 0.24 Xi.

i.  Compute the estimated regression’s prediction for the average 
score of students given 90 minutes to complete the exam. Repeat 
for 120 minutes and 150 minutes.

ii.  Compute the estimated gain in score for a student who is given an 
additional 10 minutes on the exam.

4.6 Show that the first least squares assumption, E(ui Xi) = 0, implies that 
E(Yi Xi) = b0 + b1Xi.

4.7 Show that bn0 is an unbiased estimator of b0. (Hint: Use the fact that bn1 is 
unbiased, which is shown in Appendix 4.3.)

4.8 Suppose that all of the regression assumptions in Key Concept 4.3 are satis-
fied except that the first assumption is replaced with E(ui Xi) = 2. Which 
parts of Key Concept 4.4 continue to hold? Which change? Why? (Is bn1
normally distributed in large samples with mean and variance given in Key 
Concept 4.4? What about bn0?)

4.9 a. A linear regression yields bn1 = 0. Show that R2 = 0.

b. A linear regression yields R2 = 0. Does this imply that bn1 = 0?
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4.10 Suppose that Yi = b0 + b1Xi + ui, where (Xi, ui) are i.i.d., and Xi is a 
Bernoulli random variable with Pr(X = 1) = 0.20. When X = 1, ui is 
N(0, 4); when X = 0, ui is N(0, 1).

a. Show that the regression assumptions in Key Concept 4.3 are 
satisfied.

b. Derive an expression for the large-sample variance of bn1. [Hint:
Evaluate the terms in Equation (4.21).]

4.11 Consider the regression model Yi = b0 + b1Xi + ui.

a. Suppose you know that b0 = 0. Derive a formula for the least squares 
estimator of b1.

b. Suppose you know that b0 = 4. Derive a formula for the least squares 
estimator of b1.

4.12 a. Show that the regression R2 in the regression of Y on X is the squared 
value of the sample correlation between X and Y. That is, show that 
R2 = r2

XY.

b. Show that the R2 from the regression of Y on X is the same as the R2

from the regression of X on Y.

c. Show that bn1 = rXY(sY>sX), where rXY  is the sample correlation 
between X and Y, and sX and sY are the sample standard deviations 
of X and Y.

4.13 Suppose that Yi = b0 + b1Xi + kui, where k is a nonzero constant and 
(Yi, Xi) satisfy the three least squares assumptions. Show that the large

sample variance of bn1 is given by s2
b1
= k2 1

n
var3(Xi - mX)ui4
3var(Xi)24 . [Hint: This equa-

tion is the variance given in Equation (4.21) multiplied by k2.]

4.14 Show that the sample regression line passes through the point (X, Y).

Empirical Exercises

(Only two empirical exercises for this chapter are given in the text, but you can 
find more on the text website, http://www.pearsonhighered.com/stock_watson/.)

E4.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the data file Growth, which contains data on average growth 
rates from 1960 through 1995 for 65 countries, along with variables 
that are potentially related to growth. A detailed description is given in 

N
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Growth_Description, also available on the website. In this exercise, you 
will investigate the relationship between growth and trade.1

a. Construct a scatterplot of average annual growth rate (Growth) on 
the average trade share (TradeShare). Does there appear to be a 
relationship between the variables?

b. One country, Malta, has a trade share much larger than the other 
countries. Find Malta on the scatterplot. Does Malta look like an 
outlier?

c. Using all observations, run a regression of Growth on TradeShare.
What is the estimated slope? What is the estimated intercept? Use 
the regression to predict the growth rate for a country with a trade 
share of 0.5 and with a trade share equal to 1.0.

d. Estimate the same regression, excluding the data from Malta. Answer 
the same questions in (c).

e. Plot the estimated regression functions from (c) and (d). Using the 
scatterplot in (a), explain why the regression function that includes 
Malta is steeper than the regression function that excludes Malta.

f. Where is Malta? Why is the Malta trade share so large? Should Malta 
be included or excluded from the analysis?

E4.2 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the data file Earnings_and_Height, which contains data on earn-
ings, height, and other characteristics of a random sample of U.S. workers.2

A detailed description is given in Earnings_and_Height_Description, also 
available on the website. In this exercise, you will investigate the relation-
ship between earnings and height.

a. What is the median value of height in the sample?

b. i. Estimate average earnings for workers whose height is at most 
67 inches.

ii. Estimate average earnings for workers whose height is greater 
than 67 inches.

1These data were provided by Professor Ross Levine of the University of California at Berkeley 
and were used in his paper with Thorsten Beck and Norman Loayza, “Finance and the Sources of 
Growth,” Journal of Financial Economics, 2000, 58: 261–300.
2These data were provided by Professors Anne Case (Princeton University) and Christina Paxson 
(Brown University) and were used in their paper “Stature and Status: Height, Ability, and Labor 
Market Outcomes,” Journal of Political Economy, 2008, 116(3): 499–532.
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iii. On average, do taller workers earn more than shorter workers? 
How much more? What is a 95% confidence interval for the 
difference in average earnings?

c. Construct a scatterplot of annual earnings (Earnings) on height 
(Height). Notice that the points on the plot fall along horizontal lines. 
(There are only 23 distinct values of Earnings). Why? (Hint: Carefully 
read the detailed data description.)

d. Run a regression of Earnings on Height.

i. What is the estimated slope?

ii. Use the estimated regression to predict earnings for a worker 
who is 67 inches tall, for a worker who is 70 inches tall, and for a 
worker who is 65 inches tall.

e. Suppose height were measured in centimeters instead of inches. 
Answer the following questions about the Earnings on Height
(in cm) regression.

 i. What is the estimated slope of the regression?

 ii. What is the estimated intercept?

iii. What is the R2?

iv. What is the standard error of the regression?

f. Run a regression of Earnings on Height, using data for female 
workers only.

 i. What is the estimated slope?

ii. A randomly selected woman is 1 inch taller than the average 
woman in the sample. Would you predict her earnings to be 
higher or lower than the average earnings for women in the sam-
ple? By how much?

g. Repeat (f) for male workers.

h. Do you think that height is uncorrelated with other factors that 
cause earning? That is, do you think that the regression error term, 
say ui, has a conditional mean of zero, given Height (Xi)? (You will 
investigate this more in the Earnings and Height exercises in later 
chapters.)
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 A P P E N D I X

4.1 The California Test Score Data Set

The California Standardized Testing and Reporting data set contains data on test per-

formance, school characteristics, and student demographic backgrounds. The data used 

here are from all 420 K–6 and K–8 districts in California with data available for 1999. 

Test scores are the average of the reading and math scores on the Stanford 9 Achieve-

ment Test, a standardized test administered to fifth-grade students. School characteris-

tics (averaged across the district) include enrollment, number of teachers (measured as 

“full-time equivalents”), number of computers per classroom, and expenditures per stu-

dent. The student–teacher ratio used here is the number of students in the district divided 

by the number of full-time equivalent teachers. Demographic variables for the students 

also are averaged across the district. The demographic variables include the percentage 

of students who are in the public assistance program CalWorks (formerly AFDC), the 

percentage of students who qualify for a reduced-price lunch, and the percentage of 

students who are English learners (that is, students for whom English is a second lan-

guage). All of these data were obtained from the California Department of Education 

(www.cde.ca.gov).

 A P P E N D I X

4.2 Derivation of the OLS Estimators

This appendix uses calculus to derive the formulas for the OLS estimators given in Key 

Concept 4.2. To minimize the sum of squared prediction mistakes gn
i= 1(Yi - b0 - b1Xi)

2

[Equation (4.6)], first take the partial derivatives with respect to b0 and b1:

0
0b0
a
n

i= 1
(Yi - b0 - b1Xi)

2 = -2a
n

i= 1
(Yi - b0 - b1Xi) and (4.23)

0
0b1
a
n

i= 1
(Yi - b0 - b1Xi)

2 = -2a
n

i= 1
(Yi - b0 - b1Xi)Xi. (4.24)

The OLS estimators, bn0 and bn1, are the values of b0 and b1 that minimize 

gn
i= 1(Yi - b0 - b1Xi)

2, or, equivalently, the values of b0 and b1 for which the derivatives 

in Equations (4.23) and (4.24) equal zero. Accordingly, setting these derivatives equal to 
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zero, collecting terms, and dividing by n shows that the OLS estimators, bn0 and bn1, must 

satisfy the two equations

Y - bn0 - bn1X = 0 and (4.25)

1
na

n

i= 1
XiYi - bn0X - bn1

1
na

n

i= 1
X2

i = 0. (4.26)

Solving this pair of equations for bn0 and bn1 yields

bn1 =

1
na

n

i= 1
XiYi - X Y

1
na

n

i= 1
X2

i - (X)2
=
a
n

i= 1
(Xi - X)(Yi - Y)

a
n

i= 1
(Xi - X)2

and (4.27)

bn0 = Y - bn1X. (4.28)

Equations (4.27) and (4.28) are the formulas for bn0 and bn1 given in Key Concept 4.2; the 

formula bn1 = sXY > s2
X is obtained by dividing the numerator and denominator in Equation 

(4.27) by n - 1.

 A P P E N D I X

4.3 Sampling Distribution of the OLS Estimator

In this appendix, we show that the OLS estimator bn1 is unbiased and, in large samples, has 

the normal sampling distribution given in Key Concept 4.4.

Representation of bn1 in Terms of the Regressors
and Errors
We start by providing an expression for bn1 in terms of the regressors and errors. Because 

Yi = b0 + b1Xi + ui, Yi - Y = b1(Xi - X) + ui - u, so the numerator of the formula for 

bn1 in Equation (4.27) is

a
n

i= 1
(Xi - X)(Yi - Y) = a

n

i= 1
(Xi - X)3b1(Xi - X) + (ui - u)4

= b1a
n

i= 1
(Xi - X)2 + a

n

i= 1
(Xi - X)(ui - u). (4.29)
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Now gn
i= 1(Xi - X)(ui - u) = gn

i= 1(Xi - X)ui - g
n
i= 1(Xi - X)u = gn

i= 1(Xi -X)ui, where 

the final equality follows from the definition of X , which implies that gn
i= 1(Xi - X)u =

3gn
i= 1Xi - nX4u = 0. Substituting gn

i= 1(Xi - X)(ui - u) = gn
i= 1 (Xi - X)ui into the 

final expression in Equation (4.29) yields gn
i= 1(Xi - X)(Yi - Y) = b1g

n
i= 1(Xi - X)2 +

gn
i= 1(Xi - X)ui. Substituting this expression in turn into the formula for bn1 in Equation 

(4.27) yields

bn1 = b1 +

1
na

n

i= 1
(Xi - X)ui

1
na

n

i= 1
(Xi - X)2

. (4.30)

Proof That bn1 Is Unbiased
The expectation of bn1 is obtained by taking the expectation of both sides of Equation (4.30). 

Thus,

E(bn1) = b1 + E≥

1
na

n

i= 1
(Xi - X)ui

1
na

n

i= 1
(Xi - X)2

¥

= b1 + E≥

1
na

n

i= 1
(Xi - X)E(ui Xi,c, Xn)

1
na

n

i= 1
(Xi - X)2

¥ = b1, (4.31)

where the second equality in Equation (4.31) follows by using the law of iterated expecta-

tions (Section 2.3). By the second least squares assumption, ui is distributed independently 

of X for all observations other than i, so E(ui X1,c, Xn) = E(ui Xi). By the first least 

squares assumption, however, E(ui Xi) = 0. It follows that the conditional expectation in 

large brackets in the second line of Equation (4.31) is zero, so that E(bn1 - b1 X1,c
Xn) = 0. Equivalently, E(bn1 X1,c, Xn) = b1; that is, bn1 is conditionally 

unbiased, given X1,c, Xn. By the law of iterated expectations, E(bn1 - b1) =
E3E(bn1 - b1 X1,c, Xn)4 = 0, so that E(bn1) = b1; that is, bn1 is unbiased.

