Review of Probability

This chapter reviews the core ideas of the theory of probability that are needed to
understand regression analysis and econometrics. We assume that you have
taken an introductory course in probability and statistics. If your knowledge of
probability is stale, you should refresh it by reading this chapter. If you feel confident
with the material, you still should skim the chapter and the terms and concepts at
the end to make sure you are familiar with the ideas and notation.

Most aspects of the world around us have an element of randomness. The
theory of probability provides mathematical tools for quantifying and describing this
randomness. Section 2.1 reviews probability distributions for a single random
variable, and Section 2.2 covers the mathematical expectation, mean, and variance
of a single random variable. Most of the interesting problems in economics involve
more than one variable, and Section 2.3 introduces the basic elements of probability
theory for two random variables. Section 2.4 discusses three special probability
distributions that play a central role in statistics and econometrics: the normal, chi-
squared, and F distributions.

The final two sections of this chapter focus on a specific source of
randomness of central importance in econometrics: the randomness that arises
by randomly drawing a sample of data from a larger population. For example,
suppose you survey ten recent college graduates selected at random, record (or
“observe”) their earnings, and compute the average earnings using these ten data
points (or “observations”). Because you chose the sample at random, you could
have chosen ten different graduates by pure random chance; had you done so,
you would have observed ten different earnings and you would have computed a
different sample average. Because the average earnings vary from one randomly
chosen sample to the next, the sample average is itself a random variable.
Therefore, the sample average has a probability distribution, which is referred to
as its sampling distribution because this distribution describes the different
possible values of the sample average that might have occurred had a different
sample been drawn.

Section 2.5 discusses random sampling and the sampling distribution of the
sample average. This sampling distribution is, in general, complicated. When the
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sample size is sufficiently large, however, the sampling distribution of the sample
average is approximately normal, a result known as the central limit theorem, which
is discussed in Section 2.6.

Random Variables and Probability
Distributions

Probabilities, the Sample Space, and Random Variables

Probabilities and outcomes. The gender of the next new person you meet, your
grade on an exam, and the number of times your computer will crash while
you are writing a term paper all have an element of chance or randomness. In
each of these examples, there is something not yet known that is eventually
revealed.

The mutually exclusive potential results of a random process are called the
outcomes. For example, your computer might never crash, it might crash once,
it might crash twice, and so on. Only one of these outcomes will actually occur
(the outcomes are mutually exclusive), and the outcomes need not be equally
likely.

The probability of an outcome is the proportion of the time that the outcome
occurs in the long run. If the probability of your computer not crashing while you
are writing a term paper is 80%, then over the course of writing many term papers
you will complete 80% without a crash.

The sample space and events. The set of all possible outcomes is called the sample
space. An event is a subset of the sample space, that is, an event is a set of one or
more outcomes. The event “my computer will crash no more than once” is the set
consisting of two outcomes: “no crashes” and “one crash.”

Random variables. A random variable is a numerical summary of a random
outcome. The number of times your computer crashes while you are writing
a term paper is random and takes on a numerical value, so it is a random
variable.

Some random variables are discrete and some are continuous. As their names
suggest, a discrete random variable takes on only a discrete set of values, like 0, 1,
2, ..., whereas a continuous random variable takes on a continuum of possible
values.
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Probability Distribution of a Discrete
Random Variable

Probability distribution. The probability distribution of a discrete random vari-
able is the list of all possible values of the variable and the probability that each
value will occur. These probabilities sum to 1.

For example, let M be the number of times your computer crashes while you
are writing a term paper. The probability distribution of the random variable M
is the list of probabilities of each possible outcome: The probability that M = 0,
denoted Pr(M = 0), is the probability of no computer crashes; Pr(M = 1) is the
probability of a single computer crash; and so forth. An example of a probability
distribution for M is given in the second row of Table 2.1; in this distribution, if
your computer crashes four times, you will quit and write the paper by hand.
According to this distribution, the probability of no crashes is 80%; the probabil-
ity of one crash is 10%; and the probability of two, three, or four crashes is,
respectively, 6%, 3%, and 1%. These probabilities sum to 100%. This probability
distribution is plotted in Figure 2.1.

Probabilities of events. The probability of an event can be computed from
the probability distribution. For example, the probability of the event of one or
two crashes is the sum of the probabilities of the constituent outcomes. That
is, (M = 1orM = 2) = Pr(M = 1) + Pr(M = 2) = 0.10 + 0.06 = 0.16, or
16%.

Cumulative probability distribution. The cumulative probability distribution
is the probability that the random variable is less than or equal to a particular
value. The last row of Table 2.1 gives the cumulative probability distribution of
the random variable M. For example, the probability of at most one crash,
Pr(M = 1),1s 90%, which is the sum of the probabilities of no crashes (80%) and
of one crash (10%).

P
LL:I8 PR Probability of Your Computer Crashing M Times

Outcome (number of crashes)

0 1 2 3 4
Probability distribution 0.80 0.10 0.06 0.03 0.01
Cumulative probability
distribution 0.80 0.90 0.96 0.99 1.00

A J
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A cumulative probability distribution is also referred to as a cumulative
distribution function, a c.d.f., or a cumulative distribution.

The Bernoulli distribution. An important special case of a discrete random vari-
able is when the random variable is binary, that is, the outcomes are 0 or 1.
A binary random variable is called a Bernoulli random variable (in honor of the
seventeenth-century Swiss mathematician and scientist Jacob Bernoulli), and its
probability distribution is called the Bernoulli distribution.

For example, let G be the gender of the next new person you meet, where
G = 0 indicates that the person is male and G = 1 indicates that she is female.
The outcomes of G and their probabilities thus are

(2.1)

{1 with probability p
0 with probability 1 — p,

where p is the probability of the next new person you meet being a woman. The
probability distribution in Equation (2.1) is the Bernoulli distribution.
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Probability

0.8 &

1.0 — Pr (Commuting time < 20) = 0.78

p
m Cumulative Distribution and Probability Density Functions

0.6

0.4

0.2

0.0

o < _
- Pr (Commuting time < 15) =0.20

10 15

Probability density
0.15 —

0.09

0.06 -

0-03 - 0.58

0.20

0.00

20 25 30 35 40

Commuting time (minutes)

(a) Cumulative distribution function of commuting time
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(b) Probability density function of commuting time

Figure 2.2a shows the cumulative probability distribution (or c.d.f.) of commuting times. The probability that a
commuting time is less than 15 minutes is 0.20 (or 20%), and the probability that it is less than 20 minutes

is 0.78 (78%). Figure 2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given
by areas under the p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%) and is
given by the area under the curve between 15 and 20 minutes.
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Probability Distribution of a Continuous
Random Variable

Cumulative probability distribution. The cumulative probability distribution for
a continuous variable is defined just as it is for a discrete random variable. That
is, the cumulative probability distribution of a continuous random variable is the
probability that the random variable is less than or equal to a particular value.
For example, consider a student who drives from home to school. This student’s
commuting time can take on a continuum of values and, because it depends on
random factors such as the weather and traffic conditions, it is natural to treat it as
a continuous random variable. Figure 2.2a plots a hypothetical cumulative distribu-
tion of commuting times. For example, the probability that the commute takes less
than 15 minutes is 20% and the probability that it takes less than 20 minutes is 78 %.

Probability density function. Because a continuous random variable can take on a
continuum of possible values, the probability distribution used for discrete variables,
which lists the probability of each possible value of the random variable, is not suitable
for continuous variables. Instead, the probability is summarized by the probability
density function. The area under the probability density function between any two
points is the probability that the random variable falls between those two points. A
probability density function is also called a p.d.f., a density function, or simply a density.

Figure 2.2b plots the probability density function of commuting times corre-
sponding to the cumulative distribution in Figure 2.2a. The probability that the com-
mute takes between 15 and 20 minutes is given by the area under the p.d.f. between
15 minutes and 20 minutes, which is 0.58, or 58 %. Equivalently, this probability can
be seen on the cumulative distribution in Figure 2.2a as the difference between the
probability that the commute is less than 20 minutes (78%) and the probability that
it is less than 15 minutes (20% ). Thus the probability density function and the cumu-
lative probability distribution show the same information in different formats.

Expected Values, Mean, and Variance

The Expected Value of a Random Variable

Expectedvalue. The expected value of a random variable Y, denoted E(Y), is the
long-run average value of the random variable over many repeated trials or occur-
rences. The expected value of a discrete random variable is computed as a
weighted average of the possible outcomes of that random variable, where the
weights are the probabilities of that outcome. The expected value of Y is also
called the expectation of Y or the mean of Y and is denoted puy.
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KEY CONCEPT

For example, suppose you loan a friend $100 at 10% interest. If the loan is
repaid, you get $110 (the principal of $100 plus interest of $10), but there is a risk
of 1% that your friend will default and you will get nothing at all. Thus the amount
you are repaid is a random variable that equals $110 with probability 0.99 and
equals $0 with probability 0.01. Over many such loans, 99% of the time you would
be paid back $110, but 1% of the time you would get nothing, so on average you
would be repaid $110 X 0.99 + $0 X 0.01 = $108.90. Thus the expected value of
your repayment (or the “mean repayment”) is $108.90.

As a second example, consider the number of computer crashes M with the
probability distribution given in Table 2.1. The expected value of M is the average
number of crashes over many term papers, weighted by the frequency with which
a crash of a given size occurs. Accordingly,

E(M) =0 x 080 + 1 X 0.10 + 2 X 0.06 + 3 X 0.03 + 4 x 0.01 = 0.35. (2.2)

That is, the expected number of computer crashes while writing a term paper is
0.35. Of course, the actual number of crashes must always be an integer; it makes
no sense to say that the computer crashed 0.35 times while writing a particular
term paper! Rather, the calculation in Equation (2.2) means that the average
number of crashes over many such term papers is 0.35.

The formula for the expected value of a discrete random variable Y that can
take on k different values is given as Key Concept 2.1. (Key Concept 2.1 uses
“summation notation,” which is reviewed in Exercise 2.25.)

Expected Value and the Mean

Suppose the random variable Y takes on k possible values, yq, . . ., yi, where y;
denotes the first value, y, denotes the second value, and so forth, and that the
probability that Y takes on y; is py, the probability that Y takes on y, is p,, and so
forth. The expected value of Y, denoted E(Y), is

k
E(Y) = yip1 + yapa +  + yepp = Ely,-pi, (2.3)
=

where the notation Ele y;p; means “the sum of y; p; for i running from 1 to k.”
The expected value of Y is also called the mean of Y or the expectation of Y and
is denoted wy.



2.2 Expected Values, Mean, and Variance 21

Expected value of a Bernoullirandom variable. An important special case of the
general formula in Key Concept 2.1 is the mean of a Bernoulli random variable.
Let G be the Bernoulli random variable with the probability distribution in
Equation (2.1). The expected value of G is

EG)=1Xp+0x(1-p)=p. (2.4)

Thus the expected value of a Bernoulli random variable is p, the probability that
it takes on the value “1.”

Expected value of a continuous random variable. The expected value of a con-
tinuous random variable is also the probability-weighted average of the possible
outcomes of the random variable. Because a continuous random variable can take
on a continuum of possible values, the formal mathematical definition of its
expectation involves calculus and its definition is given in Appendix 17.1.

The Standard Deviation and Variance

The variance and standard deviation measure the dispersion or the “spread” of
a probability distribution. The variance of a random variable Y, denoted var(Y),
is the expected value of the square of the deviation of Y from its mean:
var(Y) = E[(Y — uy)’].

Because the variance involves the square of Y, the units of the variance are
the units of the square of Y, which makes the variance awkward to interpret. It is
therefore common to measure the spread by the standard deviation, which is the
square root of the variance and is denoted oy. The standard deviation has the
same units as Y. These definitions are summarized in Key Concept 2.2.

Variance and Standard Deviation KEY CONCEPT

The variance of the discrete random variable Y, denoted %, is

2

2.2

k
oy = var(Y) = E[(Y — MY)Z] = ;(}’i - MY)2 it (2.5)

The standard deviation of Y is oy, the square root of the variance. The units of

the standard deviation are the same as the units of Y.
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For example, the variance of the number of computer crashes M is the
probability-weighted average of the squared difference between M and its
mean, 0.35:

var(M) = (0 — 0.35)% X 0.80 + (1 — 0.35)% X 0.10 + (2 — 0.35)> X 0.06
+ (3 — 0.35)% X 0.03 + (4 — 0.35)> X 0.01 = 0.6475. (2.6)

The standard deviation of M is the square root of the variance, so oy =

V0.64750 = 0.80.

Variance of a Bernoullirandom variable. The mean of the Bernoulli random vari-
able G with probability distribution in Equation (2.1) is ug = p [Equation (2.4)],
so its variance is

var(G) = o = (0 = p)* X (L = p) + 1 = p)* X p = p(1 — p). (27)

Thus the standard deviation of a Bernoulli random variable is o5 = Vp(1 — p).

Mean and Variance of a Linear Function
of a Random Variable

This section discusses random variables (say, X and Y) that are related by a linear
function. For example, consider an income tax scheme under which a worker is
taxed at a rate of 20% on his or her earnings and then given a (tax-free) grant of
$2000. Under this tax scheme, after-tax earnings Y are related to pre-tax earnings
X by the equation

Y = 2000 + 0.8X. (2.8)

That is, after-tax earnings Y is 80% of pre-tax earnings X, plus $2000.

Suppose an individual’s pre-tax earnings next year are a random variable with
mean uy and variance o’%. Because pre-tax earnings are random, so are after-tax
earnings. What are the mean and standard deviations of her after-tax earnings
under this tax? After taxes, her earnings are 80% of the original pre-tax earnings,
plus $2000. Thus the expected value of her after-tax earnings is

E(Y) = py = 2000 + 0.8uy. (2.9)

The variance of after-tax earnings is the expected value of (Y — wy)>. Because
Y = 2000 + 0.8X, Y — uy = 2000 + 0.8X — (2000 + 0.8uy) = 0.8(X — wy).
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Thus E[(Y — uy)’] = E{[0.8(X — uy)]*} = 0.64E[(X — uy)?*]. It follows
that var(Y) = 0.64var(X), so, taking the square root of the variance, the standard
deviation of Y'is

That is, the standard deviation of the distribution of her after-tax earnings is 80%
of the standard deviation of the distribution of pre-tax earnings.

This analysis can be generalized so that Y depends on X with an intercept a
(instead of $2000) and a slope b (instead of 0.8) so that

Y =a+ bX. (2.11)

Then the mean and variance of Y are
uy = a + buy and (2.12)
o} = b’d%, (2.13)

and the standard deviation of Yis oy = boy. The expressions in Equations (2.9)
and (2.10) are applications of the more general formulas in Equations (2.12) and
(2.13) with a = 2000 and b = 0.8.

Other Measures of the Shape of a Distribution

The mean and standard deviation measure two important features of a distribu-
tion: its center (the mean) and its spread (the standard deviation). This section
discusses measures of two other features of a distribution: the skewness, which
measures the lack of symmetry of a distribution, and the kurtosis, which measures
how thick, or “heavy,” are its tails. The mean, variance, skewness, and kurtosis
are all based on what are called the moments of a distribution.

Skewness. Figure 2.3 plots four distributions, two which are symmetric (Figures
2.3a and 2.3b) and two which are not (Figures 2.3c and 2.3d). Visually, the distri-
bution in Figure 2.3d appears to deviate more from symmetry than does the dis-
tribution in Figure 2.3c. The skewness of a distribution provides a mathematical
way to describe how much a distribution deviates from symmetry.

The skewness of the distribution of a random variable Y is

Skewness = LY ~ MY)3], (2.14)

Ty
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All of these distributions have a mean of 0 and a variance of 1. The distributions with skewness of 0 (a and b) are
symmetric; the distributions with nonzero skewness (c and d) are not symmetric. The distributions with kurtosis
exceeding 3 (b—d) have heavy tails.
\ J

where oy is the standard deviation of Y. For a symmetric distribution, a value of
Y a given amount above its mean is just as likely as a value of Y the same amount
below its mean. If so, then positive values of (Y — uy)® will be offset on average
(in expectation) by equally likely negative values. Thus, for a symmetric distribu-
tion, E[(Y — uy)’] = 0; the skewness of a symmetric distribution is zero. If a
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distribution is not symmetric, then a positive value of (Y — uy)® generally is
not offset on average by an equally likely negative value, so the skewness is
nonzero for a distribution that is not symmetric. Dividing by ¢} in the denom-
inator of Equation (2.14) cancels the units of Y? in the numerator, so the
skewness is unit free; in other words, changing the units of Y does not change
its skewness.

Below each of the four distributions in Figure 2.3 is its skewness. If a distribu-
tion has a long right tail, positive values of (Y — uy)® are not fully offset by nega-
tive values, and the skewness is positive. If a distribution has a long left tail, its
skewness is negative.

Kurtosis. The kurtosis of a distribution is a measure of how much mass is in its
tails and, therefore, is a measure of how much of the variance of Y arises from
extreme values. An extreme value of Y is called an outlier. The greater the kur-
tosis of a distribution, the more likely are outliers.

The kurtosis of the distribution of Y is

E[(Y_ MY)4].

Ty

Kurtosis = (2.15)

If a distribution has a large amount of mass in its tails, then some extreme depar-
tures of Y from its mean are likely, and these departures will lead to large values,
on average (in expectation), of (Y — uy)*. Thus, for a distribution with a large
amount of mass in its tails, the kurtosis will be large. Because (Y — uy)* cannot
be negative, the kurtosis cannot be negative.

The kurtosis of a normally distributed random variable is 3, so a random vari-
able with kurtosis exceeding 3 has more mass in its tails than a normal random
variable. A distribution with kurtosis exceeding 3 is called leptokurtic or, more
simply, heavy-tailed. Like skewness, the kurtosis is unit free, so changing the units
of Y does not change its kurtosis.

Below each of the four distributions in Figure 2.3 is its kurtosis. The distribu-
tions in Figures 2.3b—d are heavy-tailed.

Moments. The mean of Y, E(Y), is also called the first moment of Y, and the
expected value of the square of Y, E(Y?), is called the second moment of Y. In
general, the expected value of Y” is called the " moment of the random variable
Y. That is, the 7" moment of Y is E(Y”). The skewness is a function of the first,
second, and third moments of Y, and the kurtosis is a function of the first through
fourth moments of Y.
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2.3

Two Random Variables

Most of the interesting questions in economics involve two or more variables. Are
college graduates more likely to have a job than nongraduates? How does the
distribution of income for women compare to that for men? These questions con-
cern the distribution of two random variables, considered together (education and
employment status in the first example, income and gender in the second).
Answering such questions requires an understanding of the concepts of joint,
marginal, and conditional probability distributions.

Joint and Marginal Distributions

Jointdistribution. The joint probability distribution of two discrete random vari-
ables, say X and Y, is the probability that the random variables simultaneously
take on certain values, say x and y. The probabilities of all possible (x, y) combina-
tions sum to 1. The joint probability distribution can be written as the function
Pr( X =x,Y =y).

For example, weather conditions—whether or not it is raining—affect the
commuting time of the student commuter in Section 2.1. Let Y be a binary ran-
dom variable that equals 1 if the commute is short (less than 20 minutes) and
equals 0 otherwise and let X be a binary random variable that equals 0 if it is rain-
ing and 1 if not. Between these two random variables, there are four possible
outcomes: it rains and the commute is long (X = 0, Y = 0); rain and short com-
mute (X = 0, Y = 1);no rain and long commute (X = 1, Y = 0); and no rain and
short commute (X = 1, Y = 1). The joint probability distribution is the frequency
with which each of these four outcomes occurs over many repeated commutes.

An example of a joint distribution of these two variables is given in Table 2.2.
According to this distribution, over many commutes, 15% of the days have rain
and a long commute (X = 0, Y = 0); that is, the probability of a long, rainy com-
mute is 15%, or Pr(X = 0,Y = 0) = 0.15. Also, Pr( X =0,Y = 1) = 0.15,

Ve N
L.\ 18 Joint Distribution of Weather Conditions and Commuting Times
Rain (X=0) No Rain (X=1) Total
Long commute (Y = 0) 0.15 0.07 0.22
Short commute (Y = 1) 0.15 0.63 0.78
Total 0.30 0.70 1.00

A J
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Pr( X =1,Y=0) = 0.07, and Pr(X = 1,Y = 1) = 0.63. These four possible
outcomes are mutually exclusive and constitute the sample space so the four prob-
abilities sum to 1.

Marginal probability distribution. The marginal probability distribution of a ran-
dom variable Y is just another name for its probability distribution. This term is
used to distinguish the distribution of Y alone (the marginal distribution) from the
joint distribution of Y and another random variable.

The marginal distribution of Y can be computed from the joint distribution of
X and Y by adding up the probabilities of all possible outcomes for which Y takes
on a specified value. If X can take on / different values x4, . . ., x;, then the mar-
ginal probability that Y takes on the value y is

Pr(Y =y) = zl:Pr(X =x,Y =y). (2.16)
i=1

For example, in Table 2.2, the probability of a long rainy commute is 15% and the
probability of a long commute with no rain is 7%, so the probability of a long
commute (rainy or not) is 22%. The marginal distribution of commuting times is
given in the final column of Table 2.2. Similarly, the marginal probability that it
will rain is 30%, as shown in the final row of Table 2.2.

