
This chapter reviews the core ideas of the theory of probability that are needed to  
understand regression analysis and econometrics. We assume that you have 

taken an introductory course in probability and statistics. If your knowledge of 
probability is stale, you should refresh it by reading this chapter. If you feel confident 
with the material, you still should skim the chapter and the terms and concepts at 
the end to make sure you are familiar with the ideas and notation.

Most aspects of the world around us have an element of randomness. The  
theory of probability provides mathematical tools for quantifying and describing this 
randomness. Section 2.1 reviews probability distributions for a single random  
variable, and Section 2.2 covers the mathematical expectation, mean, and variance 
of a single random variable. Most of the interesting problems in economics involve 
more than one variable, and Section 2.3 introduces the basic elements of probability 
theory for two random variables. Section 2.4 discusses three special probability  
distributions that play a central role in statistics and econometrics: the normal, chi-
squared, and F distributions.

The final two sections of this chapter focus on a specific source of  
randomness of central importance in econometrics: the randomness that arises 
by randomly drawing a sample of data from a larger population. For example, 
suppose you survey ten recent college graduates selected at random, record (or 
“observe”) their earnings, and compute the average earnings using these ten data 
points (or “observations”). Because you chose the sample at random, you could 
have chosen ten different graduates by pure random chance; had you done so, 
you would have observed ten different earnings and you would have computed a 
different sample average. Because the average earnings vary from one randomly 
chosen sample to the next, the sample average is itself a random variable. 
Therefore, the sample average has a probability distribution, which is referred to 
as its sampling distribution because this distribution describes the different 
possible values of the sample average that might have occurred had a different 
sample been drawn.

Section 2.5 discusses random sampling and the sampling distribution of the 
sample average. This sampling distribution is, in general, complicated. When the 
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sample size is sufficiently large, however, the sampling distribution of the sample 
average is approximately normal, a result known as the central limit theorem, which 
is discussed in Section 2.6.

 2.1 Random Variables and Probability  
Distributions

Probabilities, the Sample Space, and Random Variables
Probabilities and outcomes. The gender of the next new person you meet, your 
grade on an exam, and the number of times your computer will crash while 
you are writing a term paper all have an element of chance or randomness. In 
each of these examples, there is something not yet known that is eventually 
revealed.

The mutually exclusive potential results of a random process are called the 
outcomes. For example, your computer might never crash, it might crash once, 
it might crash twice, and so on. Only one of these outcomes will actually occur 
(the outcomes are mutually exclusive), and the outcomes need not be equally 
likely.

The probability of an outcome is the proportion of the time that the outcome 
occurs in the long run. If the probability of your computer not crashing while you 
are writing a term paper is 80%, then over the course of writing many term papers 
you will complete 80% without a crash.

The sample space and events. The set of all possible outcomes is called the sample 
space. An event is a subset of the sample space, that is, an event is a set of one or 
more outcomes. The event “my computer will crash no more than once” is the set 
consisting of two outcomes: “no crashes” and “one crash.”

Random variables. A random variable is a numerical summary of a random 
outcome. The number of times your computer crashes while you are writing 
a term paper is random and takes on a numerical value, so it is a random 
variable.

Some random variables are discrete and some are continuous. As their names 
suggest, a discrete random variable takes on only a discrete set of values, like 0, 1, 
2, c, whereas a continuous random variable takes on a continuum of possible 
values.
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Probability Distribution of a Discrete  
Random Variable
Probability distribution. The probability distribution of a discrete random vari-
able is the list of all possible values of the variable and the probability that each 
value will occur. These probabilities sum to 1.

For example, let M be the number of times your computer crashes while you 
are writing a term paper. The probability distribution of the random variable M 
is the list of probabilities of each possible outcome: The probability that M = 0, 
denoted Pr(M = 0), is the probability of no computer crashes; Pr(M = 1) is the 
probability of a single computer crash; and so forth. An example of a probability 
distribution for M is given in the second row of Table 2.1; in this distribution, if 
your computer crashes four times, you will quit and write the paper by hand. 
According to this distribution, the probability of no crashes is 80%; the probabil-
ity of one crash is 10%; and the probability of two, three, or four crashes is, 
respectively, 6%, 3%, and 1%. These probabilities sum to 100%. This probability 
distribution is plotted in Figure 2.1.

Probabilities of events. The probability of an event can be computed from  
the probability distribution. For example, the probability of the event of one or 
two crashes is the sum of the probabilities of the constituent outcomes. That  
is, Pr(M = 1 or M = 2) = Pr(M = 1) + Pr(M = 2) = 0.10 + 0.06 = 0.16, or 
16%.

Cumulative probability distribution. The cumulative probability distribution  
is the probability that the random variable is less than or equal to a particular 
value. The last row of Table 2.1 gives the cumulative probability distribution of 
the random variable M. For example, the probability of at most one crash, 
Pr(M … 1), is 90%, which is the sum of the probabilities of no crashes (80%) and 
of one crash (10%).

taBLe 2.1  Prob.bili@y of Your Compu@2r Cr.s5ing M tim2s
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A cumulative probability distribution is also referred to as a cumulative  
distribution function, a c.d.f., or a cumulative distribution.

The Bernoulli distribution. An important special case of a discrete random vari-
able is when the random variable is binary, that is, the outcomes are 0 or 1.  
A binary random variable is called a Bernoulli random variable (in honor of the 
seventeenth-century Swiss mathematician and scientist Jacob Bernoulli), and its 
probability distribution is called the Bernoulli distribution.

For example, let G be the gender of the next new person you meet, where 
G = 0 indicates that the person is male and G = 1 indicates that she is female. 
The outcomes of G and their probabilities thus are

 G = e1 with probability p
0 with probability 1 - p,

 (2.1)

where p is the probability of the next new person you meet being a woman. The 
probability distribution in Equation (2.1) is the Bernoulli distribution.

Figure 2.1   Prob.bili@y Dis@ribu@ion of @52 Numb2r of Compu@2r  
Cr.s52s
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Figure 2.2  Cumul.@iv2 Dis@ribu@ion .nd Prob.bili@y D2nsi@y Func@ions 
of Commu@ing tim2

Figure 2.2a shows the cumulative probability distribution (or c.d.f.) of commuting times. The probability that a  

commuting time is less than 15 minutes is 0.20 (or 20%), and the probability that it is less than 20 minutes  

is 0.78 (78%). Figure 2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given  

by areas under the p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%) and is 

given by the area under the curve between 15 and 20 minutes.
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Probability Distribution of a Continuous  
Random Variable
Cumulative probability distribution. The cumulative probability distribution for 
a continuous variable is defined just as it is for a discrete random variable. That 
is, the cumulative probability distribution of a continuous random variable is the 
probability that the random variable is less than or equal to a particular value.

For example, consider a student who drives from home to school. This student’s 
commuting time can take on a continuum of values and, because it depends on 
random factors such as the weather and traffic conditions, it is natural to treat it as 
a continuous random variable. Figure 2.2a plots a hypothetical cumulative distribu-
tion of commuting times. For example, the probability that the commute takes less 
than 15 minutes is 20% and the probability that it takes less than 20 minutes is 78%.

Probability density function. Because a continuous random variable can take on a 
continuum of possible values, the probability distribution used for discrete variables, 
which lists the probability of each possible value of the random variable, is not suitable 
for continuous variables. Instead, the probability is summarized by the probability 
density function. The area under the probability density function between any two 
points is the probability that the random variable falls between those two points. A 
probability density function is also called a p.d.f., a density function, or simply a density.