Large-Sample Normal Distribution 
of the OLS Estimator
The large-sample normal approximation to the limiting distribution of bn1 (Key Concept 4.4) 

is obtained by considering the behavior of the final term in Equation (4.30).
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First consider the numerator of this term. Because X  is consistent, if the sample size 

is large, X  is nearly equal to mX. Thus, to a close approximation, the term in the numerator 

of Equation (4.30) is the sample average n, where vi = (Xi - mX)ui. By the first least 

squares assumption, vi has a mean of zero. By the second least squares assumption, vi is 

i.i.d. The variance of vi is s2
v = 3var(Xi - mX)ui4, which, by the third least squares assump-

tion, is nonzero and finite. Therefore, v satisfies all the requirements of the central limit 

theorem (Key Concept 2.7). Thus v >sv is, in large samples, distributed N(0, 1), where 

s2
v = s2

v >n. Thus the distribution of v is well approximated by the N(0, s2
v >n) distribution.

Next consider the expression in the denominator in Equation (4.30); this is the sample 

variance of X (except dividing by n rather than n - 1, which is inconsequential if n is large). 

As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the 

population variance, so in large samples it is arbitrarily close to the population variance of X.

Combining these two results, we have that, in large samples, bn1 - b1 ≅ v > var(Xi),

so that the sampling distribution of bn1 is, in large samples, N(b1, s
2
b1

), where 

s
2
b1
= var(v) >3var(Xi)42 = var3(Xi - mX)ui4 > 5n3var(Xi)426, which is the expression in 

Equation (4.21).

Some Additional Algebraic Facts About OLS
The OLS residuals and predicted values satisfy

1
na

n

i= 1
un i = 0, (4.32)

1
na

n

i= 1
Yn i = Y, (4.33)

a
n

i= 1
un iXi = 0 and suX = 0, and (4.34)

TSS = SSR + ESS. (4.35)

Equations (4.32) through (4.35) say that the sample average of the OLS residuals is zero; 

the sample average of the OLS predicted values equals Y ; the sample covariance suX

between the OLS residuals and the regressors is zero; and the total sum of squares is the 

sum of squared residuals and the explained sum of squares. [The ESS, TSS, and SSR are 

defined in Equations (4.14), (4.15), and (4.17).]

To verify Equation (4.32), note that the definition of bn0 lets us write the OLS residuals 

as un i = Yi - bn0 - bn1Xi = (Yi - Y) - bn1(Xi - X); thus

a
n

i= 1
un i = a

n

i= 1
(Yi - Y) - bn1a

n

i= 1
(Xi - X).

But the definitions of Y and X  imply that gn
i= 1(Yi - Y) = 0 and gn

i= 1(Xi - X) = 0, so 

gn
i= 1 un i = 0.

N

N

N

N
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To verify Equation (4.33), note that Yi = Yn i + un i, so gn
i= 1Yi = g

n
i= 1 Yn i +

gn
i= 1 un1 = g

n
i= 1 Yn i, where the second equality is a consequence of Equation (4.32).

To verify Equation (4.34), note that gn
i= 1 un i = 0 implies gn

i= 1 un iXi = g
n
i= 1 un i(Xi - X),

so

a
n

i= 1
un iXi = a

n

i= 1
3(Yi - Y) - bn1(Xi - X)4(Xi - X)

= a
n

i= 1
(Yi - Y)(Xi - X) - bn1a

n

i= 1
(Xi - X)2 = 0, (4.36)

where the final equality in Equation (4.36) is obtained using the formula for bn1 in Equa-

tion (4.27). This result, combined with the preceding results, implies that suX = 0.

Equation (4.35) follows from the previous results and some algebra:

TSS = a
n

i= 1
(Yi - Y)2 = a

n

i= 1
(Yi - Yn i + Yn i - Y)2

= a
n

i= 1
(Yi - Yn i)

2 + a
n

i= 1
(Yn i - Y)2 + 2a

n

i= 1
(Yi - Yn i)(Yn i - Y)

= SSR + ESS + 2a
n

i= 1
un iYn i = SSR + ESS, (4.37)

where the final equality follows from gn
i= 1 un iYn i = g

n
i= 1 un i(bn0 + bn1Xi) = bn0g

n
i= 1 un i +

bn1g
n
i= 1 un iXi = 0 by the previous results.

N



This chapter continues the treatment of linear regression with a single regressor. 
Chapter 4 explained how the OLS estimator bn1 of the slope coefficient b1 differs 

from one sample to the next—that is, how bn1 has a sampling distribution. In this 
chapter, we show how knowledge of this sampling distribution can be used to 
make statements about b1 that accurately summarize the sampling uncertainty. 
The starting point is the standard error of the OLS estimator, which measures the 
spread of the sampling distribution of bn1. Section 5.1 provides an expression for 
this standard error (and for the standard error of the OLS estimator of the intercept), 
then shows how to use bn1 and its standard error to test hypotheses. Section 5.2 
explains how to construct confidence intervals for b1. Section 5.3 takes up the
special case of a binary regressor.

Sections 5.1 through 5.3 assume that the three least squares assumptions of 
Chapter 4 hold. If, in addition, some stronger conditions hold, then some stronger 
results can be derived regarding the distribution of the OLS estimator. One of these 
stronger conditions is that the errors are homoskedastic, a concept introduced in 
Section 5.4. Section 5.5 presents the Gauss–Markov theorem, which states that, 
under certain conditions, OLS is efficient (has the smallest variance) among a cer-
tain class of estimators. Section 5.6 discusses the distribution of the OLS estimator 
when the population distribution of the regression errors is normal.

5.1 Testing Hypotheses About 
One of the Regression Coefficients

Your client, the superintendent, calls you with a problem. She has an angry tax-
payer in her office who asserts that cutting class size will not help boost test scores, 
so reducing them is a waste of money. Class size, the taxpayer claims, has no effect 
on test scores.

The taxpayer’s claim can be rephrased in the language of regression analysis. 
Because the effect on test scores of a unit change in class size is bClassSize, the tax-
payer is asserting that the population regression line is flat—that is, the slope 
bClassSize of the population regression line is zero. Is there, the superintendent asks, 

Regression with a Single
Regressor: Hypothesis Tests
and Confidence Intervals5
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evidence in your sample of 420 observations on California school districts that this 
slope is nonzero? Can you reject the taxpayer’s hypothesis that bClassSize = 0, or 
should you accept it, at least tentatively pending further new evidence?

This section discusses tests of hypotheses about the slope b1 or intercept b0 of 
the population regression line. We start by discussing two-sided tests of the slope 
b1 in detail, then turn to one-sided tests and to tests of hypotheses regarding the 
intercept b0.

Two-Sided Hypotheses Concerning b1

The general approach to testing hypotheses about the coefficient b1 is the same as 
to testing hypotheses about the population mean, so we begin with a brief review.

Testing hypotheses about the population mean. Recall from Section 3.2 that the 
null hypothesis that the mean of Y is a specific value mY,0 can be written as 
H0 : E(Y) = mY,0, and the two-sided alternative is H1: E(Y ) ≠ mY,0.

The test of the null hypothesis H0 against the two-sided alternative proceeds as in 
the three steps summarized in Key Concept 3.6. The first is to compute the standard 
error of Y, SE(Y), which is an estimator of the standard deviation of the sampling 
distribution of Y. The second step is to compute the t-statistic, which has the general 
form given in Key Concept 5.1; applied here, the t-statistic is t = (Y - mY,0)>SE(Y ).

The third step is to compute the p-value, which is the smallest significance level 
at which the null hypothesis could be rejected, based on the test statistic actually 
observed; equivalently, the p-value is the probability of obtaining a statistic, by 
random sampling variation, at least as different from the null hypothesis value as is 
the statistic actually observed, assuming that the null hypothesis is correct (Key 
Concept 3.5). Because the t-statistic has a standard normal distribution in large 
samples under the null hypothesis, the p-value for a two-sided hypothesis test is 
2Φ(- t act ), where tact is the value of the t-statistic actually computed and Φ is the 
cumulative standard normal distribution tabulated in Appendix Table 1. Alternatively, 

General Form of the t-Statistic

In general, the t-statistic has the form

t =
estimator - hypothesized value

standard error of the estimator
. (5.1)

KEY CONCEPT

5.1
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the third step can be replaced by simply comparing the t-statistic to the critical value 
appropriate for the test with the desired significance level. For example, a two-sided 
test with a 5% significance level would reject the null hypothesis if t act 7 1.96. In 
this case, the population mean is said to be statistically significantly different from 
the hypothesized value at the 5% significance level.

Testing hypotheses about the slope b1. At a theoretical level, the critical feature 
justifying the foregoing testing procedure for the population mean is that, in large 
samples, the sampling distribution of Y is approximately normal. Because bn1 also 
has a normal sampling distribution in large samples, hypotheses about the true 
value of the slope b1 can be tested using the same general approach.

The null and alternative hypotheses need to be stated precisely before they 
can be tested. The angry taxpayer’s hypothesis is that bClassSize = 0. More gener-
ally, under the null hypothesis the true population slope b1 takes on some specific 
value, b1,0. Under the two-sided alternative, b1 does not equal b1,0. That is, the null 
hypothesis and the two-sided alternative hypothesis are

H0 : b1 = b1,0 vs. H1 : b1 ≠ b1,0 (two@sided alternative). (5.2)

To test the null hypothesis H0, we follow the same three steps as for the popula-
tion mean.

The first step is to compute the standard error of Bn1, SE(bn1). The standard 
error of bn1 is an estimator of snb1

 the standard deviation of the sampling distribu-
tion of bn1. Specifically,

SE(bn1) = 4sn
2
nb1

, (5.3)

where

sn 2
nb1
=

1
n *

1
n - 2 a

n

i= 1
(Xi - X )2un2

i

c
1
na

n

i= 1
(Xi - X )2 d

2 . (5.4)

The estimator of the variance in Equation (5.4) is discussed in Appendix (5.1). 
Although the formula for sn 2

nb1
  is complicated, in applications the standard error 

is computed by regression software so that it is easy to use in practice.
The second step is to compute the t-statistic,

t =
bn1 - b1,0

SE(bn1)
. (5.5)
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The third step is to compute the p-value, the probability of observing a value 
of bn1 at least as different from b1,0 as the estimate actually computed (bn act

1 ), assum-
ing that the null hypothesis is correct. Stated mathematically,

p@value = PrH0
30bn1 - b1,0 0 7 0bn act

1 - b1,0 04

= PrH0
c `
bn1 - b1,0

SE(bn1)
` 7 `

bn act
1 - b1,0

SE(bn1)
` d = PrH0

( 0 t 0 7 0 t act 0 ), (5.6)

where PrH0
 denotes the probability computed under the null hypothesis, the sec-

ond equality follows by dividing by SE(bn1), and t act is the value of the t-statistic 
actually computed. Because bn1 is approximately normally distributed in large 
samples, under the null hypothesis the t-statistic is approximately distributed as a 
standard normal random variable, so in large samples,

p@value = Pr( 0Z 0 7 0 t act 0 ) = 2Φ(- 0 t act 0 ). (5.7)

A p-value of less than 5% provides evidence against the null hypothesis in the 
sense that, under the null hypothesis, the probability of obtaining a value of bn1 at 
least as far from the null as that actually observed is less than 5%. If so, the null 
hypothesis is rejected at the 5% significance level.