Conditional Distributions

Conditional distribution. The distribution of a random variable Y conditional on
another random variable X taking on a specific value is called the conditional
distribution of Y given X. The conditional probability that Y takes on the value y
when X takes on the value x is written Pr(Y = y | X = x).

For example, what is the probability of a long commute (Y = 0) if you know
itis raining (X = 0)? From Table 2.2, the joint probability of a rainy short com-
mute is 15% and the joint probability of a rainy long commute is 15%, so if it is
raining a long commute and a short commute are equally likely. Thus the proba-
bility of a long commute (Y = 0), conditional on it being rainy (X = 0), is 50%,
or Pr(Y = 0| X = 0) = 0.50. Equivalently, the marginal probability of rain is
30%:; that is, over many commutes it rains 30% of the time. Of this 30% of com-
mutes, 50% of the time the commute is long (0.15/0.30).

In general, the conditional distribution of Y given X = x is

Pr( X =x,Y =y)

Pr(Y=y|X =x) = Pr(X = )

(2.17)
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A. Joint Distribution

p
LL:18 P X Joint and Conditional Distributions of Computer Crashes (M) and
Computer Age (A)

M=0 M=1 M=2 M=3 M=4 Total
Old computer (A = 0) 0.35 0.065 0.05 0.025 0.01 0.50
New computer (A = 1) 0.45 0.035 0.01 0.005 0.00 0.50
Total 0.80 0.10 0.06 0.03 0.01 1.00

B. Conditional Distributions of M given A

(&

M=0 M=1 M=2 M=3 M=4 Total
Pr(M|A = 0) 0.70 0.13 0.10 0.05 0.02 1.00
Pr(M|A = 1) 0.90 0.07 0.02 0.01 0.00 1.00

For example, the conditional probability of a long commute given that it is rainy
isPr(Y=0|X=0)=Pr(X =0,Y = 0)/Pr(X = 0) = 0.15/0.30 = 0.50.

As asecond example, consider a modification of the crashing computer exam-
ple. Suppose you use a computer in the library to type your term paper and the
librarian randomly assigns you a computer from those available, half of which are
new and half of which are old. Because you are randomly assigned to a computer,
the age of the computer you use, A (= 1 if the computer is new, = 0 if it is old),
is a random variable. Suppose the joint distribution of the random variables M and
A is given in Part A of Table 2.3. Then the conditional distribution of computer
crashes, given the age of the computer, is given in Part B of the table. For example,
the joint probability M = 0 and A = 01is 0.35; because half the computers are old,
the conditional probability of no crashes, given that you are using an old computer,
isPr(M =0|A =0) = Pr(M =0, A = 0)/Pr(A = 0) = 0.35/0.50 = 0.70, or
70%. In contrast, the conditional probability of no crashes given that you are
assigned a new computer is 90%. According to the conditional distributions in
Part B of Table 2.3, the newer computers are less likely to crash than the old ones;
for example, the probability of three crashes is 5% with an old computer but 1%
with a new computer.

Conditional expectation. The conditional expectation of Y given X, also called the
conditional mean of Y given X, is the mean of the conditional distribution of Y
given X. That is, the conditional expectation is the expected value of Y, computed
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using the conditional distribution of Y given X. If Y takes on k values yy, .. ., y,
then the conditional mean of Y given X = x is

EY|X =x) = iyiPr(Y =y | X = x). (2.18)
=1

For example, based on the conditional distributions in Table 2.3, the expected
number of computer crashes, given that the computer is old, is E(M|A = 0) =
0x070+1XxX013 +2 X 0.10 + 3 X 0.05 + 4 X 0.02 = 0.56. The expected
number of computer crashes, given that the computer is new, is E(M|A = 1) =
0.14, less than for the old computers.

The conditional expectation of Y given X = x is just the mean value of Y
when X = x. In the example of Table 2.3, the mean number of crashes is 0.56
for old computers, so the conditional expectation of Y given that the computer
is old is 0.56. Similarly, among new computers, the mean number of crashes is
0.14, that is, the conditional expectation of Y given that the computer is new
is 0.14.

The law of iterated expectations. The mean of Y is the weighted average of the
conditional expectation of Y given X, weighted by the probability distribution
of X. For example, the mean height of adults is the weighted average of the
mean height of men and the mean height of women, weighted by the propor-
tions of men and women. Stated mathematically, if X takes on the / values
X1, ..., X5 then

ﬂm=iﬂmx=mma=m. (2.19)
i=1

Equation (2.19) follows from Equations (2.18) and (2.17) (see Exercise 2.19).
Stated differently, the expectation of Y is the expectation of the conditional
expectation of Y given X,

E(Y) = E[E(Y|X)], (2.20)

where the inner expectation on the right-hand side of Equation (2.20) is computed
using the conditional distribution of Y given X and the outer expectation is com-
puted using the marginal distribution of X. Equation (2.20) is known as the law of
iterated expectations.

For example, the mean number of crashes M is the weighted average of the
conditional expectation of M given that it is old and the conditional expectation of
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M giventhatitisnew,so E(M) = E(M|A = 0) X Pr(A =0) + E(M|A = 1) X
Pr(A = 1) = 0.56 X 0.50 + 0.14 X 0.50 = 0.35. This is the mean of the marginal
distribution of M, as calculated in Equation (2.2).

The law of iterated expectations implies that if the conditional mean of Y given
X s zero, then the mean of Y'is zero. This is an immediate consequence of Equation
(2.20):if E(Y | X) = 0,then E(Y) = E[E(Y|X)] = E[0] = 0. Said differently, if
the mean of Y given X is zero, then it must be that the probability-weighted average
of these conditional means is zero, that is, the mean of Y must be zero.

The law of iterated expectations also applies to expectations that are condi-
tional on multiple random variables. For example, let X, Y, and Z be random
variables that are jointly distributed. Then the law of iterated expectations says
that E(Y) = E[E(Y|X, Z)], where E(Y | X, Z) is the conditional expectation of
Y given both X and Z. For example, in the computer crash illustration of Table 2.3,
let P denote the number of programs installed on the computer; then E(M | A, P)is
the expected number of crashes for a computer with age A that has P programs
installed. The expected number of crashes overall, E(M), is the weighted average
of the expected number of crashes for a computer with age A and number of pro-
grams P, weighted by the proportion of computers with that value of both A and P.

Exercise 2.20 provides some additional properties of conditional expectations
with multiple variables.

Conditional variance. The variance of Y conditional on X is the variance of the
conditional distribution of Y given X. Stated mathematically, the conditional
variance of Y given X is

var(Y| X = x) = i[yi —EY|X=x)PPr(Y =y, | X =x). (221)
=1

For example, the conditional variance of the number of crashes given that the
computeris old is var(M | A = 0) = (0 — 0.56)* X 0.70 + (1 — 0.56)* X 0.13 +
(2 — 0.56)> X 0.10 + (3 — 0.56)> X 0.05 + (4 — 0.56)> X 0.02 = 0.99. The
standard deviation of the conditional distribution of M given that A = 0 is thus
1V0.99 = 0.99. The conditional variance of M given that A = 1 is the variance of
the distribution in the second row of Panel B of Table 2.3, which is 0.22, so the
standard deviation of M for new computers is V0.22 = 0.47. For the conditional
distributions in Table 2.3, the expected number of crashes for new computers
(0.14) is less than that for old computers (0.56), and the spread of the distribution
of the number of crashes, as measured by the conditional standard deviation, is
smaller for new computers (0.47) than for old (0.99).
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Independence

Two random variables X and Y are independently distributed, or independent, if
knowing the value of one of the variables provides no information about the
other. Specifically, X and Y are independent if the conditional distribution of Y
given X equals the marginal distribution of Y. That is, X and Y are independently
distributed if, for all values of x and y,

Pr(Y = y|X =x) = Pr(Y = y) (independence of Xand Y). (2.22)

Substituting Equation (2.22) into Equation (2.17) gives an alternative expression
for independent random variables in terms of their joint distribution. If X and Y
are independent, then

Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y). (2.23)

That is, the joint distribution of two independent random variables is the product
of their marginal distributions.

Covariance and Correlation

Covariance. One measure of the extent to which two random variables move
together is their covariance. The covariance between X and Y is the expected
value E[(X — ux)(Y — my)], where uy, where wy is the mean of X and uy is the
mean of Y. The covariance is denoted cov(X, Y) or oyy. If X can take on [ values
and Y can take on k values, then the covariance is given by the formula

cov(X,Y) = oxy = E[(X — ux)(Y — uy)]

ko1
= 21 ;(xj — ux)(y; — my)Pr(X = x;, Y = y)). (2.24)

To interpret this formula, suppose that when X is greater than its mean (so that
X — uy is positive), then Y tends be greater than its mean (so that Y — uy is
positive), and when X is less than its mean (so that X — uy < 0), then Y tends to
be less than its mean (so that Y — uy < 0). In both cases, the product
(X — py) X (Y — uy) tends to be positive, so the covariance is positive. In con-
trast, if X and Y tend to move in opposite directions (so that X is large when Y is
small, and vice versa), then the covariance is negative. Finally, if X and Y are
independent, then the covariance is zero (see Exercise 2.19).
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Correlation. Because the covariance is the product of X and Y, deviated from their
means, its units are, awkwardly, the units of X multiplied by the units of Y. This
“units” problem can make numerical values of the covariance difficult to interpret.

The correlation is an alternative measure of dependence between X and Y
that solves the “units” problem of the covariance. Specifically, the correlation
between X and Y is the covariance between X and Y divided by their standard
deviations:

corr(X, Y) = coviX, ¥) = JXr (2.25)
\/Var(X yvar(Y)  9x9y

Because the units of the numerator in Equation (2.25) are the same as those of
the denominator, the units cancel and the correlation is unitless. The random
variables X and Y are said to be uncorrelated if corr(X, Y) = 0.

The correlation always is between —1 and 1; that is, as proven in Appendix 2.1,

—1 = corr(X,Y) =1 (correlation inequality). (2.26)

Correlation and conditional mean. If the conditional mean of Y does not depend
on X, then Y and X are uncorrelated. That is,

if E(Y | X) = uy, then cov(Y, X) = 0 and corr(Y, X) = 0. (2.27)

We now show this result. First suppose that Y and X have mean zero so that
cov(Y,X) = E[(Y — ny)(X — ny)] = E(YX). By the law of iterated expecta-
tions [Equation (2.20)], E(YX) = E[E(YX | X)] = E[E(Y | X)X] = 0 because
E(Y|X) =0, so cov(Y,X) = 0. Equation (2.27) follows by substituting
cov(Y, X) = 0into the definition of correlation in Equation (2.25). If Y and X do
not have mean zero, first subtract off their means, then the preceding proof applies.

It is not necessarily true, however, that if X and Y are uncorrelated, then the
conditional mean of Y given X does not depend on X. Said differently, it is pos-
sible for the conditional mean of Y to be a function of X but for Y and X nonethe-
less to be uncorrelated. An example is given in Exercise 2.23.

The Mean and Variance of Sums
of Random Variables

The mean of the sum of two random variables, X and Y, is the sum of their means:

EX+Y)=EX)+ EY) = py + uy. (2.28)



The Distribution of Earnings in the United States in 2012

ome parents tell their children that they will
S be able to get a better, higher-paying job if
they get a college degree than if they skip higher
education. Are these parents right? Does the dis-
tribution of earnings differ between workers who
are college graduates and workers who have only
a high school diploma, and, if so, how? Among
workers with a similar education, does the dis-

tribution of earnings for men and women differ?
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For example, do the best-paid college-educated
women earn as much as the best-paid college-
educated men?

One way to answer these questions is to examine
the distribution of earnings of full-time workers, con-
ditional on the highest educational degree achieved
(high school diploma or bachelor’s degree) and on
gender. These four conditional distributions are shown

in Figure 2.4, and the mean, standard deviation, and

P
m Conditional Distribution of Average Hourly Earnings of U.S. Full-Time Workers
in 2012, Given Education Level and Gender
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continued on next page
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p
L8P R Summaries of the Conditional Distribution of Average Hourly Earnings of U.S.
Full-Time Workers in 2012 Given Education Level and Gender
Percentile
Standard 50%
Mean Deviation 25% (median) 75% 90%
(a) Women with high school
diploma $15.49 $8.42 $10.10 $14.03 $18.75 $24.52
(b) Women with four-year
college degree 25.42 13.81 16.15 22.44 31.34 43.27
(c) Men with high school
diploma 20.25 11.00 12.92 17.86 24.83 33.78
(d) Men with four-year college
degree 32.73 18.11 19.61 28.85 41.68 57.30
Average hourly earnings are the sum of annual pretax wages, salaries, tips, and bonuses divided by the number of hours
worked annually.

some percentiles of the conditional distributions are
presented in Table 2.4.! For example, the conditional
mean of earnings for women whose highest degree is
a high school diploma—that is, E(Earnings|Highest
degree = high school diploma, Gender = female)—is
$15.49 per hour.

The distribution of average hourly earnings for
female college graduates (Figure 2.4b) is shifted to
the right of the distribution for women with only
a high school degree (Figure 2.4a); the same shift
can be seen for the two groups of men (Figure 2.4d
and Figure 2.4c). For both men and women, mean
earnings are higher for those with a college degree
(Table 2.4, first numeric column). Interestingly, the
spread of the distribution of earnings, as measured
by the standard deviation, is greater for those with
a college degree than for those with a high school

diploma. In addition, for both men and women, the

90th percentile of earnings is much higher for work-
ers with a college degree than for workers with only
a high school diploma. This final comparison is con-
sistent with the parental admonition that a college
degree opens doors that remain closed to individuals
with only a high school diploma.

Another feature of these distributions is that
the distribution of earnings for men is shifted to
the right of the distribution of earnings for women.
This “gender gap” in earnings is an important—
and, to many, troubling—aspect of the distribu-
tion of earnings. We return to this topic in later

chapters.

IThe distributions were estimated using data from the
March 2013 Current Population Survey, which is discussed
in more detail in Appendix 3.1.
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Means, Variances, and Covariances of Sums
of Random Variables

Let X, Y, and V be random variables, let sy and 0% be the mean and variance of
X, let oyy be the covariance between X and Y (and so forth for the other vari-
ables), and let a, b, and ¢ be constants. Equations (2.29) through (2.35) follow
from the definitions of the mean, variance, and covariance:

E(a + bX + cY) =a + buy + cuy, (2.29)

var(a + bY) = b%*c?, (2.30)

var(aX + bY) = a’c% + 2aboyy + b’c%, (2.31)
E(Y?) = 0% + 13, (2.32)

cov(a + bX + cV,Y) = boyy + coyy, (2.33)
E(XY) = oxy + pxuy, (2.34)

|corr(X, Y)| = 1and |oyy| = Voo (correlation inequality).  (2.35)

2.3

The variance of the sum of X and Y is the sum of their variances plus two

times their covariance:

var(X + Y) = var(X) + var(Y) + 2cov(X,Y) = 0% + 0% + 20xy. (2.36)

If X and Y are independent, then the covariance is zero and the variance of their

sum is the sum of their variances:

var(X + Y) = var(X) + var(Y) = 0% + 0%

(if X and Y are independent).

(2.37)

Useful expressions for means, variances, and covariances involving weighted sums
of random variables are collected in Key Concept 2.3. The results in Key Concept 2.3

are derived in Appendix 2.1.



36 CHAPTER 2 Review of Probability

2.4 The Normal, Chi-Squared, Student t,
and F Distributions

The probability distributions most often encountered in econometrics are the nor-
mal, chi-squared, Student #, and F distributions.

The Normal Distribution

A continuous random variable with a normal distribution has the familiar bell-
shaped probability density shown in Figure 2.5. The function defining the normal
probability density is given in Appendix 17.1. As Figure 2.5 shows, the normal
density with mean u and variance o2 is symmetric around its mean and has 95%
of its probability between u — 1.960 and u + 1.960.

Some special notation and terminology have been developed for the normal

distribution. The normal distribution with mean u and variance o

1s expressed
concisely as “N(u, 0%).” The standard normal distribution is the normal distribu-
tion with mean u = 0 and variance o> = 1 and is denoted N(0, 1). Random vari-
ables that have a N(0, 1) distribution are often denoted Z, and the standard
normal cumulative distribution function is denoted by the Greek letter ®; accord-
ingly, Pr(Z = ¢) = ®(c), where c is a constant. Values of the standard normal
cumulative distribution function are tabulated in Appendix Table 1.

Tolook up probabilities for a normal variable with a general mean and variance,

we must standardize the variable by first subtracting the mean, then by dividing

- N
m The Normal Probability Density

The normal probability
density function with
mean u and variance
o?is abell-shaped
curve, centered at .
The area under the
normal p.d.f. between

95%
©n — 1.960 and
w + 1960 is0.95.
The normal distribution
is denoted N(u, o°?). .
u —I1.960 ,Lll u +I 1.960 y
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Computing Probabilities Involving
Normal Random Variables

Suppose Y is normally distributed with mean w and variance o%; in other words,
Y is distributed N(u, 0%). Then Y is standardized by subtracting its mean and
dividing by its standard deviation, that is, by computing Z = (Y — u)/o.

Let ¢; and ¢, denote two numbers with ¢; < ¢; and let d; = (¢; — w)/o and
d, = (c; — p)lo. Then

PT(Y = C2) = PI(Z = dz) = Cp(dz), (238)
PT(Y = Cl) = PI(Z = dl) =1 - (I)(dl), (239)
Pr(c; = Y = ¢,) = Pr(dy = Z = dy) = D(dy) — D(dy).  (2.40)

The normal cumulative distribution function ® is tabulated in Appendix
Table 1.

24

the result by the standard deviation. For example, suppose Y is distributed
N(1, 4)—that is, Y is normally distributed with a mean of 1 and a variance of 4.
What is the probability that Y = 2—that is, what is the shaded area in Figure 2.6a?
The standardized version of Y'is Y minus its mean, divided by its standard devia-
tion, thatis, (Y — 1)/V4 = (Y — 1). Accordingly, the random variable 5(Y — 1)
is normally distributed with mean zero and variance one (see Exercise 2.8); it has
the standard normal distribution shown in Figure 2.6b. Now Y = 2 is equivalent
to5(Y — 1) = 5(2 — 1)—thatis, 3(Y — 1) =< 1. Thus,

Pr(Y =2) =Pr[3(Y — 1) = 3] = Pr(Z = J) = ®(0.5) = 0.691, (2.41)

where the value 0.691 is taken from Appendix Table 1.

The same approach can be applied to compute the probability that a normally
distributed random variable exceeds some value or that it falls in a certain range.
These steps are summarized in Key Concept 2.4. The box “A Bad Day on Wall
Street” presents an unusual application of the cumulative normal distribution.

The normal distribution is symmetric, so its skewness is zero. The kurtosis of
the normal distribution is 3.
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To calculate Pr(Y = 2), standardize Y, then use
the standard normal distribution table. Y'is
standardized by subtracting its mean (u = 1)
and dividing by its standard deviation (o = 2).
The probability that Y = 2is shown in

Figure 2.6a, and the corresponding probability
after standardizing Y'is shown in Figure 2.6b.
Because the standardized random variable,

(Y — 1)/2,is astandard normal (Z) random
variable, Pr(y = 2) = pr(Y51 = 251) =
Pr(Z = 0.5). From Appendix Table 1,

Pr(Z = 0.5) = ®(0.5) = 0.691.

p
m Calculating the Probability That Y = 2 When Y Is Distributed N(1, 4)

Pr(Y<2)
N(1, 4) distribution
I
1.0 2.0 Y
(@) N1, 4)
PrZ<05) iR
N(0, 1) distribution
I
0.0 0.5 z
(b) N, 1)

The multivariate normal distribution. The normal distribution can be generalized
to describe the joint distribution of a set of random variables. In this case, the
distribution is called the multivariate normal distribution, or, if only two variables
are being considered, the bivariate normal distribution. The formula for the bivar-
iate normal p.d.f. is given in Appendix 17.1, and the formula for the general mul-

tivariate normal p.d.f. is given in Appendix 18.1.

The multivariate normal distribution has four important properties. If X and
Y have a bivariate normal distribution with covariance oy and if a and b are two

constants, then aX + bY has the normal distribution:

aX + bYis distributed N(auy + buy, a?0% + b*0} + 2aboyy)

(X, Y bivariate normal).

(2.42)
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A Bad Day on Wall Street

n a typical day the overall value of stocks
O traded on the U.S. stock market can rise or fall
by 1% or even more. This is a lot—but nothing com-
pared to what happened on Monday, October 19,
1987. On “Black Monday,” the Dow Jones Industrial
Average (an average of 30 large industrial stocks)
fell by 22.6%! From January 1, 1980, to December
31,2012, the standard deviation of daily percentage
price changes on the Dow was 1.12%, so the drop
of 22.6% was a negative return of 20(= 22.6/1.12)

standard deviations. The enormity of this drop can
be seen in Figure 2.7, a plot of the daily returns on
the Dow during the 1980s.