Figure 2.2b plots the probability density function of commuting times corre-
sponding to the cumulative distribution in Figure 2.2a. The probability that the com-
mute takes between 15 and 20 minutes is given by the area under the p.d.f. between 
15 minutes and 20 minutes, which is 0.58, or 58%. Equivalently, this probability can 
be seen on the cumulative distribution in Figure 2.2a as the difference between the 
probability that the commute is less than 20 minutes (78%) and the probability that 
it is less than 15 minutes (20%). Thus the probability density function and the cumu-
lative probability distribution show the same information in different formats.

 2.2 Expected Values, Mean, and Variance

The Expected Value of a Random Variable
Expected value. The expected value of a random variable Y, denoted E(Y), is the 
long-run average value of the random variable over many repeated trials or occur-
rences. The expected value of a discrete random variable is computed as a 
weighted average of the possible outcomes of that random variable, where the 
weights are the probabilities of that outcome. The expected value of Y is also 
called the expectation of Y or the mean of Y and is denoted mY.
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For example, suppose you loan a friend $100 at 10% interest. If the loan is 
repaid, you get $110 (the principal of $100 plus interest of $10), but there is a risk 
of 1% that your friend will default and you will get nothing at all. Thus the amount 
you are repaid is a random variable that equals $110 with probability 0.99 and 
equals $0 with probability 0.01. Over many such loans, 99% of the time you would 
be paid back $110, but 1% of the time you would get nothing, so on average you 
would be repaid $110 * 0.99 + $0 * 0.01 = $108.90. Thus the expected value of 
your repayment (or the “mean repayment”) is $108.90.

As a second example, consider the number of computer crashes M with the 
probability distribution given in Table 2.1. The expected value of M is the average 
number of crashes over many term papers, weighted by the frequency with which 
a crash of a given size occurs. Accordingly,

 E(M) = 0 * 0.80 + 1 * 0.10 + 2 * 0.06 + 3 * 0.03 + 4 * 0.01 = 0.35. (2.2)

That is, the expected number of computer crashes while writing a term paper is 
0.35. Of course, the actual number of crashes must always be an integer; it makes 
no sense to say that the computer crashed 0.35 times while writing a particular 
term paper! Rather, the calculation in Equation (2.2) means that the average 
number of crashes over many such term papers is 0.35.

The formula for the expected value of a discrete random variable Y that can 
take on k different values is given as Key Concept 2.1. (Key Concept 2.1 uses 
“summation notation,” which is reviewed in Exercise 2.25.)

exp2c@2d V.lu2 .nd @52 M2.n

Suppose the random variable Y takes on k possible values, y1, c, yk, where y1 
denotes the first value, y2 denotes the second value, and so forth, and that the 
probability that Y takes on y1 is p1, the probability that Y takes on y2 is p2, and so 
forth. The expected value of Y, denoted E(Y), is

 E(Y) = y1 p1 + y2 p2 +g + yk pk = a
k

i= 1
yi pi, (2.3)

where the notation gk
i= 1 yi pi  means “the sum of yi pi for i running from 1 to k.” 

The expected value of Y is also called the mean of Y or the expectation of Y and 
is denoted mY.

Key COnCept

2.1
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Expected value of a Bernoulli random variable. An important special case of the 
general formula in Key Concept 2.1 is the mean of a Bernoulli random variable. 
Let G be the Bernoulli random variable with the probability distribution in 
Equation (2.1). The expected value of G is

 E(G) = 1 * p + 0 * (1 - p) = p. (2.4)

Thus the expected value of a Bernoulli random variable is p, the probability that 
it takes on the value “1.”

Expected value of a continuous random variable. The expected value of a con-
tinuous random variable is also the probability-weighted average of the possible 
outcomes of the random variable. Because a continuous random variable can take 
on a continuum of possible values, the formal mathematical definition of its 
expectation involves calculus and its definition is given in Appendix 17.1.

The Standard Deviation and Variance
The variance and standard deviation measure the dispersion or the “spread” of  
a probability distribution. The variance of a random variable Y, denoted var(Y), 
is the expected value of the square of the deviation of Y from its mean: 
var(Y) = E3(Y - mY)24.

Because the variance involves the square of Y, the units of the variance are 
the units of the square of Y, which makes the variance awkward to interpret. It is 
therefore common to measure the spread by the standard deviation, which is the 
square root of the variance and is denoted sY. The standard deviation has the 
same units as Y. These definitions are summarized in Key Concept 2.2.

V.ri.nc2 .nd S@.nd.rd D2vi.@ion

The variance of the discrete random variable Y, denoted s2
Y, is

 s2
Y = var(Y) = E3(Y - mY)24 = a

k

i= 1
(yi - mY)2pi. (2.5)

The standard deviation of Y is sY, the square root of the variance. The units of 
the standard deviation are the same as the units of Y.

Key COnCept

2.2
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For example, the variance of the number of computer crashes M is the  
probability-weighted average of the squared difference between M and its  
mean, 0.35:

var(M) = (0 - 0.35)2 * 0.80 + (1 - 0.35)2 * 0.10 + (2 - 0.35)2 * 0.06
 + (3 - 0.35)2 * 0.03 + (4 - 0.35)2 * 0.01 = 0.6475. (2.6)

The standard deviation of M is the square root of the variance, so sM =
20.64750 ≅ 0.80.

Variance of a Bernoulli random variable. The mean of the Bernoulli random vari-
able G with probability distribution in Equation (2.1) is mG = p [Equation (2.4)], 
so its variance is

 var(G) = s2
G = (0 - p)2 * (1 - p) + (1 - p)2 * p = p(1 - p). (2.7)

Thus the standard deviation of a Bernoulli random variable is sG = 2p(1 - p).

Mean and Variance of a Linear Function  
of a Random Variable
This section discusses random variables (say, X and Y) that are related by a linear 
function. For example, consider an income tax scheme under which a worker is 
taxed at a rate of 20% on his or her earnings and then given a (tax-free) grant of 
$2000. Under this tax scheme, after-tax earnings Y are related to pre-tax earnings 
X by the equation

 Y = 2000 + 0.8X. (2.8)

That is, after-tax earnings Y is 80% of pre-tax earnings X, plus $2000.
Suppose an individual’s pre-tax earnings next year are a random variable with 

mean mX and variance s2
X. Because pre-tax earnings are random, so are after-tax 

earnings. What are the mean and standard deviations of her after-tax earnings 
under this tax? After taxes, her earnings are 80% of the original pre-tax earnings, 
plus $2000. Thus the expected value of her after-tax earnings is

 E(Y) = mY = 2000 + 0.8mX. (2.9)

The variance of after-tax earnings is the expected value of (Y - mY)2. Because 
Y = 2000 + 0.8X , Y - mY = 2000 + 0.8X -  (2000 + 0.8mX) = 0.8(X - mX). 
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Thus E3(Y - mY)24 = E530.8(X - mX)426 = 0.64E3(X - mX)24 . It follows  
that var(Y) = 0.64var(X), so, taking the square root of the variance, the standard 
deviation of Y is

 sY = 0.8sX. (2.10)

That is, the standard deviation of the distribution of her after-tax earnings is 80% 
of the standard deviation of the distribution of pre-tax earnings.