Alternatively, the hypothesis can be tested at the 5% significance level simply 
by comparing the absolute value of the t-statistic to 1.96, the critical value for a 
two-sided test, and rejecting the null hypothesis at the 5% level if 0 t act 0 7 1.96.

These steps are summarized in Key Concept 5.2.

Testing the Hypothesis b1 = b1,0
Against the Alternative b1 ≠ b1,0

1. Compute the standard error of bn1, SE(bn1) [Equation (5.3)].

2. Compute the t-statistic [Equation (5.5)].

3. Compute the p-value [Equation (5.7)]. Reject the hypothesis at the 5% sig-
nificance level if the p-value is less than 0.05 or, equivalently, if tact 7 1.96.

The standard error and (typically) the t-statistic and p-value testing b1 = 0 are 
computed automatically by regression software.

KEY CONCEPT

5.2
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Reporting regression equations and application to test scores. The OLS regres-
sion of the test score against the student–teacher ratio, reported in Equation 
(4.11), yielded bn0 = 698.9 and bn1 = -2.28. The standard errors of these estimates 
are SE(bn0) = 10.4 and SE(bn1) = 0.52.

Because of the importance of the standard errors, by convention they are 
included when reporting the estimated OLS coefficients. One compact way to 
report the standard errors is to place them in parentheses below the respective 
coefficients of the OLS regression line:

TestScore = 698.9 - 2.28 * STR, R2 = 0.051, SER = 18.6. (5.8)
(10.4) (0.52)

Equation (5.8) also reports the regression R2 and the standard error of the regres-
sion (SER) following the estimated regression line. Thus Equation (5.8) provides 
the estimated regression line, estimates of the sampling uncertainty of the slope 
and the intercept (the standard errors), and two measures of the fit of this regres-
sion line (the R2 and the SER). This is a common format for reporting a single 
regression equation, and it will be used throughout the rest of this book.

Suppose you wish to test the null hypothesis that the slope b1 is zero in the 
population counterpart of Equation (5.8) at the 5% significance level. To do so, con-
struct the t-statistic and compare its absolute value to 1.96, the 5% (two-sided) 
critical value taken from the standard normal distribution. The t-statistic is con-
structed by substituting the hypothesized value of b1 under the null hypothesis (zero), 
the estimated slope, and its standard error from Equation (5.8) into the general formula 
in Equation (5.5); the result is t act = (-2.28 - 0) > 0.52 = -4.38. The absolute value 
of this t-statistic exceeds the 5% two-sided critical value of 1.96, so the null hypothesis 
is rejected in favor of the two-sided alternative at the 5% significance level.

Alternatively, we can compute the p-value associated with tact = -4.38. This 
probability is the area in the tails of standard normal distribution, as shown in 
Figure 5.1. This probability is extremely small, approximately 0.00001, or 0.001%. 
That is, if the null hypothesis bClassSize = 0 is true, the probability of obtaining a 
value of bn1 as far from the null as the value we actually obtained is extremely 
small, less than 0.001%. Because this event is so unlikely, it is reasonable to con-
clude that the null hypothesis is false.

One-Sided Hypotheses Concerning b1

The discussion so far has focused on testing the hypothesis that b1 = b1,0 against 
the hypothesis that b1 ≠ b1,0. This is a two-sided hypothesis test, because under the 
alternative b1 could be either larger or smaller than b1,0. Sometimes, however, it 
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is appropriate to use a one-sided hypothesis test. For example, in the student–
teacher ratio/test score problem, many people think that smaller classes provide 
a better learning environment. Under that hypothesis, b1 is negative: Smaller 
classes lead to higher scores. It might make sense, therefore, to test the null 
hypothesis that b1 = 0 (no effect) against the one-sided alternative that b1 6 0.

For a one-sided test, the null hypothesis and the one-sided alternative hypoth-
esis are

H0 : b1 = b1,0 vs. H1 : b1 6 b1,0 (one@sided alternative). (5.9)

where b1,0 is the value of b1 under the null (0 in the student–teacher ratio example) 
and the alternative is that b1 is less than b1,0. If the alternative is that b1 is greater 
than b1,0, the inequality in Equation (5.9) is reversed.

Because the null hypothesis is the same for a one- and a two-sided hypothesis 
test, the construction of the t-statistic is the same. The only difference between a 
one- and two-sided hypothesis test is how you interpret the t-statistic. For the one-
sided alternative in Equation (5.9), the null hypothesis is rejected against the one-
sided alternative for large negative, but not large positive, values of the t-statistic:
Instead of rejecting if tact 7 1.96, the hypothesis is rejected at the 5% signifi-
cance level if t act 6 -1.64.

FIGURE 5.1 Calculating the p-Value of a Two-Sided Test When tact = -4.38

The p-value of a two-sided 

test is the probability that 
0 Z 0 7 0 t act 0  where Z is a 

standard normal random 

variable and tact is the value 

of the t-statistic calculated 

from the sample. When 

tact = -4.38, the p-value is 

only 0.00001.

z

The p-value is the area
to the left of –4.38

+
the area to the right of +4.38.

N(0, 1)

0–4.38 4.38
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The p-value for a one-sided test is obtained from the cumulative standard 
normal distribution as

p@value = Pr(Z 6 t act) = Φ(t act) (p@value, one@sided left@tail test). (5.10)

If the alternative hypothesis is that b1 is greater than b1,0, the inequalities in Equa-
tions (5.9) and (5.10) are reversed, so the p-value is the right-tail probability, 
Pr(Z 7 tact).

When should a one-sided test be used? In practice, one-sided alternative hypoth-
eses should be used only when there is a clear reason for doing so. This reason 
could come from economic theory, prior empirical evidence, or both. However, 
even if it initially seems that the relevant alternative is one-sided, upon reflection 
this might not necessarily be so. A newly formulated drug undergoing clinical tri-
als actually could prove harmful because of previously unrecognized side effects. 
In the class size example, we are reminded of the graduation joke that a univer-
sity’s secret of success is to admit talented students and then make sure that the 
faculty stays out of their way and does as little damage as possible. In practice, 
such ambiguity often leads econometricians to use two-sided tests.

Application to test scores. The t-statistic testing the hypothesis that there is no 
effect of class size on test scores [so b1,0 = 0 in Equation (5.9)] is tact = -4.38. This 
value is less than -2.33 (the critical value for a one-sided test with a 1% signifi-
cance level), so the null hypothesis is rejected against the one-sided alternative at 
the 1% level. In fact, the p-value is less than 0.0006%. Based on these data, you 
can reject the angry taxpayer’s assertion that the negative estimate of the slope 
arose purely because of random sampling variation at the 1% significance level.

Testing Hypotheses About the Intercept b0

This discussion has focused on testing hypotheses about the slope, b1. Occasion-
ally, however, the hypothesis concerns the intercept b0. The null hypothesis con-
cerning the intercept and the two-sided alternative are

H0 : b0 = b0,0 vs. H1 : b0 ≠ b0,0 (two@sided alternative). (5.11)

The general approach to testing this null hypothesis consists of the three steps in 
Key Concept 5.2 applied to b0 (the formula for the standard error of bn0 is given in 
Appendix 5.1). If the alternative is one-sided, this approach is modified as was 
discussed in the previous subsection for hypotheses about the slope.
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Hypothesis tests are useful if you have a specific null hypothesis in mind (as 
did our angry taxpayer). Being able to accept or reject this null hypothesis based 
on the statistical evidence provides a powerful tool for coping with the uncertainty 
inherent in using a sample to learn about the population. Yet, there are many 
times that no single hypothesis about a regression coefficient is dominant, and 
instead one would like to know a range of values of the coefficient that are con-
sistent with the data. This calls for constructing a confidence interval.

5.2 Confidence Intervals 
for a Regression Coefficient

Because any statistical estimate of the slope b1 necessarily has sampling uncer-
tainty, we cannot determine the true value of b1 exactly from a sample of data. It 
is possible, however, to use the OLS estimator and its standard error to construct 
a confidence interval for the slope b1 or for the intercept b0.

Confidence interval for b1. Recall from the discussion of confidence intervals in 
Section 3.3 that a 95% confidence interval for B1 has two equivalent definitions. First, 
it is the set of values that cannot be rejected using a two-sided hypothesis test with a 
5% significance level. Second, it is an interval that has a 95% probability of contain-
ing the true value of b1; that is, in 95% of possible samples that might be drawn, the 
confidence interval will contain the true value of b1. Because this interval contains 
the true value in 95% of all samples, it is said to have a confidence level of 95%.

The reason these two definitions are equivalent is as follows. A hypothesis 
test with a 5% significance level will, by definition, reject the true value of b1 in 
only 5% of all possible samples; that is, in 95% of all possible samples, the true 
value of b1 will not be rejected. Because the 95% confidence interval (as defined 
in the first definition) is the set of all values of b1 that are not rejected at the 5% 
significance level, it follows that the true value of b1 will be contained in the con-
fidence interval in 95% of all possible samples.

As in the case of a confidence interval for the population mean (Section 3.3), 
in principle a 95% confidence interval can be computed by testing all possible 
values of b1 (that is, testing the null hypothesis b1 = b1,0 for all values of b1,0) at 
the 5% significance level using the t-statistic. The 95% confidence interval is then 
the collection of all the values of b1 that are not rejected. But constructing the 
t-statistic for all values of b1 would take forever.

An easier way to construct the confidence interval is to note that the t-statistic 
will reject the hypothesized value b1,0 whenever b1,0 is outside the range 
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bn1 { 1.96SE(bn1). This implies that the 95% confidence interval for b1 is the inter-
val 3bn1 - 1.96SE(bn1), bn1 + 1.96SE(bn1)4. This argument parallels the argument 
used to develop a confidence interval for the population mean.

The construction of a confidence interval for b1 is summarized as Key 
Concept 5.3.

Confidence interval for b0. A 95% confidence interval for b0 is constructed as in 
Key Concept 5.3, with bn0 and SE(bn0) replacing bn1 and SE(bn1).

Application to test scores. The OLS regression of the test score against the student–
teacher ratio, reported in Equation (5.8), yielded bn1 = -2.28 and SE(bn1) = 0.52.
The 95% two-sided confidence interval for b1 is 5-2.28 { 1.96 * 0.526, or 
-3.30 … b1 … -1.26. The value b1 = 0 is not contained in this confidence interval, 
so (as we knew already from Section 5.1) the hypothesis b1 = 0 can be rejected at the 
5% significance level.

Confidence intervals for predicted effects of changing X. The 95% confidence 
interval for b1 can be used to construct a 95% confidence interval for the pre-
dicted effect of a general change in X.