If daily percentage price changes are normally dis-
tributed, then the probability of a change of atleast 20
standard deviations is Pr(|Z| = 20) = 2 X ®(-20).
You will not find this value in Appendix Table 1, but
you can calculate it using a computer (try it!). This
probability is 5.5 X 107%, that is, 0.000 . . . 00055,
where there are a total of 88 zeros!

From 1980 Percent change
through 2012, 10 -
the average

percentage daily

"Black Monday” —
the Dow fell 22.6%,
or more than 20

standard deviations. 10 [

—15

-20 +

change of “the 5r
Dow” index was

0.04% and its

standard deviation 0
was 1.12%. On

October 19, 1987—

p
V1P Daily Percentage Changes in the Dow Jones Industrial Average in the 1980s

October 19, 1987

T~

25 I I 1
1980 1981 1982 1983

1984 1985 1986 1987 1988 1989 1990
Year

continued on next page
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How smallis 5.5 X 1072 Consider the following:

T 6XXXXIR A CHEKERKSXXI XX MXEHXH KX GXX-
ability of winning a random lottery among all living

people is about one in 7 billion, or 1.4 X 1071°,
T 6XX LERXIM BRIXKERXXX HK KSXX KXPEHRX HKI K( XH=

lion years, or about 5 X 10!7 seconds, so the prob-
ability of choosing a particular second at random
from all the seconds since the beginning of time is
2 X 1071,

T 6RKIN 81X SCARKDSHP 10** molecules of gas in
the first kilometer above the earth’s surface. The

probability of choosing one at random is 10™%.

Although Wall Street did have a bad day, the
fact that it happened at all suggests its probabil-
ity was more than 5.5 X 10~%. In fact, there have
been many days—good and bad —with stock price
changes too large to be consistent with a normal
distribution with a constant variance. Table 2.5 lists

the ten largest daily percentage price changes in the

Dow Jones Industrial Average in the 8325 trading
days between January 1, 1980, and December 31,
2012, along with the standardized change using the
mean and variance over this period. All ten changes
exceed 6.4 standard deviations, an extremely rare
event if stock prices are normally distributed.
Clearly, stock price percentage changes have a
distribution with heavier tails than the normal dis-
tribution. For this reason, finance professionals use
other models of stock price changes. One such model
treats stock price changes as normally distributed
with a variance that evolves over time, so periods like
October 1987 and the financial crisis in the fall of 2008
have higher volatility than others (models with time-
varying variances are discussed in Chapter 16). Other
models abandon the normal distribution in favor of
distributions with heavier tails, an idea popularized
in Nassim Taleb’s 2007 book, The Black Swan. These
models are more consistent with the very bad—and

very good—days we actually see on Wall Street.

/ The Ten Largest Daily Percentage Changes in the Dow Jones Industrial Index, b
1980-2012, and the Normal Probability of a Change at Least as Large
Standardized Normal Probability of a
Percentage Change Change at Least This Large
Date Change (x) Z=(XX—-wlo Pr(|Z] = 2 = 2®(-2
October 19, 1987 —22.6 —20.2 5.5 %X 107
October 13, 2008 11.1 9.9 6.4 x 1073
October 28, 2008 10.9 9.7 3.8 X 10722
October 21, 1987 10.1 9.0 1.8 X 10719
October 26, 1987 —-8.0 —7.2 5.6 X 10713
October 15, 2008 =79 =71 1.6 x 10712
December 01, 2008 —7.7 —6.9 49 x 10712
October 09, 2008 —7.3 —6.6 47 x 1071
October 27, 1997 —7.2 —6.4 1.2 x 10710
September 17, 2001 -7.1 —6.4 1.6 X 10710
L J
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More generally, if n random variables have a multivariate normal distribution, then
any linear combination of these variables (such as their sum) is normally distributed.

Second, if a set of variables has a multivariate normal distribution, then the
marginal distribution of each of the variables is normal [this follows from Equa-
tion (2.42) by settinga = 1 and b = 0].

Third, if variables with a multivariate normal distribution have covariances
that equal zero, then the variables are independent. Thus, if X and Y have a
bivariate normal distribution and oyy = 0, then X and Y are independent. In
Section 2.3 it was shown that if X and Y are independent, then, regardless of their
joint distribution, oyy = 0. If X and Y are jointly normally distributed, then the
converse is also true. This result—that zero covariance implies independence —is
a special property of the multivariate normal distribution that is not true in general.

Fourth, if X and Y have a bivariate normal distribution, then the conditional
expectation of Y given X is linear in X; thatis, E(Y|X = x) = a + bx, where a and
b are constants (Exercise 17.11). Joint normality implies linearity of conditional
expectations, but linearity of conditional expectations does not imply joint normality.

The Chi-Squared Distribution

The chi-squared distribution is used when testing certain types of hypotheses in
statistics and econometrics.

The chi-squared distribution is the distribution of the sum of m squared inde-
pendent standard normal random variables. This distribution depends on m,
which is called the degrees of freedom of the chi-squared distribution. For exam-
ple, let Z; Z,, and Z; be independent standard normal random variables. Then
Z3 + Z3 + Zi has a chi-squared distribution with 3 degrees of freedom. The
name for this distribution derives from the Greek letter used to denote it: A chi-
squared distribution with m degrees of freedom is denoted x2,.

Selected percentiles of the 2, distribution are given in Appendix Table 3. For
example, Appendix Table 3 shows that the 95th percentile of the x2, distribution is
781,50 Pr(Z3 + Z5 + 73 = 7.81) = 0.95.

The Student t Distribution

The Student ¢ distribution with m degrees of freedom is defined to be the distribu-
tion of the ratio of a standard normal random variable, divided by the square root
of an independently distributed chi-squared random variable with m degrees of
freedom divided by m. That is, let Z be a standard normal random variable, let W
be a random variable with a chi-squared distribution with m degrees of freedom,
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and let Z and W be independently distributed. Then the random variable
Z/NV Wim has a Student ¢ distribution (also called the ¢ distribution) with m
degrees of freedom. This distribution is denoted ¢,,. Selected percentiles of the
Student ¢ distribution are given in Appendix Table 2.

The Student ¢ distribution depends on the degrees of freedom m. Thus the
95th percentile of the ¢, distribution depends on the degrees of freedom m. The
Student ¢ distribution has a bell shape similar to that of the normal distribution,
but when m is small (20 or less), it has more mass in the tails—that is, it is a “fat-
ter” bell shape than the normal. When m 1s 30 or more, the Student ¢ distribution
is well approximated by the standard normal distribution and the ¢.. distribution
equals the standard normal distribution.

The F Distribution

The F distribution with m and n degrees of freedom, denoted F), ,, is defined to
be the distribution of the ratio of a chi-squared random variable with degrees of
freedom m, divided by m, to an independently distributed chi-squared random
variable with degrees of freedom n, divided by n. To state this mathematically, let
W be a chi-squared random variable with m degrees of freedom and let V be a
chi-squared random variable with n degrees of freedom, where W and V are
independently distributed. Then % has an F),, distribution—that is, an F dis-
tribution with numerator degrees of freedom m and denominator degrees of
freedom n.

In statistics and econometrics, an important special case of the F distribution
arises when the denominator degrees of freedom is large enough that the F), ,
distribution can be approximated by the F,, .. distribution. In this limiting case,
the denominator random variable V/n is the mean of infinitely many squared
standard normal random variables, and that mean is 1 because the mean of a
squared standard normal random variable is 1 (see Exercise 2.24). Thus the F),, ..
distribution is the distribution of a chi-squared random variable with m degrees
of freedom, divided by m: W/m is distributed F,, ... For example, from Appendix
Table 4, the 95th percentile of the F; ., distribution is 2.60, which is the same as
the 95th percentile of the 3 distribution, 7.81 (from Appendix Table 2), divided
by the degrees of freedom, which is 3 (7.81/3 = 2.60).

The 90th, 95th, and 99th percentiles of the F,, distribution are given in
Appendix Table 5 for selected values of m and n. For example, the 95th percentile
of the Fj 3 distribution is 2.92, and the 95th percentile of the F; g distribution is
2.71. As the denominator degrees of freedom 7 increases, the 95th percentile of
the F;,, distribution tends to the Fj ., limit of 2.60.
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Random Sampling and the Distribution
of the Sample Average

Almost all the statistical and econometric procedures used in this book involve
averages or weighted averages of a sample of data. Characterizing the distribu-
tions of sample averages therefore is an essential step toward understanding the
performance of econometric procedures.

This section introduces some basic concepts about random sampling and the
distributions of averages that are used throughout the book. We begin by dis-
cussing random sampling. The act of random sampling —that is, randomly draw-
ing a sample from a larger population—has the effect of making the sample
average itself a random variable. Because the sample average is a random vari-
able, it has a probability distribution, which is called its sampling distribution.
This section concludes with some properties of the sampling distribution of the
sample average.

Random Sampling

Simple random sampling. Suppose our commuting student from Section 2.1
aspires to be a statistician and decides to record her commuting times on various
days. She selects these days at random from the school year, and her daily com-
muting time has the cumulative distribution function in Figure 2.2a. Because these
days were selected at random, knowing the value of the commuting time on one
of these randomly selected days provides no information about the commuting
time on another of the days; that is, because the days were selected at random, the
values of the commuting time on each of the different days are independently
distributed random variables.

The situation described in the previous paragraph is an example of the sim-
plest sampling scheme used in statistics, called simple random sampling, in which
n objects are selected at random from a population (the population of commuting
days) and each member of the population (each day) is equally likely to be
included in the sample.

The n observations in the sample are denoted Y7, . .., Y,, where Y is the first
observation, Y, is the second observation, and so forth. In the commuting exam-
ple, Y; is the commuting time on the first of her n randomly selected days and Y;
is the commuting time on the i™ of her randomly selected days.

Because the members of the population included in the sample are selected
at random, the values of the observations Y7, ..., Y, are themselves random. If
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2.5

Simple Random Sampling and i.i.d. Random Variables

In a simple random sample, n objects are drawn at random from a population and
each object is equally likely to be drawn. The value of the random variable Y for
the i randomly drawn object is denoted Y;. Because each object is equally likely
to be drawn and the distribution of Y, is the same for all i, the random variables
Yy, ..., Y, are independently and identically distributed (i.i.d.); that is, the distri-
bution of Y;is the same foralli = 1, ..., n and Y is distributed independently
of Y,,...,Y, and so forth.

different members of the population are chosen, their values of Y will differ. Thus
the act of random sampling means that Y7, ..., Y, can be treated as random vari-
ables. Before they are sampled, Y, ..., Y, can take on many possible values;
after they are sampled, a specific value is recorded for each observation.

ii.d. draws. Because Y7, ..., Y, are randomly drawn from the same population,
the marginal distribution of Y, is the same for each i = 1, ..., n; this marginal
distribution is the distribution of Y in the population being sampled. When Y, has
the same marginal distribution for i = 1,...,n, then Yy, ..., Y, are said to be
identically distributed.

Under simple random sampling, knowing the value of Y, provides no infor-
mation about Y,, so the conditional distribution of Y, given Y/ is the same as the
marginal distribution of Y,. In other words, under simple random sampling, Y/ is
distributed independently of Y5, ..., Y,.

When Yy, ..., Y, are drawn from the same distribution and are indepen-
dently distributed, they are said to be independently and identically distributed
(or id.d.).

Simple random sampling and 1.i.d. draws are summarized in Key Concept 2.5.

The Sampling Distribution of the Sample Average

The sample average or sample mean, Y, of the n observations Yy, ..., Y, is
— 1 1 Z
Y= (Y1 +Y,+ - +Y,) = E;Y,.. (2.43)

An essential concept is that the act of drawing a random sample has the effect of
making the sample average Y a random variable. Because the sample was drawn
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at random, the value of each Y, is random. Because Y1, ..., Y, are random, their
average is random. Had a different sample been drawn, then the observations and
their sample average would have been different: The value of Y differs from one
randomly drawn sample to the next.

For example, suppose our student commuter selected five days at random to
record her commute times, then computed the average of those five times. Had
she chosen five different days, she would have recorded five different times —and
thus would have computed a different value of the sample average.

Because Y is random, it has a probability distribution. The distribution of Y
is called the sampling distribution of Y because it is the probability distribution
associated with possible values of Y that could be computed for different possible
samples Yq, ..., Y,.

The sampling distribution of averages and weighted averages plays a central
role in statistics and econometrics. We start our discussion of the sampling distri-
bution of Y by computing its mean and variance under general conditions on the
population distribution of Y.

Mean and variance of Y. Suppose that the observations Y7, ..., Y, are ii.d., and
let uy and o} denote the mean and variance of Y; (because the observations are i.i.d.
the mean and variance is the same for alli = 1, ...,n). When n = 2, the mean
of the sum Y; + Y, is given by applying Equation (2.28): E(Y; + Y,) = uy +
wy = 2uy. Thus the mean of the sample average is E[%(Yl + Y] = % X 2uy =
py. In general,

B(Y) =, S E(Y) = o (2.44)

The variance of Y is found by applying Equation (2.37). For example, for
n =2, var(Y, + Y,) = 203, so [by applying Equation (2.31) witha = b = %and
cov(Yy, Y,) = 0], var(Y) = %o%/. For general n, because Yy, ..., Y, areiid., Y;
and Y; are independently distributed for i # j, so cov(Y;, Y;) = 0. Thus,

— 1
var(Y) = Var(nz Yi)
i=1
1 n 1 n n
= — >var(Y;) + = > > cov(Y,Y))
n” =1 noi=1j=1)#i

(2.45)

=]

The standard deviation of Y is the square root of the variance, Uy\/;l.
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Financial Diversification and Portfolios

he principle of diversification says that you can
T reduce your risk by holding small investments
in multiple assets, compared to putting all your
money into one asset. That is, you shouldn’t put all
your eggs in one basket.

The math of diversification follows from Equa-
tion (2.45). Suppose you divide $1 equally among n
assets. Let Y, represent the payout in 1 year of $1
invested in the i asset. Because you invested 1/n
dollars in each asset, the actual payoff of your port-
folio after 1 yearis (Y; + Y, + -+ + Y,)/n =Y.
To keep things simple, suppose that each asset has
the same expected payout, uy, the same variance, a?,

and the same positive correlation p across assets [so

E(Y) = wy,and, for large n, the variance of the port-
folio payout is var(Y) = po? (Exercise 2.26). Putting
all your money into one asset or spreading it equally
across all n assets has the same expected payout, but
diversifying reduces the variance from o to pa.
The math of diversification has led to financial
products such as stock mutual funds, in which the
fund holds many stocks and an individual owns a
share of the fund, thereby owning a small amount
of many stocks. But diversification has its limits: For
many assets, payouts are positively correlated, so
var(Y) remains positive even if n is large. In the case
of stocks, risk is reduced by holding a portfolio, but

that portfolio remains subject to the unpredictable

that cov(Y;, Y;) = po?]. Then the expected payoutis  fluctuations of the overall stock market.

In summary, the mean, the variance, and the standard deviation of Y are

E(Y) = uy. (2.46)
V) — 2 — L%V
var(Y) = oy P and (2.47)
std.dev(Y) = oy = —~ (2.48)
Vn

These results hold whatever the distribution of Y, is; that is, the distribution of Y;
does not need to take on a specific form, such as the normal distribution, for
Equations (2.46) through (2.48) to hold.

The notation 0'2? denotes the variance of the sampling distribution of the
sample average Y. In contrast, o is the variance of each individual Y;, that is, the
variance of the population distribution from which the observation is drawn. Sim-
ilarly, oy denotes the standard deviation of the sampling distribution of Y.

Sampling distribution of Y when Y is normally distributed. Suppose that
Yy, ..., Y, areiid. draws from the N(uy, o%) distribution. As stated following
Equation (2.42), the sum of n normally distributed random variables is itself
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normally distributed. Because the mean of Y is uy and the variance of Y is o%/n,
this means that, if Y3, ..., Y, are i.i.d. draws from the N(uy, o%), then Y is dis-
tributed N(wy, o%/n).

Large-Sample Approximations
to Sampling Distributions

Sampling distributions play a central role in the development of statistical and
econometric procedures, so it is important to know, in a mathematical sense, what
the sampling distribution of Y is. There are two approaches to characterizing
sampling distributions: an “exact” approach and an “approximate” approach.

The “exact” approach entails deriving a formula for the sampling distribution
that holds exactly for any value of n. The sampling distribution that exactly
describes the distribution of Y for any 7 is called the exact distribution or finite-
sample distribution of Y. For example, if Y is normally distributed and Y7, ..., Y,
are i.i.d., then (as discussed in Section 2.5) the exact distribution of Y is normal
with mean uy and variance o3,/n. Unfortunately, if the distribution of Y is not
normal, then in general the exact sampling distribution of Y is very complicated
and depends on the distribution of Y.

The “approximate” approach uses approximations to the sampling distribution
that rely on the sample size being large. The large-sample approximation to the sam-
pling distribution is often called the asymptotic distribution — “asymptotic” because
the approximations become exact in the limit that n — . As we see in this section,
these approximations can be very accurate even if the sample size is only n = 30
observations. Because sample sizes used in practice in econometrics typically number
in the hundreds or thousands, these asymptotic distributions can be counted on to
provide very good approximations to the exact sampling distribution.

This section presents the two key tools used to approximate sampling distri-
butions when the sample size is large: the law of large numbers and the central
limit theorem. The law of large numbers says that, when the sample size is large,
Y will be close to wy with very high probability. The central limit theorem says
that, when the sample size is large, the sampling distribution of the standardized
sample average, (Y — wy)/oy, is approximately normal.

Although exact sampling distributions are complicated and depend on the dis-
tribution of Y, the asymptotic distributions are simple. Moreover —remarkably —
the asymptotic normal distribution of (Y — uy)/oy does not depend on the
distribution of Y. This normal approximate distribution provides enormous sim-
plifications and underlies the theory of regression used throughout this book.
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2.6

Convergence in Probability, Consistency, and the Law
of Large Numbers

The sample average Y converges in probability to wy (or, equivalently, Y is con-
sistent for uy) if the probability that Y is in the range (uy — c)to (uy + c) becomes
arbitrarily close to 1 as n increases for any constant ¢ > 0. The convergence of Y
to wy in probability is written, ¥ —2> uy.

The law of large numbers says thatif Y;,i = 1, ..., n are independently and
identically distributed with E(Y;) = wy and if large outliers are unlikely (techni-
cally if var(Y;) = 0% <), then Y —> p,.

The Law of Large Numbers and Consistency

The law of large numbers states that, under general conditions, Y will be near uy
with very high probability when 7 is large. This is sometimes called the “law of
averages.” When a large number of random variables with the same mean are
averaged together, the large values balance the small values and their sample
average is close to their common mean.

For example, consider a simplified version of our student commuter’s exper-
iment in which she simply records whether her commute was short (less than
20 minutes) or long. Let Y; = 1 if her commute was short on the i randomly
selected day and Y; = 0if it was long. Because she used simple random sampling,
Y, ..., Y,areiid. Thus Y, i = 1,..., nareii.d. draws of a Bernoulli random
variable, where (from Table 2.2) the probability that Y; = 1 is 0.78. Because
the expectation of a Bernoulli random variable is its success probability,
E(Y;) = wy = 0.78. The sample average Y is the fraction of days in her sample
in which her commute was short.

Figure 2.8 shows the sampling distribution of Y for various sample sizes 7.
When n = 2 (Figure 2.8a), Y can take on only three values: 0, 3, and 1 (neither
commute was short, one was short, and both were short), none of which is par-
ticularly close to the true proportion in the population, 0.78. As n increases, how-
ever (Figures 2.8b—d), Y takes on more values and the sampling distribution
becomes tightly centered on uy.

The property that Y is near wy with increasing probability as n increases is
called convergence in probability or, more concisely, consistency (see Key Con-
cept 2.6). The law of large numbers states that, under certain conditions, Y con-
verges in probability to uy or, equivalently, that Y is consistent for uy.
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p
m Sampling Distribution of the Sample Average of n Bernoulli
Random Variables

Probability Probability
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The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random variables
with p = Pr(Y; = 1) = 0.78 (the probability of a short commute is 78%). The variance of the sampling distribution of
Y decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean u = 0.78
as the sample size nincreases.
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The conditions for the law of large numbers that we will use in this book are
that Y;,i = 1, ...,n are i.i.d. and that the variance of Y;, 6%, is finite. The math-
ematical role of these conditions is made clear in Section 17.2, where the law of large
numbers is proven. If the data are collected by simple random sampling, then the i.1.d.
assumption holds. The assumption that the variance is finite says that extremely large
values of Y;—that is, outliers—are unlikely and observed infrequently; otherwise, these
large values could dominate Y and the sample average would be unreliable. This
assumption is plausible for the applications in this book. For example, because there
is an upper limit to our student’s commuting time (she could park and walk if the
traffic is dreadful), the variance of the distribution of commuting times is finite.

