
This chapter reviews the core ideas of the theory of probability that are needed to  
understand regression analysis and econometrics. We assume that you have 

taken an introductory course in probability and statistics. If your knowledge of 
probability is stale, you should refresh it by reading this chapter. If you feel confident 
with the material, you still should skim the chapter and the terms and concepts at 
the end to make sure you are familiar with the ideas and notation.

Most aspects of the world around us have an element of randomness. The  
theory of probability provides mathematical tools for quantifying and describing this 
randomness. Section 2.1 reviews probability distributions for a single random  
variable, and Section 2.2 covers the mathematical expectation, mean, and variance 
of a single random variable. Most of the interesting problems in economics involve 
more than one variable, and Section 2.3 introduces the basic elements of probability 
theory for two random variables. Section 2.4 discusses three special probability  
distributions that play a central role in statistics and econometrics: the normal, chi-
squared, and F distributions.

The final two sections of this chapter focus on a specific source of  
randomness of central importance in econometrics: the randomness that arises 
by randomly drawing a sample of data from a larger population. For example, 
suppose you survey ten recent college graduates selected at random, record (or 
“observe”) their earnings, and compute the average earnings using these ten data 
points (or “observations”). Because you chose the sample at random, you could 
have chosen ten different graduates by pure random chance; had you done so, 
you would have observed ten different earnings and you would have computed a 
different sample average. Because the average earnings vary from one randomly 
chosen sample to the next, the sample average is itself a random variable. 
Therefore, the sample average has a probability distribution, which is referred to 
as its sampling distribution because this distribution describes the different 
possible values of the sample average that might have occurred had a different 
sample been drawn.

Section 2.5 discusses random sampling and the sampling distribution of the 
sample average. This sampling distribution is, in general, complicated. When the 
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sample size is sufficiently large, however, the sampling distribution of the sample 
average is approximately normal, a result known as the central limit theorem, which 
is discussed in Section 2.6.

 2.1 Random Variables and Probability  
Distributions

Probabilities, the Sample Space, and Random Variables
Probabilities and outcomes. The gender of the next new person you meet, your 
grade on an exam, and the number of times your computer will crash while 
you are writing a term paper all have an element of chance or randomness. In 
each of these examples, there is something not yet known that is eventually 
revealed.

The mutually exclusive potential results of a random process are called the 
outcomes. For example, your computer might never crash, it might crash once, 
it might crash twice, and so on. Only one of these outcomes will actually occur 
(the outcomes are mutually exclusive), and the outcomes need not be equally 
likely.

The probability of an outcome is the proportion of the time that the outcome 
occurs in the long run. If the probability of your computer not crashing while you 
are writing a term paper is 80%, then over the course of writing many term papers 
you will complete 80% without a crash.

The sample space and events. The set of all possible outcomes is called the sample 
space. An event is a subset of the sample space, that is, an event is a set of one or 
more outcomes. The event “my computer will crash no more than once” is the set 
consisting of two outcomes: “no crashes” and “one crash.”

Random variables. A random variable is a numerical summary of a random 
outcome. The number of times your computer crashes while you are writing 
a term paper is random and takes on a numerical value, so it is a random 
variable.

Some random variables are discrete and some are continuous. As their names 
suggest, a discrete random variable takes on only a discrete set of values, like 0, 1, 
2, c, whereas a continuous random variable takes on a continuum of possible 
values.
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Probability Distribution of a Discrete  
Random Variable
Probability distribution. The probability distribution of a discrete random vari-
able is the list of all possible values of the variable and the probability that each 
value will occur. These probabilities sum to 1.

For example, let M be the number of times your computer crashes while you 
are writing a term paper. The probability distribution of the random variable M 
is the list of probabilities of each possible outcome: The probability that M = 0, 
denoted Pr(M = 0), is the probability of no computer crashes; Pr(M = 1) is the 
probability of a single computer crash; and so forth. An example of a probability 
distribution for M is given in the second row of Table 2.1; in this distribution, if 
your computer crashes four times, you will quit and write the paper by hand. 
According to this distribution, the probability of no crashes is 80%; the probabil-
ity of one crash is 10%; and the probability of two, three, or four crashes is, 
respectively, 6%, 3%, and 1%. These probabilities sum to 100%. This probability 
distribution is plotted in Figure 2.1.

Probabilities of events. The probability of an event can be computed from  
the probability distribution. For example, the probability of the event of one or 
two crashes is the sum of the probabilities of the constituent outcomes. That  
is, Pr(M = 1 or M = 2) = Pr(M = 1) + Pr(M = 2) = 0.10 + 0.06 = 0.16, or 
16%.

Cumulative probability distribution. The cumulative probability distribution  
is the probability that the random variable is less than or equal to a particular 
value. The last row of Table 2.1 gives the cumulative probability distribution of 
the random variable M. For example, the probability of at most one crash, 
Pr(M … 1), is 90%, which is the sum of the probabilities of no crashes (80%) and 
of one crash (10%).

taBLe 2.1  Prob bili y of Your Compu r Cr s ing M tim s
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A cumulative probability distribution is also referred to as a cumulative  
distribution function, a c.d.f., or a cumulative distribution.

The Bernoulli distribution. An important special case of a discrete random vari-
able is when the random variable is binary, that is, the outcomes are 0 or 1.  
A binary random variable is called a Bernoulli random variable (in honor of the 
seventeenth-century Swiss mathematician and scientist Jacob Bernoulli), and its 
probability distribution is called the Bernoulli distribution.

For example, let G be the gender of the next new person you meet, where 
G = 0 indicates that the person is male and G = 1 indicates that she is female. 
The outcomes of G and their probabilities thus are

 G = e1 with probability p
0 with probability 1 - p,

 (2.1)

where p is the probability of the next new person you meet being a woman. The 
probability distribution in Equation (2.1) is the Bernoulli distribution.

Figure 2.1   Prob bili y Dis ribu ion of  Numb r of Compu r  
Cr s s
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Figure 2.2  Cumul iv  Dis ribu ion nd Prob bili y D nsi y Func ions 
of Commu ing tim

Figure 2.2a shows the cumulative probability distribution (or c.d.f.) of commuting times. The probability that a  

commuting time is less than 15 minutes is 0.20 (or 20%), and the probability that it is less than 20 minutes  

is 0.78 (78%). Figure 2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given  

by areas under the p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%) and is 

given by the area under the curve between 15 and 20 minutes.
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Probability Distribution of a Continuous  
Random Variable
Cumulative probability distribution. The cumulative probability distribution for 
a continuous variable is defined just as it is for a discrete random variable. That 
is, the cumulative probability distribution of a continuous random variable is the 
probability that the random variable is less than or equal to a particular value.

For example, consider a student who drives from home to school. This student’s 
commuting time can take on a continuum of values and, because it depends on 
random factors such as the weather and traffic conditions, it is natural to treat it as 
a continuous random variable. Figure 2.2a plots a hypothetical cumulative distribu-
tion of commuting times. For example, the probability that the commute takes less 
than 15 minutes is 20% and the probability that it takes less than 20 minutes is 78%.

Probability density function. Because a continuous random variable can take on a 
continuum of possible values, the probability distribution used for discrete variables, 
which lists the probability of each possible value of the random variable, is not suitable 
for continuous variables. Instead, the probability is summarized by the probability 
density function. The area under the probability density function between any two 
points is the probability that the random variable falls between those two points. A 
probability density function is also called a p.d.f., a density function, or simply a density.

Figure 2.2b plots the probability density function of commuting times corre-
sponding to the cumulative distribution in Figure 2.2a. The probability that the com-
mute takes between 15 and 20 minutes is given by the area under the p.d.f. between 
15 minutes and 20 minutes, which is 0.58, or 58%. Equivalently, this probability can 
be seen on the cumulative distribution in Figure 2.2a as the difference between the 
probability that the commute is less than 20 minutes (78%) and the probability that 
it is less than 15 minutes (20%). Thus the probability density function and the cumu-
lative probability distribution show the same information in different formats.

 2.2 Expected Values, Mean, and Variance

The Expected Value of a Random Variable
Expected value. The expected value of a random variable Y, denoted E(Y), is the 
long-run average value of the random variable over many repeated trials or occur-
rences. The expected value of a discrete random variable is computed as a 
weighted average of the possible outcomes of that random variable, where the 
weights are the probabilities of that outcome. The expected value of Y is also 
called the expectation of Y or the mean of Y and is denoted mY.
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For example, suppose you loan a friend $100 at 10% interest. If the loan is 
repaid, you get $110 (the principal of $100 plus interest of $10), but there is a risk 
of 1% that your friend will default and you will get nothing at all. Thus the amount 
you are repaid is a random variable that equals $110 with probability 0.99 and 
equals $0 with probability 0.01. Over many such loans, 99% of the time you would 
be paid back $110, but 1% of the time you would get nothing, so on average you 
would be repaid $110 * 0.99 + $0 * 0.01 = $108.90. Thus the expected value of 
your repayment (or the “mean repayment”) is $108.90.

As a second example, consider the number of computer crashes M with the 
probability distribution given in Table 2.1. The expected value of M is the average 
number of crashes over many term papers, weighted by the frequency with which 
a crash of a given size occurs. Accordingly,

 E(M) = 0 * 0.80 + 1 * 0.10 + 2 * 0.06 + 3 * 0.03 + 4 * 0.01 = 0.35. (2.2)

That is, the expected number of computer crashes while writing a term paper is 
0.35. Of course, the actual number of crashes must always be an integer; it makes 
no sense to say that the computer crashed 0.35 times while writing a particular 
term paper! Rather, the calculation in Equation (2.2) means that the average 
number of crashes over many such term papers is 0.35.

The formula for the expected value of a discrete random variable Y that can 
take on k different values is given as Key Concept 2.1. (Key Concept 2.1 uses 
“summation notation,” which is reviewed in Exercise 2.25.)

exp c d V lu  nd  M n

Suppose the random variable Y takes on k possible values, y1, c, yk, where y1 
denotes the first value, y2 denotes the second value, and so forth, and that the 
probability that Y takes on y1 is p1, the probability that Y takes on y2 is p2, and so 
forth. The expected value of Y, denoted E(Y), is

 E(Y) = y1 p1 + y2 p2 +g + yk pk = a
k

i= 1
yi pi, (2.3)

where the notation gk
i= 1 yi pi  means “the sum of yi pi for i running from 1 to k.” 

The expected value of Y is also called the mean of Y or the expectation of Y and 
is denoted mY.

Key COnCept

2.1
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Expected value of a Bernoulli random variable. An important special case of the 
general formula in Key Concept 2.1 is the mean of a Bernoulli random variable. 
Let G be the Bernoulli random variable with the probability distribution in 
Equation (2.1). The expected value of G is

 E(G) = 1 * p + 0 * (1 - p) = p. (2.4)

Thus the expected value of a Bernoulli random variable is p, the probability that 
it takes on the value “1.”

Expected value of a continuous random variable. The expected value of a con-
tinuous random variable is also the probability-weighted average of the possible 
outcomes of the random variable. Because a continuous random variable can take 
on a continuum of possible values, the formal mathematical definition of its 
expectation involves calculus and its definition is given in Appendix 17.1.

The Standard Deviation and Variance
The variance and standard deviation measure the dispersion or the “spread” of  
a probability distribution. The variance of a random variable Y, denoted var(Y), 
is the expected value of the square of the deviation of Y from its mean: 
var(Y) = E3(Y - mY)24.

Because the variance involves the square of Y, the units of the variance are 
the units of the square of Y, which makes the variance awkward to interpret. It is 
therefore common to measure the spread by the standard deviation, which is the 
square root of the variance and is denoted sY. The standard deviation has the 
same units as Y. These definitions are summarized in Key Concept 2.2.

V ri nc  nd S nd rd D vi ion

The variance of the discrete random variable Y, denoted s2
Y, is

 s2
Y = var(Y) = E3(Y - mY)24 = a

k

i= 1
(yi - mY)2pi. (2.5)

The standard deviation of Y is sY, the square root of the variance. The units of 
the standard deviation are the same as the units of Y.

Key COnCept

2.2
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For example, the variance of the number of computer crashes M is the  
probability-weighted average of the squared difference between M and its  
mean, 0.35:

var(M) = (0 - 0.35)2 * 0.80 + (1 - 0.35)2 * 0.10 + (2 - 0.35)2 * 0.06
 + (3 - 0.35)2 * 0.03 + (4 - 0.35)2 * 0.01 = 0.6475. (2.6)

The standard deviation of M is the square root of the variance, so sM =
20.64750 ≅ 0.80.

Variance of a Bernoulli random variable. The mean of the Bernoulli random vari-
able G with probability distribution in Equation (2.1) is mG = p [Equation (2.4)], 
so its variance is

 var(G) = s2
G = (0 - p)2 * (1 - p) + (1 - p)2 * p = p(1 - p). (2.7)

Thus the standard deviation of a Bernoulli random variable is sG = 2p(1 - p).

Mean and Variance of a Linear Function  
of a Random Variable
This section discusses random variables (say, X and Y) that are related by a linear 
function. For example, consider an income tax scheme under which a worker is 
taxed at a rate of 20% on his or her earnings and then given a (tax-free) grant of 
$2000. Under this tax scheme, after-tax earnings Y are related to pre-tax earnings 
X by the equation

 Y = 2000 + 0.8X. (2.8)

That is, after-tax earnings Y is 80% of pre-tax earnings X, plus $2000.
Suppose an individual’s pre-tax earnings next year are a random variable with 

mean mX and variance s2
X. Because pre-tax earnings are random, so are after-tax 

earnings. What are the mean and standard deviations of her after-tax earnings 
under this tax? After taxes, her earnings are 80% of the original pre-tax earnings, 
plus $2000. Thus the expected value of her after-tax earnings is

 E(Y) = mY = 2000 + 0.8mX. (2.9)

The variance of after-tax earnings is the expected value of (Y - mY)2. Because 
Y = 2000 + 0.8X , Y - mY = 2000 + 0.8X -  (2000 + 0.8mX) = 0.8(X - mX). 
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Thus E3(Y - mY)24 = E530.8(X - mX)426 = 0.64E3(X - mX)24 . It follows  
that var(Y) = 0.64var(X), so, taking the square root of the variance, the standard 
deviation of Y is

 sY = 0.8sX. (2.10)

That is, the standard deviation of the distribution of her after-tax earnings is 80% 
of the standard deviation of the distribution of pre-tax earnings.

This analysis can be generalized so that Y depends on X with an intercept a 
(instead of $2000) and a slope b (instead of 0.8) so that

 Y = a + bX. (2.11)

Then the mean and variance of Y are

 mY = a + bmX  and (2.12)

 s2
Y = b2s2

X, (2.13)

and the standard deviation of Y is sY = bsX. The expressions in Equations (2.9) 
and (2.10) are applications of the more general formulas in Equations (2.12) and 
(2.13) with a = 2000 and b = 0.8.

Other Measures of the Shape of a Distribution
The mean and standard deviation measure two important features of a distribu-
tion: its center (the mean) and its spread (the standard deviation). This section 
discusses measures of two other features of a distribution: the skewness, which 
measures the lack of symmetry of a distribution, and the kurtosis, which measures 
how thick, or “heavy,” are its tails. The mean, variance, skewness, and kurtosis 
are all based on what are called the moments of a distribution.

Skewness. Figure 2.3 plots four distributions, two which are symmetric (Figures 
2.3a and 2.3b) and two which are not (Figures 2.3c and 2.3d). Visually, the distri-
bution in Figure 2.3d appears to deviate more from symmetry than does the dis-
tribution in Figure 2.3c. The skewness of a distribution provides a mathematical 
way to describe how much a distribution deviates from symmetry.

The skewness of the distribution of a random variable Y is

 Skewness =
E3(Y - mY)34

s3
Y

, (2.14)
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where sY is the standard deviation of Y. For a symmetric distribution, a value of 
Y a given amount above its mean is just as likely as a value of Y the same amount 
below its mean. If so, then positive values of (Y - mY)3 will be offset on average 
(in expectation) by equally likely negative values. Thus, for a symmetric distribu-
tion, E3(Y - mY)34 = 0; the skewness of a symmetric distribution is zero. If a 

Figure 2.3   Four Dis ribu ions wi  Diff r n  Sk wn ss nd Kur osis
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distribution is not symmetric, then a positive value of (Y - mY)3 generally is 
not offset on average by an equally likely negative value, so the skewness is 
nonzero for a distribution that is not symmetric. Dividing by s3

Y in the denom-
inator of Equation (2.14) cancels the units of Y 3 in the numerator, so the 
skewness is unit free; in other words, changing the units of Y does not change 
its skewness.

Below each of the four distributions in Figure 2.3 is its skewness. If a distribu-
tion has a long right tail, positive values of (Y - mY)3 are not fully offset by nega-
tive values, and the skewness is positive. If a distribution has a long left tail, its 
skewness is negative.

Kurtosis. The kurtosis of a distribution is a measure of how much mass is in its 
tails and, therefore, is a measure of how much of the variance of Y arises from 
extreme values. An extreme value of Y is called an outlier. The greater the kur-
tosis of a distribution, the more likely are outliers.

The kurtosis of the distribution of Y is

 Kurtosis =
E3(Y - mY)44

s4
Y

. (2.15)

If a distribution has a large amount of mass in its tails, then some extreme depar-
tures of Y from its mean are likely, and these departures will lead to large values, 
on average (in expectation), of (Y - mY)4. Thus, for a distribution with a large 
amount of mass in its tails, the kurtosis will be large. Because (Y - mY)4 cannot 
be negative, the kurtosis cannot be negative.

The kurtosis of a normally distributed random variable is 3, so a random vari-
able with kurtosis exceeding 3 has more mass in its tails than a normal random 
variable. A distribution with kurtosis exceeding 3 is called leptokurtic or, more 
simply, heavy-tailed. Like skewness, the kurtosis is unit free, so changing the units 
of Y does not change its kurtosis.

Below each of the four distributions in Figure 2.3 is its kurtosis. The distribu-
tions in Figures 2.3b–d are heavy-tailed.

Moments. The mean of Y, E(Y), is also called the first moment of Y, and the 
expected value of the square of Y, E(Y2), is called the second moment of Y. In 
general, the expected value of Yr is called the rth moment of the random variable 
Y. That is, the rth moment of Y is E(Yr). The skewness is a function of the first, 
second, and third moments of Y, and the kurtosis is a function of the first through 
fourth moments of Y.
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 2.3 Two Random Variables

Most of the interesting questions in economics involve two or more variables. Are 
college graduates more likely to have a job than nongraduates? How does the 
distribution of income for women compare to that for men? These questions con-
cern the distribution of two random variables, considered together (education and 
employment status in the first example, income and gender in the second). 
Answering such questions requires an understanding of the concepts of joint, 
marginal, and conditional probability distributions.

Joint and Marginal Distributions

Joint distribution. The joint probability distribution of two discrete random vari-
ables, say X and Y, is the probability that the random variables simultaneously 
take on certain values, say x and y. The probabilities of all possible (x, y) combina-
tions sum to 1. The joint probability distribution can be written as the function 
Pr(X = x, Y = y).

For example, weather conditions—whether or not it is raining—affect the 
commuting time of the student commuter in Section 2.1. Let Y be a binary ran-
dom variable that equals 1 if the commute is short (less than 20 minutes) and 
equals 0 otherwise and let X be a binary random variable that equals 0 if it is rain-
ing and 1 if not. Between these two random variables, there are four possible 
outcomes: it rains and the commute is long (X = 0, Y = 0); rain and short com-
mute (X = 0, Y = 1); no rain and long commute (X = 1, Y = 0); and no rain and 
short commute (X = 1, Y = 1). The joint probability distribution is the frequency 
with which each of these four outcomes occurs over many repeated commutes.

An example of a joint distribution of these two variables is given in Table 2.2. 
According to this distribution, over many commutes, 15% of the days have rain 
and a long commute (X = 0, Y = 0); that is, the probability of a long, rainy com-
mute is 15%, or Pr(X = 0, Y = 0) = 0.15. Also, Pr(X = 0, Y = 1) = 0.15, 

taBLe 2.2   Join  Dis ribu ion of W r Condi ions nd Commu ing tim s

 r  (X = 0) no r  (X = 1) to l

Long commute (Y = 0)  0.15 0.07 0.22

Short commute (Y = 1) 0.15 0.63 0.78

Total 0.30 0.70 1.00
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Pr(X = 1, Y = 0) = 0.07, and Pr(X = 1, Y = 1) = 0.63. These four possible 
outcomes are mutually exclusive and constitute the sample space so the four prob-
abilities sum to 1.

Marginal probability distribution. The marginal probability distribution of a ran-
dom variable Y is just another name for its probability distribution. This term is 
used to distinguish the distribution of Y alone (the marginal distribution) from the 
joint distribution of Y and another random variable.

The marginal distribution of Y can be computed from the joint distribution of 
X and Y by adding up the probabilities of all possible outcomes for which Y takes 
on a specified value. If X can take on l different values x1, c, xl, then the mar-
ginal probability that Y takes on the value y is

 Pr(Y = y) = a
l

i= 1
Pr(X = xi, Y = y). (2.16)

For example, in Table 2.2, the probability of a long rainy commute is 15% and the 
probability of a long commute with no rain is 7%, so the probability of a long 
commute (rainy or not) is 22%. The marginal distribution of commuting times is 
given in the final column of Table 2.2. Similarly, the marginal probability that it 
will rain is 30%, as shown in the final row of Table 2.2.

Conditional Distributions

Conditional distribution. The distribution of a random variable Y conditional on 
another random variable X taking on a specific value is called the conditional 
distribution of Y given X. The conditional probability that Y takes on the value y 
when X takes on the value x is written Pr(Y = y  X = x).

For example, what is the probability of a long commute (Y = 0) if you know 
it is raining (X = 0)? From Table 2.2, the joint probability of a rainy short com-
mute is 15% and the joint probability of a rainy long commute is 15%, so if it is 
raining a long commute and a short commute are equally likely. Thus the proba-
bility of a long commute (Y = 0), conditional on it being rainy (X = 0), is 50%, 
or Pr(Y = 0  X = 0) = 0.50. Equivalently, the marginal probability of rain is 
30%; that is, over many commutes it rains 30% of the time. Of this 30% of com-
mutes, 50% of the time the commute is long (0.15>0.30).

In general, the conditional distribution of Y given X = x is

 Pr(Y = y  X = x) =
Pr(X = x, Y = y)

Pr(X = x)
. (2.17)
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For example, the conditional probability of a long commute given that it is rainy 
is Pr(Y = 0  X = 0) = Pr(X = 0, Y = 0)>Pr(X = 0) = 0.15>0.30 = 0.50.

As a second example, consider a modification of the crashing computer exam-
ple. Suppose you use a computer in the library to type your term paper and the 
librarian randomly assigns you a computer from those available, half of which are 
new and half of which are old. Because you are randomly assigned to a computer, 
the age of the computer you use, A (= 1 if the computer is new, = 0 if it is old), 
is a random variable. Suppose the joint distribution of the random variables M and 
A is given in Part A of Table 2.3. Then the conditional distribution of computer 
crashes, given the age of the computer, is given in Part B of the table. For example, 
the joint probability M = 0 and A = 0 is 0.35; because half the computers are old, 
the conditional probability of no crashes, given that you are using an old computer, 
is Pr(M = 0  A = 0) = Pr(M = 0, A = 0)>Pr(A = 0) = 0.35>0.50 = 0.70, or 
70%. In contrast, the conditional probability of no crashes given that you are 
assigned a new computer is 90%. According to the conditional distributions in  
Part B of Table 2.3, the newer computers are less likely to crash than the old ones; 
for example, the probability of three crashes is 5% with an old computer but 1% 
with a new computer.