Consider changing X by a given amount, ∆x. The predicted change in Y asso-
ciated with this change in X is b1∆x. The population slope b1 is unknown, but 
because we can construct a confidence interval for b1, we can construct a confi-
dence interval for the predicted effect b1∆x. Because one end of a 95% confidence 
interval for b1 is bn1 - 1.96SE(bn1), the predicted effect of the change ∆x using 
this estimate of b1 is 3bn1 - 1.96SE(bn1)4 * ∆x. The other end of the confidence 

Confidence Interval for b1

A 95% two-sided confidence interval for b1 is an interval that contains the true 
value of b1 with a 95% probability; that is, it contains the true value of b1 in 95% 
of all possible randomly drawn samples. Equivalently, it is the set of values of b1

that cannot be rejected by a 5% two-sided hypothesis test. When the sample size 
is large, it is constructed as

95% confidence interval for b1 = 3bn1 - 1.96SE(bn1), bn1 + 1.96SE(bn1)4. (5.12)

KEY CONCEPT

5.3



5.3 Regression When X Is a Binary Variable 155

interval is bn1 + 1.96SE(bn1), and the predicted effect of the change using that esti-
mate is 3bn1 + 1.96SE(bn1)4 * ∆x. Thus a 95% confidence interval for the effect of 
changing x by the amount ∆x can be expressed as

95% confidence interval for b1∆x

= 3(bn1 - 1.96SE(bn1))∆x, (bn1 + 1.96SE(bn1))∆x4. (5.13)

For example, our hypothetical superintendent is contemplating reducing the 
student–teacher ratio by 2. Because the 95% confidence interval for b1 is 
3-3.30, -1.264, the effect of reducing the student–teacher ratio by 2 could be as 
great as -3.30 * (-2) = 6.60 or as little as -1.26 * (-2) = 2.52. Thus decreas-
ing the student–teacher ratio by 2 is predicted to increase test scores by between 
2.52 and 6.60 points, with a 95% confidence level.

5.3 Regression When X Is a Binary Variable

The discussion so far has focused on the case that the regressor is a continuous 
variable. Regression analysis can also be used when the regressor is binary—that 
is, when it takes on only two values, 0 or 1. For example, X might be a worker’s 
gender (=1 if female, = 0 if male), whether a school district is urban or rural 
(= 1 if urban,  = 0 if rural), or whether the district’s class size is small or large 
(= 1 if small, = 0 if large). A binary variable is also called an indicator variable
or sometimes a dummy variable.

Interpretation of the Regression Coefficients
The mechanics of regression with a binary regressor are the same as if it is con-
tinuous. The interpretation of b1, however, is different, and it turns out that 
regression with a binary variable is equivalent to performing a difference of means 
analysis, as described in Section 3.4.

To see this, suppose you have a variable Di that equals either 0 or 1, depend-
ing on whether the student–teacher ratio is less than 20:

Di = e
1 if the student9teacher ratio in ith district 6 20
0 if the student9teacher ratio in ith district Ú 20

.
(5.14)

The population regression model with Di as the regressor is

Yi = b0 + b1Di + ui, i = 1, c, n. (5.15)
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This is the same as the regression model with the continuous regressor Xi

except that now the regressor is the binary variable Di. Because Di is not continu-
ous, it is not useful to think of b1 as a slope; indeed, because Di can take on only 
two values, there is no “line,” so it makes no sense to talk about a slope. Thus we 
will not refer to b1 as the slope in Equation (5.15); instead we will simply refer to b1 as 
the coefficient multiplying Di in this regression or, more compactly, the coefficient 
on Di.

If b1 in Equation (5.15) is not a slope, what is it? The best way to interpret b0

and b1 in a regression with a binary regressor is to consider, one at a time, the two 
possible cases, Di = 0 and Di = 1. If the student–teacher ratio is high, then 
Di = 0 and Equation (5.15) becomes

Yi = b0 + ui (Di = 0). (5.16)

Because E(ui Di) = 0, the conditional expectation of Yi when Di = 0 is 
E(Yi Di = 0) = b0; that is, b0 is the population mean value of test scores when 
the student–teacher ratio is high. Similarly, when Di = 1,

Yi = b0 + b1 + ui (Di = 1). (5.17)

Thus, when Di = 1, E(Yi Di = 1) = b0 + b1; that is, b0 + b1 is the population 
mean value of test scores when the student–teacher ratio is low.

Because b0 + b1 is the population mean of Yi when Di = 1 and b0 is the 
population mean of Yi when Di = 0, the difference (b0 + b1) - b0 = b1 is the 
difference between these two means. In other words, b1 is the difference between 
the conditional expectation of Yi when Di = 1 and when Di = 0, or 
b1 = E(Yi Di = 1) - E(Yi Di = 0). In the test score example, b1 is the differ-
ence between mean test score in districts with low student–teacher ratios and the 
mean test score in districts with high student–teacher ratios.

Because b1 is the difference in the population means, it makes sense that the 
OLS estimator b1 is the difference between the sample averages of Yi in the two 
groups, and, in fact, this is the case.

Hypothesis tests and confidence intervals. If the two population means are the 
same, then b1 in Equation (5.15) is zero. Thus the null hypothesis that the two 
population means are the same can be tested against the alternative hypothesis 
that they differ by testing the null hypothesis b1 = 0 against the alternative 
b1 ≠ 0. This hypothesis can be tested using the procedure outlined in Section 5.1. 
Specifically, the null hypothesis can be rejected at the 5% level against the two-sided 
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alternative when the OLS t-statistic t = bn1 > SE(bn1) exceeds 1.96 in absolute value. 
Similarly, a 95% confidence interval for b1, constructed as bn1 { 1.96SE(bn1). as 
described in Section 5.2, provides a 95% confidence interval for the difference 
between the two population means.

Application to test scores. As an example, a regression of the test score against 
the student–teacher ratio binary variable D defined in Equation (5.14) estimated 
by OLS using the 420 observations in Figure 4.2 yields

TestScore = 650.0 + 7.4D, R2 = 0.037, SER = 18.7,
(1.3) (1.8) (5.18)

where the standard errors of the OLS estimates of the coefficients b0 and b1 are 
given in parentheses below the OLS estimates. Thus the average test score for the 
subsample with student–teacher ratios greater than or equal to 20 (that is, for 
which D = 0) is 650.0, and the average test score for the subsample with student–
teacher ratios less than 20 (so D = 1) is 650.0 + 7.4 = 657.4. The difference 
between the sample average test scores for the two groups is 7.4. This is the OLS 
estimate of b1, the coefficient on the student–teacher ratio binary variable D.

Is the difference in the population mean test scores in the two groups statisti-
cally significantly different from zero at the 5% level? To find out, construct the 
t-statistic on b1 : t = 7.4 > 1.8 = 4.04. This value exceeds 1.96 in absolute value, so 
the hypothesis that the population mean test scores in districts with high and low 
student–teacher ratios is the same can be rejected at the 5% significance level.

The OLS estimator and its standard error can be used to construct a 95% con-
fidence interval for the true difference in means. This is 7.4 { 1.96 *
1.8 = (3.9, 10.9). This confidence interval excludes b1 = 0, so that (as we know 
from the previous paragraph) the hypothesis b1 = 0 can be rejected at the 5% 
significance level.

5.4 Heteroskedasticity and Homoskedasticity

Our only assumption about the distribution of ui conditional on Xi is that it has a 
mean of zero (the first least squares assumption). If, furthermore, the variance of 
this conditional distribution does not depend on Xi, then the errors are said to be 
homoskedastic. This section discusses homoskedasticity, its theoretical implica-
tions, the simplified formulas for the standard errors of the OLS estimators that 
arise if the errors are homoskedastic, and the risks you run if you use these simpli-
fied formulas in practice.
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What Are Heteroskedasticity and Homoskedasticity?
Definitions of heteroskedasticity and homoskedasticity. The error term ui is 
homoskedastic if the variance of the conditional distribution of ui given Xi is con-
stant for i = 1, c, n and in particular does not depend on Xi. Otherwise, the 
error term is heteroskedastic.

As an illustration, return to Figure 4.4. The distribution of the errors ui is 
shown for various values of x. Because this distribution applies specifically for 
the indicated value of x, this is the conditional distribution of ui given Xi = x.
As drawn in that figure, all these conditional distributions have the same 
spread; more precisely, the variance of these distributions is the same for the 
various values of x. That is, in Figure 4.4, the conditional variance of ui given 
Xi = x does not depend on x, so the errors illustrated in Figure 4.4 are homo-
skedastic.

In contrast, Figure 5.2 illustrates a case in which the conditional distribution 
of ui spreads out as x increases. For small values of x, this distribution is tight, but 
for larger values of x, it has a greater spread. Thus in Figure 5.2 the variance of ui

given Xi = x increases with x, so that the errors in Figure 5.2 are heteroskedastic.
The definitions of heteroskedasticity and homoskedasticity are summarized 

in Key Concept 5.4.

FIGURE 5.2  An Example of Heteroskedasticity
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Example. These terms are a mouthful, and the definitions might seem abstract. 
To help clarify them with an example, we digress from the student–teacher ratio/
test score problem and instead return to the example of earnings of male versus 
female college graduates considered in the box in Chapter 3 “The Gender Gap in 
Earnings of College Graduates in the United States.” Let MALEi be a binary 
variable that equals 1 for male college graduates and equals 0 for female gradu-
ates. The binary variable regression model relating a college graduate’s earnings 
to his or her gender is

Earningsi = b0 + b1MALEi + ui (5.19)

for i = 1,c, n. Because the regressor is binary, b1 is the difference in the popu-
lation means of the two groups—in this case, the difference in mean earnings 
between men and women who graduated from college.

The definition of homoskedasticity states that the variance of ui does not 
depend on the regressor. Here the regressor is MALEi, so at issue is whether the 
variance of the error term depends on MALEi. In other words, is the variance of 
the error term the same for men and for women? If so, the error is homoskedastic; 
if not, it is heteroskedastic.

Deciding whether the variance of ui depends on MALEi requires thinking 
hard about what the error term actually is. In this regard, it is useful to write 
Equation (5.19) as two separate equations, one for men and one for women:

Earningsi = b0 + ui (women) and (5.20)

Earningsi = b0 + b1 + ui (men). (5.21)

Thus, for women, ui is the deviation of the ith woman’s earnings from the popula-
tion mean earnings for women (b0), and for men, ui is the deviation of the ith man’s 
earnings from the population mean earnings for men (b0 + b1). It follows that the 
statement “the variance of ui does not depend on MALE” is equivalent to the 

Heteroskedasticity and Homoskedasticity

The error term ui is homoskedastic if the variance of the conditional distribution 
of ui given Xi, var(ui Xi = x), is constant for i = 1,c, n and in particular does 
not depend on x. Otherwise, the error term is heteroskedastic.

KEY CONCEPT

5.4
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statement “the variance of earnings is the same for men as it is for women.” In 
other words, in this example, the error term is homoskedastic if the variance of 
the population distribution of earnings is the same for men and women; if these 
variances differ, the error term is heteroskedastic.

Mathematical Implications of Homoskedasticity
The OLS estimators remain unbiased and asymptotically normal. Because the 
least squares assumptions in Key Concept 4.3 place no restrictions on the condi-
tional variance, they apply to both the general case of heteroskedasticity and the 
special case of homoskedasticity. Therefore, the OLS estimators remain unbiased 
and consistent even if the errors are homoskedastic. In addition, the OLS estima-
tors have sampling distributions that are normal in large samples even if the errors 
are homoskedastic. Whether the errors are homoskedastic or heteroskedastic, the 
OLS estimator is unbiased, consistent, and asymptotically normal.

Efficiency of the OLS estimator when the errors are homoskedastic. If the least 
squares assumptions in Key Concept 4.3 hold and the errors are homoskedastic, 
then the OLS estimators bn0 and bn1 are efficient among all estimators that are 
linear in Y1,c, Yn and are unbiased, conditional on X1,c, Xn. This result, 
which is called the Gauss–Markov theorem, is discussed in Section 5.5.