This analysis can be generalized so that Y depends on X with an intercept a 
(instead of $2000) and a slope b (instead of 0.8) so that

 Y = a + bX. (2.11)

Then the mean and variance of Y are

 mY = a + bmX  and (2.12)

 s2
Y = b2s2

X, (2.13)

and the standard deviation of Y is sY = bsX. The expressions in Equations (2.9) 
and (2.10) are applications of the more general formulas in Equations (2.12) and 
(2.13) with a = 2000 and b = 0.8.

Other Measures of the Shape of a Distribution
The mean and standard deviation measure two important features of a distribu-
tion: its center (the mean) and its spread (the standard deviation). This section 
discusses measures of two other features of a distribution: the skewness, which 
measures the lack of symmetry of a distribution, and the kurtosis, which measures 
how thick, or “heavy,” are its tails. The mean, variance, skewness, and kurtosis 
are all based on what are called the moments of a distribution.

Skewness. Figure 2.3 plots four distributions, two which are symmetric (Figures 
2.3a and 2.3b) and two which are not (Figures 2.3c and 2.3d). Visually, the distri-
bution in Figure 2.3d appears to deviate more from symmetry than does the dis-
tribution in Figure 2.3c. The skewness of a distribution provides a mathematical 
way to describe how much a distribution deviates from symmetry.

The skewness of the distribution of a random variable Y is

 Skewness =
E3(Y - mY)34

s3
Y

, (2.14)
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where sY is the standard deviation of Y. For a symmetric distribution, a value of 
Y a given amount above its mean is just as likely as a value of Y the same amount 
below its mean. If so, then positive values of (Y - mY)3 will be offset on average 
(in expectation) by equally likely negative values. Thus, for a symmetric distribu-
tion, E3(Y - mY)34 = 0; the skewness of a symmetric distribution is zero. If a 

Figure 2.3   Four Dis@ribu@ions wi@5 Diff2r2n@ Sk2wn2ss .nd Kur@osis

All of these distributions have a mean of 0 and a variance of 1. The distributions with skewness of 0 (a and b) are 
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distribution is not symmetric, then a positive value of (Y - mY)3 generally is 
not offset on average by an equally likely negative value, so the skewness is 
nonzero for a distribution that is not symmetric. Dividing by s3

Y in the denom-
inator of Equation (2.14) cancels the units of Y 3 in the numerator, so the 
skewness is unit free; in other words, changing the units of Y does not change 
its skewness.

Below each of the four distributions in Figure 2.3 is its skewness. If a distribu-
tion has a long right tail, positive values of (Y - mY)3 are not fully offset by nega-
tive values, and the skewness is positive. If a distribution has a long left tail, its 
skewness is negative.

Kurtosis. The kurtosis of a distribution is a measure of how much mass is in its 
tails and, therefore, is a measure of how much of the variance of Y arises from 
extreme values. An extreme value of Y is called an outlier. The greater the kur-
tosis of a distribution, the more likely are outliers.

The kurtosis of the distribution of Y is

 Kurtosis =
E3(Y - mY)44

s4
Y

. (2.15)

If a distribution has a large amount of mass in its tails, then some extreme depar-
tures of Y from its mean are likely, and these departures will lead to large values, 
on average (in expectation), of (Y - mY)4. Thus, for a distribution with a large 
amount of mass in its tails, the kurtosis will be large. Because (Y - mY)4 cannot 
be negative, the kurtosis cannot be negative.

The kurtosis of a normally distributed random variable is 3, so a random vari-
able with kurtosis exceeding 3 has more mass in its tails than a normal random 
variable. A distribution with kurtosis exceeding 3 is called leptokurtic or, more 
simply, heavy-tailed. Like skewness, the kurtosis is unit free, so changing the units 
of Y does not change its kurtosis.

Below each of the four distributions in Figure 2.3 is its kurtosis. The distribu-
tions in Figures 2.3b–d are heavy-tailed.

Moments. The mean of Y, E(Y), is also called the first moment of Y, and the 
expected value of the square of Y, E(Y2), is called the second moment of Y. In 
general, the expected value of Yr is called the rth moment of the random variable 
Y. That is, the rth moment of Y is E(Yr). The skewness is a function of the first, 
second, and third moments of Y, and the kurtosis is a function of the first through 
fourth moments of Y.



26 ChaPteR 2  Review of Probability

 2.3 Two Random Variables

Most of the interesting questions in economics involve two or more variables. Are 
college graduates more likely to have a job than nongraduates? How does the 
distribution of income for women compare to that for men? These questions con-
cern the distribution of two random variables, considered together (education and 
employment status in the first example, income and gender in the second). 
Answering such questions requires an understanding of the concepts of joint, 
marginal, and conditional probability distributions.

Joint and Marginal Distributions

Joint distribution. The joint probability distribution of two discrete random vari-
ables, say X and Y, is the probability that the random variables simultaneously 
take on certain values, say x and y. The probabilities of all possible (x, y) combina-
tions sum to 1. The joint probability distribution can be written as the function 
Pr(X = x, Y = y).

For example, weather conditions—whether or not it is raining—affect the 
commuting time of the student commuter in Section 2.1. Let Y be a binary ran-
dom variable that equals 1 if the commute is short (less than 20 minutes) and 
equals 0 otherwise and let X be a binary random variable that equals 0 if it is rain-
ing and 1 if not. Between these two random variables, there are four possible 
outcomes: it rains and the commute is long (X = 0, Y = 0); rain and short com-
mute (X = 0, Y = 1); no rain and long commute (X = 1, Y = 0); and no rain and 
short commute (X = 1, Y = 1). The joint probability distribution is the frequency 
with which each of these four outcomes occurs over many repeated commutes.

An example of a joint distribution of these two variables is given in Table 2.2. 
According to this distribution, over many commutes, 15% of the days have rain 
and a long commute (X = 0, Y = 0); that is, the probability of a long, rainy com-
mute is 15%, or Pr(X = 0, Y = 0) = 0.15. Also, Pr(X = 0, Y = 1) = 0.15, 

taBLe 2.2   Join@ Dis@ribu@ion of W2.@52r Condi@ions .nd Commu@ing tim2s

 r6>B (X = 0) no r6>B (X = 1) toH6l

Long commute (Y = 0)  0.15 0.07 0.22

Short commute (Y = 1) 0.15 0.63 0.78

Total 0.30 0.70 1.00
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Pr(X = 1, Y = 0) = 0.07, and Pr(X = 1, Y = 1) = 0.63. These four possible 
outcomes are mutually exclusive and constitute the sample space so the four prob-
abilities sum to 1.

Marginal probability distribution. The marginal probability distribution of a ran-
dom variable Y is just another name for its probability distribution. This term is 
used to distinguish the distribution of Y alone (the marginal distribution) from the 
joint distribution of Y and another random variable.

The marginal distribution of Y can be computed from the joint distribution of 
X and Y by adding up the probabilities of all possible outcomes for which Y takes 
on a specified value. If X can take on l different values x1, c, xl, then the mar-
ginal probability that Y takes on the value y is

 Pr(Y = y) = a
l

i= 1
Pr(X = xi, Y = y). (2.16)

For example, in Table 2.2, the probability of a long rainy commute is 15% and the 
probability of a long commute with no rain is 7%, so the probability of a long 
commute (rainy or not) is 22%. The marginal distribution of commuting times is 
given in the final column of Table 2.2. Similarly, the marginal probability that it 
will rain is 30%, as shown in the final row of Table 2.2.