Conditional expectation. The conditional expectation of Y given X, also called the 
conditional mean of Y given X, is the mean of the conditional distribution of Y 
given X. That is, the conditional expectation is the expected value of Y, computed 

taBLe 2.3  Join  nd Condi ion l Dis ribu ions of Compu r Cr s s (M) nd  
 Compu r ag  (A)

a. Jo  D s b o

  M = 0 M = 1 M = 2 M = 3 M = 4 to l

Old computer (A = 0) 0.35 0.065 0.05 0.025 0.01 0.50

New computer (A = 1) 0.45 0.035 0.01 0.005 0.00 0.50

Total 0.80 0.10 0.06 0.03 0.01 1.00

B. Co d o l D s b o s of M v  A

  M = 0 M = 1 M = 2 M = 3 M = 4 to l

Pr(M A = 0) 0.70 0.13 0.10 0.05 0.02 1.00

Pr(M A = 1) 0.90 0.07 0.02 0.01 0.00 1.00
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using the conditional distribution of Y given X. If Y takes on k values y1, c, yk, 
then the conditional mean of Y given X = x is

 E(Y  X = x) = a
k

i= 1
yi Pr(Y = yi  X = x). (2.18)

For example, based on the conditional distributions in Table 2.3, the expected 
number of computer crashes, given that the computer is old, is E(M 0  A = 0) =
0 * 0.70 + 1 * 0.13 + 2 * 0.10 + 3 * 0.05 + 4 * 0.02 = 0.56. The expected 
number of computer crashes, given that the computer is new, is E(M 0  A = 1) =
0.14, less than for the old computers.

The conditional expectation of Y given X = x is just the mean value of Y 
when X = x. In the example of Table 2.3, the mean number of crashes is 0.56 
for old computers, so the conditional expectation of Y given that the computer 
is old is 0.56. Similarly, among new computers, the mean number of crashes is 
0.14, that is, the conditional expectation of Y given that the computer is new 
is 0.14.

The law of iterated expectations. The mean of Y is the weighted average of the 
conditional expectation of Y given X, weighted by the probability distribution 
of X. For example, the mean height of adults is the weighted average of the 
mean height of men and the mean height of women, weighted by the propor-
tions of men and women. Stated mathematically, if X takes on the l values 
x1, c, xl, then

 E(Y) = a
l

i= 1
E(Y X = xi)Pr(X = xi). (2.19)

Equation (2.19) follows from Equations (2.18) and (2.17) (see Exercise 2.19).
Stated differently, the expectation of Y is the expectation of the conditional 

expectation of Y given X,

 E(Y) = E[E(Y X)], (2.20)

where the inner expectation on the right-hand side of Equation (2.20) is computed 
using the conditional distribution of Y given X and the outer expectation is com-
puted using the marginal distribution of X. Equation (2.20) is known as the law of 
iterated expectations.

For example, the mean number of crashes M is the weighted average of the 
conditional expectation of M given that it is old and the conditional expectation of 
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M given that it is new, so E(M) = E(M  A = 0) * Pr(A = 0) + E(M  A = 1) *
Pr(A = 1) = 0.56 * 0.50 + 0.14 * 0.50 = 0.35. This is the mean of the marginal 
distribution of M, as calculated in Equation (2.2).

The law of iterated expectations implies that if the conditional mean of Y given 
X is zero, then the mean of Y is zero. This is an immediate consequence of Equation 
(2.20): if E(Y X ) = 0, then E(Y ) = E[E(Y X )] = E[0] = 0. Said differently, if 
the mean of Y given X is zero, then it must be that the probability-weighted average 
of these conditional means is zero, that is, the mean of Y must be zero.

The law of iterated expectations also applies to expectations that are condi-
tional on multiple random variables. For example, let X, Y, and Z be random 
variables that are jointly distributed. Then the law of iterated expectations says 
that E(Y ) = E[E(Y X, Z )], where E(Y X, Z ) is the conditional expectation of 
Y given both X and Z. For example, in the computer crash illustration of Table 2.3, 
let P denote the number of programs installed on the computer; then E(M A, P) is 
the expected number of crashes for a computer with age A that has P programs 
installed. The expected number of crashes overall, E(M), is the weighted average 
of the expected number of crashes for a computer with age A and number of pro-
grams P, weighted by the proportion of computers with that value of both A and P.

Exercise 2.20 provides some additional properties of conditional expectations 
with multiple variables.

Conditional variance. The variance of Y conditional on X is the variance of the 
conditional distribution of Y given X. Stated mathematically, the conditional  
variance of Y given X is

 var(Y  X = x) = a
k

i= 1
[ yi - E(Y  X = x)]2 Pr(Y = yi  X = x). (2.21)

For example, the conditional variance of the number of crashes given that the 
computer is old is var(M  A = 0) = (0 - 0.56)2 * 0.70 + (1 - 0.56)2 * 0.13 +
(2 - 0.56)2 * 0.10 + (3 - 0.56)2 * 0.05 + (4 - 0.56)2 * 0.02 ≅ 0.99. The 
standard deviation of the conditional distribution of M given that A = 0 is thus 
10.99 = 0.99. The conditional variance of M given that A = 1 is the variance of 
the distribution in the second row of Panel B of Table 2.3, which is 0.22, so the 
standard deviation of M for new computers is 10.22 = 0.47. For the conditional 
distributions in Table 2.3, the expected number of crashes for new computers 
(0.14) is less than that for old computers (0.56), and the spread of the distribution 
of the number of crashes, as measured by the conditional standard deviation, is 
smaller for new computers (0.47) than for old (0.99).
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Independence
Two random variables X and Y are independently distributed, or independent, if 
knowing the value of one of the variables provides no information about the 
other. Specifically, X and Y are independent if the conditional distribution of Y 
given X equals the marginal distribution of Y. That is, X and Y are independently 
distributed if, for all values of x and y,

 Pr(Y = y  X = x) = Pr(Y = y) (independence of X and Y ). (2.22)

Substituting Equation (2.22) into Equation (2.17) gives an alternative expression 
for independent random variables in terms of their joint distribution. If X and Y 
are independent, then

 Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y). (2.23)

That is, the joint distribution of two independent random variables is the product 
of their marginal distributions.

Covariance and Correlation

Covariance. One measure of the extent to which two random variables move 
together is their covariance. The covariance between X and Y is the expected 
value E[(X - mX)(Y - mY)], where mX, where mX is the mean of X and mY is the 
mean of Y. The covariance is denoted cov(X, Y) or sXY. If X can take on l values 
and Y can take on k values, then the covariance is given by the formula

 cov(X, Y ) = sXY = E[(X - mX)(Y - mY)]

  = a
k

i= 1
 a

l

j= 1
(xj - mX)(yi - mY)Pr(X = xj, Y = yi). (2.24)

To interpret this formula, suppose that when X is greater than its mean (so that 
X - mX is positive), then Y tends be greater than its mean (so that Y - mY is 
positive), and when X is less than its mean (so that X - mX 6 0), then Y tends to 
be less than its mean (so that Y - mY 6 0). In both cases, the product 
(X - mX) * (Y - mY) tends to be positive, so the covariance is positive. In con-
trast, if X and Y tend to move in opposite directions (so that X is large when Y is 
small, and vice versa), then the covariance is negative. Finally, if X and Y are 
independent, then the covariance is zero (see Exercise 2.19).
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Correlation. Because the covariance is the product of X and Y, deviated from their 
means, its units are, awkwardly, the units of X multiplied by the units of Y. This 
“units” problem can make numerical values of the covariance difficult to interpret.

The correlation is an alternative measure of dependence between X and Y 
that solves the “units” problem of the covariance. Specifically, the correlation 
between X and Y is the covariance between X and Y divided by their standard 
deviations:

 corr(X, Y) =
cov(X, Y )

2var(X ) var(Y )
=
sXY

sX sY
. (2.25)

Because the units of the numerator in Equation (2.25) are the same as those of 
the denominator, the units cancel and the correlation is unitless. The random 
variables X and Y are said to be uncorrelated if corr(X, Y ) = 0.

The correlation always is between −1 and 1; that is, as proven in Appendix 2.1,

 -1 … corr(X, Y ) … 1 (correlation inequality). (2.26)

Correlation and conditional mean. If the conditional mean of Y does not depend 
on X, then Y and X are uncorrelated. That is,

 if E(Y   X ) = mY, then cov(Y, X ) = 0 and corr(Y, X ) = 0. (2.27)

We now show this result. First suppose that Y and X have mean zero so that 
cov(Y, X ) = E[(Y - mY)(X - mX)] = E(YX). By the law of iterated expecta-
tions [Equation (2.20)], E(YX ) = E[E(YX  X )] = E[E(Y  X )X ] = 0 because 
E(Y  X ) = 0, so cov(Y, X ) = 0. Equation (2.27) follows by substituting 
cov(Y, X ) = 0 into the definition of correlation in Equation (2.25). If Y and X do 
not have mean zero, first subtract off their means, then the preceding proof applies.

It is not necessarily true, however, that if X and Y are uncorrelated, then the 
conditional mean of Y given X does not depend on X. Said differently, it is pos-
sible for the conditional mean of Y to be a function of X but for Y and X nonethe-
less to be uncorrelated. An example is given in Exercise 2.23.

The Mean and Variance of Sums  
of Random Variables
The mean of the sum of two random variables, X and Y, is the sum of their means:

 E(X + Y ) = E(X ) + E(Y ) = mX + mY. (2.28)
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t  D s b o  of e s   u d S s  2012

For example, do the best-paid college-educated 

women earn as much as the best-paid college-

educated men?

One way to answer these questions is to examine 

the distribution of earnings of full-time workers, con-

ditional on the highest educational degree achieved 

(high school diploma or bachelor’s degree) and on 

gender. These four conditional distributions are shown 

in Figure 2.4, and the mean, standard deviation, and 

S ome parents tell their children that they will 

be able to get a better, higher-paying job if 

they get a college degree than if they skip higher 

education. Are these parents right? Does the dis-

tribution of earnings differ between workers who 

are college graduates and workers who have only 

a high school diploma, and, if so, how? Among 

workers with a similar education, does the dis-

tribution of earnings for men and women differ? 

continued on next page

(a) Women with a high school diploma (b) Women with a college degree
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Figure 2.4    Condi ion l Dis ribu ion of av r g  hourly e rnings of U.S. Full-tim  Work rs  
in 2012, Giv n educ ion L v l nd G nd r

The four distributions of  

earnings are for women  
and men, for those with only  

a high school diploma (a and c)  

and those whose highest  

degree is from a four-year  

college (b and d).
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some percentiles of the conditional distributions are 

presented in Table 2.4.1 For example, the conditional 

mean of earnings for women whose highest degree is 

a high school diploma—that is, E(Earnings|Highest 

degree = high school diploma, Gender = female)—is 

$15.49 per hour.

The distribution of average hourly earnings for 

female college graduates (Figure 2.4b) is shifted to 

the right of the distribution for women with only 

a high school degree (Figure 2.4a); the same shift 

can be seen for the two groups of men (Figure 2.4d 

and Figure 2.4c). For both men and women, mean 

earnings are higher for those with a college degree 

(Table 2.4, first numeric column). Interestingly, the 

spread of the distribution of earnings, as measured 

by the standard deviation, is greater for those with 

a college degree than for those with a high school 

diploma. In addition, for both men and women, the 

90th percentile of earnings is much higher for work-

ers with a college degree than for workers with only 

a high school diploma. This final comparison is con-

sistent with the parental admonition that a college 

degree opens doors that remain closed to individuals 

with only a high school diploma.

Another feature of these distributions is that 

the distribution of earnings for men is shifted to 

the right of the distribution of earnings for women. 

This “gender gap” in earnings is an important—

and, to many, troubling—aspect of the distribu-

tion of earnings. We return to this topic in later 

chapters.

taBLe 2.4  Summ ri s of  Condi ion l Dis ribu ion of av r g  hourly e rnings of U.S. 
Full-tim  Work rs in 2012 Giv n educ ion L v l nd G nd r

      p c l

  

M

S d d 

D v o

 

25%

50%  

(m d )

 

75%

 

90%

(a) Women with high school 
diploma

 
$15.49

 
$8.42

 
$10.10

 
$14.03

 
$18.75

 
$24.52

(b) Women with four-year  
college degree 

 
  25.42

 
13.81

 
16.15

 
 22.44

 
 31.34

 
 43.27

(c) Men with high school 
diploma 

 
  20.25

 
11.00

 
12.92

 
 17.86

 
 24.83

 
 33.78

(d) Men with four-year college 
degree

 
  32.73

 
18.11

 
19.61

 
 28.85

 
 41.68

 
 57.30

Average hourly earnings are the sum of annual pretax wages, salaries, tips, and bonuses divided by the number of hours  
worked annually.

1The distributions were estimated using data from the 
March 2013 Current Population Survey, which is discussed 
in more detail in Appendix 3.1.
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The variance of the sum of X and Y is the sum of their variances plus two 
times their covariance:

  var(X + Y) = var(X) + var(Y) + 2 cov(X, Y) = s2
X + s2

Y + 2sXY. (2.36)

If X and Y are independent, then the covariance is zero and the variance of their 
sum is the sum of their variances:

var(X + Y) = var(X) + var(Y) = s2
X + s2

Y

 (if X and Y are independent). (2.37)

Useful expressions for means, variances, and covariances involving weighted sums 
of random variables are collected in Key Concept 2.3. The results in Key Concept 2.3 
are derived in Appendix 2.1.

M ns, V ri nc s, nd Cov ri nc s of Sums  
of R ndom V ri bl s

Let X, Y, and V be random variables, let mX and sX
2  be the mean and variance of 

X, let sXY be the covariance between X and Y (and so forth for the other vari-
ables), and let a, b, and c be constants. Equations (2.29) through (2.35) follow 
from the definitions of the mean, variance, and covariance:

 E(a + bX + cY) = a + bmX + cmY, (2.29)

 var(a + bY) = b2s2
Y, (2.30)

 var(aX + bY) = a2s2
X + 2absXY + b2s2

Y, (2.31)

 E(Y2) = s2
Y + m2

Y, (2.32)

 cov(a + bX + cV, Y) = bsXY + csVY, (2.33)

 E(XY) = sXY + mX mY, (2.34)

 corr(X, Y)| … 1 and |sXY| … 2s2
Xs

2
Y  (correlation inequality). (2.35)

Key COnCept

2.3
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 2.4 The Normal, Chi-Squared, Student t, 
and F Distributions

The probability distributions most often encountered in econometrics are the nor-
mal, chi-squared, Student t, and F distributions.

The Normal Distribution
A continuous random variable with a normal distribution has the familiar bell-
shaped probability density shown in Figure 2.5. The function defining the normal 
probability density is given in Appendix 17.1. As Figure 2.5 shows, the normal 
density with mean m and variance s2 is symmetric around its mean and has 95% 
of its probability between m - 1.96s and m + 1.96s.

Some special notation and terminology have been developed for the normal 
distribution. The normal distribution with mean m and variance s2 is expressed 
concisely as “N(m, s 2).” The standard normal distribution is the normal distribu-
tion with mean m = 0 and variance s2 = 1 and is denoted N(0, 1). Random vari-
ables that have a N(0, 1) distribution are often denoted Z, and the standard 
normal cumulative distribution function is denoted by the Greek letter Φ; accord-
ingly, Pr(Z … c) = Φ(c), where c is a constant. Values of the standard normal 
cumulative distribution function are tabulated in Appendix Table 1.

To look up probabilities for a normal variable with a general mean and variance, 
we must standardize the variable by first subtracting the mean, then by dividing  

ym + 1.96s

95%

m – 1.96s m

Figure 2.5   t  Norm l Prob bili y D nsi y

The normal probability 

density function with 

mean m and variance  

s2 is a bell-shaped  

curve, centered at m.  
The area under the  

normal p.d.f. between 

m - 1.96s and  

m + 1.96s  is 0.95.  
The normal distribution  

is denoted N(m, s2).
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the result by the standard deviation. For example, suppose Y is distributed  
N(1, 4)—that is, Y is normally distributed with a mean of 1 and a variance of 4. 
What is the probability that Y … 2—that is, what is the shaded area in Figure 2.6a? 
The standardized version of Y is Y minus its mean, divided by its standard devia-
tion, that is, (Y - 1)>14 = 1

2(Y - 1). Accordingly, the random variable 12(Y - 1) 
is normally distributed with mean zero and variance one (see Exercise 2.8); it has 
the standard normal distribution shown in Figure 2.6b. Now Y … 2 is equivalent 
to 12(Y - 1) … 1

2(2 - 1)—that is, 12(Y - 1) … 1
2. Thus,

 Pr(Y … 2) = Pr[ 12 (Y - 1) … 1
2 ] = Pr(Z … 1

2) = Φ(0.5) = 0.691, (2.41)

where the value 0.691 is taken from Appendix Table 1.
The same approach can be applied to compute the probability that a normally 

distributed random variable exceeds some value or that it falls in a certain range. 
These steps are summarized in Key Concept 2.4. The box “A Bad Day on Wall 
Street” presents an unusual application of the cumulative normal distribution.

The normal distribution is symmetric, so its skewness is zero. The kurtosis of 
the normal distribution is 3.

Compu ing Prob bili i s Involving 
Norm l R ndom V ri bl s

Suppose Y is normally distributed with mean m and variance s2; in other words,  
Y is distributed N(m, s2). Then Y is standardized by subtracting its mean and 
dividing by its standard deviation, that is, by computing Z = (Y - m)/s.

Let c1 and c2 denote two numbers with c1 6 c2 and let d1 = (c1 - m)/s and 
d2 = (c2 - m)/s. Then

 Pr(Y … c2) = Pr(Z … d2) = Φ(d2), (2.38)

 Pr(Y Ú c1) = Pr(Z Ú d1) = 1 - Φ(d1), (2.39)

 Pr(c1 … Y … c2) = Pr(d1 … Z … d2) = Φ(d2) - Φ(d1). (2.40)

The normal cumulative distribution function Φ is tabulated in Appendix  
Table 1.

Key COnCept

2.4
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The multivariate normal distribution. The normal distribution can be generalized 
to describe the joint distribution of a set of random variables. In this case, the 
distribution is called the multivariate normal distribution, or, if only two variables 
are being considered, the bivariate normal distribution. The formula for the bivar-
iate normal p.d.f. is given in Appendix 17.1, and the formula for the general mul-
tivariate normal p.d.f. is given in Appendix 18.1.

The multivariate normal distribution has four important properties. If X and 
Y have a bivariate normal distribution with covariance sXY and if a and b are two 
constants, then aX + bY has the normal distribution:

 aX + bY is distributed N(amX + bmY, a2s2
X + b2s2

Y + 2 absXY) 
 (X, Y bivariate normal). (2.42)

Figure 2.6   C lcul ing  Prob bili y t  YÅ2 W n Y Is Dis ribu d N(1, 4)

To calculate Pr(Y … 2), standardize Y, then use  

the standard normal distribution table. Y is  

standardized by subtracting its mean (m = 1)  

and dividing by its standard deviation (s = 2).  
The probability that Y … 2 is shown in  

Figure 2.6a, and the corresponding probability  

after standardizing Y is shown in Figure 2.6b.  

Because the standardized random variable,  

(Y - 1)>2, is a standard normal (Z ) random 

variable, Pr(Y … 2) = Pr1Y - 1
2 … 2 - 1

2 2 =
Pr(Z … 0.5). From Appendix Table 1,  

Pr(Z … 0.5) = Φ(0.5) = 0.691. y1.0 2.0

N(1, 4) distribution

Pr(Y < 2)

(a) N(1, 4)

z0.0 0.5

N(0, 1) distribution

Pr(Z < 0.5)

(b) N(0, 1)

0.691
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continued on next page

standard deviations. The enormity of this drop can 

be seen in Figure 2.7, a plot of the daily returns on 

the Dow during the 1980s.

If daily percentage price changes are normally dis-

tributed, then the probability of a change of at least 20 

standard deviations is Pr(|Z| Ú 20) = 2 * Φ(-20). 

You will not find this value in Appendix Table 1, but 

you can calculate it using a computer (try it!). This 

probability is 5.5 * 10-89, that is, 0.000 . . . 00055, 

where there are a total of 88 zeros!

O n a typical day the overall value of stocks 

traded on the U.S. stock market can rise or fall 

by 1% or even more. This is a lot—but nothing com-

pared to what happened on Monday, October 19, 

1987. On “Black Monday,” the Dow Jones Industrial 

Average (an average of 30 large industrial stocks) 

fell by 22.6%! From January 1, 1980, to December 

31, 2012, the standard deviation of daily percentage 

price changes on the Dow was 1.12%, so the drop 

of 22.6% was a negative return of 20(= 22.6>1.12) 

Figure 2.7   D ily P rc n g  C ng s in  Dow Jon s Indus ri l av r g  in  1980s

From 1980  

through 2012,  

the average  

percentage daily  

change of “the  
Dow” index was  

0.04% and its  

standard deviation  

was 1.12%. On  

October 19, 1987— 

”Black Monday”— 

the Dow fell 22.6%,  

or more than 20  

standard deviations.
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How small is 5.5 * 10-89? Consider the following:

•    The world population is about 7 billion, so the prob-

ability of winning a random lottery among all living 

people is about one in 7 billion, or 1.4 * 10-10.

•    The universe is believed to have existed for 14 bil-

lion years, or about 5 * 1017 seconds, so the prob-

ability of choosing a particular second at random 

from all the seconds since the beginning of time is 

2 * 10-18.

•    There are approximately 1043 molecules of gas in 

the first kilometer above the earth’s surface. The 

probability of choosing one at random is 10-43.

Although Wall Street did have a bad day, the 

fact that it happened at all suggests its probabil-

ity was more than 5.5 * 10-89. In fact, there have 

been many days—good and bad—with stock price 

changes too large to be consistent with a normal 

distribution with a constant variance. Table 2.5 lists 

the ten largest daily percentage price changes in the 

Dow Jones Industrial Average in the 8325 trading 

days between January 1, 1980, and December 31, 

2012, along with the standardized change using the 

mean and variance over this period. All ten changes 

exceed 6.4 standard deviations, an extremely rare 

event if stock prices are normally distributed.

Clearly, stock price percentage changes have a 

distribution with heavier tails than the normal dis-

tribution. For this reason, finance professionals use 

other models of stock price changes. One such model 

treats stock price changes as normally distributed 

with a variance that evolves over time, so periods like 

October 1987 and the financial crisis in the fall of 2008 

have higher volatility than others (models with time-

varying variances are discussed in Chapter 16). Other 

models abandon the normal distribution in favor of 

distributions with heavier tails, an idea popularized 

in Nassim Taleb’s 2007 book, The Black Swan. These 

models are more consistent with the very bad—and 

very good—days we actually see on Wall Street.

taBLe 2.5  t  t n L rg s  D ily P rc n g  C ng s in  Dow Jon s Indus ri l Ind x, 
1980–2012, nd  Norm l Prob bili y of  C ng   L s  s L rg

 

 

D

 

p c  

C  (x)

S d d z d  

C  

Z = (x − M),S

no m l p ob b l  of   

C   L s  t s L  

Pr( ∣Z ∣ # z) = 2횽(−z)

October 19, 1987 -22.6 -20.2 5.5 * 10-89

October 13, 2008  11.1     9.9 6.4 * 10-23

October 28, 2008  10.9     9.7 3.8 * 10-22

October 21, 1987  10.1     9.0 1.8 * 10-19

October 26, 1987  -8.0   -7.2 5.6 * 10-13

October 15, 2008  -7.9   -7.1 1.6 * 10-12

December 01, 2008  -7.7   -6.9 4.9 * 10-12

October 09, 2008  -7.3   -6.6 4.7 * 10-11

October 27, 1997  -7.2   -6.4 1.2 * 10-10

September 17, 2001  -7.1   -6.4 1.6 * 10-10
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More generally, if n random variables have a multivariate normal distribution, then 
any linear combination of these variables (such as their sum) is normally distributed.

Second, if a set of variables has a multivariate normal distribution, then the 
marginal distribution of each of the variables is normal [this follows from Equa-
tion (2.42) by setting a = 1 and b = 0].

Third, if variables with a multivariate normal distribution have covariances 
that equal zero, then the variables are independent. Thus, if X and Y have a 
bivariate normal distribution and sXY = 0, then X and Y are independent. In 
Section 2.3 it was shown that if X and Y are independent, then, regardless of their 
joint distribution, sXY = 0. If X and Y are jointly normally distributed, then the 
converse is also true. This result—that zero covariance implies independence—is 
a special property of the multivariate normal distribution that is not true in general.