Homoskedasticity-only variance formula. If the error term is homoskedastic, 
then the formulas for the variances of bn0 and bn1 in Key Concept 4.4 simplify. Con-
sequently, if the errors are homoskedastic, then there is a specialized formula that 
can be used for the standard errors of bn0 and bn1. The homoskedasticity-only stan-
dard error of bn1, derived in Appendix (5.1), is SE(bn1) = 2s∼2

nb1
 where s∼2

nb1
  is the 

homoskedasticity-only estimator of the variance of bn1:

s∼2
nb1
=

s2
un

a
n

i= 1
(Xi - X )2

(homoskedasticity@only), (5.22)

where s2
un is given in Equation (4.19). The homoskedasticity-only formula for the 

standard error of bn0 is given in Appendix (5.1). In the special case that X is a 
binary variable, the estimator of the variance of bn1 under homoskedasticity (that 
is, the square of the standard error of bn1 under homoskedasticity) is the so-called 
pooled variance formula for the difference in means, given in Equation (3.23).

Because these alternative formulas are derived for the special case that the 
errors are homoskedastic and do not apply if the errors are heteroskedastic, they 
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will be referred to as the “homoskedasticity-only” formulas for the variance and 
standard error of the OLS estimators. As the name suggests, if the errors are 
heteroskedastic, then the homoskedasticity-only standard errors are inappropri-
ate. Specifically, if the errors are heteroskedastic, then the t-statistic computed 
using the homoskedasticity-only standard error does not have a standard normal 
distribution, even in large samples. In fact, the correct critical values to use for this 
homoskedasticity-only t-statistic depend on the precise nature of the heteroskedas-
ticity, so those critical values cannot be tabulated. Similarly, if the errors are hetero-
skedastic but a confidence interval is constructed as {1.96 homoskedasticity-only 
standard errors, in general the probability that this interval contains the true value 
of the coefficient is not 95%, even in large samples.

In contrast, because homoskedasticity is a special case of heteroskedasticity, 
the estimators sn 2

nb1
 and sn 2

nb0
 of the variances of bn1 and bn0 given in Equations (5.4) 

and (5.26) produce valid statistical inferences whether the errors are heteroske-
dastic or homoskedastic. Thus hypothesis tests and confidence intervals based on 
those standard errors are valid whether or not the errors are heteroskedastic. 
Because the standard errors we have used so far [that is, those based on Equations 
(5.4) and (5.26)] lead to statistical inferences that are valid whether or not the 
errors are heteroskedastic, they are called heteroskedasticity-robust standard 
errors. Because such formulas were proposed by Eicker (1967), Huber (1967), and 
White (1980), they are also referred to as Eicker–Huber–White standard errors.

What Does This Mean in Practice?
Which is more realistic, heteroskedasticity or homoskedasticity? The answer to 
this question depends on the application. However, the issues can be clarified by 
returning to the example of the gender gap in earnings among college graduates. 
Familiarity with how people are paid in the world around us gives some clues as to 
which assumption is more sensible. For many years—and, to a lesser extent, today—
women were not found in the top-paying jobs: There have always been poorly paid 
men, but there have rarely been highly paid women. This suggests that the distribu-
tion of earnings among women is tighter than among men (see the box in Chapter 3 
“The Gender Gap in Earnings of College Graduates in the United States”). In 
other words, the variance of the error term in Equation (5.20) for women is plausi-
bly less than the variance of the error term in Equation (5.21) for men. Thus the 
presence of a “glass ceiling” for women’s jobs and pay suggests that the error term 
in the binary variable regression model in Equation (5.19) is heteroskedastic. Unless 
there are compelling reasons to the contrary—and we can think of none—it makes 
sense to treat the error term in this example as heteroskedastic.
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On average, workers with more education have 

higher earnings than workers with less educa-

tion. But if the best-paying jobs mainly go to the col-

lege educated, it might also be that the spread of the 

distribution of earnings is greater for workers with 

more education. Does the distribution of earnings 

spread out as education increases?

This is an empirical question, so answering it 

requires analyzing data. Figure 5.3 is a scatterplot of 

the hourly earnings and the number of years of edu-

cation for a sample of 2829 full-time workers in the 

United States in 2012, ages 29 and 30, with between 

6 and 18 years of education. The data come from 

the March 2013 Current Population Survey, which 

is described in Appendix 3.1.

Figure 5.3 has two striking features. The first is 

that the mean of the distribution of earnings increases 

with the number of years of education. This increase 

is summarized by the OLS regression line,

Earnings = -7.29 + 1.93Years Education,

(1.10)  (0.08)

R2 = 0.162, SER = 10.29. (5.23)

This line is plotted in Figure 5.3. The coefficient 

of 1.93 in the OLS regression line means that, on 

average, hourly earnings increase by $1.93 for each 

additional year of education. The 95% confidence 

interval for this coefficient is 1.93 { 1.96 * 0.08, or 

1.77 to 2.09.

The second striking feature of Figure 5.3 is that 

the spread of the distribution of earnings increases 

with the years of education. While some workers 

with many years of education have low-paying jobs, 

very few workers with low levels of education have 

high-paying jobs. This can be quantified by looking 

at the spread of the residuals around the OLS regres-

sion line. For workers with ten years of education, 

the standard deviation of the residuals is $4.32; for 

workers with a high school diploma, this standard 

deviation is $7.80; and for workers with a college 

degree, this standard deviation increases to $12.46. 

Because these standard deviations differ for differ-

ent levels of education, the variance of the residuals 

in the regression of Equation (5.23) depends on the 

value of the regressor (the years of education); in 

other words, the regression errors are heteroskedas-

tic. In real-world terms, not all college graduates will 

be earning $50 per hour by the time they are 29, but 

some will, and workers with only ten years of educa-

tion have no shot at those jobs.

The Economic Value of a Year of Education:
Homoskedasticity or Heteroskedasticity?

FIGURE 5.3 Scatterplot of Hourly Earnings and Years of Education
for 29- to 30-Year-Olds in the United States in 2012

Hourly earnings are plotted against years of education for 

2,829 full-time 29- to 30-year-old workers. The spread 

around the regression line increases with the years of 
education, indicating that the regression errors are 

heteroskedastic.
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As this example of modeling earnings illustrates, heteroskedasticity arises in 
many econometric applications. At a general level, economic theory rarely gives 
any reason to believe that the errors are homoskedastic. It therefore is prudent to 
assume that the errors might be heteroskedastic unless you have compelling rea-
sons to believe otherwise.

Practical implications. The main issue of practical relevance in this discussion is 
whether one should use heteroskedasticity-robust or homoskedasticity-only stan-
dard errors. In this regard, it is useful to imagine computing both, then choosing 
between them. If the homoskedasticity-only and heteroskedasticity-robust stan-
dard errors are the same, nothing is lost by using the heteroskedasticity-robust 
standard errors; if they differ, however, then you should use the more reliable 
ones that allow for heteroskedasticity. The simplest thing, then, is always to use 
the heteroskedasticity-robust standard errors.

For historical reasons, many software programs report homoskedasticity-
only standard errors as their default setting, so it is up to the user to specify the 
option of heteroskedasticity-robust standard errors. The details of how to imple-
ment heteroskedasticity-robust standard errors depend on the software package 
you use.

All of the empirical examples in this book employ heteroskedasticity-robust 
standard errors unless explicitly stated otherwise.1

*5.5 The Theoretical Foundations 
of Ordinary Least Squares

As discussed in Section 4.5, the OLS estimator is unbiased, is consistent, has a 
variance that is inversely proportional to n, and has a normal sampling distribu-
tion when the sample size is large. In addition, under certain conditions the OLS 
estimator is more efficient than some other candidate estimators. Specifically, if 
the least squares assumptions hold and if the errors are homoskedastic, then the 
OLS estimator has the smallest variance of all conditionally unbiased estimators 
that are linear functions of Y1,c, Yn. This section explains and discusses this 
result, which is a consequence of the Gauss–Markov theorem. The section concludes 

1In case this book is used in conjunction with other texts, it might be helpful to note that some text-
books add homoskedasticity to the list of least squares assumptions. As just discussed, however, 
this additional assumption is not needed for the validity of OLS regression analysis as long as 
heteroskedasticity-robust standard errors are used.
*This section is optional and is not used in later chapters.
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with a discussion of alternative estimators that are more efficient than OLS when 
the conditions of the Gauss–Markov theorem do not hold.

Linear Conditionally Unbiased Estimators and
the Gauss–Markov Theorem
If the three least squares assumptions (Key Concept 4.3) hold and if the error is 
homoskedastic, then the OLS estimator has the smallest variance, conditional on 
X1,c, Xn, among all estimators in the class of linear conditionally unbiased esti-
mators. In other words, the OLS estimator is the Best Linear conditionally Unbi-
ased Estimator—that is, it is BLUE. This result is an extension of the result, 
summarized in Key Concept 3.3, that the sample average Y is the most efficient 
estimator of the population mean among the class of all estimators that are unbi-
ased and are linear functions (weighted averages) of Y1,c, Yn.

Linear conditionally unbiased estimators. The class of linear conditionally unbi-
ased estimators consists of all estimators of b1 that are linear functions of 
Y1,c, Yn and that are unbiased, conditional on X1,c, Xn. That is, if b∼1 is a 
linear estimator, then it can be written as

b
∼

1 = a
n

i= 1
aiYi (b∼1 is linear), (5.24)

where the weights a1,c, an can depend on X1,c, Xn but not on Y1,c, Yn.
The estimator b1 is conditionally unbiased if the mean of its conditional sampling 
distribution, given X1,c, Xn, is b1. That is, the estimator b1 is conditionally 
unbiased if

E(b∼1 X1,c, Xn) = b1 (b∼1 is conditionally unbiased). (5.25)

The estimator b∼1 is a linear conditionally unbiased estimator if it can be written 
in the form of Equation (5.24) (it is linear) and if Equation (5.25) holds (it is con-
ditionally unbiased). It is shown in Appendix 5.2 that the OLS estimator is linear 
and conditionally unbiased.

The Gauss–Markov theorem. The Gauss–Markov theorem states that, under a set 
of conditions known as the Gauss–Markov conditions, the OLS estimator bn1 has 
the smallest conditional variance, given X1,c, Xn, of all linear conditionally 
unbiased estimators of b1; that is, the OLS estimator is BLUE. The Gauss–Markov 
conditions, which are stated in Appendix 5.2, are implied by the three least 
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squares assumptions plus the assumption that the errors are homoskedastic. Con-
sequently, if the three least squares assumptions hold and the errors are homo-
skedastic, then OLS is BLUE. The Gauss–Markov theorem is stated in Key 
Concept 5.5 and proven in Appendix 5.2.

Limitations of the Gauss–Markov theorem. The Gauss–Markov theorem provides 
a theoretical justification for using OLS. However, the theorem has two important 
limitations. First, its conditions might not hold in practice. In particular, if the error 
term is heteroskedastic—as it often is in economic applications—then the OLS 
estimator is no longer BLUE. As discussed in Section 5.4, the presence of hetero-
skedasticity does not pose a threat to inference based on heteroskedasticity-robust 
standard errors, but it does mean that OLS is no longer the efficient linear condi-
tionally unbiased estimator. An alternative to OLS when there is heteroskedasticity 
of a known form, called the weighted least squares estimator, is discussed below.

The second limitation of the Gauss–Markov theorem is that even if the condi-
tions of the theorem hold, there are other candidate estimators that are not linear 
and conditionally unbiased; under some conditions, these other estimators are 
more efficient than OLS.

Regression Estimators Other Than OLS
Under certain conditions, some regression estimators are more efficient than OLS.