The Central Limit Theorem

The central limit theorem says that, under general conditions, the distribution of
Y is well approximated by a normal distribution when 7 is large. Recall that the
mean of Y is uy and its variance is 0’% = 0% /n. According to the central limit
theorem, when 7 is large, the distribution of Y is approximately N(uy, 0'%). As
discussed at the end of Section 2.5, the distribution of Y is exactly N(wy, o) when
the sample is drawn from a population with the normal distribution N(uy, o%).
The central limit theorem says that this same result is approximately true when n
is large even if Yy, ..., Y, are not themselves normally distributed.

The convergence of the distribution of Y to the bell-shaped, normal approxi-
mation can be seen (a bit) in Figure 2.8. However, because the distribution gets
quite tight for large n, this requires some squinting. It would be easier to see the
shape of the distribution of Y if you used a magnifying glass or had some other
way to zoom in or to expand the horizontal axis of the figure.

One way to do this is to standardize Y by subtracting its mean and dividing
by its standard deviation so that it has a mean of 0 and a variance of 1. This
process leads to examining the distribution of the standardized version of
Y, (Y — ny)/oy. According to the central limit theorem, this distribution should
be well approximated by a N(0, 1) distribution when # is large.

The distribution of the standardized average (Y — wy)/oyis plotted in Fig-
ure 2.9 for the distributions in Figure 2.8; the distributions in Figure 2.9 are exactly
the same as in Figure 2.8, except that the scale of the horizontal axis is changed so
that the standardized variable has a mean of 0 and a variance of 1. After this
change of scale, it is easy to see that, if 7 is large enough, the distribution of Y is
well approximated by a normal distribution.

One might ask, how large is “large enough”? That is, how large must »n be for
the distribution of Y to be approximately normal? The answer is, “It depends.” The
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The sampling distribution of Y in Figure 2.8 is plotted here after standardizing Y. This plot centers the distributions in
Figure 2.8 and magnifies the scale on the horizontal axis by a factor of V/n. When the sample size is large, the sam-
pling distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the
central limit theorem. The normal distribution is scaled so that the height of the distributions is approximately the
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2.7

The Central Limit Theorem

Suppose that Yy, ...,Y, are i.i.d. with E(Y;) = uy and var(Y;) = o3, where
0 <0} < ©. As n— =, the distribution of (Y — uy) /oy (where o = ¥ /n)
becomes arbitrarily well approximated by the standard normal distribution.

quality of the normal approximation depends on the distribution of the underly-
ing Y; that make up the average. At one extreme, if the Y; are themselves nor-
mally distributed, then Y is exactly normally distributed for all n. In contrast,
when the underlying Y; themselves have a distribution that is far from normal,
then this approximation can require n = 30 or even more.

This point is illustrated in Figure 2.10 for a population distribution, shown in
Figure 2.10a, that is quite different from the Bernoulli distribution. This distribu-
tion has a long right tail (it is “skewed” to the right). The sampling distribution of
Y, after centering and scaling, is shown in Figures 2.10b—d for n = 5, 25, and 100,
respectively. Although the sampling distribution is approaching the bell shape for
n = 25, the normal approximation still has noticeable imperfections. By n = 100,
however, the normal approximation is quite good. In fact, for n = 100, the normal
approximation to the distribution of Y typically is very good for a wide variety of
population distributions.

The central limit theorem is a remarkable result. While the “small »” distribu-
tions of Y in parts b and ¢ of Figures 2.9 and 2.10 are complicated and quite different
from each other, the “large n” distributions in Figures 2.9d and 2.10d are simple
and, amazingly, have a similar shape. Because the distribution of Y approaches the
normal as n grows large, Y is said to have an asymptotic normal distribution.

The convenience of the normal approximation, combined with its wide appli-
cability because of the central limit theorem, makes it a key underpinning of mod-
ern applied econometrics. The central limit theorem is summarized in Key
Concept 2.7.

Summary

1. The probabilities with which a random variable takes on different values are
summarized by the cumulative distribution function, the probability distri-
bution function (for discrete random variables), and the probability density
function (for continuous random variables).
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The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asymmetric)
population distribution shown in Figure 2.10a. When nis small (n = 5), the sampling distribution, like the population
distribution, is skewed. But when niis large (n = 100), the sampling distribution is well approximated by a standard
normal distribution (solid line), as predicted by the central limit theorem. The normal distribution is scaled so that the
height of the distributions is approximately the same in all figures.
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2.

The expected value of a random variable Y (also called its mean, wuy),
denoted E(Y), is its probability-weighted average value. The variance of Y
is 0% = E[(Y — wy)?], and the standard deviation of Y is the square root
of its variance.

The joint probabilities for two random variables X and Y are summarized
by their joint probability distribution. The conditional probability distribu-
tion of Y given X = x is the probability distribution of Y, conditional on X
taking on the value x.

A normally distributed random variable has the bell-shaped probability
density in Figure 2.5. To calculate a probability associated with a normal
random variable, first standardize the variable and then use the standard
normal cumulative distribution tabulated in Appendix Table 1.

Simple random sampling produces n random observations Y7, ..., Y, that
are independently and identically distributed (i.i.d.).

The sample average, Y, varies from one randomly chosen sample to the next
and thus is a random variable with a sampling distribution. If Y3, ..., Y, are

1.1.d., then:

2

a. the sampling distribution of Y has mean u, and variance oy = o /n;

b. the law of large numbers says that Y converges in probability to uy; and

c. the central limit theorem says that the standardized version of Y,
(Y — py)/oy, has a standard normal distribution [ N(0, 1) distribution]

when n is large.

Key Terms

outcomes (15)

probability (15)

sample space (15)

event (15)

discrete random variable (15)

continuous random variable (15)

probability distribution (16)

cumulative probability
distribution (16)

cumulative distribution function
(c.d.f) (17)

Bernoulli random variable (17)

Bernoulli distribution (17)

probability density
function (p.d.f.) (19)

density function (19)

density (19)

expected value (19)

expectation (19)

mean (19)

variance (21)

standard deviation (21)

moments of a distribution (23)

skewness (23)

kurtosis (25)

outlier (25)



leptokurtic (25)

r'" moment (25)

joint probability distribution (26)
marginal probability distribution (27)
conditional distribution (27)
conditional expectation (28)
conditional mean (28)

law of iterated expectations (29)
conditional variance (30)
independently distributed (31)
independent (31)

covariance (31)

correlation (32)

uncorrelated (32)

normal distribution (36)

standard normal distribution (36)
standardize a variable (36)
multivariate normal distribution (38)
bivariate normal distribution (38)
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chi-squared distribution (41)

Student ¢ distribution (41)

t distribution (42)

F distribution (42)

simple random sampling (43)

population (43)

identically distributed (44)

independently and identically
distributed (i.i.d.) (44)

sample average (44)

sample mean (44)

sampling distribution (45)

exact (finite-sample) distribution (47)

asymptotic distribution (47)

law of large numbers (48)

convergence in probability (48)

consistency (48)

central limit theorem (50)

asymptotic normal distribution (52)
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Review the Concepts

2.1. Examples of random variables used in this chapter included (a) the gender

of the next person you meet, (b) the number of times a computer crashes,
(c) the time it takes to commute to school, (d) whether the computer you

are assigned in the library is new or old, and (e) whether it is raining or not.
Explain why each can be thought of as random.

2.2. Suppose that the random variables X and Y are independent and you know
their distributions. Explain why knowing the value of X tells you nothing

about the value of Y.
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2.3.

24.

2.5.

2.6.

2.7.

Suppose that X denotes the amount of rainfall in your hometown during
arandomly selected month and Y denotes the number of children born
in Los Angeles during the same month. Are X and Y independent?
Explain.

An econometrics class has 80 students, and the mean student weight is
145 1b. A random sample of 4 students is selected from the class, and their
average weight is calculated. Will the average weight of the students in the
sample equal 145 1b? Why or why not? Use this example to explain why
the sample average, Y, is a random variable.

Suppose that Y7, ..., Y, are i.i.d. random variables with a N(1, 4) distri-
bution. Sketch the probability density of Y when n = 2. Repeat this for
n = 10 and n = 100. In words, describe how the densities differ. What is
the relationship between your answer and the law of large numbers?

Suppose that Yy, ..., Y, are i.i.d. random variables with the probability
distribution given in Figure 2.10a. You want to calculate Pr( Y = 0.1).
Would it be reasonable to use the normal approximation if n = 5? What
about n = 25 or n = 100? Explain.

Y is a random variable with uy = 0,0y = 1, skewness = 0, and
kurtosis = 100. Sketch a hypothetical probability distribution of Y.
Explain why n random variables drawn from this distribution might have
some large outliers.

Exercises

2.1

2.2

2.3
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Let Y denote the number of “heads” that occur when two coins are tossed.
a. Derive the probability distribution of Y.

b. Derive the cumulative probability distribution of Y.

¢. Derive the mean and variance of Y.

Use the probability distribution given in Table 2.2 to compute (a) E(Y) and
E(X); (b) 0% and ¢%; and (c) oyy and corr(X, Y).

Using the random variables X and Y from Table 2.2, consider two new
random variables W = 3 + 6X and V = 20 — 7Y. Compute (a) E(W) and
E(V); (b) o3y and o}; and (c) oy and corr(W, V).

Suppose X is a Bernoulli random variable with P(X = 1) = p.
a. Show E(X°) = p.
b. Show E(X*) = p fork > 0.
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¢. Suppose that p = 0.3. Compute the mean, variance, skewness, and
kurtosis of X. (Hint: You might find it helpful to use the formulas
given in Exercise 2.21.)

In September, Seattle’s daily high temperature has a mean of 70°F and
a standard deviation of 7°F. What are the mean, standard deviation, and
variance in °C?

The following table gives the joint probability distribution between employ-
ment status and college graduation among those either employed or looking
for work (unemployed) in the working-age U.S. population for 2012.

~

P
Joint Distribution of Employment Status and College Graduation in the
U.S. Population Aged 25 and Older, 2012
Unemployed Employed
(Y =0 Y=1 Total
Non-—college grads (X = 0) 0.053 0.586 0.639
College grads (X = 1) 0.015 0.346 0.361
kTotal 0.068 0.932 1.000 )

a. Compute E(Y).

b. The unemployment rate is the fraction of the labor force that is
unemployed. Show that the unemployment rate is given by 1 — E(Y).

c¢. Calculate E(Y|X = 1) and E(Y|X = 0).

d. Calculate the unemployment rate for (i) college graduates and
(ii) non—college graduates.

e. A randomly selected member of this population reports being unem-
ployed. What is the probability that this worker is a college graduate?
A non—college graduate?

f. Are educational achievement and employment status independent?
Explain.

In a given population of two-earner male-female couples, male earnings
have a mean of $40,000 per year and a standard deviation of $12,000.
Female earnings have a mean of $45,000 per year and a standard deviation
of $18,000. The correlation between male and female earnings for a couple
is 0.80. Let C denote the combined earnings for a randomly selected couple.

a. What is the mean of C?

b. What is the covariance between male and female earnings?
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c¢. What is the standard deviation of C?
d. Convert the answers to (a) through (c) from U.S. dollars (§) to

euros (€).

2.8 The random variable Y has a mean of 1 and a variance of 4. Let Z =

L(Y — 1). Show that uy = 0 and o% = 1.

2.9 Xand Y are discrete random variables with the following joint distribution:

( Value of Y h
14 22 30 40 65
0.02 0.05 0.10 0.03 0.01
Value of X 5 0.17 0.15 0.05 0.02 0.01
8 0.02 0.03 0.15 0.10 0.09
. )

That is, Pr(X = 1, Y = 14) = 0.02, and so forth.

a. Calculate the probability distribution, mean, and variance of Y.

b. Calculate the probability distribution, mean, and variance of Y given

X =8.

¢. Calculate the covariance and correlation between X and Y.

2.10 Compute the following probabilities:

a. If Yis distributed N(1, 4), find Pr(Y = 3).
b. If Yis distributed N(3,9), find Pr(Y > 0).

c. If Yis distributed N(50, 25), find Pr(40 = Y = 52).

d. If Yis distributed N(5, 2), find Pr(6 = Y = 8).

2.11 Compute the following probabilities:

& e Fon

e

the x? distribution.)

If Y is distributed 3, find Pr(Y = 7.78).

If Y is distributed y3, find Pr(Y > 18.31).

If Yis distributed Fy( .., find Pr(Y > 1.83).
Why are the answers to (b) and (c) the same?
If Yis distributed x7, find Pr(Y = 1.0). (Hint: Use the definition of

2.12 Compute the following probabilities:

a. If Yis distributed ¢;5, find Pr(Y > 1.75).



213

2.14

2.15

2.16

Exercises 59

b. If Yis distributed tgy, find Pr(—1.99 = Y = 1.99).

c. If Yisdistributed N(0, 1), find Pr(—=1.99 = Y = 1.99).

d. Why are the answers to (b) and (c) approximately the same?

e. If Yis distributed F7 4, find Pr(Y > 4.12).

f. If Yis distributed F; 15, find Pr(Y > 2.79).

X is a Bernoulli random variable with Pr(X = 1) = 0.99, Y is distributed
N(0, 1), Wis distributed N(0, 100), and X, Y, and W are independent. Let
S=XY+ (1 - X)W. (Thatis, S = Y when X = 1,and S = W when
X =0)

a. Show that E(Y?) = 1 and E(W?) = 100.

b. Show that E(Y?) = 0 and E(W?) = 0. (Hint: What is the skewness
for a symmetric distribution?)

¢. Show that E(Y*) = 3 and E(W*) = 3 X 100°. (Hint: Use the fact that
the kurtosis is 3 for a normal distribution.)

d. Derive E(S), E(S?), E(S®) and E(S*). (Hint: Use the law of iterated
expectations conditioningon X = 0 and X = 1.)

e. Derive the skewness and kurtosis for S.
In a population uy = 100 and 0% = 43. Use the central limit theorem to
answer the following questions:
a. In a random sample of size n = 100, find Pr(Y = 101).
b. In a random sample of size n = 165, find Pr(Y > 98).
c¢. In arandom sample of size n = 64, find Pr(101 = Y = 103).
Suppose Y;,i = 1,2, ...,n, are 1.1.d. random variables, each distributed
N(10, 4).
a. Compute Pr(9.6 = Y = 10.4) when (i) n = 20, (ii) » = 100, and
(iii) n = 1000.
b. Suppose c is a positive number. Show that Pr(10 — ¢ = Y = 10 + ¢)
becomes close to 1.0 as n grows large.
c¢. Use your answer in (b) to argue that Y converges in probability

to 10.

Y is distributed N(5, 100) and you want to calculate Pr(Y < 3.6). Unfor-
tunately, you do not have your textbook, and do not have access to a nor-
mal probability table like Appendix Table 1. However, you do have your
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2.18

2.19

2.20

computer and a computer program that can generate i.i.d. draws from the
N(5, 100) distribution. Explain how you can use your computer to compute
an accurate approximation for Pr(Y < 3.6).

Y,i=1,...,n,are i.i.d. Bernoulli random variables with p = 0.4. Let
Y denote the sample mean.

a. Use the central limit to compute approximations for
i. Pr(Y = 0.43) when n = 100.

ii. Pr(Y = 0.37) when n = 400.

b. How large would n need to be to ensure that Pr(0.39 = Y = 0.41) =
0.95? (Use the central limit theorem to compute an approximate
answer.)

In any year, the weather can inflict storm damage to a home. From year to
year, the damage is random. Let Y denote the dollar value of damage in
any given year. Suppose that in 95% of the years Y = $0, but in 5% of the
years Y = $20,000.

a. What are the mean and standard deviation of the damage in any year?

b. Consider an “insurance pool” of 100 people whose homes are suffi-
ciently dispersed so that, in any year, the damage to different homes
can be viewed as independently distributed random variables. Let Y
denote the average damage to these 100 homes in a year. (i) What is
the expected value of the average damage Y? (ii) What is the prob-
ability that Y exceeds $2000?

Consider two random variables X and Y. Suppose that Y takes on k values
Y1, - - - » Vx and that X takes on / values x4, . .., x;.

a. Show that Pr(Y = y;) = S Pr(Y = yi| X = x;) Pr(X = x,). [Hint:
Use the definition of Pr(Y = y;| X = x;).]

b. Use your answer to (a) to verify Equation (2.19).

¢. Suppose that X and Y are independent. Show that oyy = 0 and
corr(X, Y) = 0.

Consider three random variables X, Y, and Z. Suppose that Y takes on
k values yy, ..., Vi, that X takes on / values x, . . ., x;, and that Z takes
on m values zy, ..., z,,. The joint probability distribution of X, Y, Z is
Pr(X = x,Y =y, Z = z), and the conditional probability distribution of

YgivenXand ZisPr(Y =y | X =x,Z =7) = Pr();rTXy’:X:Zx’:ZZ): .




2.21

2.22

2.23

Exercises 61

a. Explain how the marginal probability that Y = y can be calculated
from the joint probability distribution. [Hint: This is a generalization
of Equation (2.16).]

b. Show that E(Y) = E[E(Y|X, Z)]. [Hint: This is a generalization of
Equations (2.19) and (2.20).]

X is a random variable with moments E(X), E(X?), E(X?), and so forth.

a. Show E(X — u)’ = E(X°) — 3[E(X)][E(X)] + 2[E(X)]°.

b. Show E(X — w)* = E(X*) — 4[EXEX)] + 6[E(X)P[EX?)] -
3EXT

Suppose you have some money to invest— for simplicity, $1 —and you are
planning to put a fraction w into a stock market mutual fund and the rest,
1 —w, into a bond mutual fund. Suppose that $1 invested in a stock fund
yields R, after 1 year and that $1 invested in a bond fund yields R;, suppose
that R, is random with mean 0.08 (8 %) and standard deviation 0.07, and
suppose that R, is random with mean 0.05 (5%) and standard deviation
0.04. The correlation between R, and R, is 0.25. If you place a fraction w
of your money in the stock fund and the rest, 1 — w, in the bond fund, then
the return on your investment is R = wR, + (1 — w)R,.

a. Suppose that w = 0.5. Compute the mean and standard deviation of R.

b. Suppose that w = 0.75. Compute the mean and standard deviation of R.

¢. What value of w makes the mean of R as large as possible? What is
the standard deviation of R for this value of w?

d. (Harder) What is the value of w that minimizes the standard deviation
of R? (Show using a graph, algebra, or calculus.)

This exercise provides an example of a pair of random variables X
and Y for which the conditional mean of Y given X depends on X but
corr(X, Y) = 0. Let X and Z be two independently distributed standard
normal random variables, and let Y = X? + Z.

a. Show that E(Y|X) = X°.
b. Show that uy = 1.

c¢. Show that E(XY) = 0. (Hint: Use the fact that the odd moments of a
standard normal random variable are all zero.)

d. Show that cov(X, Y) = 0 and thus corr(X, Y) = 0.
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2.24 Suppose Y;is distributed i.i.d. N(0, o?) fori = 1,2, ..., n.

2.25

2.26

a. Show that E(Y?/o?) = 1.
b. Show that W = (1/0?) 3=, Y ?is distributed 2.
c¢. Show that E(W) = n. [Hint: Use your answer to (a).]

SiY7

is distributed #,, ;.
n—

d. Show thatV =Y, /

(Review of summation notation) Let xy, ..., x, denote a sequence of
numbers, yy, . . ., y, denote another sequence of numbers, and a, b, and ¢
denote three constants. Show that

n n
a. Eaxi - ClEXi
=1 =1
n n n
b, D (x+y) =25+ DV
i=1 i=1 i=1
n
¢ >a=na
=1
n n n n
d. Di(a + bx; + cy)* = na* + B2 xi + D yF + 2ab D x; +
i=1 i=1 i=1 i=1

2ac2y,- + 2bc2xiy,-
i=1 =1

Suppose that Y5, Y5, .. ., Y, are random variables with a common mean puy,
a common variance o4, and the same correlation p (so that the correlation
between Y; and Y is equal to p for all pairs i and j, where i # ).
a. Show that cov(Y}, Y;) = poifori # j.
b. Suppose that n = 2. Show that E(Y) = uy and var(Y) = 10} + 3po?.
¢. Forn = 2,show that E(Y) = uy and var(Y) = o%/n +

[(n = 1)/nlpos.
d. When 7 is very large, show that var(Y) = po?.

2.27 X and Z are two jointly distributed random variables. Suppose you know

the value of Z, but not the value of X. Let X = E(X | Z) denote a guess
of the value of X using the information on Z,andlet W = X — X denote
the error associated with this guess.

a. Show that E(W) = 0. (Hint: Use the law of iterated expectations.)

b. Show that E(WZ) = 0.



Derivation of Results in Key Concept 2.3 63

¢ LetX = g(Z) denote another guess of X using Z,and V = X — X
denote its error. Show that E(V?) = E(W?). [Hint: Let h(Z) =
g(Z) — E(X|Z),sothatV = [X — E(X|Z)] — h(Z). Derive
E(V?)]