Fourth, if X and Y have a bivariate normal distribution, then the conditional 
expectation of Y given X is linear in X; that is, E(Y X = x) = a + bx, where a and 
b are constants (Exercise 17.11). Joint normality implies linearity of conditional 
expectations, but linearity of conditional expectations does not imply joint normality.

The Chi-Squared Distribution
The chi-squared distribution is used when testing certain types of hypotheses in 
statistics and econometrics.

The chi-squared distribution is the distribution of the sum of m squared inde-
pendent standard normal random variables. This distribution depends on m, 
which is called the degrees of freedom of the chi-squared distribution. For exam-
ple, let Z1, Z2, and Z3 be independent standard normal random variables. Then 
Z2

1 + Z2
2 + Z2

3 has a chi-squared distribution with 3 degrees of freedom. The 
name for this distribution derives from the Greek letter used to denote it: A chi-
squared distribution with m degrees of freedom is denoted x2

m.
Selected percentiles of the x2

m distribution are given in Appendix Table 3. For 
example, Appendix Table 3 shows that the 95th percentile of the x2

m distribution is 
7.81, so Pr(Z2

1 + Z2
2 + Z3

3 … 7.81) = 0.95.

The Student t Distribution
The Student t distribution with m degrees of freedom is defined to be the distribu-
tion of the ratio of a standard normal random variable, divided by the square root 
of an independently distributed chi-squared random variable with m degrees of 
freedom divided by m. That is, let Z be a standard normal random variable, let W 
be a random variable with a chi-squared distribution with m degrees of freedom, 
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and let Z and W be independently distributed. Then the random variable 
Z>2W/m has a Student t distribution (also called the t distribution) with m 
degrees of freedom. This distribution is denoted tm. Selected percentiles of the 
Student t distribution are given in Appendix Table 2.

The Student t distribution depends on the degrees of freedom m. Thus the 
95th percentile of the tm distribution depends on the degrees of freedom m. The 
Student t distribution has a bell shape similar to that of the normal distribution, 
but when m is small (20 or less), it has more mass in the tails—that is, it is a “fat-
ter” bell shape than the normal. When m is 30 or more, the Student t distribution 
is well approximated by the standard normal distribution and the t∞  distribution 
equals the standard normal distribution.

The F Distribution
The F distribution with m and n degrees of freedom, denoted Fm,n, is defined to 
be the distribution of the ratio of a chi-squared random variable with degrees of 
freedom m, divided by m, to an independently distributed chi-squared random 
variable with degrees of freedom n, divided by n. To state this mathematically, let 
W be a chi-squared random variable with m degrees of freedom and let V be a 
chi-squared random variable with n degrees of freedom, where W and V are 
independently distributed. Then 

W>m
V>n  has an Fm,n distribution—that is, an F dis-

tribution with numerator degrees of freedom m and denominator degrees of 
freedom n.

In statistics and econometrics, an important special case of the F distribution 
arises when the denominator degrees of freedom is large enough that the Fm, n 
distribution can be approximated by the Fm,∞  distribution. In this limiting case, 
the denominator random variable V>n is the mean of infinitely many squared 
standard normal random variables, and that mean is 1 because the mean of a 
squared standard normal random variable is 1 (see Exercise 2.24). Thus the Fm,∞  
distribution is the distribution of a chi-squared random variable with m degrees 
of freedom, divided by m: W>m is distributed Fm,∞ . For example, from Appendix 
Table 4, the 95th percentile of the F3,∞  distribution is 2.60, which is the same as 
the 95th percentile of the x2

3 distribution, 7.81 (from Appendix Table 2), divided 
by the degrees of freedom, which is 3 (7.81>3 = 2.60).

The 90th, 95th, and 99th percentiles of the Fm,n distribution are given in 
Appendix Table 5 for selected values of m and n. For example, the 95th percentile 
of the F3,30 distribution is 2.92, and the 95th percentile of the F3,90 distribution is 
2.71. As the denominator degrees of freedom n increases, the 95th percentile of 
the F3,n distribution tends to the F3,∞  limit of 2.60.
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 2.5 Random Sampling and the Distribution 
of the Sample Average

Almost all the statistical and econometric procedures used in this book involve 
averages or weighted averages of a sample of data. Characterizing the distribu-
tions of sample averages therefore is an essential step toward understanding the 
performance of econometric procedures.

This section introduces some basic concepts about random sampling and the 
distributions of averages that are used throughout the book. We begin by dis-
cussing random sampling. The act of random sampling—that is, randomly draw-
ing a sample from a larger population—has the effect of making the sample 
average itself a random variable. Because the sample average is a random vari-
able, it has a probability distribution, which is called its sampling distribution. 
This section concludes with some properties of the sampling distribution of the 
sample average.

Random Sampling
Simple random sampling. Suppose our commuting student from Section 2.1 
aspires to be a statistician and decides to record her commuting times on various 
days. She selects these days at random from the school year, and her daily com-
muting time has the cumulative distribution function in Figure 2.2a. Because these 
days were selected at random, knowing the value of the commuting time on one 
of these randomly selected days provides no information about the commuting 
time on another of the days; that is, because the days were selected at random, the 
values of the commuting time on each of the different days are independently 
distributed random variables.

The situation described in the previous paragraph is an example of the sim-
plest sampling scheme used in statistics, called simple random sampling, in which 
n objects are selected at random from a population (the population of commuting 
days) and each member of the population (each day) is equally likely to be 
included in the sample.

The n observations in the sample are denoted Y1, c, Yn, where Y1 is the first 
observation, Y2 is the second observation, and so forth. In the commuting exam-
ple, Y1 is the commuting time on the first of her n randomly selected days and Yi 
is the commuting time on the ith of her randomly selected days.

Because the members of the population included in the sample are selected 
at random, the values of the observations Y1, c, Yn are themselves random. If 
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different members of the population are chosen, their values of Y will differ. Thus 
the act of random sampling means that Y1, c, Yn can be treated as random vari-
ables. Before they are sampled, Y1, c, Yn can take on many possible values; 
after they are sampled, a specific value is recorded for each observation.

i.i.d. draws. Because Y1, c, Yn are randomly drawn from the same population, 
the marginal distribution of Yi is the same for each i = 1, c, n; this marginal 
distribution is the distribution of Y in the population being sampled. When Yi has 
the same marginal distribution for i = 1, c, n, then Y1, c, Yn are said to be 
identically distributed.

Under simple random sampling, knowing the value of Y1 provides no infor-
mation about Y2, so the conditional distribution of Y2 given Y1 is the same as the 
marginal distribution of Y2. In other words, under simple random sampling, Y1 is 
distributed independently of Y2, c, Yn.

When Y1, c, Yn are drawn from the same distribution and are indepen-
dently distributed, they are said to be independently and identically distributed 
(or i.i.d.).

Simple random sampling and i.i.d. draws are summarized in Key Concept 2.5.

The Sampling Distribution of the Sample Average
The sample average or sample mean, Y, of the n observations Y1, c, Yn is

 Y =
1
n (Y1 + Y2 + g +Yn) =

1
n a

n

i= 1
Yi. (2.43)

An essential concept is that the act of drawing a random sample has the effect of 
making the sample average Y a random variable. Because the sample was drawn 

Simpl  R ndom S mpling nd i.i.d. R ndom V ri bl s

In a simple random sample, n objects are drawn at random from a population and 
each object is equally likely to be drawn. The value of the random variable Y for 
the ith randomly drawn object is denoted Yi. Because each object is equally likely 
to be drawn and the distribution of Yi is the same for all i, the random variables 
Y1, c, Yn are independently and identically distributed (i.i.d.); that is, the distri-
bution of Yi is the same for all i = 1, c, n and Y1 is distributed independently 
of Y2, c, Yn and so forth.

Key COnCept

2.5
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at random, the value of each Yi is random. Because Y1, c, Yn are random, their 
average is random. Had a different sample been drawn, then the observations and 
their sample average would have been different: The value of Y differs from one 
randomly drawn sample to the next.

For example, suppose our student commuter selected five days at random to 
record her commute times, then computed the average of those five times. Had 
she chosen five different days, she would have recorded five different times—and 
thus would have computed a different value of the sample average.

Because Y is random, it has a probability distribution. The distribution of Y 
is called the sampling distribution of Y because it is the probability distribution 
associated with possible values of Y that could be computed for different possible 
samples Y1, c, Yn.

The sampling distribution of averages and weighted averages plays a central 
role in statistics and econometrics. We start our discussion of the sampling distri-
bution of Y by computing its mean and variance under general conditions on the 
population distribution of Y.

Mean and variance of Y
_

. Suppose that the observations Y1, c, Yn are i.i.d., and  
let mY and s2

Y denote the mean and variance of Yi (because the observations are i.i.d. 
the mean and variance is the same for all i = 1, c, n). When n = 2, the mean 
of the sum Y1 + Y2 is given by applying Equation (2.28): E(Y1 + Y2) = mY +  
mY = 2mY. Thus the mean of the sample average is E312(Y1 + Y2)4 = 1

2 * 2mY =  
mY. In general,

 E(Y) =
1
na

n

i= 1
E(Yi ) = mY. (2.44)

The variance of Y  is found by applying Equation (2.37). For example, for 
n = 2, var(Y1 + Y2) = 2s2

Y, so [by applying Equation (2.31) with a = b = 1
2 and 

cov(Y1, Y2) = 04, var(Y) = 1
2 s

2
Y. For general n, because Y1, c, Yn are i.i.d., Yi 

and Yj are independently distributed for i ≠ j, so cov(Yi, Yj) = 0. Thus,

var(Y ) = vara 1
na

n

i= 1
Yib

 =
1
n2 a

n

i= 1
var(Yi ) +

1
n2 a  

n

i= 1
a
n

 
j= 1, j≠ i

cov(Yi,Yj) 

=
s2

Y

n
.  (2.45)

The standard deviation of Y is the square root of the variance, sY2n.
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In summary, the mean, the variance, and the standard deviation of Y are

 E(Y) = mY. (2.46)

 var(Y) = s2
Y 
=
s2

Y

n
, and (2.47)

 std.dev(Y) = s
Y
=
sY

2n
. (2.48)

These results hold whatever the distribution of Yi is; that is, the distribution of Yi 
does not need to take on a specific form, such as the normal distribution, for 
Equations (2.46) through (2.48) to hold.

The notation sY
2  denotes the variance of the sampling distribution of the 

sample average Y. In contrast, s2
Y is the variance of each individual Yi, that is, the 

variance of the population distribution from which the observation is drawn. Sim-
ilarly, s  Y denotes the standard deviation of the sampling distribution of Y.

Sampling distribution of  Y
_

 when Y is normally distributed. Suppose that 
Y1, c, Yn are i.i.d. draws from the N(mY, s2

Y) distribution. As stated following 
Equation (2.42), the sum of n normally distributed random variables is itself  

T he principle of diversification says that you can 

reduce your risk by holding small investments 

in multiple assets, compared to putting all your 

money into one asset. That is, you shouldn’t put all 

your eggs in one basket.

The math of diversification follows from Equa-

tion (2.45). Suppose you divide $1 equally among n 

assets. Let Yi represent the payout in 1 year of $1 

invested in the ith asset. Because you invested 1>n 

dollars in each asset, the actual payoff of your port-

folio after 1 year is (Y1 + Y2 +g + Yn)>n = Y. 

To keep things simple, suppose that each asset has 

the same expected payout, mY, the same variance, s2, 

and the same positive correlation r across assets [so 

that cov(Yi, Yj ) = rs24. Then the expected payout is 

E(Y) = mY, and, for large n, the variance of the port-

folio payout is var(Y) = rs2 (Exercise 2.26). Putting 

all your money into one asset or spreading it equally 

across all n assets has the same expected payout, but 

diversifying reduces the variance from s2 to rs2.

The math of diversification has led to financial 

products such as stock mutual funds, in which the 

fund holds many stocks and an individual owns a 

share of the fund, thereby owning a small amount 

of many stocks. But diversification has its limits: For 

many assets, payouts are positively correlated, so 

var(Y) remains positive even if n is large. In the case 

of stocks, risk is reduced by holding a portfolio, but 

that portfolio remains subject to the unpredictable 

fluctuations of the overall stock market.

F c l D v s f c o  d po fol os
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normally distributed. Because the mean of Y is mY and the variance of Y is s2
Y>n, 

this means that, if Y1, c, Yn are i.i.d. draws from the N(mY, s2
Y), then Y is dis-

tributed N(mY, s2
Y>n).

 2.6 Large-Sample Approximations  
to Sampling Distributions

Sampling distributions play a central role in the development of statistical and 
econometric procedures, so it is important to know, in a mathematical sense, what 
the sampling distribution of Y is. There are two approaches to characterizing 
sampling distributions: an “exact” approach and an “approximate” approach.

The “exact” approach entails deriving a formula for the sampling distribution 
that holds exactly for any value of n. The sampling distribution that exactly 
describes the distribution of Y for any n is called the exact distribution or finite-
sample distribution of Y. For example, if Y is normally distributed and Y1, c, Yn 
are i.i.d., then (as discussed in Section 2.5) the exact distribution of Y is normal 
with mean mY and variance s2

Y>n. Unfortunately, if the distribution of Y is not 
normal, then in general the exact sampling distribution of Y is very complicated 
and depends on the distribution of Y.

The “approximate” approach uses approximations to the sampling distribution 
that rely on the sample size being large. The large-sample approximation to the sam-
pling distribution is often called the asymptotic distribution—“asymptotic” because 
the approximations become exact in the limit that nS ∞ . As we see in this section, 
these approximations can be very accurate even if the sample size is only n = 30 
observations. Because sample sizes used in practice in econometrics typically number 
in the hundreds or thousands, these asymptotic distributions can be counted on to 
provide very good approximations to the exact sampling distribution.

This section presents the two key tools used to approximate sampling distri-
butions when the sample size is large: the law of large numbers and the central 
limit theorem. The law of large numbers says that, when the sample size is large, 
Y will be close to mY with very high probability. The central limit theorem says 
that, when the sample size is large, the sampling distribution of the standardized 
sample average, (Y - mY)>s  Y, is approximately normal.

Although exact sampling distributions are complicated and depend on the dis-
tribution of Y, the asymptotic distributions are simple. Moreover—remarkably—
the asymptotic normal distribution of (Y - mY)>s  Y does not depend on the 
distribution of Y. This normal approximate distribution provides enormous sim-
plifications and underlies the theory of regression used throughout this book.
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The Law of Large Numbers and Consistency
The law of large numbers states that, under general conditions, Y will be near mY 
with very high probability when n is large. This is sometimes called the “law of 
averages.” When a large number of random variables with the same mean are 
averaged together, the large values balance the small values and their sample 
average is close to their common mean.

For example, consider a simplified version of our student commuter’s exper-
iment in which she simply records whether her commute was short (less than  
20 minutes) or long. Let Yi = 1 if her commute was short on the ith randomly 
selected day and Yi = 0 if it was long. Because she used simple random sampling, 
Y1, c, Yn are i.i.d. Thus Yi,  i = 1, c,  n are i.i.d. draws of a Bernoulli random 
variable, where (from Table 2.2) the probability that Yi = 1 is 0.78. Because  
the expectation of a Bernoulli random variable is its success probability, 
E(Yi ) = mY = 0.78. The sample average Y is the fraction of days in her sample 
in which her commute was short.

Figure 2.8 shows the sampling distribution of Y for various sample sizes n. 
When n = 2 (Figure 2.8a), Y can take on only three values: 0, 12, and 1 (neither 
commute was short, one was short, and both were short), none of which is par-
ticularly close to the true proportion in the population, 0.78. As n increases, how-
ever (Figures 2.8b–d), Y takes on more values and the sampling distribution 
becomes tightly centered on mY.

The property that Y is near mY with increasing probability as n increases is 
called convergence in probability or, more concisely, consistency (see Key Con-
cept 2.6). The law of large numbers states that, under certain conditions, Y con-
verges in probability to mY or, equivalently, that Y is consistent for mY.

Conv rg nc  in Prob bili y, Consis ncy, nd  L w  
of L rg  Numb rs

The sample average Y converges in probability to mY (or, equivalently, Y is con-
sistent for mY) if the probability that Y is in the range (mY - c) to (mY + c) becomes 
arbitrarily close to 1 as n increases for any constant c 7 0. The convergence of Y  
to mY in probability is written, Y ¡p

mY.
The law of large numbers says that if Yi, i = 1, c, n are independently and 

identically distributed with E(Yi) = mY and if large outliers are unlikely (techni-
cally if var(Yi) = s2

Y 6∞), then Y ¡p
mY.

Key COnCept

2.6
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Figure 2.8  S mpling Dis ribu ion of  S mpl  av r g  of n B rnoulli  
R ndom V ri bl s

The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random variables 

with p = Pr(Yi = 1) = 0.78 (the probability of a short commute is 78%). The variance of the sampling distribution of 

Y decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean m = 0.78 
as the sample size n increases.
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The conditions for the law of large numbers that we will use in this book are 
that Yi, i = 1, c, n are i.i.d. and that the variance of Yi, s

2
Y, is finite. The math-

ematical role of these conditions is made clear in Section 17.2, where the law of large 
numbers is proven. If the data are collected by simple random sampling, then the i.i.d. 
assumption holds. The assumption that the variance is finite says that extremely large 
values of Yi—that is, outliers—are unlikely and observed infrequently; otherwise, these 
large values could dominate Y and the sample average would be unreliable. This 
assumption is plausible for the applications in this book. For example, because there 
is an upper limit to our student’s commuting time (she could park and walk if the 
traffic is dreadful), the variance of the distribution of commuting times is finite.

The Central Limit Theorem
The central limit theorem says that, under general conditions, the distribution of 
Y is well approximated by a normal distribution when n is large. Recall that the 
mean of Y is mY and its variance is s2

Y = s
2
Y>n. According to the central limit 

theorem, when n is large, the distribution of Y is approximately N(mY, sY
2). As 

discussed at the end of Section 2.5, the distribution of Y is exactly N(mY, sY
2) when 

the sample is drawn from a population with the normal distribution N(mY, s2
Y). 

The central limit theorem says that this same result is approximately true when n 
is large even if Y1, c, Yn are not themselves normally distributed.

The convergence of the distribution of Y to the bell-shaped, normal approxi-
mation can be seen (a bit) in Figure 2.8. However, because the distribution gets 
quite tight for large n, this requires some squinting. It would be easier to see the 
shape of the distribution of Y if you used a magnifying glass or had some other 
way to zoom in or to expand the horizontal axis of the figure.

One way to do this is to standardize Y by subtracting its mean and dividing 
by its standard deviation so that it has a mean of 0 and a variance of 1. This  
process leads to examining the distribution of the standardized version of 
Y, (Y - mY)>s  Y. According to the central limit theorem, this distribution should 
be well approximated by a N(0, 1) distribution when n is large.

The distribution of the standardized average (Y - mY)>s  Y is plotted in Fig-
ure 2.9 for the distributions in Figure 2.8; the distributions in Figure 2.9 are exactly 
the same as in Figure 2.8, except that the scale of the horizontal axis is changed so 
that the standardized variable has a mean of 0 and a variance of 1. After this 
change of scale, it is easy to see that, if n is large enough, the distribution of Y is 
well approximated by a normal distribution.

One might ask, how large is “large enough”? That is, how large must n be for 
the distribution of Y to be approximately normal? The answer is, “It depends.” The 
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Figure 2.9   Dis ribu ion of  S nd rdiz d S mpl  av r g  of n B rnoulli  
R ndom V ri bl s wi  p = 0.78

The sampling distribution of Y  in Figure 2.8 is plotted here after standardizing Y . This plot centers the distributions in 
Figure 2.8 and magnifies the scale on the horizontal axis by a factor of 2n. When the sample size is large, the sam-

pling distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the 

central limit theorem. The normal distribution is scaled so that the height of the distributions is approximately the 

same in all figures.
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quality of the normal approximation depends on the distribution of the underly-
ing Yi that make up the average. At one extreme, if the Yi are themselves nor-
mally distributed, then Y is exactly normally distributed for all n. In contrast, 
when the underlying Yi themselves have a distribution that is far from normal, 
then this approximation can require n = 30 or even more.

This point is illustrated in Figure 2.10 for a population distribution, shown in 
Figure 2.10a, that is quite different from the Bernoulli distribution. This distribu-
tion has a long right tail (it is “skewed” to the right). The sampling distribution of 
Y, after centering and scaling, is shown in Figures 2.10b–d for n = 5, 25, and 100, 
respectively. Although the sampling distribution is approaching the bell shape for 
n = 25, the normal approximation still has noticeable imperfections. By n = 100, 
however, the normal approximation is quite good. In fact, for n Ú 100, the normal 
approximation to the distribution of Y typically is very good for a wide variety of 
population distributions.

The central limit theorem is a remarkable result. While the “small n” distribu-
tions of Y in parts b and c of Figures 2.9 and 2.10 are complicated and quite different 
from each other, the “large n” distributions in Figures 2.9d and 2.10d are simple 
and, amazingly, have a similar shape. Because the distribution of Y approaches the 
normal as n grows large, Y is said to have an asymptotic normal distribution.

The convenience of the normal approximation, combined with its wide appli-
cability because of the central limit theorem, makes it a key underpinning of mod-
ern applied econometrics. The central limit theorem is summarized in Key 
Concept 2.7.

Summary

 1. The probabilities with which a random variable takes on different values are 
summarized by the cumulative distribution function, the probability distri-
bution function (for discrete random variables), and the probability density 
function (for continuous random variables).

t  C n r l Limi  t or m

Suppose that Y1, c, Yn are i.i.d. with E(Yi) = mY and var(Yi) = s2
Y, where 

0 6s2
Y 6  ∞ . As nS ∞ , the distribution of (Y - mY) >s  Y (where s2

Y = sY
2 >n) 

becomes arbitrarily well approximated by the standard normal distribution.

Key COnCept

2.7
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Figure 2.10   Dis ribu ion of  S nd rdiz d S mpl  av r g  of n Dr ws  
from  Sk w d Dis ribu ion

The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asymmetric) 

population distribution shown in Figure 2.10a. When n is small (n = 5), the sampling distribution, like the population 
distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a standard 

normal distribution (solid line), as predicted by the central limit theorem. The normal distribution is scaled so that the 

height of the distributions is approximately the same in all figures.

(a) n= 1 (b) n = 5
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(c) n= 25 (d) n= 100
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 2. The expected value of a random variable Y (also called its mean, mY), 
denoted E(Y), is its probability-weighted average value. The variance of Y 
is s2

Y = E3(Y - mY)24, and the standard deviation of Y is the square root 
of its variance.

 3. The joint probabilities for two random variables X and Y are summarized 
by their joint probability distribution. The conditional probability distribu-
tion of Y given X = x is the probability distribution of Y, conditional on X 
taking on the value x.

 4. A normally distributed random variable has the bell-shaped probability 
density in Figure 2.5. To calculate a probability associated with a normal 
random variable, first standardize the variable and then use the standard 
normal cumulative distribution tabulated in Appendix Table 1.

 5. Simple random sampling produces n random observations Y1, c, Yn that 
are independently and identically distributed (i.i.d.).

 6. The sample average, Y, varies from one randomly chosen sample to the next 
and thus is a random variable with a sampling distribution. If Y1, c, Yn are 
i.i.d., then:

 a. the sampling distribution of Y has mean mY and variance s2
Y = s

2
Y>n;

 b. the law of large numbers says that Y converges in probability to mY; and

 c. the central limit theorem says that the standardized version of Y,  
(Y - mY)>s  Y, has a standard normal distribution 3N(0, 1) distribution] 
when n is large.