The weighted least squares estimator. If the errors are heteroskedastic, then OLS 
is no longer BLUE. If the nature of the heteroskedasticity is known—specifically, 
if the conditional variance of ui given Xi is known up to a constant factor of 
proportionality—then it is possible to construct an estimator that has a smaller 
variance than the OLS estimator. This method, called weighted least squares 
(WLS), weights the ith observation by the inverse of the square root of the condi-
tional variance of ui given Xi. Because of this weighting, the errors in this weighted 
regression are homoskedastic, so OLS, when applied to the weighted data, is BLUE. 

The Gauss–Markov Theorem for bn1

If the three least squares assumptions in Key Concept 4.3 hold and if errors are 
homoskedastic, then the OLS estimator bn1 is the Best (most efficient) Linear 
conditionally Unbiased Estimator (BLUE).

KEY CONCEPT

5.5



166 CHAPTER 5 Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

Although theoretically elegant, the practical problem with weighted least squares 
is that you must know how the conditional variance of ui depends on Xi, some-
thing that is rarely known in econometric applications. Weighted least squares is 
therefore used far less frequently than OLS, and further discussion of WLS is 
deferred to Chapter 17.

The least absolute deviations estimator. As discussed in Section 4.3, the OLS 
estimator can be sensitive to outliers. If extreme outliers are not rare, then other 
estimators can be more efficient than OLS and can produce inferences that are 
more reliable. One such estimator is the least absolute deviations (LAD) estima-
tor, in which the regression coefficients b0 and b1 are obtained by solving a mini-
mization problem like that in Equation (4.6) except that the absolute value of the 
prediction “mistake” is used instead of its square. That is, the LAD estimators of 
b0 and b1 are the values of b0 and b1 that minimize gn

i= 1 0Yi - b0 - b1Xi 0 . The 
LAD estimator is less sensitive to large outliers in u than is OLS.

In many economic data sets, severe outliers in u are rare, so use of the LAD 
estimator, or other estimators with reduced sensitivity to outliers, is uncommon 
in applications. Thus the treatment of linear regression throughout the remainder 
of this text focuses exclusively on least squares methods.

*5.6 Using the t-Statistic in Regression 
When the Sample Size Is Small

When the sample size is small, the exact distribution of the t-statistic is compli-
cated and depends on the unknown population distribution of the data. If, how-
ever, the three least squares assumptions hold, the regression errors are 
homoskedastic, and the regression errors are normally distributed, then the OLS 
estimator is normally distributed and the homoskedasticity-only t-statistic has a 
Student t distribution. These five assumptions—the three least squares assump-
tions, that the errors are homoskedastic, and that the errors are normally distrib-
uted—are collectively called the homoskedastic normal regression assumptions.

The t-Statistic and the Student t Distribution
Recall from Section 2.4 that the Student t distribution with m degrees of freedom 
is defined to be the distribution of Z>2W>m, where Z is a random variable with 
a standard normal distribution, W is a random variable with a chi-squared distribution 

*This section is optional and is not used in later chapters.
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with m degrees of freedom, and Z and W are independent. Under the null hypoth-
esis, the t-statistic computed using the homoskedasticity-only standard error can 
be written in this form.

The details of the calculation is presented in Sections 17.4 and 18.4, but the main 
ideas are as follows. The homoskedasticity-only t-statistic testing b1 = b1,0 is 
t∼ = (bn1 - b1,0)>s∼ nb1

, where s∼2
nb1

 is defined in Equation (5.22). Under the homoske-
dastic normal regression assumptions, Y has a normal distribution, conditional on 
X1,c, Xn. As discussed in Section 5.5, the OLS estimator is a weighted average 
of Y1,c, Yn, where the weights depend on X1,c, Xn [see Equation (5.32) in 
Appendix 5.2]. Because a weighted average of independent normal random variables 
is normally distributed, bn1 has a normal distribution, conditional on X1,c, Xn.
Thus (bn1 - b1,0) has a normal distribution under the null hypothesis, conditional 
on X1,c, Xn. In addition, sections 17.4 and 18.4 show that the (normalized) 
homoskedasticity-only variance estimator has a chi-squared distribution with n - 2
degrees of freedom, divided by n - 2, and s∼2

bn1 and bn1 are independently distributed. 
Consequently, the homoskedasticity-only t-statistic has a Student t distribution with 
n - 2 degrees of freedom.

This result is closely related to a result discussed in Section 3.5 in the context of 
testing for the equality of the means in two samples. In that problem, if the two 
population distributions are normal with the same variance and if the t-statistic is con-
structed using the pooled standard error formula [Equation (3.23)], then the (pooled) 
t-statistic has a Student t distribution. When X is binary, the homoskedasticity-only 
standard error for bn1 simplifies to the pooled standard error formula for the difference 
of means. It follows that the result of Section 3.5 is a special case of the result that if 
the homoskedastic normal regression assumptions hold, then the homoskedasticity-
only regression t-statistic has a Student t distribution (see Exercise 5.10).

Use of the Student t Distribution in Practice
If the regression errors are homoskedastic and normally distributed and if the 
homoskedasticity-only t-statistic is used, then critical values should be taken from 
the Student t distribution (Appendix Table 2) instead of the standard normal 
distribution. Because the difference between the Student t distribution and the 
normal distribution is negligible if n is moderate or large, this distinction is rele-
vant only if the sample size is small.

In econometric applications, there is rarely a reason to believe that the errors are 
homoskedastic and normally distributed. Because sample sizes typically are large, 
however, inference can proceed as described in Section 5.1 and 5.2—that is, by first 
computing heteroskedasticity-robust standard errors and then by using the standard 
normal distribution to compute p-values, hypothesis tests, and confidence intervals.
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5.7 Conclusion

Return for a moment to the problem that started Chapter 4: the superintendent 
who is considering hiring additional teachers to cut the student–teacher ratio. 
What have we learned that she might find useful?

Our regression analysis, based on the 420 observations for 1998 in the Cali-
fornia test score data set, showed that there was a negative relationship between 
the student–teacher ratio and test scores: Districts with smaller classes have higher 
test scores. The coefficient is moderately large, in a practical sense: Districts with 
two fewer students per teacher have, on average, test scores that are 4.6 points 
higher. This corresponds to moving a district at the 50th percentile of the distribu-
tion of test scores to approximately the 60th percentile.

The coefficient on the student–teacher ratio is statistically significantly different 
from 0 at the 5% significance level. The population coefficient might be 0, and we 
might simply have estimated our negative coefficient by random sampling variation. 
However, the probability of doing so (and of obtaining a t-statistic on b1 as large as 
we did) purely by random variation over potential samples is exceedingly small, 
approximately 0.001%. A 95% confidence interval for b1 is -3.30 … b1 … -1.26.

This result represents considerable progress toward answering the superin-
tendent’s question yet a nagging concern remains. There is a negative relation-
ship between the student–teacher ratio and test scores, but is this relationship 
necessarily the causal one that the superintendent needs to make her decision? 
Districts with lower student–teacher ratios have, on average, higher test scores. 
But does this mean that reducing the student–teacher ratio will, in fact, increase 
scores?

There is, in fact, reason to worry that it might not. Hiring more teachers, after 
all, costs money, so wealthier school districts can better afford smaller classes. But 
students at wealthier schools also have other advantages over their poorer neigh-
bors, including better facilities, newer books, and better-paid teachers. Moreover, 
students at wealthier schools tend themselves to come from more affluent families 
and thus have other advantages not directly associated with their school. For 
example, California has a large immigrant community; these immigrants tend to 
be poorer than the overall population, and in many cases, their children are not 
native English speakers. It thus might be that our negative estimated relationship 
between test scores and the student–teacher ratio is a consequence of large classes 
being found in conjunction with many other factors that are, in fact, the real cause 
of the lower test scores.

These other factors, or “omitted variables,” could mean that the OLS analysis 
done so far has little value to the superintendent. Indeed, it could be misleading: 
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Changing the student–teacher ratio alone would not change these other factors 
that determine a child’s performance at school. To address this problem, we need 
a method that will allow us to isolate the effect on test scores of changing the 
student–teacher ratio, holding these other factors constant. That method is multi-
ple regression analysis, the topic of Chapters 6 and 7.

Summary

1. Hypothesis testing for regression coefficients is analogous to hypothesis test-
ing for the population mean: Use the t-statistic to calculate the p-values and 
either accept or reject the null hypothesis. Like a confidence interval for the 
population mean, a 95% confidence interval for a regression coefficient is 
computed as the estimator {1.96 standard errors.

2. When X is binary, the regression model can be used to estimate and test 
hypotheses about the difference between the population means of the 
“X = 0” group and the “X = 1” group.

3. In general, the error ui is heteroskedastic—that is, the variance of ui at a given 
value of Xi, var(ui Xi = x), depends on x. A special case is when the error is 
homoskedastic—that is, var(ui Xi = x) is constant. Homoskedasticity-only 
standard errors do not produce valid statistical inferences when the errors are 
heteroskedastic, but heteroskedasticity-robust standard errors do.

4. If the three least squares assumption hold and if the regression errors are 
homoskedastic, then, as a result of the Gauss–Markov theorem, the OLS 
estimator is BLUE.

5. If the three least squares assumptions hold, if the regression errors are 
homoskedastic, and if the regression errors are normally distributed, then 
the OLS t-statistic computed using homoskedasticity-only standard errors 
has a Student t distribution when the null hypothesis is true. The difference 
between the Student t distribution and the normal distribution is negligible 
if the sample size is moderate or large.

Key Terms

null hypothesis (148)
two-sided alternative hypothesis 

(148)
standard error of bn1 (148)

t-statistic (148)
p-value (149)
confidence interval for b1 (153)
confidence level (153)
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Review the Concepts

5.1 Outline the procedures for computing the p-value of a two-sided test of 
H0 : mY = 0 using an i.i.d. set of observations Yi, i = 1,c, n. Outline the 
procedures for computing the p-value of a two-sided test of H0 : b1 = 0 in 
a regression model using an i.i.d. set of observations (Yi, Xi), i = 1,c, n.

5.2 Explain how you could use a regression model to estimate the wage gender
gap using the data on earnings of men and women. What are the depen-
dent and independent variables?

5.3 Define homoskedasticity and heteroskedasticity. Provide a hypothetical 
empirical example in which you think the errors would be heteroskedastic 
and explain your reasoning.

5.4 Consider the regression Yi = b0 + b1Xi + ui, where Yi denotes a worker’s 
average hourly earnings (measured in dollars) and Xi is a binary (or indi-
cator) variable that is equal to 1 if the worker has a college degree and 
is equal to 0 otherwise. Suppose that b1 = 8.1. Explain what this value 
means. Include the units of b1 in your answer.

indicator variable (155)
dummy variable (155)
coefficient multiplying Di (156)
coefficient on Di (156)
heteroskedasticity and

homoskedasticity (158)
homoskedasticity-only standard

errors (160)
heteroskedasticity-robust standard 

error (161)

Gauss–Markov theorem (164)
best linear unbiased estimator 

(BLUE) (165)
weighted least squares (165)
homoskedastic normal regression

assumptions (166)
Gauss–Markov conditions

(179)
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Exercises

5.1 Suppose that a researcher, using data on class size (CS) and average test 
scores from 100 third-grade classes, estimates the OLS regression

TestScore = 520.4 - 5.82 * CS, R2 = 0.08, SER = 11.5.
(20.4) (2.21)

a. Construct a 95% confidence interval for b1, the regression slope 
coefficient.

b. Calculate the p-value for the two-sided test of the null hypothesis 
H0: b1 = 0. Do you reject the null hypothesis at the 5% level? At the 
1% level?

c. Calculate the p-value for the two-sided test of the null hypothesis 
H0: b1 = -5.6. Without doing any additional calculations, determine 
whether -5.6 is contained in the 95% confidence interval for b1.

d. Construct a 99% confidence interval for b0.