Empirical Exercise

E2.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you
will find the spreadsheet Age HourlyEarnings, which contains the joint
distribution of age (Age) and average hourly earnings (AHE) for 25- to
34-year-old full-time workers in 2012 with an education level that exceeds
a high school diploma. Use this joint distribution to carry out the follow-
ing exercises. (Note: For these exercises, you need to be able to carry out
calculations and construct charts using a spreadsheet.)

a. Compute the marginal distribution of Age.

b. Compute the mean of AHE for each value of Age; that is, compute,
E(AHE|Age = 25), and so forth.

¢. Compute and plot the mean of AHE versus Age. Are average hourly
earnings and age related? Explain.

d. Use the law of iterated expectations to compute the mean of AHE
that is, compute E(AHE).

Compute the variance of AHE.
Compute the covariance between AHE and Age.

Compute the correlation between AHE and Age.

S S T

Relate your answers in parts (f) and (g) to the plot you constructed
in (c).

APPENDIX

2.1 Derivation of Results in Key Concept 2.3

This appendix derives the equations in Key Concept 2.3.

Equation (2.29) follows from the definition of the expectation.

To derive Equation (2.30), use the definition of the variance to write var(a + bY) =
Efla + bY — E(a + bY)P} = E{[b(Y — py)P’} = D’E[(Y — uy)’] = b0}
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To derive Equation (2.31), use the definition of the variance to write

var(aX + bY) = E{[(aX + bY) — (apx + buy)]*}
= E{[a(X — px) + b(Y — py)]*}
= E[a*(X — ux)’] + 2E[ab(X — px)(Y — uy)]
+ E[D*(Y = py)’]
= a*var(X) + 2abcov(X,Y) + b*var(Y)
= a’*0% + 2aboyy + b*o%, (2.49)

where the second equality follows by collecting terms, the third equality follows by expanding
the quadratic, and the fourth equality follows by the definition of the variance and covariance.

To derive Equation (2.32), write E(Y?) = E{[(Y — uy) + myJ*} = E[(Y — uy)?] +
2uyE(Y — py) + wp = of + u because E(Y — uy) = 0.

To derive Equation (2.33), use the definition of the covariance to write

covia + bX + ¢V, Y) = E{[la + bX + ¢V — E(a + bX + cV)][Y — uyl}
= E{[bX — py) + oV — m)][Y — ]}
= E{[b(X = px)][Y = pyl} + E{[c(V = m)][Y — py]}
= boyy + coyy, (2.50)

which is Equation (2.33).
To derive Equation (2.34),write E(XY) = E{[(X — px) + pux | [(Y — pny) + py]} =
E[(X = px)(Y = py)] + pxE(Y — py) + uyE(X — px) + pxpy = oxy + px by
We now prove the correlation inequality in Equation (2.35); thatis, | corr (X, Y)| = 1.

Leta = —oyy/o% and b = 1. Applying Equation (2.31), we have that

var(aX + Y) = d°c% + 0% + 2a0yy
— 2y2 2 2 2
= (~oxy/ox) ox + oy + 2(~oxy/oX)oxy
- 2 2 2
Because var(aX + Y)is a variance, it cannot be negative, so from the final line of Equa-

tion (2.51), it must be that 03 — 0%y /0% = 0. Rearranging this inequality yields

oky = 0%0%  (covariance inequality). (2.52)
The covariance inequality implies that o%y/(c%0%) =1 or, equivalently,
\oxy/(ox0oy)| = 1, which (using the definition of the correlation) proves the correlation

inequality, |corr (X Y)| = 1.



Review of Statistics

Statistics is the science of using data to learn about the world around us. Statisti-
cal tools help us answer questions about unknown characteristics of distribu-
tions in populations of interest. For example, what is the mean of the distribution of
earnings of recent college graduates? Do mean earnings differ for men and women,
and, if so, by how much?

These questions relate to the distribution of earnings in the population of
workers. One way to answer these questions would be to perform an exhaustive
survey of the population of workers, measuring the earnings of each worker and
thus finding the population distribution of earnings. In practice, however, such a
comprehensive survey would be extremely expensive. The only comprehensive sur-
vey of the U.S. population is the decennial census, which cost $13 billion to carry
out in 2010. The process of designing the census forms, managing and conducting
the surveys, and compiling and analyzing the data takes ten years. Despite this
extraordinary commitment, many members of the population slip through the
cracks and are not surveyed. Thus a different, more practical approach is needed.

The key insight of statistics is that one can learn about a population distribution
by selecting a random sample from that population. Rather than survey the entire
U.S. population, we might survey, say, 1000 members of the population, selected at
random by simple random sampling. Using statistical methods, we can use this
sample to reach tentative conclusions—to draw statistical inferences—about char-
acteristics of the full population.

Three types of statistical methods are used throughout econometrics: estima-
tion, hypothesis testing, and confidence intervals. Estimation entails computing a
“best guess” numerical value for an unknown characteristic of a population distri-
bution, such as its mean, from a sample of data. Hypothesis testing entails formulat-
ing a specific hypothesis about the population, then using sample evidence to
decide whether it is true. Confidence intervals use a set of data to estimate an inter-
val or range for an unknown population characteristic. Sections 3.1, 3.2, and 3.3
review estimation, hypothesis testing, and confidence intervals in the context of
statistical inference about an unknown population mean.

Most of the interesting questions in economics involve relationships between
two or more variables or comparisons between different populations. For example,
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3.1

is there a gap between the mean earnings for male and female recent college grad-
uates? In Section 3.4, the methods for learning about the mean of a single popula-
tion in Sections 3.1 through 3.3 are extended to compare means in two different
populations. Section 3.5 discusses how the methods for comparing the means of
two populations can be used to estimate causal effects in experiments. Sections 3.2
through 3.5 focus on the use of the normal distribution for performing hypothesis
tests and for constructing confidence intervals when the sample size is large. In
some special circumstances, hypothesis tests and confidence intervals can be based
on the Student t distribution instead of the normal distribution; these special cir-
cumstances are discussed in Section 3.6. The chapter concludes with a discussion of
the sample correlation and scatterplots in Section 3.7.

Estimation of the Population Mean

Suppose you want to know the mean value of Y (that is, uy) in a population,
such as the mean earnings of women recently graduated from college. A natural
way to estimate this mean is to compute the sample average Y from a sample of
n independently and identically distributed (i.i.d.) observations, Yy,...,Y,
(recall that Yy,...,Y, are i.i.d. if they are collected by simple random sam-
pling). This section discusses estimation of wy, and the properties of Y as an
estimator of wy.

Estimators and Their Properties

Estimators. The sample average Y is a natural way to estimate wy, but it is not
the only way. For example, another way to estimate wy is simply to use the first
observation, Y;. Both Y and Y; are functions of the data that are designed to
estimate uy; using the terminology in Key Concept 3.1, both are estimators of uy.
When evaluated in repeated samples, Y and Y, take on different values (they
produce different estimates) from one sample to the next. Thus the estimators Y
and Y both have sampling distributions. There are, in fact, many estimators of uy,
of which Y and Y; are two examples.

There are many possible estimators, so what makes one estimator “better”
than another? Because estimators are random variables, this question can be
phrased more precisely: What are desirable characteristics of the sampling distri-
bution of an estimator? In general, we would like an estimator that gets as close
as possible to the unknown true value, at least in some average sense; in other
words, we would like the sampling distribution of an estimator to be as tightly
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Estimators and Estimates

An estimator is a function of a sample of data to be drawn randomly from a
population. An estimate is the numerical value of the estimator when it is actually
computed using data from a specific sample. An estimator is a random variable
because of randomness in selecting the sample, while an estimate is a nonrandom
number.

3.1

centered on the unknown value as possible. This observation leads to three specific
desirable characteristics of an estimator: unbiasedness (a lack of bias), consis-
tency, and efficiency.

Unbiasedness. Suppose you evaluate an estimator many times over repeated ran-
domly drawn samples. It is reasonable to hope that, on average, you would get the
right answer. Thus a desirable property of an estimator is that the mean of its
sampling distribution equals uy; if so, the estimator is said to be unbiased.

To state this concept mathematically, let 4y denote some estimator of uy,
such as Y or Y;. The estimator fiy is unbiased if E({iy) = wy, where E(fiy) is the
mean of the sampling distribution of fy; otherwise, fy is biased.

Consistency. Another desirable property of an estimator wy is that, when the
sample size is large, the uncertainty about the value of uy arising from random
variations in the sample is very small. Stated more precisely, a desirable property
of iy is that the probability that it is within a small interval of the true value uy
approaches 1 as the sample size increases, that is, iy is consistent for uy (Key
Concept 2.6).

Variance and efficiency. Suppose you have two candidate estimators, iy and
Ly, both of which are unbiased. How might you choose between them? One way
to do so is to choose the estimator with the tightest sampling distribution. This
suggests choosing between fy and py by picking the estimator with the smallest
variance. If iy has a smaller variance than wy, then iy is said to be more efficient
than py. The terminology “efficiency” stems from the notion that if 4y has a
smaller variance than gy, then it uses the information in the data more efficiently
than does uy.
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Bias, Consistency, and Efficiency

3.2

Let iy be an estimator of wy. Then:
T 6XX bias of iy is E(y) — py.
T fy is an unbiased estimator of wy if E(iy) = uy.
T fiy is a consistent estimator of py if fiy —2— uy.

T KXy be another estimator of wy and suppose that both {1y and iy are unbiased.
Then [y is said to be more efficient than iy if var(iy) < var(gmy).

Bias, consistency, and efficiency are summarized in Key Concept 3.2.

Properties of Y

How does Y fare as an estimator of uy when judged by the three criteria of bias,
consistency, and efficiency?

Bias and consistency. The sampling distribution of Y has already been examined
in Sections 2.5 and 2.6. As shown in Section 2.5, E(Y ) = uy,so Y is an unbiased
estimator of wy. Similarly, the law of large numbers (Key Concept 2.6) states that
Y —£> uy; thatis, Y is consistent.

Efficiency. What can be said about the efficiency of Y? Because efficiency entails
a comparison of estimators, we need to specify the estimator or estimators to
which Y is to be compared.

We start by comparing the efficiency of Y to the estimator Y;. Because
Yy, ..., Y, areiid., the mean of the sampling distribution of Y; is E(Y;) = uy;
thus Y is an unbiased estimator of wy. Its variance is var(Y;) = o%. From Section
2.5, the variance of Y is a'%// n. Thus, for n = 2, the variance of Y is less than the
variance of Y;;that is, Y is a more efficient estimator than Y7, so, according to the
criterion of efficiency, Y should be used instead of Y;. The estimator Y, might
strike you as an obviously poor estimator —why would you go to the trouble of
collecting a sample of n observations only to throw away all but the first? —and
the concept of efficiency provides a formal way to show that Y is a more desirable

estimator than Y.
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Efficiency of Y: Y Is BLUE

Let 4y be an estimator of uy that is a weighted average of Y;,...,Y,, thatis,
dy = (1/n)X/-,a;Y;, where ay, ... ,a, are nonrandom constants. If iy is un-
biased, then var(Y) < var({iy) unless fiy = Y. Thus Y is the Best Linear Unbiased
Estimator (BLUE); that is, Y is the most efficient estimator of wy among all

3.3

unbiased estimators that are weighted averages of Yy, ..., Y,,.

What about a less obviously poor estimator? Consider the weighted average
in which the observations are alternately weighted by % and %:

Y

1(;Y1 + iYZ + ;Y3 + ;Y4 + - 4 ;Yn—1 + ;Y,,) (3.1)
where the number of observations 7 is assumed to be even for convenience. The
mean of Y is uy and its variance is var(Y) = 1. 250'y/ n (Exercise 3.11). Thus Y is
unbiased and, because var( Y) — 0 as n— o, Y is consistent. However, Y has a
larger variance than Y. Thus Y is more efficient than Y.

The estimators Y, Yy, and Y have a common mathematical structure: They
are weighted averages of Y7, ..., Y,. The comparisons in the previous two para-
graphs show that the weighted averages Y and Y have larger variances than Y.
In fact, these conclusions reflect a more general result: Y is the most efficient
estimator of all unbiased estimators that are weighted averages of Yy, ..., Y.
Said differently, Y is the Best Linear Unbiased Estimator (BLUE); that is, it is
the most efficient (best) estimator among all estimators that are unbiased and are
linear functions of Yy, ..., Y,. This result is stated in Key Concept 3.3 and is
proved in Chapter 5.

Y is the least squares estimator of 1. The sample average Y provides the best fit
to the data in the sense that the average squared differences between the observa-
tions and Y are the smallest of all possible estimators.

Consider the problem of finding the estimator m that minimizes

2(1@ — m, (32)

which is a measure of the total squared gap or distance between the estimator m
and the sample points. Because m is an estimator of £(Y), you can think of it as a
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hortly before the 1936 U.S. presidential election,
S the Literary Gazette published a poll indicating
that Alf M. Landon would defeat the incumbent,
Franklin D. Roosevelt, by a landslide —57% to 43%.
The Gazette was right that the election was a land-
slide, but it was wrong about the winner: Roosevelt
won by 59% to 41%!
How could the Gazette have made such a big
mistake? The Gazette’s sample was chosen from

telephone records and automobile registration

files. But in 1936 many households did not have
cars or telephones, and those that did tended
to be richer—and were also more likely to be
Republican. Because the telephone survey did
not sample randomly from the population but
instead undersampled Democrats, the estimator
was biased and the Gazette made an embarrass-
ing mistake.

Do you think surveys conducted using social

media might have a similar problem with bias?

prediction of the value of Y}, so the gap Y; — m can be thought of as a prediction
mistake. The sum of squared gaps in Expression (3.2) can be thought of as the sum
of squared prediction mistakes.

The estimator m that minimizes the sum of squared gaps Y; — m in Expres-
sion (3.2) is called the least squares estimator. One can imagine using trial and
error to solve the least squares problem: Try many values of m until you are satis-
fied that you have the value that makes Expression (3.2) as small as possible.
Alternatively, as is done in Appendix 3.2, you can use algebra or calculus to show
that choosing m = Y minimizes the sum of squared gaps in Expression (3.2) so
that Y is the least squares estimator of uy.

The Importance of Random Sampling

We have assumed that Yy, ..., Y, are i.i.d. draws, such as those that would be
obtained from simple random sampling. This assumption is important because
nonrandom sampling can result in Y being biased. Suppose that, to estimate the
monthly national unemployment rate, a statistical agency adopts a sampling
scheme in which interviewers survey working-age adults sitting in city parks at
10 A.M. on the second Wednesday of the month. Because most employed people
are at work at that hour (not sitting in the park!), the unemployed are overly
represented in the sample, and an estimate of the unemployment rate based on
this sampling plan would be biased. This bias arises because this sampling scheme
overrepresents, or oversamples, the unemployed members of the population. This
example is fictitious, but the “Landon Wins!” box gives a real-world example of
biases introduced by sampling that is not entirely random.
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It is important to design sample selection schemes in a way that minimizes
bias. Appendix 3.1 includes a discussion of what the Bureau of Labor Statistics
actually does when it conducts the U.S. Current Population Survey (CPS), the
survey it uses to estimate the monthly U.S. unemployment rate.

Hypothesis Tests Concerning
the Population Mean

Many hypotheses about the world around us can be phrased as yes/no questions.
Do the mean hourly earnings of recent U.S. college graduates equal $20 per hour?
Are mean earnings the same for male and female college graduates? Both these
questions embody specific hypotheses about the population distribution of earn-
ings. The statistical challenge is to answer these questions based on a sample of
evidence. This section describes hypothesis tests concerning the population mean
(Does the population mean of hourly earnings equal $20?). Hypothesis tests
involving two populations (Are mean earnings the same for men and women?)
are taken up in Section 3.4.

Null and Alternative Hypotheses

The starting point of statistical hypotheses testing is specifying the hypothesis to
be tested, called the null hypothesis. Hypothesis testing entails using data to com-
pare the null hypothesis to a second hypothesis, called the alternative hypothesis,
that holds if the null does not.

The null hypothesis is that the population mean, E(Y), takes on a specific
value, denoted uy . The null hypothesis is denoted H,, and thus is

Hy: E(Y) = pyp. (3.3)

For example, the conjecture that, on average in the population, college graduates
earn $20 per hour constitutes a null hypothesis about the population distribution
of hourly earnings. Stated mathematically, if Y'is the hourly earning of a randomly
selected recent college graduate, then the null hypothesis is that E(Y) = 20; that
is, wy = 20 in Equation (3.3).

The alternative hypothesis specifies what is true if the null hypothesis is not.
The most general alternative hypothesis is that E(Y) # uy,, which is called a
two-sided alternative hypothesis because it allows E(Y) to be either less than or
greater than uy . The two-sided alternative is written as

Hi: E(Y) # nyo (two-sided alternative). (34)
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One-sided alternatives are also possible, and these are discussed later in this
section.

The problem facing the statistician is to use the evidence in a randomly
selected sample of data to decide whether to accept the null hypothesis H, or to
reject it in favor of the alternative hypothesis H;. If the null hypothesis is
“accepted,” this does not mean that the statistician declares it to be true; rather,
it is accepted tentatively with the recognition that it might be rejected later based
on additional evidence. For this reason, statistical hypothesis testing can be posed
as either rejecting the null hypothesis or failing to do so.

The p-Value

In any given sample, the sample average Y will rarely be exactly equal to the
hypothesized value uy (. Differences between Y and My can arise because the true
mean in fact does not equal uy (the null hypothesis is false) or because the true
mean equals wy (the null hypothesis is true) but Y differs from Wy because of
random sampling. It is impossible to distinguish between these two possibilities
with certainty. Although a sample of data cannot provide conclusive evidence
about the null hypothesis, it is possible to do a probabilistic calculation that permits
testing the null hypothesis in a way that accounts for sampling uncertainty. This
calculation involves using the data to compute the p-value of the null hypothesis.

The p-value, also called the significance probability, is the probability of draw-
Ing a statistic at least as adverse to the null hypothesis as the one you actually com-
puted in your sample, assuming the null hypothesis is correct. In the case at hand,
the p-value is the probability of drawing Y at least as far in the tails of its distribu-
tion under the null hypothesis as the sample average you actually computed.

For example, suppose that, in your sample of recent college graduates, the
average wage is $22.64. The p-value is the probability of observing a value of Y
at least as different from $20 (the population mean under the null) as the observed
value of $22.64 by pure random sampling variation, assuming that the null hypoth-
esis is true. If this p-value is small, say 0.5%, then it is very unlikely that this
sample would have been drawn if the null hypothesis is true; thus it is reasonable
to conclude that the null hypothesis is not true. By contrast, if this p-value is large,
say 40%, then it is quite likely that the observed sample average of $22.64 could
have arisen just by random sampling variation if the null hypothesis is true;
accordingly, the evidence against the null hypothesis is weak in this probabilistic
sense, and it is reasonable not to reject the null hypothesis.

To state the definition of the p-value mathematically, let Y denote the
value of the sample average actually computed in the data set at hand and let Pry,
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denote the probability computed under the null hypothesis (that is, computed
assuming that E(Y;) = wy). The p-value is

p-value = Pry [| Y — pyo| > Y — pyl]. (3.5)

That is, the p-value is the area in the tails of the distribution of Y under the null
hypothesis beyond uy * | Y — uyg|. If the p-value is large, then the observed
value Y*“'is consistent with the null hypothesis, but if the p-value is small, it is not.

To compute the p-value, it is necessary to know the sampling distribution of
Y under the null hypothesis. As discussed in Section 2.6, when the sample size is
small this distribution is complicated. However, according to the central limit
theorem, when the sample size is large, the sampling distribution of Y is well
approximated by a normal distribution. Under the null hypothesis the mean of
this normal distribution is wy,, so under the null hypothesis Y is distributed
N(wy, a'%), where o = o%/n. This large-sample normal approximation makes
it possible to compute the p-value without needing to know the population distri-
bution of Y, as long as the sample size is large. The details of the calculation,

however, depend on whether % is known.

Calculating the p-Value When oy Is Known

The calculation of the p-value when oy is known is summarized in Figure 3.1. If
the sample size is large, then under the null hypothesis the sampling distribution
of Yis N(py, a'%), where o% = o%// n. Thus, under the null hypothesis, the stan-
dardized version of Y, (Y — uy,) /oy, has a standard normal distribution. The
p-value is the probability of obtaining a value of Y farther from uy, than Y*
under the null hypothesis or, equivalently, is the probability of obtaining
(Y — uyy)/ oy greater than (Y* — uy) /oy in absolute value. This probability

is the shaded area shown in Figure 3.1. Written mathematically, the shaded tail

?act _
> = 2®<_‘,Lm)
Ty

where @ is the standard normal cumulative distribution function. That is, the

probability in Figure 3.1 (that is, the p-value) is

Y - My 0
Oy

< ‘l_ﬂm — My

%

p-value = PrHO< >, (3.6)

p-value is the area in the tails of a standard normal distribution outside
Y — pyol /oy,

The formula for the p-value in Equation (3.6) depends on the variance of the
population distribution, o'%. In practice, this variance is typically unknown. [An
exception is when Y; is binary so that its distribution is Bernoulli, in which case
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e N
m Calculating a p-value

The p-value is the
probability of drawing
avalue of Y that differs
from uyo by at least as
much as Y. In large
samples, Y is distrib-
uted N(uy o, 03), under
the null hypothesis, so
(Y = pyo)/oyis distrib-
uted N(O, 1). Thus the
p-value is the shaded

The p-value is the shaded area
in the graph

standard normal tail act 0 act z
o ) Y& -y, Y& -y,
probability outside = oo
(Y~ o) /o] v v
+ . vl
N\ y,

the variance is determined by the null hypothesis; see Equation (2.7) and Exer-
cise 3.2.] Because in general o3 must be estimated before the p-value can be
computed, we now turn to the problem of estimating 5.