Key Terms

outcomes (15) 
probability (15) 
sample space (15) 
event (15) 
discrete random variable (15) 
continuous random variable (15) 
probability distribution (16) 
cumulative probability  

distribution (16) 
cumulative distribution function 

(c.d.f.) (17) 
Bernoulli random variable (17) 
Bernoulli distribution (17) 

probability density  
function (p.d.f.) (19) 

density function (19) 
density (19) 
expected value (19) 
expectation (19) 
mean (19) 
variance (21) 
standard deviation (21) 
moments of a distribution (23) 
skewness (23) 
kurtosis (25) 
outlier (25) 
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leptokurtic (25) 
rth moment (25) 
joint probability distribution (26) 
marginal probability distribution (27) 
conditional distribution (27) 
conditional expectation (28) 
conditional mean (28) 
law of iterated expectations (29) 
conditional variance (30) 
independently distributed (31) 
independent (31) 
covariance (31) 
correlation (32) 
uncorrelated (32) 
normal distribution (36) 
standard normal distribution (36) 
standardize a variable (36) 
multivariate normal distribution (38) 
bivariate normal distribution (38) 

chi-squared distribution (41) 
Student t distribution (41) 
t distribution (42) 
F distribution (42) 
simple random sampling (43) 
population (43) 
identically distributed (44) 
independently and identically  

distributed (i.i.d.) (44) 
sample average (44) 
sample mean (44) 
sampling distribution (45) 
exact (finite-sample) distribution (47) 
asymptotic distribution (47) 
law of large numbers (48) 
convergence in probability (48) 
consistency (48) 
central limit theorem (50) 
asymptotic normal distribution (52) 

Review the Concepts

 2.1. Examples of random variables used in this chapter included (a) the gender 
of the next person you meet, (b) the number of times a computer crashes, 
(c) the time it takes to commute to school, (d) whether the computer you 
are assigned in the library is new or old, and (e) whether it is raining or not. 
Explain why each can be thought of as random.

 2.2. Suppose that the random variables X and Y are independent and you know 
their distributions. Explain why knowing the value of X tells you nothing 
about the value of Y.

MyEconLab Can Help You Get a Better Grade

MyEconLab   If your exam were tomorrow, would you be ready? For each chapter,  
 MyEconLab Practice Tests and Study Plan help you prepare for your exams. 
You can also find the Exercises and all Review the Concepts Questions available now in MyEconLab. 
To see how it works, turn to the MyEconLab spread on the inside front cover of this book and then 
go to www.myeconlab.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.pearsonhighered.com/stock_watson.
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 2.3. Suppose that X denotes the amount of rainfall in your hometown during 
a randomly selected month and Y denotes the number of children born 
in Los Angeles during the same month. Are X and Y independent? 
Explain.

 2.4. An econometrics class has 80 students, and the mean student weight is 
145 lb. A random sample of 4 students is selected from the class, and their 
average weight is calculated. Will the average weight of the students in the 
sample equal 145 lb? Why or why not? Use this example to explain why 
the sample average, Y, is a random variable.

 2.5. Suppose that Y1, c, Yn are i.i.d. random variables with a N(1, 4) distri-
bution. Sketch the probability density of Y when n = 2. Repeat this for 
n = 10 and n = 100. In words, describe how the densities differ. What is 
the relationship between your answer and the law of large numbers?

 2.6. Suppose that Y1, c, Yn are i.i.d. random variables with the probability 
distribution given in Figure 2.10a. You want to calculate Pr( Y … 0.1). 
Would it be reasonable to use the normal approximation if n = 5? What 
about n = 25 or n = 100? Explain.

 2.7. Y is a random variable with mY = 0, sY = 1, skewness = 0, and 
kurtosis = 100. Sketch a hypothetical probability distribution of Y. 
Explain why n random variables drawn from this distribution might have 
some large outliers.

Exercises

 2.1 Let Y denote the number of “heads” that occur when two coins are tossed.
 a. Derive the probability distribution of Y.

 b. Derive the cumulative probability distribution of Y.

 c. Derive the mean and variance of Y.

 2.2 Use the probability distribution given in Table 2.2 to compute (a) E(Y) and 
E(X); (b) s2

X and s2
Y; and (c) sXY and corr(X, Y).

 2.3 Using the random variables X and Y from Table 2.2, consider two new 
random variables W = 3 + 6X and V = 20 - 7Y. Compute (a) E(W) and 
E(V); (b) s2

W and s2
V; and (c) sWV and corr(W, V).

 2.4 Suppose X is a Bernoulli random variable with P(X = 1) = p.

 a. Show E(X3) = p.

 b. Show E(Xk) = p for k 7 0.
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 c. Suppose that p = 0.3. Compute the mean, variance, skewness, and 
kurtosis of X. (Hint: You might find it helpful to use the formulas 
given in Exercise 2.21.)

 2.5 In September, Seattle’s daily high temperature has a mean of 70°F and 
a standard deviation of 7°F. What are the mean, standard deviation, and 
variance in °C?

 2.6 The following table gives the joint probability distribution between employ-
ment status and college graduation among those either employed or looking 
for work (unemployed) in the working-age U.S. population for 2012.

 a. Compute E(Y).

 b. The unemployment rate is the fraction of the labor force that is 
unemployed. Show that the unemployment rate is given by 1 − E(Y).

 c. Calculate E(Y X = 1) and E(Y X = 0).

 d. Calculate the unemployment rate for (i) college graduates and  
(ii) non–college graduates.

 e. A randomly selected member of this population reports being unem-
ployed. What is the probability that this worker is a college graduate? 
A non–college graduate?

 f. Are educational achievement and employment status independent? 
Explain.

 2.7 In a given population of two-earner male-female couples, male earnings 
have a mean of $40,000 per year and a standard deviation of $12,000. 
Female earnings have a mean of $45,000 per year and a standard deviation 
of $18,000. The correlation between male and female earnings for a couple 
is 0.80. Let C denote the combined earnings for a randomly selected couple.

 a. What is the mean of C?

 b. What is the covariance between male and female earnings?

Join  Dis ribu ion of employm n  S us nd Coll g  Gr du ion in   
U.S. Popul ion ag d 25 nd Old r, 2012

  u m lo d 

(Y = 0)

em lo d  

(Y = 1)

 

to l

Non–college grads (X = 0) 0.053 0.586 0.639

College grads (X = 1) 0.015 0.346 0.361

Total 0.068 0.932 1.000
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 c. What is the standard deviation of C?

 d. Convert the answers to (a) through (c) from U.S. dollars ($) to  
euros (:).

 2.8 The random variable Y has a mean of 1 and a variance of 4. Let Z =
1
2(Y - 1). Show that mZ = 0 and s2

Z = 1.

 2.9 X and Y are discrete random variables with the following joint distribution:

  That is, Pr(X = 1, Y = 14) = 0.02, and so forth.

 a. Calculate the probability distribution, mean, and variance of Y.

 b. Calculate the probability distribution, mean, and variance of Y given 
X = 8.

 c. Calculate the covariance and correlation between X and Y.

 2.10 Compute the following probabilities:

 a. If Y is distributed N(1, 4), find Pr(Y … 3).

 b. If Y is distributed N(3, 9), find Pr(Y 7 0).

 c. If Y is distributed N(50, 25), find Pr(40 … Y … 52).

 d. If Y is distributed N(5, 2), find Pr(6 … Y … 8).

 2.11 Compute the following probabilities:

 a. If Y is distributed x2
4, find Pr(Y … 7.78).

 b. If Y is distributed x2
10, find Pr(Y 7 18.31).

 c. If Y is distributed F10,∞, find Pr(Y 7 1.83).

 d. Why are the answers to (b) and (c) the same?

 e. If Y is distributed x2
1, find Pr(Y … 1.0). (Hint: Use the definition of 

the x2
1 distribution.)

 2.12 Compute the following probabilities:

 a. If Y is distributed t15, find Pr(Y 7 1.75).

    V l  of  Y

    14 22 30 40 65

 1 0.02 0.05 0.10 0.03 0.01

V l  of X 5 0.17 0.15 0.05 0.02 0.01

  8 0.02 0.03 0.15 0.10 0.09
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 b. If Y is distributed t90, find Pr(-1.99 … Y … 1.99).

 c. If Y is distributed N(0, 1), find Pr(-1.99 … Y … 1.99).

 d. Why are the answers to (b) and (c) approximately the same?

 e. If Y is distributed F7,4, find Pr(Y 7 4.12).

 f. If Y is distributed F7,120, find Pr(Y 7 2.79).

 2.13 X is a Bernoulli random variable with Pr(X = 1) = 0.99, Y is distributed 
N(0, 1), W is distributed N(0, 100), and X, Y, and W are independent. Let 
S = XY + (1 - X)W. (That is, S = Y when X = 1, and S = W when 
X = 0.)

 a. Show that E(Y 2) = 1 and E(W 2) = 100.

 b. Show that E(Y3) = 0 and E(W3) = 0. (Hint: What is the skewness 
for a symmetric distribution?)

 c. Show that E(Y4) = 3 and E(W4) = 3 * 1002. (Hint: Use the fact that 
the kurtosis is 3 for a normal distribution.)

 d. Derive E(S), E(S2), E(S3) and E(S4). (Hint: Use the law of iterated 
expectations conditioning on X = 0 and X = 1.)

 e. Derive the skewness and kurtosis for S.

 2.14 In a population mY = 100 and s2
Y = 43. Use the central limit theorem to 

answer the following questions:

 a. In a random sample of size n = 100, find Pr(Y … 101).

 b. In a random sample of size n = 165, find Pr(Y 7 98).

 c. In a random sample of size n = 64, find Pr(101 … Y … 103).

 2.15 Suppose Yi, i = 1, 2, c, n, are i.i.d. random variables, each distributed 
N(10, 4).

 a. Compute Pr(9.6 … Y … 10.4) when (i) n = 20, (ii) n = 100, and  
(iii) n = 1000.

 b. Suppose c is a positive number. Show that Pr(10 - c … Y … 10 + c) 
becomes close to 1.0 as n grows large.

 c. Use your answer in (b) to argue that Y converges in probability 
to 10.

 2.16 Y is distributed N(5, 100) and you want to calculate Pr(Y 6 3.6). Unfor-
tunately, you do not have your textbook, and do not have access to a nor-
mal probability table like Appendix Table 1. However, you do have your 
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computer and a computer program that can generate i.i.d. draws from the  
N(5, 100) distribution. Explain how you can use your computer to compute 
an accurate approximation for Pr(Y 6 3.6).

 2.17 Yi, i = 1, c, n, are i.i.d. Bernoulli random variables with p = 0.4. Let  
Y denote the sample mean.

 a. Use the central limit to compute approximations for

i. Pr(Y Ú 0.43) when n = 100.

ii. Pr(Y … 0.37) when n = 400.

 b. How large would n need to be to ensure that Pr(0.39 … Y … 0.41) Ú
0.95? (Use the central limit theorem to compute an approximate 
answer.)

 2.18 In any year, the weather can inflict storm damage to a home. From year to 
year, the damage is random. Let Y denote the dollar value of damage in 
any given year. Suppose that in 95% of the years Y = $0, but in 5% of the 
years Y = $20,000.

 a. What are the mean and standard deviation of the damage in any year?

 b. Consider an “insurance pool” of 100 people whose homes are suffi-
ciently dispersed so that, in any year, the damage to different homes 
can be viewed as independently distributed random variables. Let Y 
denote the average damage to these 100 homes in a year. (i) What is 
the expected value of the average damage Y? (ii) What is the prob-
ability that Y exceeds $2000?

 2.19 Consider two random variables X and Y. Suppose that Y takes on k values 
y1, c, yk and that X takes on l values x1, c, xl.

 a. Show that Pr(Y = yj) = g l
i= 1Pr(Y = yj  X = xi) Pr(X = xi). [Hint: 

Use the definition of Pr(Y = yj  X = xi).]

 b. Use your answer to (a) to verify Equation (2.19).

 c. Suppose that X and Y are independent. Show that sXY = 0 and 
corr(X, Y) = 0.

 2.20 Consider three random variables X, Y, and Z. Suppose that Y takes on 
k values y1, c, yk, that X takes on l values x1, c, xl, and that Z takes 
on m values z1, c, zm. The joint probability distribution of X, Y, Z is 
Pr(X = x, Y = y, Z = z), and the conditional probability distribution of 
Y given X and Z is Pr(Y = y  X = x, Z = z) = Pr(Y = y, X = x, Z = z)

Pr(X = x, Z = z) .



 Exercises 61

 a. Explain how the marginal probability that Y = y can be calculated 
from the joint probability distribution. [Hint: This is a generalization 
of Equation (2.16).]

 b. Show that E(Y) = E[E(Y 0  X, Z)]. [Hint: This is a generalization of 
Equations (2.19) and (2.20).]

 2.21 X is a random variable with moments E(X), E(X2), E(X3), and so forth.

 a. Show E(X - m)3 = E(X3) - 3[E(X2)][E(X)] + 2[E(X)]3.

 b. Show E(X - m)4 = E(X4) - 4[E(X)][E(X3)] + 6[E(X)]2[E(X2)] -
3[E(X)]4.

 2.22 Suppose you have some money to invest—for simplicity, $1—and you are 
planning to put a fraction w into a stock market mutual fund and the rest, 
1 - w, into a bond mutual fund. Suppose that $1 invested in a stock fund 
yields Rs after 1 year and that $1 invested in a bond fund yields Rb, suppose 
that Rs is random with mean 0.08 (8%) and standard deviation 0.07, and 
suppose that Rb is random with mean 0.05 (5%) and standard deviation 
0.04. The correlation between Rs and Rb is 0.25. If you place a fraction w 
of your money in the stock fund and the rest, 1 - w, in the bond fund, then 
the return on your investment is R = wRs + (1 - w)Rb.

 a. Suppose that w = 0.5. Compute the mean and standard deviation of R.

 b. Suppose that w = 0.75. Compute the mean and standard deviation of R.

 c. What value of w makes the mean of R as large as possible? What is 
the standard deviation of R for this value of w?

 d. (Harder) What is the value of w that minimizes the standard deviation 
of R? (Show using a graph, algebra, or calculus.)

 2.23 This exercise provides an example of a pair of random variables X 
and Y for which the conditional mean of Y given X depends on X but 
corr(X, Y) = 0. Let X and Z be two independently distributed standard 
normal random variables, and let Y = X2 + Z.

 a. Show that E(Y 0  X ) = X2.

 b. Show that mY = 1.

 c. Show that E(XY ) = 0. (Hint: Use the fact that the odd moments of a 
standard normal random variable are all zero.)

 d. Show that cov(X, Y ) = 0 and thus corr(X, Y ) = 0.
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 2.24 Suppose Yi is distributed i.i.d. N(0, s2) for i = 1, 2, c, n.

 a. Show that E(Y  

2
i  >  s2) = 1.

 b. Show that W = (1>s2)gn
i= 1Y 2i  is distributed x2

n.

 c. Show that E(W) = n. [Hint: Use your answer to (a).]

 d. Show that V = Y1n
gn

i= 2Yi
2

n - 1
 is distributed tn - 1.

 2.25 (Review of summation notation) Let x1, c, xn denote a sequence of 
numbers, y1, c, yn denote another sequence of numbers, and a, b, and c 
denote three constants. Show that

 a. a
n

i= 1
axi = aa

n

i= 1
xi

 b. a
n

i= 1
(xi + yi) = a

n

i= 1
xi + a

n

i= 1
yi

 c. a
n

i= 1
a = na

 d. a
n

i= 1
(a + bxi + cyi)2 = na2 + b2

a
n

i= 1
x2

i + c2
a
n

i= 1
y2

i + 2aba
n

i= 1
xi +

  2aca
n

i= 1
yi + 2bca

n

i= 1
xiyi

 2.26 Suppose that Y1, Y2, c, Yn are random variables with a common mean mY, 
a common variance s 2

Y, and the same correlation r (so that the correlation 
between Yi and Yj is equal to r for all pairs i and j, where i ≠ j).

 a. Show that cov(Yi, Yj ) = rs 2
Y for i ≠ j.

 b. Suppose that n = 2. Show that E(Y ) = mY and var(Y ) = 1
2s

2
Y + 1

2rs
2
Y.

 c. For n Ú 2, show that E(Y ) = mY and var(Y ) = s2
Y>n +

[(n - 1)>n]rs2
Y.

 d. When n is very large, show that var(Y ) ≈ rs2
Y.

 2.27 X and Z are two jointly distributed random variables. Suppose you know 
the value of Z, but not the value of X. Let X∼ = E(X  Z) denote a guess 
of the value of X using the information on Z, and let W = X - X

∼  denote 
the error associated with this guess.

 a. Show that E(W ) = 0. (Hint: Use the law of iterated expectations.)

 b. Show that E(WZ ) = 0.
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 c. Let Xn = g(Z) denote another guess of X using Z, and V = X - Xn  
denote its error. Show that E(V2) Ú E(W 2). [Hint: Let h(Z ) =
g(Z) - E(X  Z), so that V = 3X - E(X  Z )4 - h(Z ). Derive 
E(V2).]

Empirical Exercise

 E2.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the spreadsheet Age_HourlyEarnings, which contains the joint 
distribution of age (Age) and average hourly earnings (AHE) for 25- to 
34-year-old full-time workers in 2012 with an education level that exceeds 
a high school diploma. Use this joint distribution to carry out the follow-
ing exercises. (Note: For these exercises, you need to be able to carry out 
calculations and construct charts using a spreadsheet.)

 a. Compute the marginal distribution of Age.

 b. Compute the mean of AHE for each value of Age; that is, compute, 
E(AHE|Age = 25), and so forth.

 c. Compute and plot the mean of AHE versus Age. Are average hourly 
earnings and age related? Explain.

 d. Use the law of iterated expectations to compute the mean of AHE; 
that is, compute E(AHE).

 e. Compute the variance of AHE.

 f. Compute the covariance between AHE and Age.

 g. Compute the correlation between AHE and Age.

 h. Relate your answers in parts (f) and (g) to the plot you constructed  
in (c).

 a p p e n D i x

 2.1 Derivation of Results in Key Concept 2.3

This appendix derives the equations in Key Concept 2.3.

Equation (2.29) follows from the definition of the expectation.

To derive Equation (2.30), use the definition of the variance to write var(a + bY) =
E{[a + bY - E(a + bY)]2} = E{[b(Y - mY)]2} = b2E[(Y - mY)2] = b2s2

Y.
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To derive Equation (2.31), use the definition of the variance to write

 var(aX + bY ) = E5 3(aX + bY ) - (amX + bmY)426
 = E5 3a(X - mX) + b(Y - mY)426
 = E3a2

 (X - mX)24 + 2E3ab(X - mX)(Y - mY)4
           + E3b2

 (Y - mY)24
 = a2

 var(X ) + 2ab cov(X, Y ) + b2 var(Y )

  = a2s2
X + 2absXY + b2s2

Y, (2.49)

where the second equality follows by collecting terms, the third equality follows by expanding 

the quadratic, and the fourth equality follows by the definition of the variance and covariance.

To derive Equation (2.32), write E(Y2) = E53(Y - mY) + mY]26 = E[(Y - mY)24 +
2 mYE(Y - mY) + m2

Y =  s 2
Y + m 2

Y because E(Y - mY) = 0.

To derive Equation (2.33), use the definition of the covariance to write

 cov(a + bX + cV, Y) = E5[a + bX + cV - E(a + bX + cV)43Y - mY]6
 = E5[b(X - mX) + c(V - mV)43Y - mY]6
 = E53b(X - mX)43Y - mY]6 + E53c(V - mV)43Y - mY46

  = bsXY + csVY, (2.50)

which is Equation (2.33).

To derive Equation (2.34), write E(XY ) = E53(X - mX) + mX43(Y - mY) + mY]6 =
E3(X - mX)(Y - mY)4 + mXE(Y - mY) + mYE(X - mX) + mX mY = sXY + mX mY.

We now prove the correlation inequality in Equation (2.35); that is, 0  corr (X, Y ) 0 … 1. 

Let a = -sXY>s2
X and b = 1. Applying Equation (2.31), we have that

 var(aX + Y ) = a2s2
X + s2

Y + 2asXY

  = (-sXY>s2
X)2 s2

X + s2
Y + 2(-sXY>s2

X)sXY 

  = s2
Y - s2

XY  >  s2
X. (2.51)

Because var(aX + Y) is a variance, it cannot be negative, so from the final line of Equa-

tion (2.51), it must be that s2
Y - s2

XY  >  s2
X Ú 0. Rearranging this inequality yields

 s2
XY … s2

X s
2
Y (covariance inequality). (2.52)

The covariance inequality implies that s2
XY  >  (s2

X s
2
Y) … 1 or, equivalently, 

0sXY  >  (sX  sY) 0 … 1, which (using the definition of the correlation) proves the correlation 

inequality, 0  corr (X Y ) 0 … 1.



Statistics is the science of using data to learn about the world around us. Statisti-
cal tools help us answer questions about unknown characteristics of distribu-

tions in populations of interest. For example, what is the mean of the distribution of 
earnings of recent college graduates? Do mean earnings differ for men and women, 
and, if so, by how much?

These questions relate to the distribution of earnings in the population of 
workers. One way to answer these questions would be to perform an exhaustive 
survey of the population of workers, measuring the earnings of each worker and 
thus finding the population distribution of earnings. In practice, however, such a 
comprehensive survey would be extremely expensive. The only comprehensive sur-
vey of the U.S. population is the decennial census, which cost $13 billion to carry 
out in 2010. The process of designing the census forms, managing and conducting 
the surveys, and compiling and analyzing the data takes ten years. Despite this 
extraordinary commitment, many members of the population slip through the 
cracks and are not surveyed. Thus a different, more practical approach is needed.

The key insight of statistics is that one can learn about a population distribution 
by selecting a random sample from that population. Rather than survey the entire 
U.S. population, we might survey, say, 1000 members of the population, selected at 
random by simple random sampling. Using statistical methods, we can use this 
sample to reach tentative conclusions—to draw statistical inferences—about char-
acteristics of the full population.

Three types of statistical methods are used throughout econometrics: estima-
tion, hypothesis testing, and confidence intervals. Estimation entails computing a 
“best guess” numerical value for an unknown characteristic of a population distri-
bution, such as its mean, from a sample of data. Hypothesis testing entails formulat-
ing a specific hypothesis about the population, then using sample evidence to 
decide whether it is true. Confidence intervals use a set of data to estimate an inter-
val or range for an unknown population characteristic. Sections 3.1, 3.2, and 3.3 
review estimation, hypothesis testing, and confidence intervals in the context of 
statistical inference about an unknown population mean.

Most of the interesting questions in economics involve relationships between 
two or more variables or comparisons between different populations. For example, 

3
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is there a gap between the mean earnings for male and female recent college grad-
uates? In Section 3.4, the methods for learning about the mean of a single popula-
tion in Sections 3.1 through 3.3 are extended to compare means in two different 
populations. Section 3.5 discusses how the methods for comparing the means of 
two populations can be used to estimate causal effects in experiments. Sections 3.2 
through 3.5 focus on the use of the normal distribution for performing hypothesis 
tests and for constructing confidence intervals when the sample size is large. In 
some special circumstances, hypothesis tests and confidence intervals can be based 
on the Student t distribution instead of the normal distribution; these special cir-
cumstances are discussed in Section 3.6. The chapter concludes with a discussion of 
the sample correlation and scatterplots in Section 3.7.

 3.1 Estimation of the Population Mean

Suppose you w nt to know the e n v lue of Y (th t is, mY) in  popul tion, 
such s the e n e rnings of wo en recently gr du ted fro  college. A n tur l 
w y to esti te this e n is to co pute the s ple ver ge Y fro   s ple of 
n independently nd identic lly distributed (i.i.d.) observ tions, Y1,c, Yn 
(rec ll th t Y1,c, Yn re i.i.d. if they re collected by si ple r ndo  s -
pling). This section discusses esti tion of mY nd the properties of Y s n 
esti tor of mY.