5.2 Suppose that a researcher, using wage data on 250 randomly selected male 
workers and 280 female workers, estimates the OLS regression

Wage = 12.52 + 2.12 * Male, R2 = 0.06, SER = 4.2,
(0.23) (0.36)

where Wage is measured in dollars per hour and Male is a binary variable 
that is equal to 1 if the person is a male and 0 if the person is a female. 
Define the wage gender gap as the difference in mean earnings between 
men and women.

a. What is the estimated gender gap?

b. Is the estimated gender gap significantly different from 0? (Compute the 
p-value for testing the null hypothesis that there is no gender gap.)

c. Construct a 95% confidence interval for the gender gap.

d. In the sample, what is the mean wage of women? Of men?

e. Another researcher uses these same data but regresses Wages on Female,
a variable that is equal to 1 if the person is female and 0 if the person a 
male. What are the regression estimates calculated from this regression?

Wage = + * Female, R2 = , SER = .
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5.3 Suppose that a random sample of 200 20-year-old men is selected from a 
population, and their heights and weights are recorded. A regression of 
weight on height yields

Weight = -99.41 + 3.94 * Height, R2 = 0.81, SER = 10.2,
(2.15) (0.31)

where Weight is measured in pounds, and Height is measured in inches. A 
man has a late growth spurt and grows 1.5 inches over the course of a year. 
Construct a 99% confidence interval for the person’s weight gain.

5.4 Read the box “The Economic Value of a Year of Education: Homoskedas-
ticity or Heteroskedasticity?” in Section 5.4. Use the regression reported 
in Equation (5.23) to answer the following.

a. A randomly selected 30-year-old worker reports an education level 
of 16 years. What is the worker’s expected average hourly earnings?

b. A high school graduate (12 years of education) is contemplating 
going to a community college for a 2-year degree. How much is this 
worker’s average hourly earnings expected to increase?

c. A high school counselor tells a student that, on average, college grad-
uates earn $10 per hour more than high school graduates. Is this state-
ment consistent with the regression evidence? What range of values is 
consistent with the regression evidence?

5.5 In the 1980s, Tennessee conducted an experiment in which kindergarten 
students were randomly assigned to “regular” and “small” classes and given 
standardized tests at the end of the year. (Regular classes contained approx-
imately 24 students, and small classes contained approximately 15 students.) 
Suppose that, in the population, the standardized tests have a mean score 
of 925 points and a standard deviation of 75 points. Let SmallClass denote a 
binary variable equal to 1 if the student is assigned to a small class and equal 
to 0 otherwise. A regression of TestScore on SmallClass yields

TestScore = 918.0 + 13.9 * SmallClass, R2 = 0.01, SER = 74.6.
(1.6) (2.5)

a. Do small classes improve test scores? By how much? Is the effect 
large? Explain.

b. Is the estimated effect of class size on test scores statistically signifi-
cant? Carry out a test at the 5% level.
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c. Construct a 99% confidence interval for the effect of SmallClass on 
Test Score.

5.6 Refer to the regression described in Exercise 5.5.

a. Do you think that the regression errors are plausibly homoskedastic? 
Explain.

b. SE(bn1) was computed using Equation (5.3). Suppose that the 
regression errors were homoskedastic: Would this affect the valid-
ity of the confidence interval constructed in Exercise 5.5(c)? 
Explain.

5.7 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3. A random sample of size n = 250 is drawn and yields

Yn = 5.4 + 3.2X, R2 = 0.26, SER = 6.2.
(3.1) (1.5)

a. Test H0 : b1 = 0 vs. H1: b1 ≠ 0 at the 5% level.

b. Construct a 95% confidence interval for b1.

c. Suppose you learned that Yi and Xi were independent. Would you be 
surprised? Explain.

d. Suppose that Yi and Xi are independent and many samples of size 
n = 250 are drawn, regressions estimated, and (a) and (b) answered. 
In what fraction of the samples would H0 from (a) be rejected? In 
what fraction of samples would the value b1 = 0 be included in the 
confidence interval from (b)?

5.8 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3 and, in addition, ui is N(0, s2

u) and is independent of Xi. A sample of 
size n = 30 yields

Yn = 43.2 + 61.5X, R2 = 0.54, SER = 1.52,
(10.2) (7.4)

where the numbers in parentheses are the homoskedastic-only standard 
errors for the regression coefficients.

a. Construct a 95% confidence interval for b0.

b. Test H0 : b1 = 55 vs. H1 : b1 ≠ 55 at the 5% level.

c. Test H0 : b1 = 55 vs. H1 : b1 7 55 at the 5% level.
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5.9 Consider the regression model

Yi = bXi + ui,

where ui and Xi satisfy the least squares assumptions in Key Concept 4.3. 
Let b denote an estimator of b that is constructed as b = Y >X, where Y
and X  are the sample means of Yi and Xi, respectively.

a. Show that b is a linear function of Y1, Y2,c, Yn.

b. Show that b is conditionally unbiased.

5.10 Let Xi denote a binary variable and consider the regression Yi =
b0 + b1Xi + ui. Let Y0 denote the sample mean for observations with 
X = 0 and let Y1 denote the sample mean for observations with X = 1.
Show that bn0 = Y0, bn0 + bn1 = Y1, and bn1 = Y1 - Y0.

5.11 A random sample of workers contains nm = 120 men and nw = 131 women.
The sample average of men’s weekly earnings 3Ym = (1>nm)gnm

i= 1 Ym,i4 is

$523.10, and the sample standard deviation 3sm = 2 1
nm - 1g

nm
i= 1(Ym,i - Ym)24

is $68.10. The corresponding values for women are Yw = $485.10 and 
sw = $51.10. Let Women denote an indicator variable that is equal to 1 for 
women and 0 for men and suppose that all 251 observations are used in the 
regression Yi = b0 + b1 Womeni + ui. Find the OLS estimates of b0 and 
b1 and their corresponding standard errors.

5.12 Starting from Equation (4.22), derive the variance of bn0 under homoske-
dasticity given in Equation (5.28) in Appendix 5.1.

5.13 Suppose that (Yi, Xi) satisfy the least squares assumptions in Key Concept 
4.3 and, in addition, ui is N(0, s2

u) and is independent of Xi.

a. Is bn1 conditionally unbiased?

b. Is bn1 the best linear conditionally unbiased estimator of b1?

c. How would your answers to (a) and (b) change if you assumed only 
that (Yi, Xi) satisfied the least squares assumptions in Key Concept 4.3 
and var(ui Xi = x) is constant?

d. How would your answers to (a) and (b) change if you assumed only that 
(Yi, Xi) satisfied the least squares assumptions in Key Concept 4.3?

5.14 Suppose that Yi = bXi + ui, where (ui, Xi) satisfy the Gauss–Markov con-
ditions given in Equation (5.31).

a. Derive the least squares estimator of b and show that it is a linear 
function of Y1,c, Yn.
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b. Show that the estimator is conditionally unbiased.

c. Derive the conditional variance of the estimator.

d. Prove that the estimator is BLUE.

5.15 A researcher has two independent samples of observations on (Yi, Xi). To 
be specific, suppose that Yi denotes earnings, Xi denotes years of school-
ing, and the independent samples are for men and women. Write the 
regression for men as Ym,i = bm,0 + bm,1Xm,i + um,i and the regression for 
women as Yw,i = bw,0 + bw,1Xw,i + uw,i. Let bnm,1 denote the OLS estimator 
constructed using the sample of men, bnw,1 denote the OLS estimator con-
structed from the sample of women, and SE(bnm,1) and SE(bnw,1) denote the 
corresponding standard errors. Show that the standard error of bnm,1 - bnw,1

is given by SE(bnm,1 - bnw,1) = 23SE(bnm,1)42 + 3SE(bnw,1)42.

Empirical Exercises

(Only three empirical exercises for this chapter are given in the text, but you can 
find more on the text website, http://www.pearsonhighered.com/stock_watson/.)

E5.1 Use the data set Earnings_and_Height described in Empirical Exercise 4.2 
to carry out the following exercises.

a. Run a regression of Earnings on Height.

i. Is the estimated slope statistically significant?

ii. Construct a 95% confidence interval for the slope coefficient.

b. Repeat (a) for women.

c. Repeat (a) for men.

d. Test the null hypothesis that the effect of height on earnings is the 
same for men and women. (Hint: See Exercise 5.15.)

e. One explanation for the effect on height on earnings is that some 
professions require strength, which is correlated with height. Does 
the effect of height on earnings disappear when the sample is restricted 
to occupations in which strength is unlikely to be important?

E5.2 Using the data set Growth described in Empirical Exercise 4.1, but exclud-
ing the data for Malta, run a regression of Growth on TradeShare.

a. Is the estimated regression slope statistically significant? This is, can 
you reject the null hypothesis H0: b1 = 0 vs. a two-sided alternative 
hypothesis at the 10%, 5%, or 1% significance level?
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2These data were provided by Professors Douglas Almond (Columbia University), Ken Chay (Brown 
University), and David Lee (Princeton University) and were used in their paper “The Costs of Low 
Birth Weight,” Quarterly Journal of Economics, August 2005, 120(3): 1031–1083.

b. What is the p-value associated with the coefficient’s t-statistic?

c. Construct a 90% confidence interval for b1.

E5.3 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the data file Birthweight_Smoking, which contains data for a ran-
dom sample of babies born in Pennsylvania in 1989. The data include the 
baby’s birth weight together with various characteristics of the mother, 
including whether she smoked during the pregnancy.2 A detailed descrip-
tion is given in Birthweight_Smoking_Description, also available on the 
website. In this exercise you will investigate the relationship between birth 
weight and smoking during pregnancy.

a. In the sample:

i. What is the average value of Birthweight for all mothers?

ii. For mothers who smoke?

iii. For mothers who do not smoke?

b. i.  Use the data in the sample to estimate the difference in average 
birth weight for smoking and nonsmoking mothers.

ii. What is the standard error for the estimated difference in (i)?

iii. Construct a 95% confidence interval for the difference in the 
average birth weight for smoking and nonsmoking mothers.

c. Run a regression of Birthweight on the binary variable Smoker.

i. Explain how the estimated slope and intercept are related to your 
answers in parts (a) and (b).

ii. Explain how the SE(bn1) is related to your answer in b(ii).

iii. Construct a 95% confidence interval for the effect of smoking on 
birth weight.

d. Do you think smoking is uncorrelated with other factors that cause 
low birth weight? That is, do you think that the regression error term, 
say ui, has a conditional mean of zero, given Smoking (Xi)? (You will 
investigate this further in Birthweight and Smoking exercises in later 
chapters.)
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A P P E N D I X

5.1 Formulas for OLS Standard Errors

This appendix discusses the formulas for OLS standard errors. These are first presented under 

the least squares assumptions in Key Concept 4.3, which allow for heteroskedasticity; these are 

the “heteroskedasticity-robust” standard errors. Formulas for the variance of the OLS estima-

tors and the associated standard errors are then given for the special case of homoskedasticity.