Conditional Distributions

Conditional distribution. The distribution of a random variable Y conditional on 
another random variable X taking on a specific value is called the conditional 
distribution of Y given X. The conditional probability that Y takes on the value y 
when X takes on the value x is written Pr(Y = y 
  X = x).

For example, what is the probability of a long commute (Y = 0) if you know 
it is raining (X = 0)? From Table 2.2, the joint probability of a rainy short com-
mute is 15% and the joint probability of a rainy long commute is 15%, so if it is 
raining a long commute and a short commute are equally likely. Thus the proba-
bility of a long commute (Y = 0), conditional on it being rainy (X = 0), is 50%, 
or Pr(Y = 0 
  X = 0) = 0.50. Equivalently, the marginal probability of rain is 
30%; that is, over many commutes it rains 30% of the time. Of this 30% of com-
mutes, 50% of the time the commute is long (0.15>0.30).

In general, the conditional distribution of Y given X = x is

 Pr(Y = y 
  X = x) =
Pr(X = x, Y = y)

Pr(X = x)
. (2.17)
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For example, the conditional probability of a long commute given that it is rainy 
is Pr(Y = 0 
  X = 0) = Pr(X = 0, Y = 0)>Pr(X = 0) = 0.15>0.30 = 0.50.

As a second example, consider a modification of the crashing computer exam-
ple. Suppose you use a computer in the library to type your term paper and the 
librarian randomly assigns you a computer from those available, half of which are 
new and half of which are old. Because you are randomly assigned to a computer, 
the age of the computer you use, A (= 1 if the computer is new, = 0 if it is old), 
is a random variable. Suppose the joint distribution of the random variables M and 
A is given in Part A of Table 2.3. Then the conditional distribution of computer 
crashes, given the age of the computer, is given in Part B of the table. For example, 
the joint probability M = 0 and A = 0 is 0.35; because half the computers are old, 
the conditional probability of no crashes, given that you are using an old computer, 
is Pr(M = 0 
  A = 0) = Pr(M = 0, A = 0)>Pr(A = 0) = 0.35>0.50 = 0.70, or 
70%. In contrast, the conditional probability of no crashes given that you are 
assigned a new computer is 90%. According to the conditional distributions in  
Part B of Table 2.3, the newer computers are less likely to crash than the old ones; 
for example, the probability of three crashes is 5% with an old computer but 1% 
with a new computer.

Conditional expectation. The conditional expectation of Y given X, also called the 
conditional mean of Y given X, is the mean of the conditional distribution of Y 
given X. That is, the conditional expectation is the expected value of Y, computed 

taBLe 2.3  Join@ .nd Condi@ion.l Dis@ribu@ions of Compu@2r Cr.s52s (M) .nd  
 Compu@2r ag2 (A)

a. Jo>BH D>sHF>bIH>oB

  M = 0 M = 1 M = 2 M = 3 M = 4 toH6l

Old computer (A = 0) 0.35 0.065 0.05 0.025 0.01 0.50

New computer (A = 1) 0.45 0.035 0.01 0.005 0.00 0.50

Total 0.80 0.10 0.06 0.03 0.01 1.00

B. CoBd>H>oB6l D>sHF>bIH>oBs of M <>v:B A

  M = 0 M = 1 M = 2 M = 3 M = 4 toH6l

Pr(M 
A = 0) 0.70 0.13 0.10 0.05 0.02 1.00

Pr(M 
A = 1) 0.90 0.07 0.02 0.01 0.00 1.00
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using the conditional distribution of Y given X. If Y takes on k values y1, c, yk, 
then the conditional mean of Y given X = x is

 E(Y 
  X = x) = a
k

i= 1
yi Pr(Y = yi 
  X = x). (2.18)

For example, based on the conditional distributions in Table 2.3, the expected 
number of computer crashes, given that the computer is old, is E(M 0  A = 0) =
0 * 0.70 + 1 * 0.13 + 2 * 0.10 + 3 * 0.05 + 4 * 0.02 = 0.56. The expected 
number of computer crashes, given that the computer is new, is E(M 0  A = 1) =
0.14, less than for the old computers.

The conditional expectation of Y given X = x is just the mean value of Y 
when X = x. In the example of Table 2.3, the mean number of crashes is 0.56 
for old computers, so the conditional expectation of Y given that the computer 
is old is 0.56. Similarly, among new computers, the mean number of crashes is 
0.14, that is, the conditional expectation of Y given that the computer is new 
is 0.14.

The law of iterated expectations. The mean of Y is the weighted average of the 
conditional expectation of Y given X, weighted by the probability distribution 
of X. For example, the mean height of adults is the weighted average of the 
mean height of men and the mean height of women, weighted by the propor-
tions of men and women. Stated mathematically, if X takes on the l values 
x1, c, xl, then

 E(Y) = a
l

i= 1
E(Y 
X = xi)Pr(X = xi). (2.19)

Equation (2.19) follows from Equations (2.18) and (2.17) (see Exercise 2.19).
Stated differently, the expectation of Y is the expectation of the conditional 

expectation of Y given X,

 E(Y) = E[E(Y 
X)], (2.20)

where the inner expectation on the right-hand side of Equation (2.20) is computed 
using the conditional distribution of Y given X and the outer expectation is com-
puted using the marginal distribution of X. Equation (2.20) is known as the law of 
iterated expectations.

For example, the mean number of crashes M is the weighted average of the 
conditional expectation of M given that it is old and the conditional expectation of 
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M given that it is new, so E(M) = E(M 
  A = 0) * Pr(A = 0) + E(M 
  A = 1) *
Pr(A = 1) = 0.56 * 0.50 + 0.14 * 0.50 = 0.35. This is the mean of the marginal 
distribution of M, as calculated in Equation (2.2).

The law of iterated expectations implies that if the conditional mean of Y given 
X is zero, then the mean of Y is zero. This is an immediate consequence of Equation 
(2.20): if E(Y 
X ) = 0, then E(Y ) = E[E(Y 
X )] = E[0] = 0. Said differently, if 
the mean of Y given X is zero, then it must be that the probability-weighted average 
of these conditional means is zero, that is, the mean of Y must be zero.

The law of iterated expectations also applies to expectations that are condi-
tional on multiple random variables. For example, let X, Y, and Z be random 
variables that are jointly distributed. Then the law of iterated expectations says 
that E(Y ) = E[E(Y 
X, Z )], where E(Y 
X, Z ) is the conditional expectation of 
Y given both X and Z. For example, in the computer crash illustration of Table 2.3, 
let P denote the number of programs installed on the computer; then E(M 
A, P) is 
the expected number of crashes for a computer with age A that has P programs 
installed. The expected number of crashes overall, E(M), is the weighted average 
of the expected number of crashes for a computer with age A and number of pro-
grams P, weighted by the proportion of computers with that value of both A and P.

Exercise 2.20 provides some additional properties of conditional expectations 
with multiple variables.