Estimators and Their Properties
Estimators. The s ple ver ge Y is  n tur l w y to esti te mY, but it is not 
the only w y. For ex ple, nother w y to esti te mY is si ply to use the first 
observ tion, Y1. Both Y nd Y1 re functions of the d t  th t re designed to 
esti te mY; using the ter inology in Key Concept 3.1, both re esti tors of mY. 
When ev lu ted in repe ted s ples, Y nd Y1 t ke on different v lues (they 
produce different esti tes) fro  one s ple to the next. Thus the esti tors Y 
nd Y1 both h ve s pling distributions. There re, in f ct, ny esti tors of mY, 

of which Y nd Y1 re two ex ples.
There re ny possible esti tors, so wh t kes one esti tor “better” 

th n nother? Bec use esti tors re r ndo  v ri bles, this question c n be 
phr sed ore precisely: Wh t re desir ble ch r cteristics of the s pling distri-
bution of n esti tor? In gener l, we would like n esti tor th t gets s close 

s possible to the unknown true v lue, t le st in so e ver ge sense; in other 
words, we would like the s pling distribution of n esti tor to be s tightly 
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centered on the unknown v lue s possible. This observ tion le ds to three specific 
desir ble ch r cteristics of n esti tor: unbi sedness (  l ck of bi s), consis-
tency, nd efficiency.

Unbiasedness. Suppose you ev lu te n esti tor ny ti es over repe ted r n-
do ly dr wn s ples. It is re son ble to hope th t, on ver ge, you would get the 
right nswer. Thus  desir ble property of n esti tor is th t the e n of its 
s pling distribution equ ls mY; if so, the esti tor is s id to be unbi sed.

To st te this concept the tic lly, let mnY denote so e esti tor of mY, 
such s Y or Y1. The esti tor mnY is unbi sed if E(mnY) = mY, where E(mnY) is the 

e n of the s pling distribution of mnY; otherwise, mnY is bi sed.

Consistency. Another desir ble property of n esti tor mY is th t, when the 
s ple size is l rge, the uncert inty bout the v lue of mY rising fro  r ndo  
v ri tions in the s ple is very s ll. St ted ore precisely,  desir ble property 
of mnY is th t the prob bility th t it is within  s ll interv l of the true v lue mY 

ppro ches 1 s the s ple size incre ses, th t is, mnY is consistent for mY (Key 
Concept 2.6).

Variance and efficiency. Suppose you h ve two c ndid te esti tors, mnY nd  
m∼Y, both of which re unbi sed. How ight you choose between the ? One w y 
to do so is to choose the esti tor with the tightest s pling distribution. This 
suggests choosing between mnY nd m∼Y by picking the esti tor with the s llest 
v ri nce. If mnY h s  s ller v ri nce th n m∼Y, then mnY is s id to be ore efficient 
th n m∼Y. The ter inology “efficiency” ste s fro  the notion th t if mnY h s  
s ller v ri nce th n m∼Y, then it uses the infor tion in the d t  ore efficiently 
th n does m∼Y.

es im ors nd es im s

An estimator is  function of  s ple of d t  to be dr wn r ndo ly fro   
popul tion. An estimate is the nu eric l v lue of the esti tor when it is ctu lly 
co puted using d t  fro   specific s ple. An esti tor is  r ndo  v ri ble 
bec use of r ndo ness in selecting the s ple, while n esti te is  nonr ndo  
nu ber.

Key ConCept

3.1
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Bias, consistency, nd efficiency re su rized in Key Concept 3.2.

Properties of Y
How does Y f re s n esti tor of mY when judged by the three criteri  of bi s, 
consistency, nd efficiency?

Bias and consistency. The s pling distribution of Y h s lre dy been ex ined 
in Sections 2.5 nd 2.6. As shown in Section 2.5, E(Y ) = mY, so Y is n unbi sed 
esti tor of mY. Si il rly, the l w of l rge nu bers (Key Concept 2.6) st tes th t 
Y ¡p

mY; th t is, Y is consistent.

Efficiency. Wh t c n be s id bout the efficiency of Y? Bec use efficiency ent ils 
 co p rison of esti tors, we need to specify the esti tor or esti tors to 

which Y is to be co p red.
We st rt by co p ring the efficiency of Y to the esti tor Y1. Bec use 

Y1,c, Yn re i.i.d., the e n of the s pling distribution of Y1 is E(Y1) = mY; 
thus Y1 is n unbi sed esti tor of mY. Its v ri nce is v r(Y1) = s2

Y. Fro  Section 
2.5, the v ri nce of Y is s2

Y>n. Thus, for n Ú 2, the v ri nce of Y is less th n the 
v ri nce of Y1; th t is, Y is  ore efficient esti tor th n Y1, so, ccording to the 
criterion of efficiency, Y should be used inste d of Y1. The esti tor Y1 ight 
strike you s n obviously poor esti tor—why would you go to the trouble of 
collecting  s ple of n observ tions only to throw w y ll but the first?— nd 
the concept of efficiency provides  for l w y to show th t Y is  ore desir ble 
esti tor th n Y1.

Bi s, Consis ncy, nd effici ncy

Let mnY be n esti tor of mY. Then:

• The bias of mnY is E(mnY) - mY.

• mnY is n unbiased estimator of mY if E(mnY) = mY.

• mnY is  consistent estimator of mY if mnY ¡
p
mY.

• Let m∼Y be nother esti tor of mY nd suppose th t both mnY nd m∼Y re unbi sed. 
Then mnY is s id to be ore efficient th n mnY if v r(mnY) 6 v r(m∼Y).

Key ConCept

3.2
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Wh t bout  less obviously poor esti tor? Consider the weighted ver ge 
in which the observ tions re ltern tely weighted by 12 nd 32:

 Y
∼ =

1
n
a

1
2

Y1 +
3
2

Y2 +
1
2

Y3 +
3
2

Y4 + g +
1
2

Yn - 1 +
3
2

Ynb , (3.1)

where the nu ber of observ tions n is ssu ed to be even for convenience. The 
e n of Y∼ is mY nd its v ri nce is v r(Y

∼) = 1.25s2
Y>n (Exercise 3.11). Thus Y∼ is 

unbi sed nd, bec use v r(Y
∼)S 0 s nS ∞ , Y

∼ is consistent. However, Y∼ h s  
l rger v ri nce th n Y. Thus Y is ore efficient th n Y∼.

The esti tors Y, Y1, nd Y∼ h ve  co on the tic l structure: They 
re weighted ver ges of Y1, c, Yn. The co p risons in the previous two p r -

gr phs show th t the weighted ver ges Y1 nd Y∼ h ve l rger v ri nces th n Y. 
In f ct, these conclusions reflect  ore gener l result: Y is the ost efficient 
esti tor of all unbi sed esti tors th t re weighted ver ges of Y1, c, Yn. 
S id differently, Y is the Best Line r Unbi sed Esti tor (BLUE); th t is, it is 
the ost efficient (best) esti tor ong ll esti tors th t re unbi sed nd re 
line r functions of Y1, c, Yn. This result is st ted in Key Concept 3.3 nd is 
proved in Ch pter 5.

Y    is the least squares estimator of mY. The s ple ver ge Y provides the best fit 
to the d t  in the sense th t the ver ge squ red differences between the observ -
tions nd Y re the s llest of ll possible esti tors.

Consider the proble  of finding the esti tor m th t ini izes

 a
n

i= 1
(Yi - m)2, (3.2)

which is  e sure of the tot l squ red g p or dist nce between the esti tor m 
nd the s ple points. Bec use m is n esti tor of E(Y), you c n think of it s  

effici ncy of Y: Y  Is BLUe

Let mnY be n esti tor of mY th t is  weighted ver ge of Y1,c, Yn, th t is,  
mnY = (1>n)gn

i= 1 aiYi, where a1,c, an re nonr ndo  const nts. If mnY  is un-  
bi sed, then v r(Y) 6 v r(mnY) unless mnY = Y. Thus Y is the Best Line r Unbi sed 
Esti tor (BLUE); th t is, Y  is the ost efficient esti tor of mY ong ll 
unbi sed esti tors th t re weighted ver ges of Y1,c, Yn.

Key ConCept

3.3
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prediction of the v lue of Yi, so the g p Yi - m c n be thought of s  prediction 
ist ke. The su  of squ red g ps in Expression (3.2) c n be thought of s the su  

of squ red prediction ist kes.
The esti tor m th t ini izes the su  of squ red g ps Yi - m in Expres-

sion (3.2) is c lled the least squares estimator. One c n i gine using tri l nd 
error to solve the le st squ res proble : Try ny v lues of m until you re s tis-
fied th t you h ve the v lue th t kes Expression (3.2) s s ll s possible. 
Altern tively, s is done in Appendix 3.2, you c n use lgebr  or c lculus to show 
th t choosing m = Y ini izes the su  of squ red g ps in Expression (3.2) so 
th t Y is the le st squ res esti tor of mY.

The Importance of Random Sampling
We h ve ssu ed th t Y1, c, Yn re i.i.d. dr ws, such s those th t would be 
obt ined fro  si ple r ndo  s pling. This ssu ption is i port nt bec use 
nonr ndo  s pling c n result in Y being bi sed. Suppose th t, to esti te the 

onthly n tion l une ploy ent r te,  st tistic l gency dopts  s pling 
sche e in which interviewers survey working- ge dults sitting in city p rks t 
10 a.m. on the second Wednesd y of the onth. Bec use ost e ployed people 

re t work t th t hour (not sitting in the p rk!), the une ployed re overly 
represented in the s ple, nd n esti te of the une ploy ent r te b sed on 
this s pling pl n would be bi sed. This bi s rises bec use this s pling sche e 
overrepresents, or overs ples, the une ployed e bers of the popul tion. This 
ex ple is fictitious, but the “L ndon Wins!” box gives  re l-world ex ple of 
bi ses introduced by s pling th t is not entirely r ndo .

S hortly before the 1936 U.S. presidenti l election, 

the Literary Gazette published  poll indic ting 

th t Alf M. L ndon would defe t the incu bent, 

Fr nklin D. Roosevelt, by  l ndslide—57% to 43%. 

The Gazette w s right th t the election w s  l nd-

slide, but it w s wrong bout the winner: Roosevelt 

won by 59% to 41%!

How could the Gazette h ve de such  big 

ist ke? The Gazette’s s ple w s chosen fro  

telephone records nd uto obile registr tion 

files. But in 1936 ny households did not h ve 

c rs or telephones, nd those th t did tended 

to be richer— nd were lso ore likely to be 

Republic n. Bec use the telephone survey did 

not s ple r ndo ly fro  the popul tion but 

inste d unders pled De ocr ts, the esti tor 

w s bi sed nd the Gazette de n e b rr ss-

ing ist ke.

Do you think surveys conducted using soci l 

edi  ight h ve  si il r proble  with bi s?

L d  W s!
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It is i port nt to design s ple selection sche es in  w y th t ini izes 
bi s. Appendix 3.1 includes  discussion of wh t the Bure u of L bor St tistics 

ctu lly does when it conducts the U.S. Current Popul tion Survey (CPS), the 
survey it uses to esti te the onthly U.S. une ploy ent r te.

 3.2 Hypothesis Tests Concerning  
the Population Mean

M ny hypotheses bout the world round us c n be phr sed s yes/no questions. 
Do the e n hourly e rnings of recent U.S. college gr du tes equ l $20 per hour? 
Are e n e rnings the s e for le nd fe le college gr du tes? Both these 
questions e body specific hypotheses bout the popul tion distribution of e rn-
ings. The st tistic l ch llenge is to nswer these questions b sed on  s ple of 
evidence. This section describes hypothesis tests concerning the popul tion e n 
(Does the popul tion e n of hourly e rnings equ l $20?). Hypothesis tests 
involving two popul tions (Are e n e rnings the s e for en nd wo en?) 

re t ken up in Section 3.4.

Null and Alternative Hypotheses
The st rting point of st tistic l hypotheses testing is specifying the hypothesis to 
be tested, c lled the null hypothesis. Hypothesis testing ent ils using d t  to co -
p re the null hypothesis to  second hypothesis, c lled the alternative hypothesis, 
th t holds if the null does not.

The null hypothesis is th t the popul tion e n, E(Y), t kes on  specific 
v lue, denoted mY,0. The null hypothesis is denoted H0 nd thus is

 H0: E(Y) = mY,0. (3.3)

For ex ple, the conjecture th t, on ver ge in the popul tion, college gr du tes 
e rn $20 per hour constitutes  null hypothesis bout the popul tion distribution 
of hourly e rnings. St ted the tic lly, if Y is the hourly e rning of  r ndo ly 
selected recent college gr du te, then the null hypothesis is th t E(Y) = 20; th t 
is, mY,0 = 20 in Equ tion (3.3).

The ltern tive hypothesis specifies wh t is true if the null hypothesis is not. 
The ost gener l ltern tive hypothesis is th t E(Y) ≠ mY,0, which is c lled  
two-sided alternative hypothesis bec use it llows E(Y) to be either less th n or 
gre ter th n mY,0. The two-sided ltern tive is written s

 H1 : E(Y) ≠ mY,0 (two @sided ltern tive). (3.4)
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One-sided ltern tives re lso possible, nd these re discussed l ter in this  
section.

The proble  f cing the st tistici n is to use the evidence in  r ndo ly 
selected s ple of d t  to decide whether to ccept the null hypothesis H0 or to 
reject it in f vor of the ltern tive hypothesis H1. If the null hypothesis is 
“ ccepted,” this does not e n th t the st tistici n decl res it to be true; r ther, 
it is ccepted tent tively with the recognition th t it ight be rejected l ter b sed 
on ddition l evidence. For this re son, st tistic l hypothesis testing c n be posed 

s either rejecting the null hypothesis or f iling to do so.

The p-Value
In ny given s ple, the s ple ver ge Y will r rely be ex ctly equ l to the 
hypothesized v lue mY,0. Differences between Y nd mY,0 c n rise bec use the true 

e n in f ct does not equ l mY,0 (the null hypothesis is f lse) or bec use the true 
e n equ ls mY,0 (the null hypothesis is true) but Y differs fro  mY,0 bec use of 

r ndo  s pling. It is i possible to distinguish between these two possibilities 
with cert inty. Although  s ple of d t  c nnot provide conclusive evidence 
bout the null hypothesis, it is possible to do  prob bilistic c lcul tion th t per its 

testing the null hypothesis in  w y th t ccounts for s pling uncert inty. This 
c lcul tion involves using the d t  to co pute the p-v lue of the null hypothesis.

The p-value, lso c lled the significance probability, is the prob bility of dr w-
ing  st tistic t le st s dverse to the null hypothesis s the one you ctu lly co -
puted in your s ple, ssu ing the null hypothesis is correct. In the c se t h nd, 
the p-v lue is the prob bility of dr wing Y t le st s f r in the t ils of its distribu-
tion under the null hypothesis s the s ple ver ge you ctu lly co puted.

For ex ple, suppose th t, in your s ple of recent college gr du tes, the 
ver ge w ge is $22.64. The p-v lue is the prob bility of observing  v lue of Y  
t le st s different fro  $20 (the popul tion e n under the null) s the observed 

v lue of $22.64 by pure r ndo  s pling v ri tion, ssu ing th t the null hypoth-
esis is true. If this p-v lue is s ll, s y 0.5%, then it is very unlikely th t this 
s ple would h ve been dr wn if the null hypothesis is true; thus it is re son ble 
to conclude th t the null hypothesis is not true. By contr st, if this p-v lue is l rge, 
s y 40%, then it is quite likely th t the observed s ple ver ge of $22.64 could 
h ve risen just by r ndo  s pling v ri tion if the null hypothesis is true; 

ccordingly, the evidence g inst the null hypothesis is we k in this prob bilistic 
sense, nd it is re son ble not to reject the null hypothesis.

To st te the definition of the p-v lue the tic lly, let Y act denote the 
v lue of the s ple ver ge ctu lly co puted in the d t  set t h nd nd let PrH0
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denote the prob bility co puted under the null hypothesis (th t is, co puted 
ssu ing th t E(Yi) = mY,0). The p-v lue is

 p@  v lue = PrH0
3 0  Y - mY,0 0 7  0Y act - mY,0 0 4 . (3.5)

Th t is, the p-v lue is the re  in the t ils of the distribution of Y under the null 
hypothesis beyond mY,0 { Yact - mY,0 . If the p-v lue is l rge, then the observed 
v lue Yact is consistent with the null hypothesis, but if the p-v lue is s ll, it is not.

To co pute the p-v lue, it is necess ry to know the s pling distribution of 
Y under the null hypothesis. As discussed in Section 2.6, when the s ple size is 
s ll this distribution is co plic ted. However, ccording to the centr l li it 
theore , when the s ple size is l rge, the s pling distribution of Y is well 

pproxi ted by  nor l distribution. Under the null hypothesis the e n of 
this nor l distribution is mY,0, so under the null hypothesis Y is distributed 
N(mY,0, s2

Y), where s2
Y = s

2
Y>n. This l rge-s ple nor l pproxi tion kes 

it possible to co pute the p-v lue without needing to know the popul tion distri-
bution of Y, s long s the s ple size is l rge. The det ils of the c lcul tion, 
however, depend on whether s2

Y is known.

Calculating the p-Value When sY Is Known
The c lcul tion of the p-v lue when sY is known is su rized in Figure 3.1. If 
the s ple size is l rge, then under the null hypothesis the s pling distribution 
of Y is N(mY,0, s2

Y), where s2
  Y = s

2
Y>n. Thus, under the null hypothesis, the st n-

d rdized version of Y, (Y - mY,0)>sY, h s  st nd rd nor l distribution. The 
p-v lue is the prob bility of obt ining  v lue of Y f rther fro  mY,0 th n Yact 
under the null hypothesis or, equiv lently, is the prob bility of obt ining 
(Y - mY,0) >  sY gre ter th n (Y act - mY,0) >  sY in bsolute v lue. This prob bility 
is the sh ded re  shown in Figure 3.1. Written the tic lly, the sh ded t il 
prob bility in Figure 3.1 (th t is, the p-v lue) is

  p  @  v lue = PrH0
a

Y - mY,0

sY

7
Y act - mY,0

sY

b = 2Φ   a -
Y act - mY,0

s  Y
b , (3.6)

where Φ is the st nd rd nor l cu ul tive distribution function. Th t is, the 
p-v lue is the re  in the t ils of  st nd rd nor l distribution outside 
{ 0  Y act - mY,0 0 >s Y.

The for ul  for the p-v lue in Equ tion (3.6) depends on the v ri nce of the 
popul tion distribution, s2

Y. In pr ctice, this v ri nce is typic lly unknown. [An 
exception is when Yi is bin ry so th t its distribution is Bernoulli, in which c se 
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the v ri nce is deter ined by the null hypothesis; see Equ tion (2.7) nd Exer-
cise 3.2.] Bec use in gener l s2

Y ust be esti ted before the p-v lue c n be 
co puted, we now turn to the proble  of esti ting s2

Y.

The Sample Variance, Sample Standard Deviation, 
and Standard Error
The s ple v ri nce s2

Y is n esti tor of the popul tion v ri nce s2
Y, the s ple 

st nd rd devi tion sY is n esti tor of the popul tion st nd rd devi tion sY, nd 
the st nd rd error of the s ple ver ge Y is n esti tor of the st nd rd devi -
tion of the s pling distribution of Y.

The sample variance and standard deviation. The sample variance, s2
Y, is

 s2
Y =

1
n - 1

 a
n

i= 1
(Yi - Y )2. (3.7)

The sample standard deviation, sY, is the squ re root of the s ple v ri nce.
The for ul  for the s ple v ri nce is uch like the for ul  for the popul -

tion v ri nce. The popul tion v ri nce, E(Y - mY)2, is the ver ge v lue of 
(Y - mY)2 in the popul tion distribution. Si il rly, the s ple v ri nce is the 
s ple ver ge of (Yi - mY)2, i = 1,c, n, with two odific tions: First, mY is 
repl ced by Y, nd second, the ver ge uses the divisor n - 1 inste d of n.

Figure 3.1  C lcul ing  p-v lu

The p-value is the 

probability of drawing 

a value of Y  that differs 

from mY,0 by at least as 
much as Y act. In large 

samples, Y  is distrib-

uted N(mY,0, s
2
Y   ) , under 

the null hypothesis, so 

(Y - mY,0)>sY is distrib-

uted N(0, 1). Thus the 

p-value is the shaded 

standard normal tail 

probability outside 
{ (Y act - mY,0)>s Y .

zY act – mY,0
–

sY–
–

Y act – mY,0
–

sY–

0

The p-value is the shaded area
in the graph

N(0, 1)
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The re son for the first odific tion—repl cing mY  by Y—is th t mY is 
unknown nd thus ust be esti ted; the n tur l esti tor of mY is Y. The re son 
for the second odific tion—dividing by n - 1 inste d of by n—is th t esti ting 
mY by Y introduces  s ll downw rd bi s in (Yi - Y )2. Specific lly, s is shown 
in Exercise 3.18, E3(Yi - Y )24 = 3(n - 1)>n4s2

Y . Thus Egn
i= 1(Yi - Y )2 =

nE3(Yi - Y )24 = (n - 1)s2
Y. Dividing by n - 1 in Equ tion (3.7) inste d of n 

corrects for this s ll downw rd bi s, nd s  result s2
Y is unbi sed.

Dividing by n - 1 in Equ tion (3.7) inste d of n is c lled  degrees of freedom 
correction: Esti ting the e n uses up so e of the infor tion—th t is, uses up 
1 “degree of freedo ”—in the d t , so th t only n - 1 degrees of freedo  re in.

Consistency of the sample variance. The s ple v ri nce is  consistent esti tor 
of the popul tion v ri nce:

 s2
Y ¡ s2

Y. (3.9)

In other words, the s ple v ri nce is close to the popul tion v ri nce with high 
prob bility when n is l rge.

The result in Equ tion (3.9) is proven in Appendix 3.3 under the ssu ptions 
th t Y1,c, Yn re i.i.d. nd Yi h s  finite fourth o ent; th t is, E(Y4

i ) 6 ∞ . 
Intuitively, the re son th t s2

Y is consistent is th t it is  s ple ver ge, so s2
Y 

obeys the l w of l rge nu bers. But for s2
Y to obey the l w of l rge nu bers in 

Key Concept 2.6, (Yi - mY)2 ust h ve finite v ri nce, which in turn e ns th t 
E(Y4

i ) ust be finite; in other words, Yi ust h ve  finite fourth o ent.

The standard error of  Y   . Bec use the st nd rd devi tion of the s pling distribu-
tion of Y is sY = sY>1n, Equ tion (3.9) justifies using sY>1n s n esti tor of 
s Y. The esti tor of s Y, sY>1n, is c lled the standard error of Y  nd is denoted 
SE(Y) or snY (the c ret “^” over the sy bol e ns th t it is n esti tor of s Y). 
The st nd rd error of Y is su rized s in Key Concept 3.4.

t  S nd rd error of Y

The st nd rd error of Y is n esti tor of the st nd rd devi tion of Y. The st n-
d rd error of Y is denoted SE(Y) or snY. When Y1,c,Yn re i.i.d.,

 SE(Y) = sn Y = sY>2n. (3.8)

Key ConCept

3.4
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When Y1,c, Yn re i.i.d. dr ws fro   Bernoulli distribution with success 
prob bility p, the for ul  for the v ri nce of Y si plifies to p(1 - p)>n (see 
Exercise 3.2). The for ul  for the st nd rd error lso t kes on  si ple for  th t 
depends only on Y nd n: SE(Y ) = 2Y(1 - Y)>n.

Calculating the p-Value When sY Is Unknown
Bec use s2

Y is  consistent esti tor of s2
Y, the p-v lue c n be co puted by repl c-

ing s Y in Equ tion (3.6) by the st nd rd error, SE(Y ) = s n Y. Th t is, when sY is 
unknown nd Y1,c, Yn re i.i.d., the p-v lue is c lcul ted using the for ul

 p@v lue = 2Φa -
Yact - mY,0

SE(Y)
b . (3.10)

The t-Statistic
The st nd rdized s ple ver ge (Y - mY,0)>SE(Y) pl ys  centr l role in testing 
st tistic l hypotheses nd h s  speci l n e, the t-statistic or t-ratio:

 t =
Y - mY,0

SE(Y)
. (3.11)

In gener l,  test statistic is  st tistic used to perfor   hypothesis test. The 
t-st tistic is n i port nt ex ple of  test st tistic.