Heteroskedasticity-Robust Standard Errors
The estimator sn 2

nb1
 defined in Equation (5.4) is obtained by replacing the population vari-

ances in Equation (4.21) by the corresponding sample variances, with a modification. The 

variance in the numerator of Equation (4.21) is estimated by 1
n - 2g

n
i= 1(Xi - X)2 un2

i , where 

the divisor n - 2 (instead of n) incorporates a degrees-of-freedom adjustment to correct 

for downward bias, analogously to the degrees-of-freedom adjustment used in the defini-

tion of the SER in Section 4.3. The variance in the denominator is estimated by 

(1>n)gn
i= 1(Xi - X)2. Replacing var3(Xi - mX)ui4 and var(Xi) in Equation (4.21) by these 

two estimators yields sn 2
nb1

 in Equation (5.4). The consistency of heteroskedasticity-robust 

standard errors is discussed in Section 17.3.

The estimator of the variance of bn0 is

sn 2
nb0
=

1
n *

1
n - 2a

n

i= 1
Hn 2

i un2i

a 1
na

n

i= 1
Hn 2

i b
2

, (5.26)

where Hn i = 1 - (X > 1
ngn

i= 1 X2
i )Xi. The standard error of bn0 is SE(bn0) = 2sn 2

nb0
. The rea-

soning behind the estimator sn 2
nb0

 is the same as behind sn 2
nb1

 and stems from replacing popu-

lation expectations with sample averages.

Homoskedasticity-Only Variances
Under homoskedasticity, the conditional variance of ui given Xi is a constant: var(ui Xi) = s2

u.

If the errors are homoskedastic, the formulas in Key Concept 4.4 simplify to

s2
nb1
=
s2

u

ns 2
X

and (5.27)

s2
nb0
=

E(X2
i )

ns 2
X
s2

u. (5.28)
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To derive Equation (5.27), write the numerator in Equation (4.21) as var3(Xi - mX)ui4
= E(5(Xi - mX)ui - E3(Xi - mX)ui462) = E53(Xi - mX)ui426 = E3(Xi - mX)2u2

i 4 =
E3(Xi - mX)2 var(ui Xi)4, where the second equality follows because E3(Xi - mX)ui4 = 0

(by the first least squares assumption) and where the final equality follows from the law of 

iterated expectations (Section 2.3). If ui is homoskedastic, then var(ui Xi) = s2
u, so 

E3(Xi - mX)2 var(ui Xi)4 = s2
uE3(Xi - mX)24 = s2

us
2
X. The result in Equation (5.27) fol-

lows by substituting this expression into the numerator of Equation (4.21) and simplifying. 

A similar calculation yields Equation (5.28).

Homoskedasticity-Only Standard Errors
The homoskedasticity-only standard errors are obtained by substituting sample means and 

variances for the population means and variances in Equations (5.27) and (5.28) and by 

estimating the variance of ui by the square of the SER. The homoskedasticity-only estima-

tors of these variances are

s∼2
nb1
=

s2
nu

a
n

i= 1
(Xi - X)2

(homoskedasticity@only) and (5.29)

s∼2
nb0
=
a

1
na

n

i= 1
X2

i bs2
nu

a
n

i= 1
(Xi - X)2

(homoskedasticity@only), (5.30)

where s2
nu is given in Equation (4.19). The homoskedasticity-only standard errors are the 

square roots of s∼2
nb0

 and s∼2
nb1

.

A P P E N D I X

5.2 The Gauss–Markov Conditions and 
a Proof of the Gauss–Markov Theorem

As discussed in Section 5.5, the Gauss–Markov theorem states that if the Gauss–Markov 

conditions hold, then the OLS estimator is the best (most efficient) conditionally linear unbi-

ased estimator (is BLUE). This appendix begins by stating the Gauss–Markov conditions and 

showing that they are implied by the three least squares condition plus homoskedasticity. 
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We next show that the OLS estimator is a linear conditionally unbiased estimator. Finally, 

we turn to the proof of the theorem.

The Gauss–Markov Conditions
The three Gauss–Markov conditions are

(i) E(ui 0X1,c, Xn) = 0

(ii) var(ui 0X1, c, Xn) = s2
u, 0 6 s2

u 6 ∞

(iii) E(uiuj 0X1,c, Xn) = 0, i ≠ j, (5.31)

where the conditions hold for i, j = 1,c, n. The three conditions, respectively, state that 

ui has mean zero, that ui has a constant variance, and that the errors are uncorrelated for 

different observations, where all these statements hold conditionally on all observed X’s 

(X1,c, Xn).

The Gauss–Markov conditions are implied by the three least squares assumptions 

(Key Concept 4.3), plus the additional assumptions that the errors are homoskedastic. 

Because the observations are i.i.d. (Assumption 2), E(ui X1,c, Xn) = E(ui Xi), and by 

Assumption 1, E(ui Xi) = 0; thus condition (i) holds. Similarly, by Assumption 2, 

var(ui X1,c, Xn) = var(ui Xi), and because the errors are assumed to be homoskedastic, 

var(ui Xi) = s2
u, which is constant. Assumption 3 (nonzero finite fourth moments) 

ensures that 0 6 s2
u 6 ∞ , so condition (ii) holds. To show that condition (iii) is implied 

by the least squares assumptions, note that E(uiuj X1,c, Xn) = E(uiuj Xi, Xj) because 

(Xi, Yi) are i.i.d. by Assumption 2. Assumption 2 also implies that E(uiuj Xi, Xj) =
E(ui Xi) E(uj Xj) for i ≠ j; because E(ui Xi) = 0 for all i, it follows that E(uiuj X1,c,

Xn) = 0 for all i ≠ j, so condition (iii) holds. Thus the least squares assumptions in Key 

Concept 4.3, plus homoskedasticity of the errors, imply the Gauss–Markov conditions in 

Equation (5.31).

The OLS Estimator bn1 Is a Linear Conditionally 
Unbiased Estimator
To show that bn1 is linear, first note that, because gn

i= 1(Xi - X) = 0 (by the definition of X), 

gn
i= 1(Xi - X)(Yi - Y) = gn

i= 1(Xi - X)Yi - Ygn
i= 1(Xi - X) = gn

i= 1(Xi - X)Yi. Sub-

stituting this result into the formula for bn1 in Equation (4.7) yields

bn1 =
a
n

i= 1
(Xi - X)Yi

a
n

j= 1
(Xj - X)2

= a
n

i= 1
aniYi, where ani =

(Xi - X)

a
n

j = 1
(Xj - X)2

(5.32)
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Because the weights ani, i = 1,c, n, in Equation (5.32) depend on X1,c, Xn but not on 

Y1,c, Yn, the OLS estimator bn1 is a linear estimator.

Under the Gauss–Markov conditions, bn1 is conditionally unbiased, and the variance 

of the conditional distribution of bn1, given X1,c, Xn, is

var(bn1 X1,c, Xn) =
s2

u

a
n

i= 1
(Xi - X )2

. (5.33)

The result that bn1 is conditionally unbiased was previously shown in Appendix 4.3.

Proof of the Gauss–Markov Theorem
We start by deriving some facts that hold for all linear conditionally unbiased estimators—

that is, for all estimators b∼1 satisfying Equations (5.24) and (5.25). Substituting 

Yi = b0 + b1Xi + ui into b∼1 = g
n
i= 1aiYi and collecting terms, we have that

b
∼

1 = b0aa
n

i= 1
aib + b1aa

n

i= 1
aiXib + a

n

i= 1
aiui. (5.34)

By the first Gauss–Markov condition, E(gn
i= 1 aiui X1,c, Xn) = gn

i= 1 aiE(ui 0X1,c, Xn) = 0;

thus taking conditional expectations of both sides of Equation (5.34) yields E(b∼1 0X1,c, Xn) =
b0(g

n
i= 1 ai) + b1(g

n
i= 1 aiXi). Because b∼1 is conditionally unbiased by assumption, it must 

be that b0(g
n
i= 1ai) + b1(g

n
i= 1aiXi) = b1, but for this equality to hold for all values of b0 and 

b1, it must be the case that, for b∼1 to be conditionally unbiased,

a
n

i= 1
ai = 0 and a

n

i= 1
aiXi = 1. (5.35)

Under the Gauss–Markov conditions, the variance of b∼1, conditional on X1,c, Xn, has a 

simple form. Substituting Equation (5.35) into Equation (5.34) yields b∼1 - b1 = g
n
i= 1aiui. Thus 

var(b∼1 X1,c, Xn) = var(gn
i = 1 aiui X1,c, Xn) = gn

i = 1 g
n
j= 1 aiaj cov(ui,uj X1,c, Xn) ;

applying the second and third Gauss–Markov conditions, the cross terms in the double 

summation vanish, and the expression for the conditional variance simplifies to

var(b∼1 X1,c, Xn) = s2
ua

n

i= 1
a2

i . (5.36)

Note that Equations (5.35) and (5.36) apply to bn1 with weights ai = ani, given in Equation (5.32).

We now show that the two restrictions in Equation (5.35) and the expression for the 

conditional variance in Equation (5.36) imply that the conditional variance of b∼1 exceeds 

the conditional variance of bn1 unless b∼1 = bn1. Let ai = ani + di, so gn
i= 1a

2
i = g

n
i= 1(ani + di)

2 =
gn

i= 1 an2i + 2gn
i= 1anidi + g

n
i= 1d2

i .
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Using the definition of ani in Equation (5.32), we have that

a
n

i= 1
anidi =

a
n

i= 1
(Xi - X)di

a
n

j= 1
(Xj - X)2

=
a
n

i= 1
diXi - Xa

n

i= 1
di

a
n

j= 1
(Xj - X)2

=
aa

n

i= 1
aiXi - a

n

i= 1
aniXib - Xaa

n

i= 1
ai - a

n

i= 1
anib

a
n

j= 1
(Xj - X)2

= 0,

where the penultimate equality follows from di = ai - ani and the final equality follows 

from Equation (5.35) (which holds for both ai and ani). Thus s2
ug

n
i= 1a2

i = s2
ug

n
i= 1an2i +

s2
ug

n
i= 1d2

i = var(bn1 X1,c, Xn) + s2
ug

n
i= 1d2

i ; substituting this result into Equation (5.36) 

yields

var(b∼1 X1,c, Xn) - var(bn1 X1,c, Xn) = s2
ua

n

i= 1
d2

i . (5.37)

Thus b∼1 has a greater conditional variance than bn1 if di is nonzero for any i = 1,c, n. But 

if di = 0 for all i, then ai = ani and b∼1 = bn1, which proves that OLS is BLUE.

The Gauss–Markov Theorem When X Is Nonrandom
With a minor change in interpretation, the Gauss–Markov theorem also applies to nonrandom 

regressors; that is, it applies to regressors that do not change their values over repeated 

samples. Specifically, if the second least squares assumption is replaced by the assumption 

that X1,c, Xn are nonrandom (fixed over repeated samples) and u1,c, un are i.i.d., then 

the foregoing statement and proof of the Gauss–Markov theorem apply directly, except that 

all of the “conditional on X1,c, Xn” statements are unnecessary because X1,c, Xn take 

on the same values from one sample to the next.

The Sample Average Is the Efficient 
Linear Estimator of E(Y )
An implication of the Gauss–Markov theorem is that the sample average, Y, is the most 

efficient linear estimator of E(Yi) when Yi ,c, Yn are i.i.d. To see this, consider the case 

of regression without an “X” so that the only regressor is the constant regressor X0i = 1.

Then the OLS estimator bn0 = Y. It follows that, under the Gauss–Markov assumptions, Y

is BLUE. Note that the Gauss–Markov requirement that the error be homoskedastic is 

automatically satisfied in this case because there is no regressor, so it follows that Y is 

BLUE if Y1,c, Yn are i.i.d. This result was stated previously in Key Concept 3.3.