Conditional variance. The variance of Y conditional on X is the variance of the 
conditional distribution of Y given X. Stated mathematically, the conditional  
variance of Y given X is

 var(Y 
  X = x) = a
k

i= 1
[ yi - E(Y 
  X = x)]2 Pr(Y = yi 
  X = x). (2.21)

For example, the conditional variance of the number of crashes given that the 
computer is old is var(M 
  A = 0) = (0 - 0.56)2 * 0.70 + (1 - 0.56)2 * 0.13 +
(2 - 0.56)2 * 0.10 + (3 - 0.56)2 * 0.05 + (4 - 0.56)2 * 0.02 ≅ 0.99. The 
standard deviation of the conditional distribution of M given that A = 0 is thus 
10.99 = 0.99. The conditional variance of M given that A = 1 is the variance of 
the distribution in the second row of Panel B of Table 2.3, which is 0.22, so the 
standard deviation of M for new computers is 10.22 = 0.47. For the conditional 
distributions in Table 2.3, the expected number of crashes for new computers 
(0.14) is less than that for old computers (0.56), and the spread of the distribution 
of the number of crashes, as measured by the conditional standard deviation, is 
smaller for new computers (0.47) than for old (0.99).
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Independence
Two random variables X and Y are independently distributed, or independent, if 
knowing the value of one of the variables provides no information about the 
other. Specifically, X and Y are independent if the conditional distribution of Y 
given X equals the marginal distribution of Y. That is, X and Y are independently 
distributed if, for all values of x and y,

 Pr(Y = y 
  X = x) = Pr(Y = y) (independence of X and Y ). (2.22)

Substituting Equation (2.22) into Equation (2.17) gives an alternative expression 
for independent random variables in terms of their joint distribution. If X and Y 
are independent, then

 Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y). (2.23)

That is, the joint distribution of two independent random variables is the product 
of their marginal distributions.

Covariance and Correlation

Covariance. One measure of the extent to which two random variables move 
together is their covariance. The covariance between X and Y is the expected 
value E[(X - mX)(Y - mY)], where mX, where mX is the mean of X and mY is the 
mean of Y. The covariance is denoted cov(X, Y) or sXY. If X can take on l values 
and Y can take on k values, then the covariance is given by the formula

 cov(X, Y ) = sXY = E[(X - mX)(Y - mY)]

  = a
k

i= 1
 a

l

j= 1
(xj - mX)(yi - mY)Pr(X = xj, Y = yi). (2.24)

To interpret this formula, suppose that when X is greater than its mean (so that 
X - mX is positive), then Y tends be greater than its mean (so that Y - mY is 
positive), and when X is less than its mean (so that X - mX 6 0), then Y tends to 
be less than its mean (so that Y - mY 6 0). In both cases, the product 
(X - mX) * (Y - mY) tends to be positive, so the covariance is positive. In con-
trast, if X and Y tend to move in opposite directions (so that X is large when Y is 
small, and vice versa), then the covariance is negative. Finally, if X and Y are 
independent, then the covariance is zero (see Exercise 2.19).
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Correlation. Because the covariance is the product of X and Y, deviated from their 
means, its units are, awkwardly, the units of X multiplied by the units of Y. This 
“units” problem can make numerical values of the covariance difficult to interpret.

The correlation is an alternative measure of dependence between X and Y 
that solves the “units” problem of the covariance. Specifically, the correlation 
between X and Y is the covariance between X and Y divided by their standard 
deviations:

 corr(X, Y) =
cov(X, Y )

2var(X ) var(Y )
=
sXY

sX sY
. (2.25)

Because the units of the numerator in Equation (2.25) are the same as those of 
the denominator, the units cancel and the correlation is unitless. The random 
variables X and Y are said to be uncorrelated if corr(X, Y ) = 0.

The correlation always is between −1 and 1; that is, as proven in Appendix 2.1,

 -1 … corr(X, Y ) … 1 (correlation inequality). (2.26)

Correlation and conditional mean. If the conditional mean of Y does not depend 
on X, then Y and X are uncorrelated. That is,

 if E(Y  
  X ) = mY, then cov(Y, X ) = 0 and corr(Y, X ) = 0. (2.27)

We now show this result. First suppose that Y and X have mean zero so that 
cov(Y, X ) = E[(Y - mY)(X - mX)] = E(YX). By the law of iterated expecta-
tions [Equation (2.20)], E(YX ) = E[E(YX 
  X )] = E[E(Y 
  X )X ] = 0 because 
E(Y 
  X ) = 0, so cov(Y, X ) = 0. Equation (2.27) follows by substituting 
cov(Y, X ) = 0 into the definition of correlation in Equation (2.25). If Y and X do 
not have mean zero, first subtract off their means, then the preceding proof applies.

It is not necessarily true, however, that if X and Y are uncorrelated, then the 
conditional mean of Y given X does not depend on X. Said differently, it is pos-
sible for the conditional mean of Y to be a function of X but for Y and X nonethe-
less to be uncorrelated. An example is given in Exercise 2.23.

The Mean and Variance of Sums  
of Random Variables
The mean of the sum of two random variables, X and Y, is the sum of their means:

 E(X + Y ) = E(X ) + E(Y ) = mX + mY. (2.28)
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For example, do the best-paid college-educated 

women earn as much as the best-paid college-

educated men?

One way to answer these questions is to examine 

the distribution of earnings of full-time workers, con-

ditional on the highest educational degree achieved 

(high school diploma or bachelor’s degree) and on 

gender. These four conditional distributions are shown 

in Figure 2.4, and the mean, standard deviation, and 

S ome parents tell their children that they will 

be able to get a better, higher-paying job if 

they get a college degree than if they skip higher 

education. Are these parents right? Does the dis-

tribution of earnings differ between workers who 

are college graduates and workers who have only 

a high school diploma, and, if so, how? Among 

workers with a similar education, does the dis-

tribution of earnings for men and women differ? 

continued on next page

(a) Women with a high school diploma (b) Women with a college degree

(c) Men with a high school diploma
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Figure 2.4    Condi@ion.l Dis@ribu@ion of av2r.g2 hourly e.rnings of U.S. Full-tim2 Work2rs  
in 2012, Giv2n educ.@ion L2v2l .nd G2nd2r

The four distributions of  

earnings are for women  
and men, for those with only  

a high school diploma (a and c)  

and those whose highest  

degree is from a four-year  

college (b and d).
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some percentiles of the conditional distributions are 

presented in Table 2.4.1 For example, the conditional 

mean of earnings for women whose highest degree is 

a high school diploma—that is, E(Earnings|Highest 

degree = high school diploma, Gender = female)—is 

$15.49 per hour.

The distribution of average hourly earnings for 

female college graduates (Figure 2.4b) is shifted to 

the right of the distribution for women with only 

a high school degree (Figure 2.4a); the same shift 

can be seen for the two groups of men (Figure 2.4d 

and Figure 2.4c). For both men and women, mean 

earnings are higher for those with a college degree 

(Table 2.4, first numeric column). Interestingly, the 

spread of the distribution of earnings, as measured 

by the standard deviation, is greater for those with 

a college degree than for those with a high school 

diploma. In addition, for both men and women, the 

90th percentile of earnings is much higher for work-

ers with a college degree than for workers with only 

a high school diploma. This final comparison is con-

sistent with the parental admonition that a college 

degree opens doors that remain closed to individuals 

with only a high school diploma.

Another feature of these distributions is that 

the distribution of earnings for men is shifted to 

the right of the distribution of earnings for women. 