The Sample Variance, Sample Standard Deviation,

and Standard Error

The sample variance s% is an estimator of the population variance o}, the sample

standard deviation sy is an estimator of the population standard deviation oy, and
the standard error of the sample average Y is an estimator of the standard devia-
tion of the sampling distribution of Y.

The sample variance and standard deviation. The sample variance, s, is

5% = i S(Y; - Y) (3.7)
n—145
The sample standard deviation, sy, is the square root of the sample variance.
The formula for the sample variance is much like the formula for the popula-
tion variance. The population variance, E(Y — uy)?, is the average value of
(Y — wy)? in the population distribution. Similarly, the sample variance is the
sample average of (Y; — My)z,i =1,...,n, with two modifications: First, uy is
replaced by Y, and second, the average uses the divisor n — 1 instead of n.
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The Standard Error of Y
The standard error of Y is an estimator of the standard deviation of Y. The stan- 3 '4
dard error of Y is denoted SE(Y) or 3. When Yy, ...,Y, are iid.,

SE(Y) = 63 = sy/Vn. (3.8)

The reason for the first modification—replacing uy by Y —is that wy is
unknown and thus must be estimated; the natural estimator of uy is Y. The reason
for the second modification—dividing by n — 1 instead of by n—is that estimating
wy by Y introduces a small downward bias in (Y; — Y )2. Specifically, as is shown
in Exercise 3.18, E[(Y; — Y)?] = [(n — 1)/n]o%}. Thus EX/_((Y; — Y)* =
nE[(Y; — Y)?] = (n — 1)0%. Dividing by n — 1 in Equation (3.7) instead of n
corrects for this small downward bias, and as a result s3 is unbiased.

Dividing by n — 1in Equation (3.7) instead of n is called a degrees of freedom
correction: Estimating the mean uses up some of the information—that is, uses up
1 “degree of freedom” —in the data, so that only n — 1 degrees of freedom remain.

Consistency of the sample variance. The sample variance is a consistent estimator
of the population variance:

s — o%. (3.9)

In other words, the sample variance is close to the population variance with high
probability when 7 is large.

The result in Equation (3.9) is proven in Appendix 3.3 under the assumptions
that Yy, ..., Y, are i.i.d. and Y; has a finite fourth moment; that is, E(Y}) < .
Intuitively, the reason that s3, is consistent is that it is a sample average, so s%
obeys the law of large numbers. But for s% to obey the law of large numbers in
Key Concept 2.6, (Y; — uy)? must have finite variance, which in turn means that
E(Y?}) must be finite; in other words, Y; must have a finite fourth moment.

The standard error of Y. Because the standard deviation of the sampling distribu-
tion of Y is oy = oy/Vn, Equation (3.9) justifies using sy/ V7 as an estimator of
oy. The estimator of oy, sy/ Vn, is called the standard error of Y and is denoted
SE(Y) or Gy (the caret “*” over the symbol means that it is an estimator of o).
The standard error of Y is summarized as in Key Concept 3.4.
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When Y, ...,Y, are ii.d. draws from a Bernoulli distribution with success
probability p, the formula for the variance of Y simplifies to p(1 — p)/n (see
Exercise 3.2). The formula for the standard error also takes on a simple form that

depends only on Y and n: SE(Y) = VY(1 — Y)/n.

Calculating the p-Value When oy Is Unknown

Because s} is a consistent estimator of o, the p-value can be computed by replac-
ing oy in Equation (3.6) by the standard error, SE(Y) = &y. That is, when oy is

unknown and Y4, ..., Y, are i.i.d., the p-value is calculated using the formula
Y — pyo >
-value = 20| —|[——=—1 ). 3.10
p-v ( SE(Y) (3.10)

The t-Statistic

The standardized sample average (Y — wy,)/SE(Y) plays a central role in testing
statistical hypotheses and has a special name, the z-statistic or #-ratio:

Y —
f=— Fro (.11)
SE(Y)

In general, a test statistic is a statistic used to perform a hypothesis test. The
t-statistic is an important example of a test statistic.

Large-sample distribution of the t-statistic. When n is large, s3 is close to o3, with
high probability. Thus the distribution of the #-statistic is approximately the same
as the distribution of (Y — uy,)/ oy, which in turn is well approximated by the
standard normal distribution when # is large because of the central limit theorem
(Key Concept 2.7). Accordingly, under the null hypothesis,

t is approximately distributed N(0,1) for large n. (3.12)

The formula for the p-value in Equation (3.10) can be rewritten in terms of the
t-statistic. Let t*’ denote the value of the r-statistic actually computed:

Y/ act
Y — My 0

SE(Y)

act —

(3.13)
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Accordingly, when 7 is large, the p-value can be calculated using

p-value = 20(—|*"|). (3.14)

As a hypothetical example, suppose that a sample of n = 200 recent college grad-
uates is used to test the null hypothesis that the mean wage, E(Y),is $20 per hour.
The sample average wage is Y*? = $22.64, and the sample standard deviation is
sy = $18.14. Then the standard error of Y is sy/\Vn = 18.14/\/200 = 1.28. The
value of the t-statistic is t*“ = (22.64 — 20)/1.28 = 2.06. From Appendix Table 1,
the p-value is 2®(—2.06) = 0.039, or 3.9%. That is, assuming the null hypothesis
to be true, the probability of obtaining a sample average at least as different from
the null as the one actually computed is 3.9%.

Hypothesis Testing with a Prespecified
Significance Level

When you undertake a statistical hypothesis test, you can make two types of
mistakes: You can incorrectly reject the null hypothesis when it is true, or you
can fail to reject the null hypothesis when it is false. Hypothesis tests can be
performed without computing the p-value if you are willing to specify in
advance the probability you are willing to tolerate of making the first kind of
mistake —that is, of incorrectly rejecting the null hypothesis when it is true. If
you choose a prespecified probability of rejecting the null hypothesis when it
is true (for example, 5%), then you will reject the null hypothesis if and only
if the p-value is less than 0.05. This approach gives preferential treatment to
the null hypothesis, but in many practical situations this preferential treatment
is appropriate.

Hypothesis tests using a fixed significance level. Suppose it has been decided that
the hypothesis will be rejected if the p-value is less than 5%. Because the area
under the tails of the standard normal distribution outside + 1.96 is 5%, this gives
a simple rule:

Reject H if| 1| > 1.96. (3.15)

That is, reject if the absolute value of the #-statistic computed from the sample is
greater than 1.96. If n is large enough, then under the null hypothesis the #-statistic
has a N(0, 1) distribution. Thus the probability of erroneously rejecting the null
hypothesis (rejecting the null hypothesis when it is in fact true) is 5%.
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KEY CONCEPT

The Terminology of Hypothesis Testing

A statistical hypothesis test can make two types of mistakes: a type I error, in which
the null hypothesis is rejected when in fact it is true, and a type II error, in which
the null hypothesis is not rejected when in fact it is false. The prespecified rejection
probability of a statistical hypothesis test when the null hypothesis is true —that
is, the prespecified probability of a type I error—is the significance level of the
test. The critical value of the test statistic is the value of the statistic for which
the test just rejects the null hypothesis at the given significance level. The set
of values of the test statistic for which the test rejects the null hypothesis is the
rejection region, and the values of the test statistic for which it does not reject
the null hypothesis is the acceptance region. The probability that the test actually
incorrectly rejects the null hypothesis when it is true is the size of the test, and the
probability that the test correctly rejects the null hypothesis when the alternative
is true is the power of the test.

The p-value is the probability of obtaining a test statistic, by random sampling
variation, at least as adverse to the null hypothesis value as is the statistic actually
observed, assuming that the null hypothesis is correct. Equivalently, the p-value is
the smallest significance level at which you can reject the null hypothesis.

This framework for testing statistical hypotheses has some specialized termi-
nology, summarized in Key Concept 3.5. The significance level of the test in Equa-
tion (3.15) is 5%, the critical value of this two-sided test is 1.96, and the rejection
region is the values of the z-statistic outside +1.96. If the test rejects at the 5%
significance level, the population mean wy is said to be statistically significantly
different from wy  at the 5% significance level.

Testing hypotheses using a prespecified significance level does not require
computing p-values. In the previous example of testing the hypothesis that the
mean earnings of recent college graduates is $20 per hour, the #-statistic was 2.06.
This value exceeds 1.96, so the hypothesis is rejected at the 5% level. Although
performing the test with a 5% significance level is easy, reporting only whether
the null hypothesis is rejected at a prespecified significance level conveys less
information than reporting the p-value.

What significance level should you use in practice? In many cases, statisticians
and econometricians use a 5% significance level. If you were to test many statistical
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Testing the Hypothesis E(Y) = uy,
Against the Alternative E(Y) # uyg 3 6

1.
2.

Compute the standard error of Y, SE(Y) [Equation (3.8)].
Compute the t-statistic [Equation (3.13)].

Compute the p-value [Equation (3.14)]. Reject the hypothesis at the 5% sig-
nificance level if the p-value is less than 0.05 (equivalently, if |“| > 1.96).

hypotheses at the 5% level, you would incorrectly reject the null on average once
in 20 cases. Sometimes a more conservative significance level might be in order.
For example, legal cases sometimes involve statistical evidence, and the null
hypothesis could be that the defendant is not guilty; then one would want to be
quite sure that a rejection of the null (conclusion of guilt) is not just a result of
random sample variation. In some legal settings, the significance level used is 1%,
or even 0.1%, to avoid this sort of mistake. Similarly, if a government agency is
considering permitting the sale of a new drug, a very conservative standard might
be in order so that consumers can be sure that the drugs available in the market
actually work.

Being conservative, in the sense of using a very low significance level, has a
cost: The smaller the significance level, the larger the critical value and the more
difficult it becomes to reject the null when the null is false. In fact, the most con-
servative thing to do is never to reject the null hypothesis —but if that is your view,
then you never need to look at any statistical evidence for you will never change
your mind! The lower the significance level, the lower the power of the test. Many
economic and policy applications can call for less conservatism than a legal case,
so a 5% significance level is often considered to be a reasonable compromise.

Key Concept 3.6 summarizes hypothesis tests for the population mean against
the two-sided alternative.

One-Sided Alternatives

In some circumstances, the alternative hypothesis might be that the mean exceeds
wy . For example, one hopes that education helps in the labor market, so the
relevant alternative to the null hypothesis that earnings are the same for college
graduates and non—college graduates is not just that their earnings differ, but
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3.3

rather that graduates earn more than nongraduates. This is called a one-sided
alternative hypothesis and can be written

Hi: E(Y) > pyo (one-sided alternative). (3.16)

The general approach to computing p-values and to hypothesis testing is the same
for one-sided alternatives as it is for two-sided alternatives, with the modification
that only large positive values of the z-statistic reject the null hypothesis rather
than values that are large in absolute value. Specifically, to test the one-sided
hypothesis in Equation (3.16), construct the ¢-statistic in Equation (3.13). The
p-value is the area under the standard normal distribution to the right of the cal-
culated t-statistic. That is, the p-value, based on the N(0, 1) approximation to the
distribution of the ¢-statistic, is

p-value = Pry (Z > 1) =1 — O@*). (3.17)

The N(0, 1) critical value for a one-sided test with a 5% significance level is 1.64.
The rejection region for this test is all values of the t-statistic exceeding 1.64.

The one-sided hypothesis in Equation (3.16) concerns values of uy exceeding
wyo. If instead the alternative hypothesis is that £(Y) < wy, then the discussion
of the previous paragraph applies except that the signs are switched; for example,
the 5% rejection region consists of values of the t-statistic less than —1.64.

Confidence Intervals
for the Population Mean

Because of random sampling error, it is impossible to learn the exact value of the
population mean of Y using only the information in a sample. However, it is pos-
sible to use data from a random sample to construct a set of values that contains
the true population mean uy with a certain prespecified probability. Such a set is
called a confidence set, and the prespecified probability that wy is contained in
this set is called the confidence level. The confidence set for wy turns out to be all
the possible values of the mean between a lower and an upper limit, so that the
confidence set is an interval, called a confidence interval.

Here is one way to construct a 95% confidence set for the population mean.
Begin by picking some arbitrary value for the mean; call it wy (. Test the null hypoth-
esis that wy = wyagainst the alternative that wy # uy by computing the z-statistic;
if its absolute value is less than 1.96, this hypothesized value wy is not rejected at
the 5% level, and write down this nonrejected value wy o. Now pick another arbitrary
value of wy, and test it; if you cannot reject it, write down this value on your list.
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Confidence Intervals for the Population Mean

A 95% two-sided confidence interval for wy is an interval constructed so that it
contains the true value of uy in 95% of all possible random samples. When the
sample size n is large, 95%, 90%, and 99% confidence intervals for uy are

95% confidence interval for uy = {Y + 1.96SE(Y)}.

90% confidence interval for uy = {Y = 1.64SE(Y)}.

99% confidence interval for uy = {Y + 2.58SE(Y)}.

3.7

Do this again and again; indeed, do so for all possible values of the population
mean. Continuing this process yields the set of all values of the population mean
that cannot be rejected at the 5% level by a two-sided hypothesis test.

This list is useful because it summarizes the set of hypotheses you can and
cannot reject (at the 5% level) based on your data: If someone walks up to you
with a specific number in mind, you can tell him whether his hypothesis is rejected
or not simply by looking up his number on your handy list. A bit of clever reason-
ing shows that this set of values has a remarkable property: The probability that
it contains the true value of the population mean is 95%.

The clever reasoning goes like this: Suppose the true value of uy is 21.5
(although we do not know this). Then Y has a normal distribution centered on
21.5, and the #-statistic testing the null hypothesis uy = 21.5 has a N(0, 1) distribu-
tion. Thus, if n 1s large, the probability of rejecting the null hypothesis wy = 21.5
at the 5% level is 5%. But because you tested all possible values of the population
mean in constructing your set, in particular you tested the true value, uy = 21.5.
In 95% of all samples, you will correctly accept 21.5; this means that in 95% of all
samples, your list will contain the true value of wy. Thus the values on your list
constitute a 95% confidence set for wy.

This method of constructing a confidence set is impractical, for it requires you
to test all possible values of uy as null hypotheses. Fortunately, there is a much
easier approach. According to the formula for the z-statistic in Equation (3.13), a
trial value of wy ( is rejected at the 5% level if it is more than 1.96 standard errors
away from Y. Thus the set of values of uy that are not rejected at the 5% level
consists of those values within + 1.96SE(Y) of Y; that is, a 95% confidence
interval for wyis Y — 1.96SE(Y) = uy = Y + 1.96SE(Y). Key Concept 3.7 sum-
marizes this approach.
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3.4

As an example, consider the problem of constructing a 95% confidence inter-
val for the mean hourly earnings of recent college graduates using a hypothetical
random sample of 200 recent college graduates where Y = $22.64 and
SE(Y) = 1.28. The 95% confidence interval for mean hourly earnings is
22.64 £ 1.96 X 1.28 = 22.64 £ 2.51 = [$20.13, $25.15].

This discussion so far has focused on two-sided confidence intervals. One
could instead construct a one-sided confidence interval as the set of values of uy
that cannot be rejected by a one-sided hypothesis test. Although one-sided confi-
dence intervals have applications in some branches of statistics, they are uncom-
mon in applied econometric analysis.

Coverage probabilities. The coverage probability of a confidence interval for the
population mean is the probability, computed over all possible random samples,
that it contains the true population mean.

Comparing Means from Different
Populations

Do recent male and female college graduates earn the same amount on average?
This question involves comparing the means of two different population distribu-
tions. This section summarizes how to test hypotheses and how to construct con-
fidence intervals for the difference in the means from two different populations.

Hypothesis Tests for the Difference
Between Two Means

To illustrate a test for the difference between two means, let w, be the mean
hourly earning in the population of women recently graduated from college and
let w,, be the population mean for recently graduated men. Consider the null
hypothesis that mean earnings for these two populations differ by a certain
amount, say d;. Then the null hypothesis and the two-sided alternative hypothesis
are

H(): Mo — My = d() VS. Hlﬁle - My # do. (318)

The null hypothesis that men and women in these populations have the same
mean earnings corresponds to H, in Equation (3.18) with d; = 0.
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Because these population means are unknown, they must be estimated from
samples of men and women. Suppose we have samples of n,, men and n,, women
drawn at random from their populations. Let the sample average annual earnings
be Y, for men and Y,, for women. Then an estimator of u,, — u,, is Y,, — Y,,.

To test the null hypothesis that u,, — u, = d, using Y,, — Y,,, we need to
know the distribution of Y,, — Y,,. Recall that Y, is, according to the central limit
theorem, approximately distributed N(u,,, 02,/1,,), where o2, is the population
variance of earnings for men. Similarly, Y,, is approximately distributed
N(w,,, 0% /n,,) where o2, is the population variance of earnings for women. Also,
recall from Section 2.4 that a weighted average of two normal random variables
is itself normally distributed. Because Y,, and Y,, are constructed from different
randomly selected samples, they are independent random variables. Thus
Y,, — Y, is distributed N[ w,, — uy, (62,/n,,) + (03/n,,)].

If o2, and o are known, then this approximate normal distribution can be
used to compute p-values for the test of the null hypothesis that w,, — w,, = d,.
In practice, however, these population variances are typically unknown so they
must be estimated. As before, they can be estimated using the sample variances,
s2,and s2, where s2, is defined as in Equation (3.7), except that the statistic is com-
puted only for the men in the sample, and s, is defined similarly for the women.
Thus the standard error of Y,, — Y, is

— — S2 S2
SE(Y, = Y,) =/ + (3.19)

For a simplified version of Equation (3.19) when Y'is a Bernoulli random variable,
see Exercise 3.15.

The #-statistic for testing the null hypothesis is constructed analogously to the
t-statistic for testing a hypothesis about a single population mean, by subtracting
the null hypothesized value of w,, — u,, from the estimator Y,, — Y,, and dividing
the result by the standard error of Y,, — Y,,:

t = (Ym_—w)_do
SE(T/m - _w)

(t-statistic for comparing two means).  (3.20)

If both n,,, and n,, are large, then this #-statistic has a standard normal distribution
when the null hypothesis is true.

Because the #-statistic in Equation (3.20) has a standard normal distribution
under the null hypothesis when n,, and n,, are large, the p-value of the two-sided
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3.5

test is computed exactly as it was in the case of a single population. That is, the
p-value is computed using Equation (3.14).

To conduct a test with a prespecified significance level, simply calculate the
t-statistic in Equation (3.20) and compare it to the appropriate critical value. For
example, the null hypothesis is rejected at the 5% significance level if the absolute
value of the z-statistic exceeds 1.96.

If the alternative is one-sided rather than two-sided (that is, if the alternative
is that w,, — m,, > d;), then the test is modified as outlined in Section 3.2. The
p-value is computed using Equation (3.17), and a test with a 5% significance level
rejects when ¢ > 1.64.

Confidence Intervals for the Difference
Between Two Population Means

The method for constructing confidence intervals summarized in Section 3.3
extends to constructing a confidence interval for the difference between the
means, d = wu,, — w,. Because the hypothesized value d is rejected at the 5%
level if |z| > 1.96, d, will be in the confidence set if |z| = 1.96. But || = 1.96
means that the estimated difference, Y,, — Y,,, is less than 1.96 standard errors
away from d,. Thus the 95% two-sided confidence interval for d consists of those
values of d within * 1.96 standard errors of Y,, — Y,,:

95% confidence interval for d = u,, — w,, 18

(Y, - Y,) + 1.96SE(Y,, — Y,). (3.21)

With these formulas in hand, the box “The Gender Gap of Earnings of College
Graduates in the United States” contains an empirical investigation of gender
differences in earnings of U.S. college graduates.

Differences-of-Means Estimation of Causal
Effects Using Experimental Data

Recall from Section 1.2 that a randomized controlled experiment randomly selects
subjects (individuals or, more generally, entities) from a population of interest,
then randomly assigns them either to a treatment group, which receives the exper-
imental treatment, or to a control group, which does not receive the treatment.
The difference between the sample means of the treatment and control groups is
an estimator of the causal effect of the treatment.
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The Causal Effect as a Difference
of Conditional Expectations

The causal effect of a treatment is the expected effect on the outcome of interest
of the treatment as measured in an ideal randomized controlled experiment. This
effect can be expressed as the difference of two conditional expectations. Spe-
cifically, the causal effect on Y of treatment level x is the difference in the condi-
tional expectations, E(Y|X = x) — E(Y |X = 0), where E(Y |X = x) is the
expected value of Y for the treatment group (which receives treatment level
X = x) in an ideal randomized controlled experiment and E(Y | X = 0) is the
expected value of Y for the control group (which receives treatment level X = 0).
In the context of experiments, the causal effect is also called the treatment effect.
If there are only two treatment levels (that is, if the treatment is binary), then
we can let X = 0 denote the control group and X = 1 denote the treatment
group. If the treatment is binary treatment, then the causal effect (that is, the
treatment effect) is E(Y |X = 1) — E(Y|X = 0) in an ideal randomized con-
trolled experiment.