Large-sample distribution of the -statistic. When n is l rge, s2
Y is close to s2

Y with 
high prob bility. Thus the distribution of the t-st tistic is pproxi tely the s e 

s the distribution of (Y - mY,0) >  sY, which in turn is well pproxi ted by the 
st nd rd nor l distribution when n is l rge bec use of the centr l li it theore  
(Key Concept 2.7). Accordingly, under the null hypothesis,

 t is pproxi tely distributed N(0,1) for l rge n. (3.12)

The for ul  for the p-v lue in Equ tion (3.10) c n be rewritten in ter s of the 
t-st tistic. Let t act denote the v lue of the t-st tistic ctu lly co puted:

 t act =
Y act - mY,0

SE(Y)
. (3.13)
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Accordingly, when n is l rge, the p-v lue c n be c lcul ted using

 p@v lue = 2Φ(- tact ). (3.14)

As  hypothetic l ex ple, suppose th t  s ple of n = 200 recent college gr d-
u tes is used to test the null hypothesis th t the e n w ge, E(Y), is $20 per hour. 
The s ple ver ge w ge is Yact = $22.64, nd the s ple st nd rd devi tion is 
sY = $18.14. Then the st nd rd error of Y is sY>2n = 18.14>2200 = 1.28. The 
v lue of the t-st tistic is t act = (22.64 - 20)>1.28 = 2.06. Fro  Appendix T ble 1, 
the p-v lue is 2Φ(-2.06) = 0.039, or 3.9%. Th t is, ssu ing the null hypothesis 
to be true, the prob bility of obt ining  s ple ver ge t le st s different fro  
the null s the one ctu lly co puted is 3.9%.

Hypothesis Testing with a Prespecified  
Significance Level
When you undert ke  st tistic l hypothesis test, you c n ke two types of 

ist kes: You c n incorrectly reject the null hypothesis when it is true, or you 
c n f il to reject the null hypothesis when it is f lse. Hypothesis tests c n be 
perfor ed without co puting the p-v lue if you re willing to specify in 

dv nce the prob bility you re willing to toler te of king the first kind of 
ist ke—th t is, of incorrectly rejecting the null hypothesis when it is true. If 

you choose  prespecified prob bility of rejecting the null hypothesis when it 
is true (for ex ple, 5%), then you will reject the null hypothesis if nd only 
if the p-v lue is less th n 0.05. This ppro ch gives preferenti l tre t ent to 
the null hypothesis, but in ny pr ctic l situ tions this preferenti l tre t ent 
is ppropri te.

Hypothesis tests using a fixed significance level. Suppose it h s been decided th t 
the hypothesis will be rejected if the p-v lue is less th n 5%. Bec use the re  
under the t ils of the st nd rd nor l distribution outside {1.96 is 5%, this gives 

 si ple rule:

 Reject H0 if  t act
 7 1.96. (3.15)

Th t is, reject if the bsolute v lue of the t-st tistic co puted fro  the s ple is 
gre ter th n 1.96. If n is l rge enough, then under the null hypothesis the t-st tistic 
h s  N(0, 1) distribution. Thus the prob bility of erroneously rejecting the null 
hypothesis (rejecting the null hypothesis when it is in f ct true) is 5%.
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This fr ework for testing st tistic l hypotheses h s so e speci lized ter i-
nology, su rized in Key Concept 3.5. The signific nce level of the test in Equ -
tion (3.15) is 5%, the critic l v lue of this two-sided test is 1.96, nd the rejection 
region is the v lues of the t-st tistic outside ±1.96. If the test rejects t the 5% 
signific nce level, the popul tion e n mY is s id to be st tistic lly signific ntly 
different fro  mY,0 t the 5% signific nce level.

Testing hypotheses using  prespecified signific nce level does not require 
co puting p-v lues. In the previous ex ple of testing the hypothesis th t the 

e n e rnings of recent college gr du tes is $20 per hour, the t-st tistic w s 2.06. 
This v lue exceeds 1.96, so the hypothesis is rejected t the 5% level. Although 
perfor ing the test with  5% signific nce level is e sy, reporting only whether 
the null hypothesis is rejected t  prespecified signific nce level conveys less 
infor tion th n reporting the p-v lue.

What significance level should you use in practice? In ny c ses, st tistici ns 
nd econo etrici ns use  5% signific nce level. If you were to test ny st tistic l 

t  t rminology of hy o sis t s ing

A st tistic l hypothesis test c n ke two types of ist kes:  type I error, in which 
the null hypothesis is rejected when in f ct it is true, nd  type II error, in which 
the null hypothesis is not rejected when in f ct it is f lse. The prespecified rejection 
prob bility of  st tistic l hypothesis test when the null hypothesis is true—th t 
is, the prespecified prob bility of  type I error—is the significance level of the 
test. The critical value of the test st tistic is the v lue of the st tistic for which 
the test just rejects the null hypothesis t the given signific nce level. The set 
of v lues of the test st tistic for which the test rejects the null hypothesis is the 
rejection region, nd the v lues of the test st tistic for which it does not reject 
the null hypothesis is the acceptance region. The prob bility th t the test ctu lly 
incorrectly rejects the null hypothesis when it is true is the size of the test, nd the 
prob bility th t the test correctly rejects the null hypothesis when the ltern tive 
is true is the power of the test.

The p-v lue is the prob bility of obt ining  test st tistic, by r ndo  s pling 
v ri tion, t le st s dverse to the null hypothesis v lue s is the st tistic ctu lly 
observed, ssu ing th t the null hypothesis is correct. Equiv lently, the p-v lue is 
the s llest signific nce level t which you c n reject the null hypothesis.

Key ConCept

3.5
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hypotheses t the 5% level, you would incorrectly reject the null on ver ge once 
in 20 c ses. So eti es  ore conserv tive signific nce level ight be in order. 
For ex ple, leg l c ses so eti es involve st tistic l evidence, nd the null 
hypothesis could be th t the defend nt is not guilty; then one would w nt to be 
quite sure th t  rejection of the null (conclusion of guilt) is not just  result of 
r ndo  s ple v ri tion. In so e leg l settings, the signific nce level used is 1%, 
or even 0.1%, to void this sort of ist ke. Si il rly, if  govern ent gency is 
considering per itting the s le of  new drug,  very conserv tive st nd rd ight 
be in order so th t consu ers c n be sure th t the drugs v il ble in the rket 

ctu lly work.
Being conserv tive, in the sense of using  very low signific nce level, h s  

cost: The s ller the signific nce level, the l rger the critic l v lue nd the ore 
difficult it beco es to reject the null when the null is f lse. In f ct, the ost con-
serv tive thing to do is never to reject the null hypothesis—but if th t is your view, 
then you never need to look t ny st tistic l evidence for you will never ch nge 
your ind! The lower the signific nce level, the lower the power of the test. M ny 
econo ic nd policy pplic tions c n c ll for less conserv tis  th n  leg l c se, 
so  5% signific nce level is often considered to be  re son ble co pro ise.

Key Concept 3.6 su rizes hypothesis tests for the popul tion e n g inst 
the two-sided ltern tive.

One-Sided Alternatives
In so e circu st nces, the ltern tive hypothesis ight be th t the e n exceeds 
mY,0. For ex ple, one hopes th t educ tion helps in the l bor rket, so the 
relev nt ltern tive to the null hypothesis th t e rnings re the s e for college 
gr du tes nd non–college gr du tes is not just th t their e rnings differ, but 

t s ing  hy o sis E(Y) = mY,0 
ag ins   al rn iv  E(Y) ≠ mY,0

 1. Co pute the st nd rd error of Y, SE(Y) [Equ tion (3.8)].

 2. Co pute the t-st tistic [Equ tion (3.13)].

 3. Co pute the p-v lue [Equ tion (3.14)]. Reject the hypothesis t the 5% sig-
nific nce level if the p-v lue is less th n 0.05 (equiv lently, if t act 7 1.96).

Key ConCept

3.6
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r ther th t gr du tes e rn ore th n nongr du tes. This is c lled  one-sided 
alternative hypothesis nd c n be written

 H1 : E(Y) 7 mY,0 (one@sided ltern tive). (3.16)

The gener l ppro ch to co puting p-v lues nd to hypothesis testing is the s e 
for one-sided ltern tives s it is for two-sided ltern tives, with the odific tion 
th t only l rge positive v lues of the t-st tistic reject the null hypothesis r ther 
th n v lues th t re l rge in bsolute v lue. Specific lly, to test the one-sided 
hypothesis in Equ tion (3.16), construct the t-st tistic in Equ tion (3.13). The 
p-v lue is the re  under the st nd rd nor l distribution to the right of the c l-
cul ted t-st tistic. Th t is, the p-v lue, b sed on the N(0, 1) pproxi tion to the 
distribution of the t-st tistic, is

 p@v lue = PrH0
(Z 7 t act ) = 1 - Φ(t act). (3.17)

The N(0, 1) critic l v lue for  one-sided test with  5% signific nce level is 1.64. 
The rejection region for this test is ll v lues of the t-st tistic exceeding 1.64.

The one-sided hypothesis in Equ tion (3.16) concerns v lues of mY exceeding 
mY,0. If inste d the ltern tive hypothesis is th t E(Y) 6 mY,0, then the discussion 
of the previous p r gr ph pplies except th t the signs re switched; for ex ple, 
the 5% rejection region consists of v lues of the t-st tistic less th n −1.64.

 3.3 Confidence Intervals  
for the Population Mean

Bec use of r ndo  s pling error, it is i possible to le rn the ex ct v lue of the 
popul tion e n of Y using only the infor tion in  s ple. However, it is pos-
sible to use d t  fro   r ndo  s ple to construct  set of v lues th t cont ins 
the true popul tion e n mY with  cert in prespecified prob bility. Such  set is 
c lled  confidence set, nd the prespecified prob bility th t mY is cont ined in 
this set is c lled the confidence level. The confidence set for mY turns out to be ll 
the possible v lues of the e n between  lower nd n upper li it, so th t the 
confidence set is n interv l, c lled  confidence interval.

Here is one w y to construct  95% confidence set for the popul tion e n. 
Begin by picking so e rbitr ry v lue for the e n; c ll it mY,0. Test the null hypoth-
esis th t mY = mY,0 g inst the ltern tive th t mY ≠ mY,0 by co puting the t-st tistic; 
if its bsolute v lue is less th n 1.96, this hypothesized v lue mY,0 is not rejected t 
the 5% level, nd write down this nonrejected v lue mY,0. Now pick nother rbitr ry 
v lue of mY,0 nd test it; if you c nnot reject it, write down this v lue on your list. 
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Do this g in nd g in; indeed, do so for ll possible v lues of the popul tion 
e n. Continuing this process yields the set of ll v lues of the popul tion e n 

th t c nnot be rejected t the 5% level by  two-sided hypothesis test.
This list is useful bec use it su rizes the set of hypotheses you c n nd 

c nnot reject ( t the 5% level) b sed on your d t : If so eone w lks up to you 
with  specific nu ber in ind, you c n tell hi  whether his hypothesis is rejected 
or not si ply by looking up his nu ber on your h ndy list. A bit of clever re son-
ing shows th t this set of v lues h s  re rk ble property: The prob bility th t 
it cont ins the true v lue of the popul tion e n is 95%.

The clever re soning goes like this: Suppose the true v lue of mY is 21.5 
( lthough we do not know this). Then Y h s  nor l distribution centered on 
21.5, nd the t-st tistic testing the null hypothesis mY = 21.5 h s  N(0, 1) distribu-
tion. Thus, if n is l rge, the prob bility of rejecting the null hypothesis mY = 21.5 
t the 5% level is 5%. But bec use you tested ll possible v lues of the popul tion 
e n in constructing your set, in p rticul r you tested the true v lue, mY = 21.5. 

In 95% of ll s ples, you will correctly ccept 21.5; this e ns th t in 95% of ll 
s ples, your list will cont in the true v lue of mY. Thus the v lues on your list 
constitute  95% confidence set for mY.

This ethod of constructing  confidence set is i pr ctic l, for it requires you 
to test ll possible v lues of mY s null hypotheses. Fortun tely, there is  uch 
e sier ppro ch. According to the for ul  for the t-st tistic in Equ tion (3.13),  
tri l v lue of mY,0 is rejected t the 5% level if it is ore th n 1.96 st nd rd errors 

w y fro  Y. Thus the set of v lues of mY th t re not rejected t the 5% level 
consists of those v lues within { 1.96SE(Y) of Y; th t is,  95% confidence 
interv l for mY is Y - 1.96SE(Y) … mY … Y + 1.96SE(Y). Key Concept 3.7 su -

rizes this ppro ch.

Confid nc  In rv ls for  po ul ion M n

A 95% two-sided confidence interv l for mY is n interv l constructed so th t it 
cont ins the true v lue of mY in 95% of ll possible r ndo  s ples. When the 
s ple size n is l rge, 95%, 90%, nd 99% confidence interv ls for mY re

95% confidence interv l for mY = 5Y { 1.96SE(Y )6.

90% confidence interv l for mY = 5Y { 1.64SE(Y )6.

99% confidence interv l for mY = 5Y { 2.58SE(Y )6.

Key ConCept

3.7
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As n ex ple, consider the proble  of constructing  95% confidence inter-
v l for the e n hourly e rnings of recent college gr du tes using  hypothetic l 
r ndo  s ple of 200 recent college gr du tes where Y = $22.64 nd 
SE(Y) = 1.28. The 95% confidence interv l for e n hourly e rnings is 
22.64 { 1.96 * 1.28 = 22.64 { 2.51 = 3$20.13, $25.154.

This discussion so f r h s focused on two-sided confidence interv ls. One 
could inste d construct  one-sided confidence interv l s the set of v lues of mY 
th t c nnot be rejected by  one-sided hypothesis test. Although one-sided confi-
dence interv ls h ve pplic tions in so e br nches of st tistics, they re unco -

on in pplied econo etric n lysis.

Coverage probabilities. The coverage probability of  confidence interv l for the 
popul tion e n is the prob bility, co puted over ll possible r ndo  s ples, 
th t it cont ins the true popul tion e n.

 3.4 Comparing Means from Different  
Populations

Do recent le nd fe le college gr du tes e rn the s e ount on ver ge? 
This question involves co p ring the e ns of two different popul tion distribu-
tions. This section su rizes how to test hypotheses nd how to construct con-
fidence interv ls for the difference in the e ns fro  two different popul tions.

Hypothesis Tests for the Difference  
Between Two Means
To illustr te  test for the difference between two means, let mw be the e n 
hourly e rning in the popul tion of wo en recently gr du ted fro  college nd 
let mm be the popul tion e n for recently gr du ted en. Consider the null 
hypothesis th t e n e rnings for these two popul tions differ by  cert in 

ount, s y d0. Then the null hypothesis nd the two-sided ltern tive hypothesis 
re

 H0: mm - mw = d0 vs. H1: mm - mw ≠ d0. (3.18)

The null hypothesis th t en nd wo en in these popul tions h ve the s e 
e n e rnings corresponds to H0 in Equ tion (3.18) with d0 = 0.



 3.4  Comparing Means from Different Populations 83

Bec use these popul tion e ns re unknown, they ust be esti ted fro  
s ples of en nd wo en. Suppose we h ve s ples of nm en nd nw wo en 
dr wn t r ndo  fro  their popul tions. Let the s ple ver ge nnu l e rnings 
be Ym for en nd Yw for wo en. Then n esti tor of mm - mw is Ym - Yw.

To test the null hypothesis th t mm - mw = d0 using Ym - Yw, we need to 
know the distribution of Ym - Yw. Rec ll th t Ym is, ccording to the centr l li it 
theore , pproxi tely distributed N(mm, s2

m>nm), where s2
m is the popul tion 

v ri nce of e rnings for en. Si il rly, Yw is pproxi tely distributed 
N(mw, s2

w>nw) where s2
w is the popul tion v ri nce of e rnings for wo en. Also, 

rec ll fro  Section 2.4 th t  weighted ver ge of two nor l r ndo  v ri bles 
is itself nor lly distributed. Bec use Ym nd Yw re constructed fro  different 
r ndo ly selected s ples, they re independent r ndo  v ri bles. Thus 
Ym - Yw is distributed N3mm - mw, (s2

m>nm) + (s2
w>nw)4.

If s2
m nd s2

w re known, then this pproxi te nor l distribution c n be 
used to co pute p-v lues for the test of the null hypothesis th t mm - mw = d0. 
In pr ctice, however, these popul tion v ri nces re typic lly unknown so they 

ust be esti ted. As before, they c n be esti ted using the s ple v ri nces, 
s2

m nd s2
w where s2

m is defined s in Equ tion (3.7), except th t the st tistic is co -
puted only for the en in the s ple, nd s2

w is defined si il rly for the wo en. 
Thus the st nd rd error of Ym - Yw is

 SE(Ym - Yw) = C
s2

m

nm
+

s2
w

nw
. (3.19)

For  si plified version of Equ tion (3.19) when Y is  Bernoulli r ndo  v ri ble, 
see Exercise 3.15.

The t-st tistic for testing the null hypothesis is constructed n logously to the 
t-st tistic for testing  hypothesis bout  single popul tion e n, by subtr cting 
the null hypothesized v lue of mm - mw fro  the esti tor Ym - Yw nd dividing 
the result by the st nd rd error of Ym - Yw:

 
t =

(Ym - Yw) - d0

SE(Ym - Yw)
 (t@st tistic for co p ring two e ns).

 
(3.20)

If both nm nd nw re l rge, then this t-st tistic h s  st nd rd nor l distribution 
when the null hypothesis is true.

Bec use the t-st tistic in Equ tion (3.20) h s  st nd rd nor l distribution 
under the null hypothesis when nm nd nw re l rge, the p-v lue of the two-sided 
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test is co puted ex ctly s it w s in the c se of  single popul tion. Th t is, the 
p-v lue is co puted using Equ tion (3.14).

To conduct  test with  prespecified signific nce level, si ply c lcul te the 
t-st tistic in Equ tion (3.20) nd co p re it to the ppropri te critic l v lue. For 
ex ple, the null hypothesis is rejected t the 5% signific nce level if the bsolute 
v lue of the t-st tistic exceeds 1.96.

If the ltern tive is one-sided r ther th n two-sided (th t is, if the ltern tive 
is th t mm - mw 7 d0), then the test is odified s outlined in Section 3.2. The 
p-v lue is co puted using Equ tion (3.17), nd  test with  5% signific nce level 
rejects when t 7 1.64.

Confidence Intervals for the Difference  
Between Two Population Means
The ethod for constructing confidence interv ls su rized in Section 3.3 
extends to constructing  confidence interv l for the difference between the 

e ns, d = mm - mw. Bec use the hypothesized v lue d0 is rejected t the 5% 
level if t 7 1.96, d0 will be in the confidence set if t … 1.96. But t … 1.96 

e ns th t the esti ted difference, Ym - Yw, is less th n 1.96 st nd rd errors 
w y fro  d0. Thus the 95% two-sided confidence interv l for d consists of those 

v lues of d within { 1.96 st nd rd errors of Ym - Yw:

95% confidence interv l for d = mm - mw is

 (Ym - Yw) { 1.96SE(Ym - Yw). (3.21)

With these for ul s in h nd, the box “The Gender G p of E rnings of College 
Gr du tes in the United St tes” cont ins n e piric l investig tion of gender 
differences in e rnings of U.S. college gr du tes.

 3.5 Differences-of-Means Estimation of Causal 
Effects Using Experimental Data

Rec ll fro  Section 1.2 th t  r ndo ized controlled experi ent r ndo ly selects 
subjects (individu ls or, ore gener lly, entities) fro   popul tion of interest, 
then r ndo ly ssigns the  either to  tre t ent group, which receives the exper-
i ent l tre t ent, or to  control group, which does not receive the tre t ent. 
The difference between the s ple e ns of the tre t ent nd control groups is 

n esti tor of the c us l effect of the tre t ent.
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The Causal Effect as a Difference  
of Conditional Expectations
The c us l effect of  tre t ent is the expected effect on the outco e of interest 
of the tre t ent s e sured in n ide l r ndo ized controlled experi ent. This 
effect c n be expressed s the difference of two condition l expect tions. Spe-
cific lly, the causal effect on Y of tre t ent level x is the difference in the condi-
tion l expect tions, E(Y  0  X = x) - E(Y  0  X = 0), where E(Y  0  X = x) is the 
expected v lue of Y for the tre t ent group (which receives tre t ent level 
X = x) in n ide l r ndo ized controlled experi ent nd E(Y  0  X = 0) is the 
expected v lue of Y for the control group (which receives tre t ent level X = 0). 
In the context of experi ents, the c us l effect is lso c lled the treatment effect. 
If there re only two tre t ent levels (th t is, if the tre t ent is bin ry), then  
we c n let X = 0 denote the control group nd X = 1 denote the tre t ent 
group. If the tre t ent is bin ry tre t ent, then the c us l effect (th t is, the 
tre t ent effect) is E(Y  0  X = 1) - E(Y  0  X = 0) in n ide l r ndo ized con-
trolled experi ent.

Estimation of the Causal Effect Using  
Differences of Means
If the tre t ent in  r ndo ized controlled experi ent is bin ry, then the c us l 
effect c n be esti ted by the difference in the s ple ver ge outco es between 
the tre t ent nd control groups. The hypothesis th t the tre t ent is ineffective 
is equiv lent to the hypothesis th t the two e ns re the s e, which c n be 
tested using the t-st tistic for co p ring two e ns, given in Equ tion (3.20). A 
95% confidence interv l for the difference in the e ns of the two groups is  
95% confidence interv l for the c us l effect, so  95% confidence interv l for the 
c us l effect c n be constructed using Equ tion (3.21).

A well-designed, well-run experi ent c n provide  co pelling esti te of  
c us l effect. For this re son, r ndo ized controlled experi ents re co only 
conducted in so e fields, such s edicine. In econo ics, however, experi ents 
tend to be expensive, difficult to d inister, nd, in so e c ses, ethic lly ques-
tion ble, so they re used less often. For this re son, econo etrici ns so eti es 
study “n tur l experi ents,” lso c lled qu si-experi ents, in which so e event 
unrel ted to the tre t ent or subject ch r cteristics h s the effect of ssigning 
different tre t ents to different subjects as if they h d been p rt of  r ndo ized 
controlled experi ent. The box “A Novel W y to Boost Retire ent S vings” 
provides n ex ple of such  qu si-experi ent th t yielded so e surprising  
conclusions.
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 t  g d  g  f e s f C ll  g d s   u d S s

e rnings of the 2004 en surveyed w s $25.30, 

nd the st nd rd devi tion of e rnings for en 

w s $12.09. The ver ge hourly e rnings in 2012 

of the 1951 wo en surveyed w s $21.50, nd the 

st nd rd devi tion of e rnings w s $9.99. Thus the 

esti te of the gender g p in e rnings for 2012 is 

$3.80 (=  $25.30 - $21.50), with  st nd rd error of 

$0.35 (= 212.092>2004 + 9.992>1951). The 95% con- 

fidence interv l for the gender g p in e rnings in 2012 

is 3.80 { 1.96 * 0.35 = ($3.11, $4.49).

The results in T ble 3.1 suggest four conclusions. 

First, the gender g p is l rge. An hourly g p of $3.80 

ight not sound like uch, but over  ye r it dds 

up to $7600, ssu ing  40-hour workweek nd 50 

p id weeks per ye r. Second, fro  1992 to 2012, the 

esti ted gender g p incre sed by $0.36 per hour in 

re l ter s, fro  $3.44 per hour to $3.80 per hour; 

T he box in Ch pter 2 “The Distribution of E rn-

ings in the United St tes in 2012” shows th t, 

on ver ge, le college gr du tes e rn ore th n 

fe le college gr du tes. Wh t re the recent trends 

in this “gender g p” in e rnings? Soci l nor s nd 

l ws governing gender discri in tion in the work-

pl ce h ve ch nged subst nti lly in the United St tes. 

Is the gender g p in e rnings of college gr du tes 

st ble, or h s it di inished over ti e?