This “gender gap” in earnings is an important—

and, to many, troubling—aspect of the distribu-

tion of earnings. We return to this topic in later 

chapters.

taBLe 2.4  Summ.ri2s of @52 Condi@ion.l Dis@ribu@ion of av2r.g2 hourly e.rnings of U.S. 
Full-tim2 Work2rs in 2012 Giv2n educ.@ion L2v2l .nd G2nd2r

      p:Fc:BH>l:

  

M:6B

SH6Bd6Fd 

D:v>6H>oB

 

25%

50%  

(m:d>6B)

 

75%

 

90%

(a) Women with high school 
diploma

 
$15.49

 
$8.42

 
$10.10

 
$14.03

 
$18.75

 
$24.52

(b) Women with four-year  
college degree 

 
  25.42

 
13.81

 
16.15

 
 22.44

 
 31.34

 
 43.27

(c) Men with high school 
diploma 

 
  20.25

 
11.00

 
12.92

 
 17.86

 
 24.83

 
 33.78

(d) Men with four-year college 
degree

 
  32.73

 
18.11

 
19.61

 
 28.85

 
 41.68

 
 57.30

Average hourly earnings are the sum of annual pretax wages, salaries, tips, and bonuses divided by the number of hours  
worked annually.

1The distributions were estimated using data from the 
March 2013 Current Population Survey, which is discussed 
in more detail in Appendix 3.1.
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The variance of the sum of X and Y is the sum of their variances plus two 
times their covariance:

  var(X + Y) = var(X) + var(Y) + 2 cov(X, Y) = s2
X + s2

Y + 2sXY. (2.36)

If X and Y are independent, then the covariance is zero and the variance of their 
sum is the sum of their variances:

var(X + Y) = var(X) + var(Y) = s2
X + s2

Y

 (if X and Y are independent). (2.37)

Useful expressions for means, variances, and covariances involving weighted sums 
of random variables are collected in Key Concept 2.3. The results in Key Concept 2.3 
are derived in Appendix 2.1.

M2.ns, V.ri.nc2s, .nd Cov.ri.nc2s of Sums  
of R.ndom V.ri.bl2s

Let X, Y, and V be random variables, let mX and sX
2  be the mean and variance of 

X, let sXY be the covariance between X and Y (and so forth for the other vari-
ables), and let a, b, and c be constants. Equations (2.29) through (2.35) follow 
from the definitions of the mean, variance, and covariance:

 E(a + bX + cY) = a + bmX + cmY, (2.29)

 var(a + bY) = b2s2
Y, (2.30)

 var(aX + bY) = a2s2
X + 2absXY + b2s2

Y, (2.31)

 E(Y2) = s2
Y + m2

Y, (2.32)

 cov(a + bX + cV, Y) = bsXY + csVY, (2.33)

 E(XY) = sXY + mX mY, (2.34)

 
corr(X, Y)| … 1 and |sXY| … 2s2
Xs

2
Y  (correlation inequality). (2.35)

Key COnCept

2.3
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 2.4 The Normal, Chi-Squared, Student t, 
and F Distributions

The probability distributions most often encountered in econometrics are the nor-
mal, chi-squared, Student t, and F distributions.

The Normal Distribution
A continuous random variable with a normal distribution has the familiar bell-
shaped probability density shown in Figure 2.5. The function defining the normal 
probability density is given in Appendix 17.1. As Figure 2.5 shows, the normal 
density with mean m and variance s2 is symmetric around its mean and has 95% 
of its probability between m - 1.96s and m + 1.96s.

Some special notation and terminology have been developed for the normal 
distribution. The normal distribution with mean m and variance s2 is expressed 
concisely as “N(m, s 2).” The standard normal distribution is the normal distribu-
tion with mean m = 0 and variance s2 = 1 and is denoted N(0, 1). Random vari-
ables that have a N(0, 1) distribution are often denoted Z, and the standard 
normal cumulative distribution function is denoted by the Greek letter Φ; accord-
ingly, Pr(Z … c) = Φ(c), where c is a constant. Values of the standard normal 
cumulative distribution function are tabulated in Appendix Table 1.

To look up probabilities for a normal variable with a general mean and variance, 
we must standardize the variable by first subtracting the mean, then by dividing  

ym + 1.96s

95%

m – 1.96s m

Figure 2.5   t52 Norm.l Prob.bili@y D2nsi@y

The normal probability 

density function with 

mean m and variance  

s2 is a bell-shaped  

curve, centered at m.  
The area under the  

normal p.d.f. between 

m - 1.96s and  

m + 1.96s  is 0.95.  
The normal distribution  

is denoted N(m, s2).
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the result by the standard deviation. For example, suppose Y is distributed  
N(1, 4)—that is, Y is normally distributed with a mean of 1 and a variance of 4. 
What is the probability that Y … 2—that is, what is the shaded area in Figure 2.6a? 
The standardized version of Y is Y minus its mean, divided by its standard devia-
tion, that is, (Y - 1)>14 = 1

2(Y - 1). Accordingly, the random variable 12(Y - 1) 
is normally distributed with mean zero and variance one (see Exercise 2.8); it has 
the standard normal distribution shown in Figure 2.6b. Now Y … 2 is equivalent 
to 12(Y - 1) … 1

2(2 - 1)—that is, 12(Y - 1) … 1
2. Thus,

 Pr(Y … 2) = Pr[ 12 (Y - 1) … 1
2 ] = Pr(Z … 1

2) = Φ(0.5) = 0.691, (2.41)

where the value 0.691 is taken from Appendix Table 1.
The same approach can be applied to compute the probability that a normally 

distributed random variable exceeds some value or that it falls in a certain range. 
These steps are summarized in Key Concept 2.4. The box “A Bad Day on Wall 
Street” presents an unusual application of the cumulative normal distribution.

The normal distribution is symmetric, so its skewness is zero. The kurtosis of 
the normal distribution is 3.

Compu@ing Prob.bili@i2s Involving 
Norm.l R.ndom V.ri.bl2s

Suppose Y is normally distributed with mean m and variance s2; in other words,  
Y is distributed N(m, s2). Then Y is standardized by subtracting its mean and 
dividing by its standard deviation, that is, by computing Z = (Y - m)/s.

Let c1 and c2 denote two numbers with c1 6 c2 and let d1 = (c1 - m)/s and 
d2 = (c2 - m)/s. Then

 Pr(Y … c2) = Pr(Z … d2) = Φ(d2), (2.38)

 Pr(Y Ú c1) = Pr(Z Ú d1) = 1 - Φ(d1), (2.39)

 Pr(c1 … Y … c2) = Pr(d1 … Z … d2) = Φ(d2) - Φ(d1). (2.40)

The normal cumulative distribution function Φ is tabulated in Appendix  
Table 1.

Key COnCept

2.4
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The multivariate normal distribution. The normal distribution can be generalized 
to describe the joint distribution of a set of random variables. In this case, the 
distribution is called the multivariate normal distribution, or, if only two variables 
are being considered, the bivariate normal distribution. The formula for the bivar-
iate normal p.d.f. is given in Appendix 17.1, and the formula for the general mul-
tivariate normal p.d.f. is given in Appendix 18.1.

The multivariate normal distribution has four important properties. If X and 
Y have a bivariate normal distribution with covariance sXY and if a and b are two 
constants, then aX + bY has the normal distribution:

 aX + bY is distributed N(amX + bmY, a2s2
X + b2s2

Y + 2 absXY) 
 (X, Y bivariate normal). (2.42)

Figure 2.6   C.lcul.@ing @52 Prob.bili@y t5.@ YÅ2 W52n Y Is Dis@ribu@2d N(1, 4)

To calculate Pr(Y … 2), standardize Y, then use  

the standard normal distribution table. Y is  

standardized by subtracting its mean (m = 1)  

and dividing by its standard deviation (s = 2).  
The probability that Y … 2 is shown in  

Figure 2.6a, and the corresponding probability  

after standardizing Y is shown in Figure 2.6b.  