Estimation of the Causal Effect Using
Differences of Means

If the treatment in a randomized controlled experiment is binary, then the causal
effect can be estimated by the difference in the sample average outcomes between
the treatment and control groups. The hypothesis that the treatment is ineffective
is equivalent to the hypothesis that the two means are the same, which can be
tested using the t-statistic for comparing two means, given in Equation (3.20). A
95% confidence interval for the difference in the means of the two groups is a
95% confidence interval for the causal effect, so a 95% confidence interval for the
causal effect can be constructed using Equation (3.21).

A well-designed, well-run experiment can provide a compelling estimate of a
causal effect. For this reason, randomized controlled experiments are commonly
conducted in some fields, such as medicine. In economics, however, experiments
tend to be expensive, difficult to administer, and, in some cases, ethically ques-
tionable, so they are used less often. For this reason, econometricians sometimes
study “natural experiments,” also called quasi-experiments, in which some event
unrelated to the treatment or subject characteristics has the effect of assigning
different treatments to different subjects as if they had been part of a randomized
controlled experiment. The box “A Novel Way to Boost Retirement Savings”
provides an example of such a quasi-experiment that yielded some surprising
conclusions.
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The Gender Gap of Earnings of College Graduates in the United States

he box in Chapter 2 “The Distribution of Earn-
T ings in the United States in 2012” shows that,
on average, male college graduates earn more than
female college graduates. What are the recent trends
in this “gender gap” in earnings? Social norms and
laws governing gender discrimination in the work-
place have changed substantially in the United States.
Is the gender gap in earnings of college graduates
stable, or has it diminished over time?

Table 3.1 gives estimates of hourly earnings
for college-educated full-time workers ages 25-34
in the United States in 1992, 1996, 2000, 2004,
2008, and 2012, using data collected by the Cur-
rent Population Survey. Earnings for 1992, 1996,
2000, 2004, and 2008 were adjusted for inflation by
putting them in 2012 dollars using the Consumer
Price Index (CPI).! In 2012, the average hourly

earnings of the 2004 men surveyed was $25.30,
and the standard deviation of earnings for men
was $12.09. The average hourly earnings in 2012
of the 1951 women surveyed was $21.50, and the
standard deviation of earnings was $9.99. Thus the
estimate of the gender gap in earnings for 2012 is
$3.80 (= $25.30 — $21.50), with a standard error of
$0.35 (= V/12.09%/2004 + 9.99%/1951). The 95% con-
fidence interval for the gender gap in earnings in 2012
is3.80 = 1.96 X 0.35 = ($3.11, $4.49).

The results in Table 3.1 suggest four conclusions.

First, the gender gap is large. An hourly gap of $3.80
might not sound like much, but over a year it adds
up to $7600, assuming a 40-hour workweek and 50
paid weeks per year. Second, from 1992 to 2012, the
estimated gender gap increased by $0.36 per hour in
real terms, from $3.44 per hour to $3.80 per hour;

(4 N\
LIS R Trends in Hourly Earnings in the United States of Working College Graduates,
Ages 25-34, 1992 to 2012, in 2012 Dollars
Men Women Difference, Men vs. Women
95%
Confidence
Interval
Year Yo Sm Nm Y, Sw Ny Y,— Y, SEY,-Y,) ford
1992 24.83 10.85 1594 21.39 8.39 1368 3.44%% 0.35 2.75-4.14
1996 23.97 10.79 1380 20.26 8.48 1230 3.71%* 0.38 2.97-4.46
2000 26.55 12.38 1303 22.13 9.98 1181 4.42%% 0.45 3.54-5.30
2004 26.80 12.81 1894 22.43 9.99 1735 4.37%%* 0.38 3.63-5.12
2008 26.63 12.57 1839 22.26 10.30 1871 4.36%* 0.38 3.62-5.10
2012 25.30 12.09 2004 21.50 9.99 1951 3.80%* 0.35 3.11-4.49
These estimates are computed using data on all full-time workers ages 25-34 surveyed in the Current Population Survey
conducted in March of the next year (for example, the data for 2012 were collected in March 2013). The difference is sig-
nificantly different from zero at the **1% significance level.
J

(continued)



3.6 Using the t-Statistic When the Sample Size Is Small

however, this increase is not statistically significant
at the 5% significance level (Exercise 3.17). Third,
the gap is large if it is measured instead in percent-
age terms: According to the estimates in Table 3.1,
in 2012 women earned 15% less per hour than men
did ($3.80/$25.30), slightly more than the gap of
14% seen in 1992 ($3.44/$24.83). Fourth, the gen-
der gap is smaller for young college graduates (the
group analyzed in Table 3.1) than it is for all college
graduates (analyzed in Table 2.4): As reported in
Table 2.4, the mean earnings for all college-educated
women working full-time in 2012 was $25.42, while
for men this mean was $32.73, which corresponds
to a gender gap of 22% [= (32.73 — 25.42)/32.73]
among all full-time college-educated workers.

This empirical analysis documents that the “gen-
der gap” in hourly earnings is large and has been fairly
stable (or perhaps increased slightly) over the recent

past. The analysis does not, however, tell us why this

gap exists. Does it arise from gender discrimination in
the labor market? Does it reflect differences in skills,
experience, or education between men and women?
Does it reflect differences in choice of jobs? Or is
there some other cause? We return to these questions
once we have in hand the tools of multiple regression

analysis, the topic of Part II.

Because of inflation, a dollar in 1992 was worth more than
a dollar in 2012, in the sense that a dollar in 1992 could
buy more goods and services than a dollar in 2012 could.
Thus earnings in 1992 cannot be directly compared to earn-
ings in 2012 without adjusting for inflation. One way to
make this adjustment is to use the CPI, a measure of the
price of a “market basket” of consumer goods and services
constructed by the Bureau of Labor Statistics. Over the
20 years from 1992 to 2012, the price of the CPI market
basket rose by 63.6%; in other words, the CPI basket of
goods and services that cost $100 in 1992 cost $163.64 in
2012. To make earnings in 1992 and 2012 comparable in
Table 3.1, 1992 earnings are inflated by the amount of
overall CPI price inflation, that is, by multiplying 1992
earnings by 1.636 to put them into “2012 dollars.”

3.6 Using the t-Statistic When the Sample

Size Is Small

87

In Sections 3.2 through 3.5, the -statistic is used in conjunction with critical values
from the standard normal distribution for hypothesis testing and for the construc-
tion of confidence intervals. The use of the standard normal distribution is justi-
fied by the central limit theorem, which applies when the sample size is large.
When the sample size is small, the standard normal distribution can provide a
poor approximation to the distribution of the s-statistic. If, however, the popula-
tion distribution is itself normally distributed, then the exact distribution (that is,
the finite-sample distribution; see Section 2.6) of the t-statistic testing the mean of
a single population is the Student ¢ distribution with n — 1 degrees of freedom,
and critical values can be taken from the Student 7 distribution.

The t-Statistic and the Student t Distribution

The t-statistic testing the mean. Consider the ¢-statistic used to test the hypothesis
that the mean of Y'is wy, using data Y7, ..., Y,. The formula for this statistic is
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given by Equation (3.10), where the standard error of Y is given by Equation
(3.8). Substitution of the latter expression into the former yields the formula for
the t-statistic:

Y — uyp
t \/% , (3.22)
where s% is given in Equation (3.7).

As discussed in Section 3.2, under general conditions the #-statistic has a stan-
dard normal distribution if the sample size is large and the null hypothesis is true
[see Equation (3.12)]. Although the standard normal approximation to the ¢-sta-
tistic is reliable for a wide range of distributions of Y if n is large, it can be unreli-
able if nis small. The exact distribution of the -statistic depends on the distribution
of Y, and it can be very complicated. There is, however, one special case in which
the exact distribution of the #-statistic is relatively simple: If Y is normally distrib-
uted, then the z-statistic in Equation (3.22) has a Student ¢ distribution with n — 1
degrees of freedom. (The mathematics behind this result is provided in Sections
17.4 and 18.4.)

If the population distribution is normally distributed, then critical values from
the Student ¢ distribution can be used to perform hypothesis tests and to construct
confidence intervals. As an example, consider a hypothetical problem in which
1 = 2.15 and n = 20 so that the degrees of freedom is n — 1 = 19. From
Appendix Table 2, the 5% two-sided critical value for the #¢ distribution is 2.09.
Because the t-statistic is larger in absolute value than the critical value
(2.15 > 2.09), the null hypothesis would be rejected at the 5% significance level
against the two-sided alternative. The 95% confidence interval for uy, constructed
using the t,9 distribution, would be Y + 2.09 SE(Y). This confidence interval is
somewhat wider than the confidence interval constructed using the standard nor-
mal critical value of 1.96.

The t-statistic testing differences of means. The t-statistic testing the difference
of two means, given in Equation (3.20), does not have a Student ¢ distribution,
even if the population distribution of Yis normal. (The Student ¢ distribution does
not apply here because the variance estimator used to compute the standard error
in Equation (3.19) does not produce a denominator in the ¢-statistic with a chi-
squared distribution.)

A modified version of the differences-of-means ¢-statistic, based on a differ-
ent standard error formula—the “pooled” standard error formula—has an exact
Student ¢ distribution when Y is normally distributed; however, the pooled
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standard error formula applies only in the special case that the two groups have
the same variance or that each group has the same number of observations (Exer-
cise 3.21). Adopt the notation of Equation (3.19) so that the two groups are
denoted as m and w. The pooled variance estimator is

1 S -2+ D (Y- V)
i=1

_ i=1
M + Ry 2 group m group w

. (3.23)

2 —
Spooled -

where the first summation is for the observations in group m and the second sum-
mation is for the observations in group w. The pooled standard error of the dif-
ference in means is SE,ppea(Ym — Yu) = Spootea X V1/n, + 1/n,,, and the
pooled #-statistic is computed using Equation (3.20), where the standard error is
the pooled standard error, SE,,piea(Y, — Y,).

If the population distribution of Y in group m is N(w,,, 0/2,), if the population
distribution of Y in group w is N(u,,, 02), and if the two group variances are the
same (that is, o2, = ¢2), then under the null hypothesis the t-statistic computed
using the pooled standard error has a Student ¢ distribution with n,, + n,, — 2
degrees of freedom.

The drawback of using the pooled variance estimator sfmled 1s that it applies
only if the two population variances are the same (assuming n,, # n,,). If the
population variances are different, the pooled variance estimator is biased and
inconsistent. If the population variances are different but the pooled variance
formula is used, the null distribution of the pooled t-statistic is not a Student
t distribution, even if the data are normally distributed; in fact, it does not even
have a standard normal distribution in large samples. Therefore, the pooled stan-
dard error and the pooled ¢-statistic should not be used unless you have a good
reason to believe that the population variances are the same.

Use of the Student t Distribution in Practice

For the problem of testing the mean of Y, the Student ¢ distribution is applicable
if the underlying population distribution of Y is normal. For economic variables,
however, normal distributions are the exception (for example, see the boxes in
Chapter 2 “The Distribution of Earnings in the United States in 2012” and “A
Bad Day on Wall Street”). Even if the underlying data are not normally distrib-
uted, the normal approximation to the distribution of the #-statistic is valid if
the sample size is large. Therefore, inferences —hypothesis tests and confidence
intervals—about the mean of a distribution should be based on the large-sample
normal approximation.
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A Novel Way to Boost Retirement Savings

any economists think that people do not
M save enough for retirement. Conventional
methods for encouraging retirement savings focus
on financial incentives, but there also has been
an upsurge in interest in unconventional ways to
encourage saving for retirement.

In an important study published in 2001, Brigitte
Madrian and Dennis Shea considered one such
unconventional method for stimulating retirement
savings. Many firms offer retirement savings plans
in which the firm matches, in full or in part, savings
taken out of the paycheck of participating employ-
ees. Enrollment in such plans, called 401(k) plans
after the applicable section of the U.S. tax code, is
always optional. However, at some firms employees
are automatically enrolled in the plan, although they
can opt out; at other firms, employees are enrolled
only if they choose to opt in. According to conven-
tional economic models of behavior, the method of
enrollment—opt out or opt in—should not matter:
The rational worker computes the optimal action,
then takes it. But, Madrian and Shea wondered,
could conventional economics be wrong? Does the
method of enrollment in a savings plan directly affect
its enrollment rate?

To measure the effect of the method of enroll-
ment, Madrian and Shea studied a large firm that
changed the default option for its 401(k) plan from
nonparticipation to participation. They compared
two groups of workers: those hired the year before
the change and not automatically enrolled (but could
opt in) and those hired in the year after the change
and automatically enrolled (but could opt out). The
financial aspects of the plan remained the same, and

Madrian and Shea found no systematic differences

between the workers hired before and after the
change. Thus, from an econometrician’s perspec-
tive, the change was like a randomly assigned treat-
ment and the causal effect of the change could be
estimated by the difference in means between the
two groups.

Madrian and Shea found that the default enroll-
ment rule made a huge difference: The enroll-
ment rate for the “opt-in” (control) group was
37.4% (n = 4249), whereas the enrollment rate
for the “opt-out” (treatment) group was 85.9%
(n = 5801). The estimate of the treatment effect
is 48.5% (= 85.9% — 37.4%). Because their sample
is large, the 95% confidence (computed in Exer-
cise 3.15) for the treatment effect is tight, 46.8%
to 50.2%.

How could the default choice matter so much?
Maybe workers found these financial choices too
confusing, or maybe they just didn’t want to think
about growing old. Neither explanation is economi-
cally rational —but both are consistent with the
predictions of the growing field of “behavioural
economics,” and both could lead to accepting the
default enrollment option.

This research had an important practical impact.
In August 2006, Congress passed the Pension Pro-
tection Act that (among other things) encouraged
firms to offer 401(k) plans in which enrollment is the
default. The econometric findings of Madrian and
Shea and others featured prominently in testimony
on this part of the legislation.

To learn more about behavioral economics and
the design of retirement savings plans, see Benartzi
and Thaler (2007) and Beshears, Choi, Laibson, and
Madrian (2008).
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When comparing two means, any economic reason for two groups having
different means typically implies that the two groups also could have different
variances. Accordingly, the pooled standard error formula is inappropriate, and
the correct standard error formula, which allows for different group variances, is
as given in Equation (3.19). Even if the population distributions are normal, the
t-statistic computed using the standard error formula in Equation (3.19) does not
have a Student ¢ distribution. In practice, therefore, inferences about differences
in means should be based on Equation (3.19), used in conjunction with the large-
sample standard normal approximation.

Even though the Student ¢ distribution is rarely applicable in economics, some
software uses the Student ¢ distribution to compute p-values and confidence inter-
vals. In practice, this does not pose a problem because the difference between
the Student ¢ distribution and the standard normal distribution is negligible if the
sample size is large. For n > 15, the difference in the p-values computed using the
Student ¢ and standard normal distributions never exceeds 0.01; for n > 80,
the difference never exceeds 0.002. In most modern applications, and in all appli-
cations in this textbook, the sample sizes are in the hundreds or thousands, large
enough for the difference between the Student 7 distribution and the standard
normal distribution to be negligible.

Scatterplots, the Sample Covariance, and
the Sample Correlation

What is the relationship between age and earnings? This question, like many oth-
ers, relates one variable, X (age), to another, Y (earnings). This section reviews
three ways to summarize the relationship between variables: the scatterplot, the
sample covariance, and the sample correlation coefficient.

Scatterplots

A scatterplot is a plot of n observations on X; and Y, in which each observation
is represented by the point (X}, Y;). For example, Figure 3.2 is a scatterplot of age
(X) and hourly earnings (Y) for a sample of 200 managers in the information
industry from the March 2009 CPS. Each dot in Figure 3.2 corresponds to an
(X, Y) pair for one of the observations. For example, one of the workers in this
sample is 40 years old and earns $35.78 per hour; this worker’s age and earnings
are indicated by the highlighted dot in Figure 3.2. The scatterplot shows a positive
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Each point in the plot represents the age and average earnings of one of the 200 workers in the sample. The high-
lighted dot corresponds to a 40-year-old worker who earns $35.78 per hour. The data are for computer and informa-
tion systems managers from the March 2009 CPS.

A J

relationship between age and earnings in this sample: Older workers tend to earn
more than younger workers. This relationship is not exact, however, and earnings
could not be predicted perfectly using only a person’s age.

Sample Covariance and Correlation

The covariance and correlation were introduced in Section 2.3 as two properties
of the joint probability distribution of the random variables X and Y. Because the
population distribution is unknown, in practice we do not know the population
covariance or correlation. The population covariance and correlation can, however,
be estimated by taking a random sample of » members of the population and col-

lecting the data (X}, Y;),i = 1,...,n.
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The sample covariance and correlation are estimators of the population
covariance and correlation. Like the estimators discussed previously in this chapter,
they are computed by replacing a population mean (the expectation) with a sample
mean. The sample covariance, denoted syy, is

Sxy = nil,é(Xi - X)(Y; - Y). (3.24)

Like the sample variance, the average in Equation (3.24) is computed by dividing
by n — 1 instead of n; here, too, this difference stems from using X and Y to esti-
mate the respective population means. When n is large, it makes little difference
whether divisionisbynorn — 1.
The sample correlation coefficient, or sample correlation, is denoted ryy and
is the ratio of the sample covariance to the sample standard deviations:
Sxy

Iyy = — .
Xy xSy

(3.25)

The sample correlation measures the strength of the linear association between X
and Y in a sample of n observations. Like the population correlation, the sample
correlation is unitless and lies between —1 and 1: |ryy| = 1.

The sample correlation equals 1 if X; = Y, for alli and equals -1 if X; = —Y;
for all i. More generally, the correlation is +1 if the scatterplot is a straight line. If
the line slopes upward, then there is a positive relationship between X and Y and
the correlation is 1. If the line slopes down, then there is a negative relationship
and the correlation is —1. The closer the scatterplot is to a straight line, the closer
is the correlation to +1. A high correlation coefficient does not necessarily mean
that the line has a steep slope; rather, it means that the points in the scatterplot
fall very close to a straight line.

Consistency of the sample covariance and correlation. Like the sample variance,
the sample covariance is consistent. That is,

Sxy L) Oxy. (326)

In other words, in large samples the sample covariance is close to the population
covariance with high probability.

The proof of the result in Equation (3.26) under the assumption that (X}, Y;)
are i.i.d. and that X; and Y; have finite fourth moments is similar to the proof in
Appendix 3.3 that the sample covariance is consistent and is left as an exercise
(Exercise 3.20).
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e D
m Scatterplots for Four Hypothetical Data Sets
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Because the sample variance and sample covariance are consistent, the sam-
. .. . . . )4
ple correlation coefficient is consistent, that is, ryy —— corr(X, Y)).

Example. As an example, consider the data on age and earnings in Figure 3.2. For
these 200 workers, the sample standard deviation of age is s, = 9.07 years and
the sample standard deviation of earnings is sy = $14.37 per hour. The sample
covariance between age and earningsis s, = 33.16 (the units are years X dollars
per hour, not readily interpretable). Thus the sample correlation coefficient is
rag = 33.16/(9.07 X14.37) = 0.25 or 25%. The correlation of 0.25 means that there
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is a positive relationship between age and earnings, but as is evident in the scatterplot,
this relationship is far from perfect.

To verify that the correlation does not depend on the units of measurement,
suppose that earnings had been reported in cents, in which case the sample stan-
dard deviations of earnings is 1437¢ per hour and the covariance between age and
earnings is 3316 (units are years X cents per hour); then the correlation is
3316/(9.07 X 1437) = 0.25 or 25%.

Figure 3.3 gives additional examples of scatterplots and correlation. Figure 3.3a
shows a strong positive linear relationship between these variables, and the sam-
ple correlation is 0.9.

Figure 3.3b shows a strong negative relationship with a sample correlation of
—0.8. Figure 3.3c shows a scatterplot with no evident relationship, and the sample
correlation is zero. Figure 3.3d shows a clear relationship: As X increases, Y ini-
tially increases, but then decreases. Despite this discernable relationship between
X and Y, the sample correlation is zero; the reason is that, for these data, small
values of Y are associated with both large and small values of X.

This final example emphasizes an important point: The correlation coefficient is a
measure of /inear association. There is a relationship in Figure 3.3d, but it is not linear.