T ble 3.1 gives esti tes of hourly e rnings 

for college-educ ted full-ti e workers ges 25–34 

in the United St tes in 1992, 1996, 2000, 2004, 

2008, nd 2012, using d t  collected by the Cur-

rent Popul tion Survey. E rnings for 1992, 1996,  

2000, 2004, nd 2008 were djusted for infl tion by 

putting the  in 2012 doll rs using the Consu er 

Price Index (CPI).1 In 2012, the ver ge hourly 

taBLe 3.1  tr nds in hourly e rnings in  Uni d S s of Working Coll g  Gr du s, 
ag s 25–34, 1992 o 2012, in 2012 Doll rs
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i v l  

f  d

1992 24.83 10.85 1594 21.39 8.39 1368 3.44** 0.35 2.75–4.14

1996 23.97 10.79 1380 20.26 8.48 1230 3.71** 0.38 2.97–4.46

2000 26.55 12.38 1303 22.13 9.98 1181 4.42** 0.45 3.54–5.30

2004 26.80 12.81 1894 22.43 9.99 1735 4.37** 0.38 3.63–5.12

2008 26.63 12.57 1839 22.26 10.30 1871 4.36** 0.38 3.62–5.10

2012 25.30 12.09 2004 21.50 9.99 1951 3.80** 0.35 3.11–4.49

These esti tes re co puted using d t  on ll full-ti e workers ges 25–34 surveyed in the Current Popul tion Survey 
conducted in M rch of the next ye r (for ex ple, the d t  for 2012 were collected in M rch 2013). The difference is sig-
nific ntly different fro  zero t the **1% signific nce level.

(continued )
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 3.6 Using the t-Statistic When the Sample  
Size Is Small

In Sections 3.2 through 3.5, the t-st tistic is used in conjunction with critic l v lues 
fro  the st nd rd nor l distribution for hypothesis testing nd for the construc-
tion of confidence interv ls. The use of the st nd rd nor l distribution is justi-
fied by the centr l li it theore , which pplies when the s ple size is l rge. 
When the s ple size is s ll, the st nd rd nor l distribution c n provide  
poor pproxi tion to the distribution of the t-st tistic. If, however, the popul -
tion distribution is itself nor lly distributed, then the ex ct distribution (th t is, 
the finite-s ple distribution; see Section 2.6) of the t-st tistic testing the e n of 

 single popul tion is the Student t distribution with n - 1 degrees of freedo , 
nd critic l v lues c n be t ken fro  the Student t distribution.

The t-Statistic and the Student t Distribution
The -statistic testing the mean. Consider the t-st tistic used to test the hypothesis 
th t the e n of Y is mY,0, using d t  Y1,c, Yn. The for ul  for this st tistic is 

g p exists. Does it rise fro  gender discri in tion in 

the l bor rket? Does it reflect differences in skills, 

experience, or educ tion between en nd wo en? 

Does it reflect differences in choice of jobs? Or is 

there so e other c use? We return to these questions 

once we h ve in h nd the tools of ultiple regression 

n lysis, the topic of P rt II.

however, this incre se is not st tistic lly signific nt 

t the 5% signific nce level (Exercise 3.17). Third, 

the g p is l rge if it is e sured inste d in percent-

ge ter s: According to the esti tes in T ble 3.1, 

in 2012 wo en e rned 15% less per hour th n en 

did ($3.80>$25.30), slightly ore th n the g p of 

14% seen in 1992 ($3.44>$24.83). Fourth, the gen-

der g p is s ller for young college gr du tes (the 

group n lyzed in T ble 3.1) th n it is for ll college 

gr du tes ( n lyzed in T ble 2.4): As reported in 

T ble 2.4, the e n e rnings for ll college-educ ted 

wo en working full-ti e in 2012 w s $25.42, while 

for en this e n w s $32.73, which corresponds 

to  gender g p of 22% 3=  (32.73 - 25.42)>32.734 
ong ll full-ti e college-educ ted workers.

This e piric l n lysis docu ents th t the “gen-

der g p” in hourly e rnings is l rge nd h s been f irly 

st ble (or perh ps incre sed slightly) over the recent 

p st. The n lysis does not, however, tell us why this 

1Bec use of infl tion,  doll r in 1992 w s worth ore th n 
 doll r in 2012, in the sense th t  doll r in 1992 could 

buy ore goods nd services th n  doll r in 2012 could. 
Thus e rnings in 1992 c nnot be directly co p red to e rn-
ings in 2012 without djusting for infl tion. One w y to 

ke this djust ent is to use the CPI,  e sure of the 
price of  “ rket b sket” of consu er goods nd services 
constructed by the Bure u of L bor St tistics. Over the 
20 ye rs fro  1992 to 2012, the price of the CPI rket 
b sket rose by 63.6%; in other words, the CPI b sket of 
goods nd services th t cost $100 in 1992 cost $163.64 in 
2012. To ke e rnings in 1992 nd 2012 co p r ble in  
T ble 3.1, 1992 e rnings re infl ted by the ount of 
over ll CPI price infl tion, th t is, by ultiplying 1992 
e rnings by 1.636 to put the  into “2012 doll rs.”
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given by Equ tion (3.10), where the st nd rd error of Y is given by Equ tion 
(3.8). Substitution of the l tter expression into the for er yields the for ul  for 
the t-st tistic:

 t =
Y - mY,0

2s2
Y>n

, (3.22)

where s2
Y is given in Equ tion (3.7).

As discussed in Section 3.2, under gener l conditions the t-st tistic h s  st n-
d rd nor l distribution if the s ple size is l rge nd the null hypothesis is true 
[see Equ tion (3.12)]. Although the st nd rd nor l pproxi tion to the t-st -
tistic is reli ble for  wide r nge of distributions of Y if n is l rge, it c n be unreli-
ble if n is s ll. The ex ct distribution of the t-st tistic depends on the distribution 

of Y, nd it c n be very co plic ted. There is, however, one speci l c se in which 
the ex ct distribution of the t-st tistic is rel tively si ple: If Y is nor lly distrib-
uted, then the t-st tistic in Equ tion (3.22) h s  Student t distribution with n - 1 
degrees of freedo . (The the tics behind this result is provided in Sections 
17.4 nd 18.4.)

If the popul tion distribution is nor lly distributed, then critic l v lues fro  
the Student t distribution c n be used to perfor  hypothesis tests nd to construct 
confidence interv ls. As n ex ple, consider  hypothetic l proble  in which 
t act = 2.15 nd n = 20 so th t the degrees of freedo  is n - 1 = 19. Fro  
Appendix T ble 2, the 5% two-sided critic l v lue for the t19 distribution is 2.09. 
Bec use the t-st tistic is l rger in bsolute v lue th n the critic l v lue 
(2.15 7 2.09), the null hypothesis would be rejected t the 5% signific nce level 
g inst the two-sided ltern tive. The 95% confidence interv l for mY, constructed 

using the t19 distribution, would be Y { 2.09 SE(Y). This confidence interv l is 
so ewh t wider th n the confidence interv l constructed using the st nd rd nor-

l critic l v lue of 1.96.

The -statistic testing differences of means. The t-st tistic testing the difference 
of two e ns, given in Equ tion (3.20), does not h ve  Student t distribution, 
even if the popul tion distribution of Y is nor l. (The Student t distribution does 
not pply here bec use the v ri nce esti tor used to co pute the st nd rd error 
in Equ tion (3.19) does not produce  deno in tor in the t-st tistic with  chi-
squ red distribution.)

A odified version of the differences-of- e ns t-st tistic, b sed on  differ-
ent st nd rd error for ul —the “pooled” st nd rd error for ul —h s n ex ct 
Student t distribution when Y is nor lly distributed; however, the pooled  
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st nd rd error for ul  pplies only in the speci l c se th t the two groups h ve 
the s e v ri nce or th t e ch group h s the s e nu ber of observ tions (Exer-
cise 3.21). Adopt the not tion of Equ tion (3.19) so th t the two groups re 
denoted s m nd w. The pooled v ri nce esti tor is

 s  

2
pooled =

1
nm + nw - 2

 
 a

nm

i= 1
 (Yi - Ym)2 +  a

nw

i= 1
 (Yi - Ym)2

group m  group w

, (3.23)

where the first su tion is for the observ tions in group m nd the second su -
tion is for the observ tions in group w. The pooled st nd rd error of the dif-

ference in e ns is SEpooled(Ym - Yw) = spooled * 11>nm + 1>nw, nd the 
pooled t-st tistic is co puted using Equ tion (3.20), where the st nd rd error is 
the pooled st nd rd error, SEpooled(Ym - Yw).

If the popul tion distribution of Y in group m is N(mm, s2
m), if the popul tion 

distribution of Y in group w is N(mw, s2
w), and if the two group v ri nces re the 

s e (th t is, s2
m = s2

w), then under the null hypothesis the t-st tistic co puted 
using the pooled st nd rd error h s  Student t distribution with nm + nw - 2 
degrees of freedo .

The dr wb ck of using the pooled v ri nce esti tor s2
pooled is th t it pplies 

only if the two popul tion v ri nces re the s e ( ssu ing nm ≠ nw). If the 
popul tion v ri nces re different, the pooled v ri nce esti tor is bi sed nd 
inconsistent. If the popul tion v ri nces re different but the pooled v ri nce 
for ul  is used, the null distribution of the pooled t-st tistic is not  Student  
t distribution, even if the d t  re nor lly distributed; in f ct, it does not even 
h ve  st nd rd nor l distribution in l rge s ples. Therefore, the pooled st n-
d rd error nd the pooled t-st tistic should not be used unless you h ve  good 
re son to believe th t the popul tion v ri nces re the s e.

Use of the Student t Distribution in Practice
For the proble  of testing the e n of Y, the Student t distribution is pplic ble 
if the underlying popul tion distribution of Y is nor l. For econo ic v ri bles, 
however, nor l distributions re the exception (for ex ple, see the boxes in 
Ch pter 2 “The Distribution of E rnings in the United St tes in 2012” nd “A 
B d D y on W ll Street”). Even if the underlying d t  re not nor lly distrib-
uted, the nor l pproxi tion to the distribution of the t-st tistic is v lid if  
the s ple size is l rge. Therefore, inferences—hypothesis tests nd confidence 
interv ls— bout the e n of  distribution should be b sed on the l rge-s ple 
nor l pproxi tion.
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 a n v l W   B s  r m  S v s

between the workers hired before nd fter the 

ch nge. Thus, fro  n econo etrici n’s perspec-

tive, the ch nge w s like  r ndo ly ssigned tre t-

ent nd the c us l effect of the ch nge could be 

esti ted by the difference in e ns between the 

two groups.

M dri n nd She  found th t the def ult enroll-

ent rule de  huge difference: The enroll-

ent r te for the “opt-in” (control) group w s 

37.4% (n = 4249), where s the enroll ent r te 

for the “opt-out” (tre t ent) group w s 85.9% 

(n = 5801). The esti te of the tre t ent effect 

is 48.5% (=  85.9% - 37.4%). Bec use their s ple 

is l rge, the 95% confidence (co puted in Exer-

cise 3.15) for the tre t ent effect is tight, 46.8% 

to 50.2%.

How could the def ult choice tter so uch? 

M ybe workers found these fin nci l choices too 

confusing, or ybe they just didn’t w nt to think 

bout growing old. Neither expl n tion is econo i-

c lly r tion l—but both re consistent with the 

predictions of the growing field of “beh viour l 

econo ics,” nd both could le d to ccepting the 

def ult enroll ent option.

This rese rch h d n i port nt pr ctic l i p ct. 

In August 2006, Congress p ssed the Pension Pro-

tection Act th t ( ong other things) encour ged 

fir s to offer 401(k) pl ns in which enroll ent is the 

def ult. The econo etric findings of M dri n nd 

She  nd others fe tured pro inently in testi ony 

on this p rt of the legisl tion.

To le rn ore bout beh vior l econo ics nd 

the design of retire ent s vings pl ns, see Ben rtzi 

nd Th ler (2007) nd Beshe rs, Choi, L ibson, nd 

M dri n (2008).

M ny econo ists think th t people do not 

s ve enough for retire ent. Convention l 

ethods for encour ging retire ent s vings focus 

on fin nci l incentives, but there lso h s been 

n upsurge in interest in unconvention l w ys to 

encour ge s ving for retire ent.

In n i port nt study published in 2001, Brigitte 

M dri n nd Dennis She  considered one such 

unconvention l ethod for sti ul ting retire ent 

s vings. M ny fir s offer retire ent s vings pl ns 

in which the fir  tches, in full or in p rt, s vings 

t ken out of the p ycheck of p rticip ting e ploy-

ees. Enroll ent in such pl ns, c lled 401(k) pl ns 

fter the pplic ble section of the U.S. t x code, is 

lw ys option l. However, t so e fir s e ployees 

re uto tic lly enrolled in the pl n, lthough they 

c n opt out; t other fir s, e ployees re enrolled 

only if they choose to opt in. According to conven-

tion l econo ic odels of beh vior, the ethod of 

enroll ent—opt out or opt in—should not tter: 

The r tion l worker co putes the opti l ction, 

then t kes it. But, M dri n nd She  wondered, 

could convention l econo ics be wrong? Does the 

method of enrollment in  s vings pl n directly ffect 

its enroll ent r te?

To e sure the effect of the ethod of enroll-

ent, M dri n nd She  studied  l rge fir  th t 

ch nged the def ult option for its 401(k) pl n fro  

nonp rticip tion to p rticip tion. They co p red 

two groups of workers: those hired the ye r before 

the ch nge nd not uto tic lly enrolled (but could  

opt in) nd those hired in the ye r fter the ch nge 

nd uto tic lly enrolled (but could opt out). The 

fin nci l spects of the pl n re ined the s e, nd 

M dri n nd She  found no syste tic differences 
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When co p ring two e ns, ny econo ic re son for two groups h ving 
different e ns typic lly i plies th t the two groups lso could h ve different 
v ri nces. Accordingly, the pooled st nd rd error for ul  is in ppropri te, nd 
the correct st nd rd error for ul , which llows for different group v ri nces, is 

s given in Equ tion (3.19). Even if the popul tion distributions re nor l, the 
t-st tistic co puted using the st nd rd error for ul  in Equ tion (3.19) does not 
h ve  Student t distribution. In pr ctice, therefore, inferences bout differences 
in e ns should be b sed on Equ tion (3.19), used in conjunction with the l rge-
s ple st nd rd nor l pproxi tion.

Even though the Student t distribution is r rely pplic ble in econo ics, so e 
softw re uses the Student t distribution to co pute p-v lues nd confidence inter-
v ls. In pr ctice, this does not pose  proble  bec use the difference between 
the Student t distribution nd the st nd rd nor l distribution is negligible if the 
s ple size is l rge. For n 7 15, the difference in the p-v lues co puted using the 
Student t nd st nd rd nor l distributions never exceeds 0.01; for n 7 80, 
the difference never exceeds 0.002. In ost odern pplic tions, nd in ll ppli-
c tions in this textbook, the s ple sizes re in the hundreds or thous nds, l rge 
enough for the difference between the Student t distribution nd the st nd rd 
nor l distribution to be negligible.

 3.7 Scatterplots, the Sample Covariance, and 
the Sample Correlation

Wh t is the rel tionship between ge nd e rnings? This question, like ny oth-
ers, rel tes one v ri ble, X ( ge), to nother, Y (e rnings). This section reviews 
three w ys to su rize the rel tionship between v ri bles: the sc tterplot, the 
s ple cov ri nce, nd the s ple correl tion coefficient.

Scatterplots
A scatterplot is  plot of n observ tions on Xi nd Yi, in which e ch observ tion 
is represented by the point (Xi, Yi ). For ex ple, Figure 3.2 is  sc tterplot of ge 
(X) nd hourly e rnings (Y) for  s ple of 200 n gers in the infor tion 
industry fro  the M rch 2009 CPS. E ch dot in Figure 3.2 corresponds to n  
(X, Y) p ir for one of the observ tions. For ex ple, one of the workers in this 
s ple is 40 ye rs old nd e rns $35.78 per hour; this worker’s ge nd e rnings 
re indic ted by the highlighted dot in Figure 3.2. The sc tterplot shows  positive 
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rel tionship between ge nd e rnings in this s ple: Older workers tend to e rn 
ore th n younger workers. This rel tionship is not ex ct, however, nd e rnings 

could not be predicted perfectly using only  person’s ge.

Sample Covariance and Correlation
The cov ri nce nd correl tion were introduced in Section 2.3 s two properties 
of the joint prob bility distribution of the r ndo  v ri bles X nd Y. Bec use the 
popul tion distribution is unknown, in pr ctice we do not know the popul tion 
cov ri nce or correl tion. The popul tion cov ri nce nd correl tion c n, however, 
be esti ted by t king  r ndo  s ple of n e bers of the popul tion nd col-
lecting the d t  (Xi, Yi ), i = 1,c, n.

Figure 3.2  Sc r lo  of av r g  hourly e rnings vs. ag

Each point in the plot represents the age and average earnings of one of the 200 workers in the sample. The high-

lighted dot corresponds to a 40-year-old worker who earns $35.78 per hour. The data are for computer and informa-

tion systems managers from the March 2009 CPS.
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The s ple cov ri nce nd correl tion re esti tors of the popul tion 
cov ri nce nd correl tion. Like the esti tors discussed previously in this ch pter, 
they re co puted by repl cing  popul tion e n (the expect tion) with  s ple 

e n. The sample covariance, denoted sXY, is

 sXY =
1

n - 1
 a

n

i= 1
(Xi - X )(Yi - Y ). (3.24)

Like the s ple v ri nce, the ver ge in Equ tion (3.24) is co puted by dividing 
by n - 1 inste d of n; here, too, this difference ste s fro  using X nd Y to esti-

te the respective popul tion e ns. When n is l rge, it kes little difference 
whether division is by n or n - 1.

The sample correlation coefficient, or sample correlation, is denoted rXY nd 
is the r tio of the s ple cov ri nce to the s ple st nd rd devi tions:

 rXY =
sXY

sXsY
. (3.25)

The s ple correl tion e sures the strength of the line r ssoci tion between X 
nd Y in  s ple of n observ tions. Like the popul tion correl tion, the s ple 

correl tion is unitless nd lies between −1 nd 1: rXY … 1.
The s ple correl tion equ ls 1 if Xi = Yi for ll i nd equ ls −1 if Xi = -Yi 

for ll i. More gener lly, the correl tion is ±1 if the sc tterplot is  str ight line. If 
the line slopes upw rd, then there is  positive rel tionship between X nd Y nd 
the correl tion is 1. If the line slopes down, then there is  neg tive rel tionship 

nd the correl tion is −1. The closer the sc tterplot is to  str ight line, the closer 
is the correl tion to ±1. A high correl tion coefficient does not necess rily e n 
th t the line h s  steep slope; r ther, it e ns th t the points in the sc tterplot 
f ll very close to  str ight line.

Consistency of the sample covariance and correlation. Like the s ple v ri nce, 
the s ple cov ri nce is consistent. Th t is,

 sXY ¡
p
sXY. (3.26)

In other words, in l rge s ples the s ple cov ri nce is close to the popul tion 
cov ri nce with high prob bility.

The proof of the result in Equ tion (3.26) under the ssu ption th t (Xi, Yi) 
re i.i.d. nd th t Xi nd Yi h ve finite fourth o ents is si il r to the proof in 

Appendix 3.3 th t the s ple cov ri nce is consistent nd is left s n exercise 
(Exercise 3.20).
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Bec use the s ple v ri nce nd s ple cov ri nce re consistent, the s -
ple correl tion coefficient is consistent, th t is, rXY ¡

p
corr(Xi, Yi).

Example. As n ex ple, consider the d t  on ge nd e rnings in Figure 3.2. For 
these 200 workers, the s ple st nd rd devi tion of ge is sA = 9.07 ye rs nd 
the s ple st nd rd devi tion of e rnings is sE = $14.37 per hour. The s ple 
cov ri nce between ge nd e rnings is sAE = 33.16 (the units re ye rs * doll rs 
per hour, not re dily interpret ble). Thus the s ple correl tion coefficient is 
rAE = 33.16>(9.07 *14.37) = 0.25 or 25%. The correl tion of 0.25 e ns th t there 

Figure 3.3  Sc r lo s for Four hy o ic l D  S s

The scatterplots in 

Figures 3.3a and 

3.3b show strong 

linear relationships 
between X and Y. 

In Figure 3.3c, X is 

independent of Y 

and the two variables 

are uncorrelated. In 
Figure 3.3d, the two 

variables also are 

uncorrelated even 

though they are 

related nonlinearly.
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is  positive rel tionship between ge nd e rnings, but s is evident in the sc tterplot, 
this rel tionship is f r fro  perfect.

To verify th t the correl tion does not depend on the units of e sure ent, 
suppose th t e rnings h d been reported in cents, in which c se the s ple st n-
d rd devi tions of e rnings is 1437¢ per hour nd the cov ri nce between ge nd 
e rnings is 3316 (units re ye rs * cents per hour); then the correl tion is 
3316>(9.07 * 1437) = 0.25 or 25%.

Figure 3.3 gives ddition l ex ples of sc tterplots nd correl tion. Figure 3.3  
shows  strong positive line r rel tionship between these v ri bles, nd the s -
ple correl tion is 0.9.

Figure 3.3b shows  strong neg tive rel tionship with  s ple correl tion of 
−0.8. Figure 3.3c shows  sc tterplot with no evident rel tionship, nd the s ple 
correl tion is zero. Figure 3.3d shows  cle r rel tionship: As X incre ses, Y ini-
ti lly incre ses, but then decre ses. Despite this discern ble rel tionship between 
X nd Y, the s ple correl tion is zero; the re son is th t, for these d t , s ll 
v lues of Y re ssoci ted with both l rge nd s ll v lues of X.

This fin l ex ple e ph sizes n i port nt point: The correl tion coefficient is  
e sure of linear ssoci tion. There is  rel tionship in Figure 3.3d, but it is not line r.

Summary

 1. The s ple ver ge, Y, is n esti tor of the popul tion e n, mY. When 
Y1,c, Yn re i.i.d.,

  . the s pling distribution of Y h s e n mY nd v ri nce s2
 Y = s

2
 Y >n;

  b. Y is unbi sed;
  c. by the l w of l rge nu bers, Y is consistent; nd
  d.  by the centr l li it theore , Y h s n pproxi tely nor l s pling 

distribution when the s ple size is l rge.
 2. The t-st tistic is used to test the null hypothesis th t the popul tion e n 

t kes on  p rticul r v lue. If n is l rge, the t-st tistic h s  st nd rd nor l 
s pling distribution when the null hypothesis is true.

 3. The t-st tistic c n be used to c lcul te the p-v lue ssoci ted with the null 
hypothesis. A s ll p-v lue is evidence th t the null hypothesis is f lse.

 4. A 95% confidence interv l for mY is n interv l constructed so th t it con-
t ins the true v lue of mY in 95% of ll possible s ples.

 5. Hypothesis tests nd confidence interv ls for the difference in the e ns of 
two popul tions re conceptu lly si il r to tests nd interv ls for the e n 
of  single popul tion.
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 6. The sample correlation coefficient is an estimator of the population 
correlation coefficient and measures the linear relationship between 
two variables—that is, how well their scatterplot is approximated by a 
straight line.
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www. son ig d.com/s ock_w son.



 Exercises 97

Review the Concepts

  3.1 Expl in the difference between the s ple ver ge Y nd the popul tion 
e n.

  3.2 Expl in the difference between n esti tor nd n esti te. Provide n 
ex ple of e ch.

  3.3 A popul tion distribution h s  e n of 10 nd  v ri nce of 16. Deter ine 
the e n nd v ri nce of Y fro  n i.i.d. s ple fro  this popul tion for 
( ) n = 10; (b) n = 100; nd (c) n = 1000. Rel te your nswers to the l w 
of l rge nu bers.

  3.4 Wh t role does the centr l li it theore  pl y in st tistic l hypothesis test-
ing? In the construction of confidence interv ls?

  3.5 Wh t is the difference between  null hypothesis nd n ltern tive 
hypothesis? A ong size, signific nce level, nd power? Between  one-
sided ltern tive hypothesis nd  two-sided ltern tive hypothesis?

  3.6 Why does  confidence interv l cont in ore infor tion th n the result 
of  single hypothesis test?

  3.7 Expl in why the differences-of- e ns esti tor, pplied to d t  fro   
r ndo ized controlled experi ent, is n esti tor of the tre t ent effect.