Because the standardized random variable,  

(Y - 1)>2, is a standard normal (Z ) random 

variable, Pr(Y … 2) = Pr1Y - 1
2 … 2 - 1

2 2 =
Pr(Z … 0.5). From Appendix Table 1,  

Pr(Z … 0.5) = Φ(0.5) = 0.691. y1.0 2.0

N(1, 4) distribution

Pr(Y < 2)

(a) N(1, 4)

z0.0 0.5

N(0, 1) distribution

Pr(Z < 0.5)

(b) N(0, 1)

0.691
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standard deviations. The enormity of this drop can 

be seen in Figure 2.7, a plot of the daily returns on 

the Dow during the 1980s.

If daily percentage price changes are normally dis-

tributed, then the probability of a change of at least 20 

standard deviations is Pr(|Z| Ú 20) = 2 * Φ(-20). 

You will not find this value in Appendix Table 1, but 

you can calculate it using a computer (try it!). This 

probability is 5.5 * 10-89, that is, 0.000 . . . 00055, 

where there are a total of 88 zeros!

O n a typical day the overall value of stocks 

traded on the U.S. stock market can rise or fall 

by 1% or even more. This is a lot—but nothing com-

pared to what happened on Monday, October 19, 

1987. On “Black Monday,” the Dow Jones Industrial 

Average (an average of 30 large industrial stocks) 

fell by 22.6%! From January 1, 1980, to December 

31, 2012, the standard deviation of daily percentage 

price changes on the Dow was 1.12%, so the drop 

of 22.6% was a negative return of 20(= 22.6>1.12) 

Figure 2.7   D.ily P2rc2n@.g2 C5.ng2s in @52 Dow Jon2s Indus@ri.l av2r.g2 in @52 1980s

From 1980  

through 2012,  

the average  

percentage daily  

change of “the  
Dow” index was  

0.04% and its  

standard deviation  

was 1.12%. On  

October 19, 1987— 

”Black Monday”— 

the Dow fell 22.6%,  

or more than 20  

standard deviations.
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How small is 5.5 * 10-89? Consider the following:

•    The world population is about 7 billion, so the prob-

ability of winning a random lottery among all living 

people is about one in 7 billion, or 1.4 * 10-10.

•    The universe is believed to have existed for 14 bil-

lion years, or about 5 * 1017 seconds, so the prob-

ability of choosing a particular second at random 

from all the seconds since the beginning of time is 

2 * 10-18.

•    There are approximately 1043 molecules of gas in 

the first kilometer above the earth’s surface. The 

probability of choosing one at random is 10-43.

Although Wall Street did have a bad day, the 

fact that it happened at all suggests its probabil-

ity was more than 5.5 * 10-89. In fact, there have 

been many days—good and bad—with stock price 

changes too large to be consistent with a normal 

distribution with a constant variance. Table 2.5 lists 

the ten largest daily percentage price changes in the 

Dow Jones Industrial Average in the 8325 trading 

days between January 1, 1980, and December 31, 

2012, along with the standardized change using the 

mean and variance over this period. All ten changes 

exceed 6.4 standard deviations, an extremely rare 

event if stock prices are normally distributed.

Clearly, stock price percentage changes have a 

distribution with heavier tails than the normal dis-

tribution. For this reason, finance professionals use 

other models of stock price changes. One such model 

treats stock price changes as normally distributed 

with a variance that evolves over time, so periods like 

October 1987 and the financial crisis in the fall of 2008 

have higher volatility than others (models with time-

varying variances are discussed in Chapter 16). Other 

models abandon the normal distribution in favor of 

distributions with heavier tails, an idea popularized 

in Nassim Taleb’s 2007 book, The Black Swan. These 

models are more consistent with the very bad—and 

very good—days we actually see on Wall Street.

taBLe 2.5  t52 t2n L.rg2s@ D.ily P2rc2n@.g2 C5.ng2s in @52 Dow Jon2s Indus@ri.l Ind2x, 
1980–2012, .nd @52 Norm.l Prob.bili@y of . C5.ng2 .@ L2.s@ .s L.rg2
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October 19, 1987 -22.6 -20.2 5.5 * 10-89

October 13, 2008  11.1     9.9 6.4 * 10-23

October 28, 2008  10.9     9.7 3.8 * 10-22

October 21, 1987  10.1     9.0 1.8 * 10-19

October 26, 1987  -8.0   -7.2 5.6 * 10-13

October 15, 2008  -7.9   -7.1 1.6 * 10-12

December 01, 2008  -7.7   -6.9 4.9 * 10-12

October 09, 2008  -7.3   -6.6 4.7 * 10-11

October 27, 1997  -7.2   -6.4 1.2 * 10-10

September 17, 2001  -7.1   -6.4 1.6 * 10-10
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More generally, if n random variables have a multivariate normal distribution, then 
any linear combination of these variables (such as their sum) is normally distributed.

Second, if a set of variables has a multivariate normal distribution, then the 
marginal distribution of each of the variables is normal [this follows from Equa-
tion (2.42) by setting a = 1 and b = 0].

Third, if variables with a multivariate normal distribution have covariances 
that equal zero, then the variables are independent. Thus, if X and Y have a 
bivariate normal distribution and sXY = 0, then X and Y are independent. In 
Section 2.3 it was shown that if X and Y are independent, then, regardless of their 
joint distribution, sXY = 0. If X and Y are jointly normally distributed, then the 
converse is also true. This result—that zero covariance implies independence—is 
a special property of the multivariate normal distribution that is not true in general.

Fourth, if X and Y have a bivariate normal distribution, then the conditional 
expectation of Y given X is linear in X; that is, E(Y 
X = x) = a + bx, where a and 
b are constants (Exercise 17.11). Joint normality implies linearity of conditional 
expectations, but linearity of conditional expectations does not imply joint normality.

The Chi-Squared Distribution
The chi-squared distribution is used when testing certain types of hypotheses in 
statistics and econometrics.

The chi-squared distribution is the distribution of the sum of m squared inde-
pendent standard normal random variables. This distribution depends on m, 
which is called the degrees of freedom of the chi-squared distribution. For exam-
ple, let Z1, Z2, and Z3 be independent standard normal random variables. Then 
Z2

1 + Z2
2 + Z2

3 has a chi-squared distribution with 3 degrees of freedom. The 
name for this distribution derives from the Greek letter used to denote it: A chi-
squared distribution with m degrees of freedom is denoted x2

m.
Selected percentiles of the x2

m distribution are given in Appendix Table 3. For 
example, Appendix Table 3 shows that the 95th percentile of the x2

m distribution is 
7.81, so Pr(Z2

1 + Z2
2 + Z3

3 … 7.81) = 0.95.

The Student t Distribution
The Student t distribution with m degrees of freedom is defined to be the distribu-
tion of the ratio of a standard normal random variable, divided by the square root 
of an independently distributed chi-squared random variable with m degrees of 
freedom divided by m. That is, let Z be a standard normal random variable, let W 
be a random variable with a chi-squared distribution with m degrees of freedom, 
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and let Z and W be independently distributed. Then the random variable 
Z>2W/m has a Student t distribution (also called the t distribution) with m 
degrees of freedom. This distribution is denoted tm. Selected percentiles of the 
Student t distribution are given in Appendix Table 2.