Summary

1. The sample average, Y, is an estimator of the population mean, u,. When
Y, ..., Y, areiid.,

the sampling distribution of ¥ has mean py and variance o2 = o7, In

Y is unbiased;

by the law of large numbers, Y is consistent; and

oo oW

by the central limit theorem, Y has an approximately normal sampling

distribution when the sample size is large.

2. The t-statistic is used to test the null hypothesis that the population mean
takes on a particular value. If n is large, the t-statistic has a standard normal
sampling distribution when the null hypothesis is true.

3. The #-statistic can be used to calculate the p-value associated with the null
hypothesis. A small p-value is evidence that the null hypothesis is false.

4. A 95% confidence interval for uy is an interval constructed so that it con-
tains the true value of uy in 95% of all possible samples.

5. Hypothesis tests and confidence intervals for the difference in the means of
two populations are conceptually similar to tests and intervals for the mean
of a single population.
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6. The sample correlation coefficient is an estimator of the population

correlation coefficient and measures the linear relationship between

two variables—that is, how well their scatterplot is approximated by a

straight line.
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Review the Concepts

31

3.2

3.3

34

3.5

3.6

3.7

3.8

Explain the difference between the sample average Y and the population
mean.

Explain the difference between an estimator and an estimate. Provide an
example of each.

A population distribution has a mean of 10 and a variance of 16. Determine
the mean and variance of Y from an i.i.d. sample from this population for
(a) n = 10;(b) n = 100; and (c) n = 1000. Relate your answers to the law
of large numbers.

What role does the central limit theorem play in statistical hypothesis test-
ing? In the construction of confidence intervals?

What is the difference between a null hypothesis and an alternative
hypothesis? Among size, significance level, and power? Between a one-
sided alternative hypothesis and a two-sided alternative hypothesis?

Why does a confidence interval contain more information than the result
of a single hypothesis test?

Explain why the differences-of-means estimator, applied to data from a
randomized controlled experiment, is an estimator of the treatment effect.

Sketch a hypothetical scatterplot for a sample of size 10 for two random
variables with a population correlation of (a) 1.0; (b) —1.0; (c) 0.9; (d) -0.5;
(e) 0.0.

Exercises

31

3.2

In a population, uy = 100 and o3 = 43. Use the central limit theorem to
answer the following questions:

a. In a random sample of size n = 100, find Pr(Y < 101).

b. In arandom sample of size n = 64, find Pr(101 < Y < 103).

¢. Inarandom sample of size n = 165, find Pr( Y > 98).

Let Y be a Bernoulli random variable with success probability Pr(Y = 1) =

p,and let Yy,...,Y, be iid. draws from this distribution. Let p be the
fraction of successes (1s) in this sample.
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3.3

3.4

3.5

a. Showthatp =Y.
b. Show that p is an unbiased estimator of p.
¢. Show that var(p) = p(1 — p)/n.

In a survey of 400 likely voters, 215 responded that they would vote for the
incumbent, and 185 responded that they would vote for the challenger. Let
p denote the fraction of all likely voters who preferred the incumbent at
the time of the survey, and let p be the fraction of survey respondents who
preferred the incumbent.

a. Use the survey results to estimate p.

&

Use the estimator of the variance of p, p(1 — p)/n, to calculate the
standard error of your estimator.

What is the p-value for the test Hy:p = 0.5vs. Hi: p # 0.5?
What is the p-value for the test Hy: p = 0.5 vs. Hi:p > 0.5?
Why do the results from (c) and (d) differ?

Did the survey contain statistically significant evidence that the

G~ I

incumbent was ahead of the challenger at the time of the survey?
Explain.

Using the data in Exercise 3.3:

a. Construct a 95% confidence interval for p.
b. Construct a 99% confidence interval for p.
c¢. Why is the interval in (b) wider than the interval in (a)?

a. Without doing any additional calculations, test the hypothesis
Hy:p = 050 vs. Hi: p # 0.50 at the 5% significance level.

A survey of 1055 registered voters is conducted, and the voters are
asked to choose between candidate A and candidate B. Let p denote
the fraction of voters in the population who prefer candidate A, and
let p denote the fraction of voters in the sample who prefer
Candidate A.

a. You are interested in the competing hypotheses Hy:p = 0.5
vs. Hi:p # 0.5. Suppose that you decide to reject Hy if
|p — 05| > 0.02.

1. What is the size of this test?
ii. Compute the power of this test if p = 0.53.
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b. In the survey, p = 0.54.
1. Test Hy:p = 0.5vs. Hi:p # 0.5 using a 5% significance level.
ii. Test Hy:p = 0.5 vs. Hi:p > 0.5 using a 5% significance level.
iii. Construct a 95% confidence interval for p.
iv. Construct a 99% confidence interval for p.
v. Construct a 50% confidence interval for p.

¢. Suppose that the survey is carried out 20 times, using independently
selected voters in each survey. For each of these 20 surveys, a 95%
confidence interval for p is constructed.

1. What is the probability that the true value of p is contained in all
20 of these confidence intervals?

ii. How many of these confidence intervals do you expect to contain
the true value of p?

d. Insurvey jargon, the “margin of error” is 1.96 X SE(p); that is, it
is half the length of 95% confidence interval. Suppose you want to
design a survey that has a margin of error of at most 1%. That is, you
want Pr(|p — p| > 0.01) = 0.05. How large should n be if the survey
uses simple random sampling?

Let Yy,...,Y, be iid. draws from a distribution with mean u. A test of
Hy: o = 5vs. Hi: p # 5 using the usual #-statistic yields a p-value of 0.03.

a. Does the 95% confidence interval contain u = 5? Explain.

b. Can you determine if u = 6 is contained in the 95% confidence
interval? Explain.

In a given population, 11% of the likely voters are African American. A sur-
vey using a simple random sample of 600 landline telephone numbers finds
8% African Americans. Is there evidence that the survey is biased? Explain.

A new version of the SAT is given to 1000 randomly selected high school
seniors. The sample mean test score is 1110, and the sample standard devi-
ation is 123. Construct a 95% confidence interval for the population mean
test score for high school seniors.

Suppose that a lightbulb manufacturing plant produces bulbs with a mean
life of 2000 hours and a standard deviation of 200 hours. An inventor claims
to have developed an improved process that produces bulbs with a longer
mean life and the same standard deviation. The plant manager randomly
selects 100 bulbs produced by the process. She says that she will believe the
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3.10

311

3.12

inventor’s claim if the sample mean life of the bulbs is greater than 2100
hours; otherwise, she will conclude that the new process is no better than
the old process. Let u denote the mean of the new process. Consider the
null and alternative hypotheses Hy: w = 2000 vs. Hy: w > 2000.

a.
b.

What is the size of the plant manager’s testing procedure?

Suppose the new process is in fact better and has a mean bulb life of 2150
hours. What is the power of the plant manager’s testing procedure?

What testing procedure should the plant manager use if she wants the
size of her test to be 5%?

Suppose a new standardized test is given to 100 randomly selected third-

grade students in New Jersey. The sample average score Y on the test is
58 points, and the sample standard deviation, sy, is 8 points.

a.

The authors plan to administer the test to all third-grade students in
New Jersey. Construct a 95% confidence interval for the mean score
of all New Jersey third graders.

Suppose the same test is given to 200 randomly selected third graders
from Iowa, producing a sample average of 62 points and sample stan-
dard deviation of 11 points. Construct a 90% confidence interval for
the difference in mean scores between Iowa and New Jersey.

Can you conclude with a high degree of confidence that the popula-
tion means for lowa and New Jersey students are different? (What is
the standard error of the difference in the two sample means? What
is the p-value of the test of no difference in means versus some differ-
ence?)

Consider the estimator Y, defined in Equation (3.1). Show that
(a) E(Y) = uy and (b) var(Y) = 1.25¢%/n.

To investigate possible gender discrimination in a firm, a sample of 100

men and 64 women with similar job descriptions are selected at random.
A summary of the resulting monthly salaries follows:

( Average Salary (Y) Standard Deviation (sy) n w
‘ Men $3100 $200 100 ‘
tWomen $2900 $320 64 J

a.

What do these data suggest about wage differences in the firm? Do
they represent statistically significant evidence that average wages of
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men and women are different? (To answer this question, first state
the null and alternative hypotheses; second, compute the relevant
t-statistic; third, compute the p-value associated with the ¢-statistic;
and finally, use the p-value to answer the question.)

b. Do these data suggest that the firm is guilty of gender discrimination
in its compensation policies? Explain.

Data on fifth-grade test scores (reading and mathematics) for 420 school
districts in California yield Y = 646.2 and standard deviation sy = 19.5.

a. Construct a 95% confidence interval for the mean test score in the
population.

b. When the districts were divided into districts with small classes (< 20
students per teacher) and large classes (=20 students per teacher),
the following results were found:

(Class Size Average Score (Y) Standard Deviation (sy) n W
‘ Small 657.4 19.4 238 ‘
tLarge 650.0 17.9 182 J

Is there statistically significant evidence that the districts with smaller
classes have higher average test scores? Explain.

Values of height in inches (X) and weight in pounds (Y) are recorded from
a sample of 300 male college students. The resulting summary statistics are
X = 70.5in.,Y = 1581b.,sy = 1.8in.,sy = 14.21b.,syy = 21.73in. X Ib.,
and ryy = 0.85. Convert these statistics to the metric system (meters and
kilograms).

Let Y, and Y, denote Bernoulli random variables from two different popu-
lations, denoted a and b. Suppose that E(Y,) = p, and E(Y,) = p,. A
random sample of size n, is chosen from population a, with sample average
denoted p,, and a random sample of size n,, is chosen from population b,
with sample average denoted p,. Suppose the sample from population a is
independent of the sample from population b.

a. Show that E( p,) = p, and var(p,) = p,(1 — p,)/n,. Show that
E(py) = ppand var(py) = pp(l = pp)/ny.

b. Show that var(p, — p,) = - o — o 4 eoll —r ) (Hint: Remember that
the samples are independent.)
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¢. Suppose that n, and n, are large. Show that a 95% confidence inter-
val for p, — p,, is given by (p, — pp) £ 1.96\/‘5“(1 o P 13”(1,; B)

How would you construct a 90% confidence interval for p, — p,?

d. Read the box “A Novel Way to Boost Retirement Savings” in Section 3.6.
Let population a denote the “opt-out” (treatment) group and popula-
tion b denote the “opt-in” (control) group. Construct a 95% confi-
dence interval for the treatment effect, p, — p,.

3.16 Grades on a standardized test are known to have a mean of 1000 for
students in the United States. The test is administered to 453 randomly
selected students in Florida; in this sample, the mean is 1013, and the stan-
dard deviation (s) is 108.

a. Construct a 95% confidence interval for the average test score for
Florida students.

b. Is there statistically significant evidence that Florida students perform
differently than other students in the United States?

¢. Another 503 students are selected at random from Florida. They
are given a 3-hour preparation course before the test is adminis-
tered. Their average test score is 1019, with a standard deviation
of 95.

1. Construct a 95% confidence interval for the change in average
test score associated with the prep course.

ii. Is there statistically significant evidence that the prep course
helped?

d. The original 453 students are given the prep course and then are
asked to take the test a second time. The average change in their test
scores is 9 points, and the standard deviation of the change is
60 points.

1. Construct a 95% confidence interval for the change in average
test scores.

ii. Is there statistically significant evidence that students will perform
better on their second attempt, after taking the prep course?

iii. Students may have performed better in their second attempt
because of the prep course or because they gained test-taking
experience in their first attempt. Describe an experiment that
would quantify these two effects.
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3.17 Read the box “The Gender Gap of Earnings of College Graduates in the
United States” in Section 3.5.

a. Construct a 95% confidence interval for the change in men’s average
hourly earnings between 1992 and 2012.

b. Construct a 95% confidence interval for the change in women’s aver-
age hourly earnings between 1992 and 2012.

¢. Construct a 95% confidence interval for the change in the gender

gap in average hourly earnings between 1992 and 2012. (Hint:
17m,1992 - I_/W,1992 is independent of l7m,2012 - 1_/W,2012-)

3.18 This exercise shows that the sample variance is an unbiased estimator
of the population variance when Y7, ..., Y, are i.i.d. with mean wy and
variance 0.

a. Use Equation (2.31) to show that

E[(Y; = Y)?] = var(Y;) — 2cov(Y;, Y) + var(Y).
b. Use Equation (2.33) to show that cov(Y, Y;) = o%/n.
¢. Use the results in (a) and (b) to show that E(s3) = o%.

3.19 a. Y is an unbiased estimator of uy. Is Y2 an unbiased estimator of u3?

b. Y is a consistent estimator of wy. Is Y % a consistent estimator of u$?

3.20 Suppose that (X, Y;) are i.i.d. with finite fourth moments. Prove that the
sample covariance is a consistent estimator of the population covariance,
that is, syy —2— oy, Where syy is defined in Equation (3.24). (Hint: Use
the strategy of Appendix 3.3.)

3.21 Show that the pooled standard error [SE,ypea( Y, — Y,,)] given fol-
lowing Equation (3.23) equals the usual standard error for the differ-
ence in means in Equation (3.19) when the two group sizes are the same

(ny = ny).

Empirical Exercises

E3.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you
will find the data file CPS92_12, which contains an extended version of
the data set used in Table 3.1 of the text for the years 1992 and 2012. It
contains data on full-time workers, ages 25-34, with a high school diploma
or B.A./B.S. as their highest degree. A detailed description is given in
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CPS92_12_Description, available on the website. Use these data to answer
the following questions.

a. i. Compute the sample mean for average hourly earnings (AHE) in
1992 and 2012.

ii. Compute the sample standard deviation for AHE in 1992 and
2012.

iii. Construct a 95% confidence interval for the population means of
AHE in 1992 and 2012.

iv. Construct a 95% confidence interval for the change in the popula-
tion mean of AHE between 1992 and 2012.

b. In 2012, the value of the Consumer Price Index (CPI) was 229.6. In
1992, the value of the CPI was 140.3. Repeat (a) but use AHE mea-
sured in real 2012 dollars ($2012); that is, adjust the 1992 data for the
price inflation that occurred between 1992 and 2012.

c. If you were interested in the change in workers’ purchasing power
from 1992 to 2012, would you use the results from (a) or (b)? Explain.

d. Using the data for 2012:

1. Construct a 95% confidence interval for the mean of AHE for
high school graduates.

11. Construct a 95% confidence interval for the mean of AHE for
workers with a college degree.

iii. Construct a 95% confidence interval for the difference between
the two means.
e. Repeat (d) using the 1992 data expressed in $2012.

f. Using appropriate estimates, confidence intervals, and test statistics,
answer the following questions:

i. Did real (inflation-adjusted) wages of high school graduates
increase from 1992 to 20127

ii. Did real wages of college graduates increase?

iii. Did the gap between earnings of college and high school gradu-
ates increase? Explain.

g. Table 3.1 presents information on the gender gap for college gradu-
ates. Prepare a similar table for high school graduates, using the 1992
and 2012 data. Are there any notable differences between the results
for high school and college graduates?
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E3.2 A consumer is given the chance to buy a baseball card for $1, but he
declines the trade. If the consumer is now given the baseball card, will
he be willing to sell it for $1? Standard consumer theory suggests yes, but
behavioral economists have found that “ownership” tends to increase the
value of goods to consumers. That is, the consumer may hold out for some
amount more than $1 (for example, $1.20) when selling the card, even
though he was willing to pay only some amount less than $1 (for example,
$0.88) when buying it. Behavioral economists call this phenomenon the
“endowment effect.” John List investigated the endowment effect in a ran-
domized experiment involving sports memorabilia traders at a sports-card
show. Traders were randomly given one of two sports collectibles, say good
A or good B, that had approximately equal market value.! Those receiv-
ing good A were then given the option of trading good A for good B with
the experimenter; those receiving good B were given the option of trading
good B for good A with the experimenter. Data from the experiment and
a detailed description can be found on the textbook website, http://www
.pearsonhighered.com/stock_watson/, in the files Sportscards and Sports-
cards_Description.’

a. 1. Suppose that, absent any endowment effect, all the subjects pre-
fer good A to good B. What fraction of the experiment’s subjects
would you expect to trade the good that they were given for the
other good? (Hint: Because of random assignment of the two treat-
ments, approximately 50% of the subjects received good A and
50% received good B.)

ii. Suppose that, absent any endowment effect, 50% of the subjects
prefer good A to good B, and the other 50% prefer good B to
good A. What fraction of the subjects would you expect to trade
the good that they were given for the other good?

iii. Suppose that, absent any endowment effect, X% of the subjects
prefer good A to good B, and the other (100 — X)% prefer good
B to good A. Show that you would expect 50% of the subjects to
trade the good that they were given for the other good.

1Good A was a ticket stub from the game in which Cal Ripken, Jr., set the record for consecutive
games played, and good B was a souvenir from the game in which Nolan Ryan won his 300th game.

’These data were provided by Professor John List of the University of Chicago and were used in his
paper “Does Market Experience Eliminate Market Anomalies,” Quarterly Journal of Economics,
2003, 118(1): 41-71.
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b. Using the sports-card data, what fraction of the subjects traded the
good they were given? Is the fraction significantly different from
50%? Is there evidence of an endowment effect? (Hint: Review
Exercises 3.2 and 3.3)

¢. Some have argued that the endowment effect may be present, but
that it is likely to disappear as traders gain more trading experience.
Half of the experimental subjects were dealers, and the other half
were nondealers. Dealers have more experience than nondealers.
Repeat (b) for dealers and nondealers. Is there a significant differ-
ence in their behavior? Is the evidence consistent with the hypothesis
that the endowment effect disappears as traders gain more experi-
ence? (Hint: Review Exercise 3.15).

The U.S. Current Population Survey

Each month, the U.S. Census Bureau and the U.S. Bureau of Labor Statistics conduct the
Current Population Survey (CPS), which provides data on labor force characteristics of the
population, including the levels of employment, unemployment, and earnings. Approxi-
mately 60,000 U.S. households are surveyed each month. The sample is chosen by ran-
domly selecting addresses from a database of addresses from the most recent decennial
census augmented with data on new housing units constructed after the last census. The
exact random sampling scheme is rather complicated (first, small geographical areas are
randomly selected, then housing units within these areas are randomly selected); details
can be found in the Handbook of Labor Statistics and on the Bureau of Labor Statistics
website (www.bls.gov).

The survey conducted each March is more detailed than in other months and asks
questions about earnings during the previous year. The statistics in Tables 2.4 and 3.1 were
computed using the March surveys. The CPS earnings data are for full-time workers,
defined to be somebody employed more than 35 hours per week for at least 48 weeks in

the previous year.
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Two Proofs That Y Is the Least Squares
Estimator of uy

This appendix provides two proofs, one using calculus and one not, that Y minimizes the
sum of squared prediction mistakes in Equation (3.2)—that is, that Y is the least squares
estimator of E(Y).

Calculus Proof

To minimize the sum of squared prediction mistakes, take its derivative and set it to zero:

d n n n
. SYi—m) =2 —m)=-2>DY;+2nm=0. (327
i=1 i=1

i=1

Solving for the final equation for m shows that X;_(Y; — m)? is minimized when

m =Y.

Noncalculus Proof

The strategy is to show that the difference between the least squares estimator and Y must
be zero, from which it follows that Y is the least squares estimator. Let d = Y — m, so that
m=Y —d. Then (Y,—m)?=(Y,— [Y—-d])*=(Y,- Y] +d)?= (Y, - Y)*+
2d(Y; — Y) + d*. Thus the sum of squared prediction mistakes [Equation (3.2)] is

SDYi—mP =D =YY +2dD(Y; = Y) +nd*= D(Y;— Y)* + nd?
i=1 i=1 i=1 i=1
(3.28)

where the second equality uses the fact that >;—(Y; — Y) = 0. Because both terms in the
final line of Equation (3.28) are nonnegative and because the first term does not depend
ond, X/_(Y; — m)?is minimized by choosing d to make the second term, nd’, as small as
possible. This is done by setting d = 0—that is, by setting m = Y —so that Y is the least

squares estimator of E(Y).
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3.3 AProof That the Sample Variance
Is Consistent

This appendix uses the law of large numbers to prove that the sample variance s% is a con-

sistent estimator of the population variance o3, as stated in Equation (3.9), when
Yy, ..., Y,areiid. and E(Y?}) < .

First, consider a version of the sample variance that uses n instead of n — 1 as a divisor:

J - 13 Sl <
DY -V =-"DYI-2Y DY, +Y?
”i;(l Y) ”z;l ”i;l
_liy2_y2
=

o (0% + m) — i
= 0%, (3.29)

where the first equality uses (Y; — Y)2 = Y7 — 2YY, + Y2, and the second uses 1 >/, Y; = Y.
The convergence in the third line follows from (i) applying the law of large numbers to
%E?: \Y? —2— FE(Y?) (which follows because Y7 are i.i.d. and have finite variance because
E(Y?})is finite), (ii) recognizing that E(Y?) = o3 + u3 (Key Concept 2.3), and (iii) noting
Y £ wy sothat Y> —2> 43 Finally, s3 = (;25) (321 1(Y; — Y)?) —2> 0% follows

from Equation (3.29) and (2+) — 1.

n—1