  3.8 Sketch  hypothetic l sc tterplot for  s ple of size 10 for two r ndo  
v ri bles with  popul tion correl tion of ( ) 1.0; (b) −1.0; (c) 0.9; (d) −0.5; 
(e) 0.0.

Exercises

  3.1 In  popul tion, mY = 100 nd s2
Y = 43. Use the centr l li it theore  to 

nswer the following questions:

 a. In  r ndo  s ple of size n = 100, find Pr(Y 6 101).

 b. In  r ndo  s ple of size n = 64, find Pr(101 6 Y 6 103).

 c. In  r ndo  s ple of size n = 165, find Pr( Y 7 98).

  3.2 Let Y be  Bernoulli r ndo  v ri ble with success prob bility Pr(Y = 1) =
p, nd let Y1,c, Yn be i.i.d. dr ws fro  this distribution. Let pn  be the 
fr ction of successes (1s) in this s ple.



98 ChapteR 3  Review of Statistics

 a. Show th t pn = Y.

 b. Show th t pn  is n unbi sed esti tor of p.

 c. Show th t v r(pn) = p(1 - p)>n.

  3.3 In  survey of 400 likely voters, 215 responded th t they would vote for the 
incu bent, nd 185 responded th t they would vote for the ch llenger. Let 
p denote the fr ction of ll likely voters who preferred the incu bent t 
the ti e of the survey, nd let pn  be the fr ction of survey respondents who 
preferred the incu bent.

 a. Use the survey results to esti te p.

 b. Use the esti tor of the v ri nce of pn, pn (1 - pn)>n, to c lcul te the 
st nd rd error of your esti tor.

 c. Wh t is the p-v lue for the test H0: p = 0.5 vs. H1: p ≠ 0.5?

 d. Wh t is the p-v lue for the test H0: p = 0.5 vs. H1: p 7 0.5?

 e. Why do the results fro  (c) nd (d) differ?

 f. Did the survey cont in st tistic lly signific nt evidence th t the 
incu bent w s he d of the ch llenger t the ti e of the survey? 
Expl in.

  3.4 Using the d t  in Exercise 3.3:

 a. Construct  95% confidence interv l for p.

 b. Construct  99% confidence interv l for p.

 c. Why is the interv l in (b) wider th n the interv l in ( )?

 a. Without doing ny ddition l c lcul tions, test the hypothesis 
H0: p = 0.50 vs. H1: p ≠ 0.50 t the 5% signific nce level.

  3.5 A survey of 1055 registered voters is conducted, nd the voters re  
sked to choose between c ndid te A nd c ndid te B. Let p denote  

the fr ction of voters in the popul tion who prefer c ndid te A, nd  
let pn  denote the fr ction of voters in the s ple who prefer  
C ndid te A.

 a. You re interested in the co peting hypotheses H0: p = 0.5 
vs. H1: p ≠ 0.5. Suppose th t you decide to reject H0 if 
pn - 0.5 7  0.02.

 i. Wh t is the size of this test?

 ii. Co pute the power of this test if p = 0.53.
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 b. In the survey, pn = 0.54.

 i. Test H0: p = 0.5 vs. H1: p ≠ 0.5 using  5% signific nce level.

 ii. Test H0: p = 0.5 vs. H1: p 7 0.5 using  5% signific nce level.

 iii. Construct  95% confidence interv l for p.

 iv. Construct  99% confidence interv l for p.

 v. Construct  50% confidence interv l for p.

 c. Suppose th t the survey is c rried out 20 ti es, using independently 
selected voters in e ch survey. For e ch of these 20 surveys,  95% 
confidence interv l for p is constructed.

 i. Wh t is the prob bility th t the true v lue of p is cont ined in ll 
20 of these confidence interv ls?

 ii. How ny of these confidence interv ls do you expect to cont in 
the true v lue of p?

 d. In survey j rgon, the “ rgin of error” is 1.96 * SE(pn); th t is, it 
is h lf the length of 95% confidence interv l. Suppose you w nt to 
design  survey th t h s  rgin of error of t ost 1%. Th t is, you 
w nt Pr( pn - p 7 0.01) … 0.05. How l rge should n be if the survey 
uses si ple r ndo  s pling?

  3.6 Let Y1,c, Yn be i.i.d. dr ws fro   distribution with e n m. A test of 
H0: m = 5 vs. H1: m ≠ 5 using the usu l t-st tistic yields  p-v lue of 0.03.

 a. Does the 95% confidence interv l cont in m = 5? Expl in.

 b. C n you deter ine if m = 6 is cont ined in the 95% confidence 
interv l? Expl in.

  3.7 In  given popul tion, 11% of the likely voters re Afric n A eric n. A sur-
vey using  si ple r ndo  s ple of 600 l ndline telephone nu bers finds 
8% Afric n A eric ns. Is there evidence th t the survey is bi sed? Expl in.

  3.8 A new version of the SAT is given to 1000 r ndo ly selected high school 
seniors. The s ple e n test score is 1110, nd the s ple st nd rd devi-
tion is 123. Construct  95% confidence interv l for the popul tion e n 

test score for high school seniors.

  3.9 Suppose th t  lightbulb nuf cturing pl nt produces bulbs with  e n 
life of 2000 hours nd  st nd rd devi tion of 200 hours. An inventor cl i s 
to h ve developed n i proved process th t produces bulbs with  longer 

e n life nd the s e st nd rd devi tion. The pl nt n ger r ndo ly 
selects 100 bulbs produced by the process. She s ys th t she will believe the 
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inventor’s cl i  if the s ple e n life of the bulbs is gre ter th n 2100 
hours; otherwise, she will conclude th t the new process is no better th n 
the old process. Let m denote the e n of the new process. Consider the 
null nd ltern tive hypotheses H0: m = 2000 vs. H1: m 7 2000.

 a. Wh t is the size of the pl nt n ger’s testing procedure?

 b. Suppose the new process is in f ct better nd h s  e n bulb life of 2150 
hours. Wh t is the power of the pl nt n ger’s testing procedure?

 c. Wh t testing procedure should the pl nt n ger use if she w nts the 
size of her test to be 5%?

  3.10 Suppose  new st nd rdized test is given to 100 r ndo ly selected third-
gr de students in New Jersey. The s ple ver ge score Y on the test is  
58 points, nd the s ple st nd rd devi tion, sY, is 8 points.

 a. The uthors pl n to d inister the test to ll third-gr de students in 
New Jersey. Construct  95% confidence interv l for the e n score 
of ll New Jersey third gr ders.

 b. Suppose the s e test is given to 200 r ndo ly selected third gr ders 
fro  Iow , producing  s ple ver ge of 62 points nd s ple st n-
d rd devi tion of 11 points. Construct  90% confidence interv l for 
the difference in e n scores between Iow  nd New Jersey.

 c. C n you conclude with  high degree of confidence th t the popul -
tion e ns for Iow  nd New Jersey students re different? (Wh t is 
the st nd rd error of the difference in the two s ple e ns? Wh t 
is the p-v lue of the test of no difference in e ns versus so e differ-
ence?)

  3.11 Consider the esti tor Y
∼, defined in Equ tion (3.1). Show th t  

( ) E(Y
∼) = mY nd (b) v r(Y

∼) = 1.25s2
Y>n.

  3.12 To investig te possible gender discri in tion in  fir ,  s ple of 100 
en nd 64 wo en with si il r job descriptions re selected t r ndo . 

A su ry of the resulting onthly s l ries follows:

av  S l  (Y ) S d d D v  (sY) n

Men $3100 $200 100

Wo en $2900 $320  64

 a. Wh t do these d t  suggest bout w ge differences in the fir ? Do 
they represent st tistic lly signific nt evidence th t ver ge w ges of 
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en nd wo en re different? (To nswer this question, first st te 
the null nd ltern tive hypotheses; second, co pute the relev nt 
t-st tistic; third, co pute the p-v lue ssoci ted with the t-st tistic; 

nd fin lly, use the p-v lue to nswer the question.)

 b. Do these d t  suggest th t the fir  is guilty of gender discri in tion 
in its co pens tion policies? Expl in.

  3.13 D t  on fifth-gr de test scores (re ding nd the tics) for 420 school 
districts in C liforni  yield Y = 646.2 nd st nd rd devi tion sY = 19.5.

 a. Construct  95% confidence interv l for the e n test score in the 
popul tion.

 b. When the districts were divided into districts with s ll cl sses (6  20 
students per te cher) nd l rge cl sses  (≥ 20 students per te cher), 
the following results were found:

Cl ss S z av  Sc  (Y ) S d d D v  (sY) n

S ll 657.4 19.4 238

L rge 650.0 17.9 182

  Is there st tistic lly signific nt evidence th t the districts with s ller 
cl sses h ve higher ver ge test scores? Expl in.

  3.14 V lues of height in inches (X) nd weight in pounds (Y) re recorded fro  
 s ple of 300 le college students. The resulting su ry st tistics re 

X = 70.5 in., Y = 158 lb., sX = 1.8 in., sY = 14.2 lb., sXY = 21.73 in. * lb., 
nd rXY = 0.85. Convert these st tistics to the etric syste  ( eters nd 

kilogr s).

  3.15 Let Ya nd Yb denote Bernoulli r ndo  v ri bles fro  two different popu-
l tions, denoted a nd b. Suppose th t E(Ya) = pa nd E(Yb) = pb. A 
r ndo  s ple of size na is chosen fro  popul tion a, with s ple ver ge 
denoted pna, nd  r ndo  s ple of size nb is chosen fro  popul tion b, 
with s ple ver ge denoted pnb. Suppose the s ple fro  popul tion a is 
independent of the s ple fro  popul tion b.

 a. Show th t E( pna) = pa nd v r(pna) = pa(1 - pa)>na. Show th t 
E(pnb) = pb nd v r(pnb) = pb(1 - pb)>nb.

 b. Show th t v r(pna - pnb) = pa(1 - pa)
na + pb(1 - pb)

nb . (Hint: Re e ber th t 
the s ples re independent.)
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 c. Suppose th t na nd nb re l rge. Show th t  95% confidence inter-

v l for pa - pb is given by (pna - pnb) { 1.964pna(1 - pna)
na + pnb(1 - pnb)

nb . 

How would you construct  90% confidence interv l for pa - pb?

 d. Re d the box “A Novel W y to Boost Retire ent S vings” in Section 3.6. 
Let popul tion a denote the “opt-out” (tre t ent) group nd popul -
tion b denote the “opt-in” (control) group. Construct  95% confi-
dence interv l for the tre t ent effect, pa - pb.

  3.16 Gr des on  st nd rdized test re known to h ve  e n of 1000 for 
students in the United St tes. The test is d inistered to 453 r ndo ly 
selected students in Florid ; in this s ple, the e n is 1013, nd the st n-
d rd devi tion (s) is 108.

 a. Construct  95% confidence interv l for the ver ge test score for 
Florid  students.

 b. Is there st tistic lly signific nt evidence th t Florid  students perfor  
differently th n other students in the United St tes?

 c. Another 503 students re selected t r ndo  fro  Florid . They  
re given  3-hour prep r tion course before the test is d inis-

tered. Their ver ge test score is 1019, with  st nd rd devi tion  
of 95.

 i. Construct  95% confidence interv l for the ch nge in ver ge 
test score ssoci ted with the prep course.

 ii. Is there st tistic lly signific nt evidence th t the prep course 
helped?

 d. The origin l 453 students re given the prep course nd then re 
sked to t ke the test  second ti e. The ver ge ch nge in their test 

scores is 9 points, nd the st nd rd devi tion of the ch nge is  
60 points.

 i. Construct  95% confidence interv l for the ch nge in ver ge 
test scores.

 ii. Is there st tistic lly signific nt evidence th t students will perfor  
better on their second tte pt, fter t king the prep course?

 iii. Students y h ve perfor ed better in their second tte pt 
bec use of the prep course or bec use they g ined test-t king 
experience in their first tte pt. Describe n experi ent th t 
would qu ntify these two effects.
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  3.17 Re d the box “The Gender G p of E rnings of College Gr du tes in the 
United St tes” in Section 3.5.

 a. Construct  95% confidence interv l for the ch nge in en’s ver ge 
hourly e rnings between 1992 nd 2012.

 b. Construct  95% confidence interv l for the ch nge in wo en’s ver-
ge hourly e rnings between 1992 nd 2012.

 c. Construct  95% confidence interv l for the ch nge in the gender 
g p in ver ge hourly e rnings between 1992 nd 2012. (Hint: 
Ym,1992 - Yw,1992 is independent of Ym,2012 - Yw,2012.)

  3.18 This exercise shows th t the s ple v ri nce is n unbi sed esti tor 
of the popul tion v ri nce when Y1,c, Yn re i.i.d. with e n mY nd  
v ri nce s2

Y.

 a. Use Equ tion (2.31) to show th t 
E3(Yi - Y )24 = v r(Yi ) - 2cov(Yi, Y) + v r(Y).

 b. Use Equ tion (2.33) to show th t cov(Y, Yi ) = s2
Y>n.

 c. Use the results in ( ) nd (b) to show th t E(s2
Y) = s2

Y.

  3.19 a. Y is n unbi sed esti tor of mY. Is Y 2 n unbi sed esti tor of m2
Y?

 b. Y is  consistent esti tor of mY. Is Y 2  consistent esti tor of m2
Y?

  3.20 Suppose th t (Xi, Yi ) re i.i.d. with finite fourth o ents. Prove th t the 
s ple cov ri nce is  consistent esti tor of the popul tion cov ri nce, 
th t is, sXY ¡

p
sXY, where sXY is defined in Equ tion (3.24). (Hint: Use 

the str tegy of Appendix 3.3.)

  3.21 Show th t the pooled st nd rd error 3SEpooled( Ym - Yw)4  given fol-
lowing Equ tion (3.23) equ ls the usu l st nd rd error for the differ-
ence in e ns in Equ tion (3.19) when the two group sizes re the s e 
(nm = nw).

Empirical Exercises

  E3.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the d t  file CPS92_12, which cont ins n extended version of 
the d t  set used in T ble 3.1 of the text for the ye rs 1992 nd 2012. It 
cont ins d t  on full-ti e workers, ges 25–34, with  high school diplo  
or B.A./B.S. s their highest degree. A det iled description is given in 
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CPS92_12_Description, v il ble on the website. Use these d t  to nswer 
the following questions.

 a. i.  Co pute the s ple e n for ver ge hourly e rnings (AHE) in 
1992 nd 2012.

 ii. Co pute the s ple st nd rd devi tion for AHE in 1992 nd 
2012.

 iii. Construct  95% confidence interv l for the popul tion e ns of 
AHE in 1992 nd 2012.

 iv. Construct  95% confidence interv l for the ch nge in the popul -
tion e n of AHE between 1992 nd 2012.

 b. In 2012, the v lue of the Consu er Price Index (CPI) w s 229.6. In 
1992, the v lue of the CPI w s 140.3. Repe t ( ) but use AHE e -
sured in re l 2012 doll rs ($2012); th t is, djust the 1992 d t  for the 
price infl tion th t occurred between 1992 nd 2012.

 c. If you were interested in the ch nge in workers’ purch sing power 
fro  1992 to 2012, would you use the results fro  ( ) or (b)? Expl in.

 d. Using the d t  for 2012:

 i. Construct  95% confidence interv l for the e n of AHE for 
high school gr du tes.

 ii. Construct  95% confidence interv l for the e n of AHE for 
workers with  college degree.

 iii. Construct  95% confidence interv l for the difference between 
the two e ns.

 e. Repe t (d) using the 1992 d t  expressed in $2012.

 f. Using ppropri te esti tes, confidence interv ls, nd test st tistics, 
nswer the following questions:

 i. Did re l (infl tion- djusted) w ges of high school gr du tes 
incre se fro  1992 to 2012?

 ii. Did re l w ges of college gr du tes incre se?

 iii. Did the g p between e rnings of college nd high school gr du-
tes incre se? Expl in.

 g. T ble 3.1 presents infor tion on the gender g p for college gr du-
tes. Prep re  si il r t ble for high school gr du tes, using the 1992 
nd 2012 d t . Are there ny not ble differences between the results 

for high school nd college gr du tes?
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  E3.2 A consu er is given the ch nce to buy  b seb ll c rd for $1, but he 
declines the tr de. If the consu er is now given the b seb ll c rd, will 
he be willing to sell it for $1? St nd rd consu er theory suggests yes, but 
beh vior l econo ists h ve found th t “ownership” tends to incre se the 
v lue of goods to consu ers. Th t is, the consu er y hold out for so e 

ount ore th n $1 (for ex ple, $1.20) when selling the c rd, even 
though he w s willing to p y only so e ount less th n $1 (for ex ple, 
$0.88) when buying it. Beh vior l econo ists c ll this pheno enon the 
“endow ent effect.” John List investig ted the endow ent effect in  r n-
do ized experi ent involving sports e or bili  tr ders t  sports-c rd 
show. Tr ders were r ndo ly given one of two sports collectibles, s y good 
A or good B, th t h d pproxi tely equ l rket v lue.1 Those receiv-
ing good A were then given the option of tr ding good A for good B with 
the experi enter; those receiving good B were given the option of tr ding 
good B for good A with the experi enter. D t  fro  the experi ent nd 
 det iled description c n be found on the textbook website, http://www 

.pearsonhighered.com/stock_watson/, in the files Sportscards nd Sports-
cards_Description.2

 a. i.  Suppose th t, bsent ny endow ent effect, ll the subjects pre-
fer good A to good B. Wh t fr ction of the experi ent’s subjects 
would you expect to tr de the good th t they were given for the 
other good? (Hint: Bec use of r ndo  ssign ent of the two tre t-

ents, pproxi tely 50% of the subjects received good A nd 
50% received good B.)

 ii. Suppose th t, bsent ny endow ent effect, 50% of the subjects 
prefer good A to good B, nd the other 50% prefer good B to 
good A. Wh t fr ction of the subjects would you expect to tr de 
the good th t they were given for the other good?

 iii. Suppose th t, bsent ny endow ent effect, X% of the subjects 
prefer good A to good B, nd the other (100 – X)% prefer good 
B to good A. Show th t you would expect 50% of the subjects to 
tr de the good th t they were given for the other good.

2These d t  were provided by Professor John List of the University of Chic go nd were used in his 
p per “Does M rket Experience Eli in te M rket Ano lies,” Quarterly Journal of Economics, 
2003, 118(1): 41–71.

1Good A w s  ticket stub fro  the g e in which C l Ripken, Jr., set the record for consecutive 
g es pl yed, nd good B w s  souvenir fro  the g e in which Nol n Ry n won his 300th g e.
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 b. Using the sports-c rd d t , wh t fr ction of the subjects tr ded the 
good they were given? Is the fr ction signific ntly different fro  
50%? Is there evidence of n endow ent effect? (Hint: Review  
Exercises 3.2 nd 3.3)

 c. So e h ve rgued th t the endow ent effect y be present, but 
th t it is likely to dis ppe r s tr ders g in ore tr ding experience. 
H lf of the experi ent l subjects were de lers, nd the other h lf 
were nonde lers. De lers h ve ore experience th n nonde lers. 
Repe t (b) for de lers nd nonde lers. Is there  signific nt differ-
ence in their beh vior? Is the evidence consistent with the hypothesis 
th t the endow ent effect dis ppe rs s tr ders g in ore experi-
ence? (Hint: Review Exercise 3.15).

  a p p e n D i x

 3.1 The U.S. Current Population Survey

E ch onth, the U.S. Census Bure u nd the U.S. Bure u of L bor St tistics conduct the 

Current Popul tion Survey (CPS), which provides d t  on l bor force ch r cteristics of the 

popul tion, including the levels of e ploy ent, une ploy ent, nd e rnings. Approxi-

tely 60,000 U.S. households re surveyed e ch onth. The s ple is chosen by r n-

do ly selecting ddresses fro   d t b se of ddresses fro  the ost recent decenni l 

census ug ented with d t  on new housing units constructed fter the l st census. The 

ex ct r ndo  s pling sche e is r ther co plic ted (first, s ll geogr phic l re s re 

r ndo ly selected, then housing units within these re s re r ndo ly selected); det ils 

c n be found in the Handbook of Labor Statistics nd on the Bure u of L bor St tistics 

website (www.bls.gov).

The survey conducted e ch M rch is ore det iled th n in other onths nd sks 

questions bout e rnings during the previous ye r. The st tistics in T bles 2.4 nd 3.1 were 

co puted using the M rch surveys. The CPS e rnings d t  re for full-ti e workers, 

defined to be so ebody e ployed ore th n 35 hours per week for t le st 48 weeks in 

the previous ye r.
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 a p p e n D i x

 3.2 Two Proofs That Y  Is the Least Squares  
Estimator of mY

This ppendix provides two proofs, one using c lculus nd one not, th t Y ini izes the 

su  of squ red prediction ist kes in Equ tion (3.2)—th t is, th t Y is the le st squ res 

esti tor of E(Y).

Calculus Proof
To ini ize the su  of squ red prediction ist kes, t ke its deriv tive nd set it to zero:

 
d

dm
 a

n

i= 1
(Yi - m)2 = -2a

n

i= 1
(Yi - m) = -2a

n

i= 1
Yi + 2nm = 0. (3.27)

Solving for the fin l equ tion for m shows th t gn
i= 1(Yi - m)2 is ini ized when  

m = Y.

Noncalculus Proof
The str tegy is to show th t the difference between the le st squ res esti tor nd Y ust 

be zero, fro  which it follows th t Y is the le st squ res esti tor. Let d = Y - m, so th t 

m = Y - d . Then (Yi - m)2 = (Yi - 3Y - d4)2 = (3Yi - Y4 + d)2 = (Yi - Y)2 +
2d(Yi - Y) + d2. Thus the su  of squ red prediction ist kes [Equ tion (3.2)] is

a
n

i= 1
(Yi - m)2 = a

n

i= 1
(Yi - Y )2 + 2da

n

i= 1
(Yi - Y ) + nd 2 = a

n

i= 1
(Yi - Y )2 + nd 2,

  (3.28)

where the second equ lity uses the f ct th t gn
i= 1(Yi - Y) = 0. Bec use both ter s in the 

fin l line of Equ tion (3.28) re nonneg tive nd bec use the first ter  does not depend 

on d, gn
i= 1(Yi - m)2 is ini ized by choosing d to ke the second ter , nd2, s s ll s 

possible. This is done by setting d = 0—th t is, by setting m = Y—so th t Y is the le st 

squ res esti tor of E(Y).
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 3.3 A Proof  That the Sample Variance  
Is Consistent

This ppendix uses the l w of l rge nu bers to prove th t the s ple v ri nce s2
Y is  con-

sistent esti tor of the popul tion v ri nce s2
Y , s st ted in Equ tion (3.9), when 

Y1,c, Yn re i.i.d. nd E(Y4
i ) 6 ∞ .

First, consider  version of the s ple v ri nce th t uses n inste d of n − 1 s  divisor:

1
na

n

i= 1
(Yi - Y)2 =

1
na

n

i= 1
Y2

i - 2Y
1
na

n

i= 1
Yi + Y 2

 =
1
na

n

i= 1
Y2

i - Y 2 

 ¡p (s2
Y + m2

Y) - m2
Y

 = s2
Y, (3.29)

where the first equ lity uses (Yi - Y)2 = Y2
i - 2YYi + Y2, nd the second uses 1ngn

i= 1Yi = Y. 

The convergence in the third line follows fro  (i) pplying the l w of l rge nu bers to
1
ngn

i= 1Y2
i ¡

p E(Y2) (which follows bec use Y2
i  re i.i.d. nd h ve finite v ri nce bec use

E(Y4
i ) is finite), (ii) recognizing th t E(Y2

i ) = s2
Y + m2

Y (Key Concept 2.3), nd (iii) noting 

Y ¡p
mY so th t Y 2 ¡p

m2
Y. Fin lly, s2

Y = 1 n
n - 121

1
ngn

i= 1(Yi - Y)22 ¡p
s2

Y follows

fro  Equ tion (3.29) nd 1 n
n - 12 S 1.