The Student t distribution depends on the degrees of freedom m. Thus the 
95th percentile of the tm distribution depends on the degrees of freedom m. The 
Student t distribution has a bell shape similar to that of the normal distribution, 
but when m is small (20 or less), it has more mass in the tails—that is, it is a “fat-
ter” bell shape than the normal. When m is 30 or more, the Student t distribution 
is well approximated by the standard normal distribution and the t∞  distribution 
equals the standard normal distribution.

The F Distribution
The F distribution with m and n degrees of freedom, denoted Fm,n, is defined to 
be the distribution of the ratio of a chi-squared random variable with degrees of 
freedom m, divided by m, to an independently distributed chi-squared random 
variable with degrees of freedom n, divided by n. To state this mathematically, let 
W be a chi-squared random variable with m degrees of freedom and let V be a 
chi-squared random variable with n degrees of freedom, where W and V are 
independently distributed. Then 

W>m
V>n  has an Fm,n distribution—that is, an F dis-

tribution with numerator degrees of freedom m and denominator degrees of 
freedom n.

In statistics and econometrics, an important special case of the F distribution 
arises when the denominator degrees of freedom is large enough that the Fm, n 
distribution can be approximated by the Fm,∞  distribution. In this limiting case, 
the denominator random variable V>n is the mean of infinitely many squared 
standard normal random variables, and that mean is 1 because the mean of a 
squared standard normal random variable is 1 (see Exercise 2.24). Thus the Fm,∞  
distribution is the distribution of a chi-squared random variable with m degrees 
of freedom, divided by m: W>m is distributed Fm,∞ . For example, from Appendix 
Table 4, the 95th percentile of the F3,∞  distribution is 2.60, which is the same as 
the 95th percentile of the x2

3 distribution, 7.81 (from Appendix Table 2), divided 
by the degrees of freedom, which is 3 (7.81>3 = 2.60).

The 90th, 95th, and 99th percentiles of the Fm,n distribution are given in 
Appendix Table 5 for selected values of m and n. For example, the 95th percentile 
of the F3,30 distribution is 2.92, and the 95th percentile of the F3,90 distribution is 
2.71. As the denominator degrees of freedom n increases, the 95th percentile of 
the F3,n distribution tends to the F3,∞  limit of 2.60.
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 2.5 Random Sampling and the Distribution 
of the Sample Average

Almost all the statistical and econometric procedures used in this book involve 
averages or weighted averages of a sample of data. Characterizing the distribu-
tions of sample averages therefore is an essential step toward understanding the 
performance of econometric procedures.

This section introduces some basic concepts about random sampling and the 
distributions of averages that are used throughout the book. We begin by dis-
cussing random sampling. The act of random sampling—that is, randomly draw-
ing a sample from a larger population—has the effect of making the sample 
average itself a random variable. Because the sample average is a random vari-
able, it has a probability distribution, which is called its sampling distribution. 
This section concludes with some properties of the sampling distribution of the 
sample average.

Random Sampling
Simple random sampling. Suppose our commuting student from Section 2.1 
aspires to be a statistician and decides to record her commuting times on various 
days. She selects these days at random from the school year, and her daily com-
muting time has the cumulative distribution function in Figure 2.2a. Because these 
days were selected at random, knowing the value of the commuting time on one 
of these randomly selected days provides no information about the commuting 
time on another of the days; that is, because the days were selected at random, the 
values of the commuting time on each of the different days are independently 
distributed random variables.

The situation described in the previous paragraph is an example of the sim-
plest sampling scheme used in statistics, called simple random sampling, in which 
n objects are selected at random from a population (the population of commuting 
days) and each member of the population (each day) is equally likely to be 
included in the sample.

The n observations in the sample are denoted Y1, c, Yn, where Y1 is the first 
observation, Y2 is the second observation, and so forth. In the commuting exam-
ple, Y1 is the commuting time on the first of her n randomly selected days and Yi 
is the commuting time on the ith of her randomly selected days.

Because the members of the population included in the sample are selected 
at random, the values of the observations Y1, c, Yn are themselves random. If 
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different members of the population are chosen, their values of Y will differ. Thus 
the act of random sampling means that Y1, c, Yn can be treated as random vari-
ables. Before they are sampled, Y1, c, Yn can take on many possible values; 
after they are sampled, a specific value is recorded for each observation.

i.i.d. draws. Because Y1, c, Yn are randomly drawn from the same population, 
the marginal distribution of Yi is the same for each i = 1, c, n; this marginal 
distribution is the distribution of Y in the population being sampled. When Yi has 
the same marginal distribution for i = 1, c, n, then Y1, c, Yn are said to be 
identically distributed.

Under simple random sampling, knowing the value of Y1 provides no infor-
mation about Y2, so the conditional distribution of Y2 given Y1 is the same as the 
marginal distribution of Y2. In other words, under simple random sampling, Y1 is 
distributed independently of Y2, c, Yn.

When Y1, c, Yn are drawn from the same distribution and are indepen-
dently distributed, they are said to be independently and identically distributed 
(or i.i.d.).

Simple random sampling and i.i.d. draws are summarized in Key Concept 2.5.

The Sampling Distribution of the Sample Average
The sample average or sample mean, Y, of the n observations Y1, c, Yn is

 Y =
1
n (Y1 + Y2 + g +Yn) =

1
n a

n

i= 1
Yi. (2.43)

An essential concept is that the act of drawing a random sample has the effect of 
making the sample average Y a random variable. Because the sample was drawn 

Simpl2 R.ndom S.mpling .nd i.i.d. R.ndom V.ri.bl2s

In a simple random sample, n objects are drawn at random from a population and 
each object is equally likely to be drawn. The value of the random variable Y for 
the ith randomly drawn object is denoted Yi. Because each object is equally likely 
to be drawn and the distribution of Yi is the same for all i, the random variables 
Y1, c, Yn are independently and identically distributed (i.i.d.); that is, the distri-
bution of Yi is the same for all i = 1, c, n and Y1 is distributed independently 
of Y2, c, Yn and so forth.

Key COnCept

2.5



 2.5  Random Sampling and the Distribution of the Sample Average 45

at random, the value of each Yi is random. Because Y1, c, Yn are random, their 
average is random. Had a different sample been drawn, then the observations and 
their sample average would have been different: The value of Y differs from one 
randomly drawn sample to the next.

For example, suppose our student commuter selected five days at random to 
record her commute times, then computed the average of those five times. Had 
she chosen five different days, she would have recorded five different times—and 
thus would have computed a different value of the sample average.

Because Y is random, it has a probability distribution. The distribution of Y 
is called the sampling distribution of Y because it is the probability distribution 
associated with possible values of Y that could be computed for different possible 
samples Y1, c, Yn.

The sampling distribution of averages and weighted averages plays a central 
role in statistics and econometrics. We start our discussion of the sampling distri-
bution of Y by computing its mean and variance under general conditions on the 
population distribution of Y.

Mean and variance of Y
_

. Suppose that the observations Y1, c, Yn are i.i.d., and  
let mY and s2

Y denote the mean and variance of Yi (because the observations are i.i.d. 
the mean and variance is the same for all i = 1, c, n). When n = 2, the mean 
of the sum Y1 + Y2 is given by applying Equation (2.28): E(Y1 + Y2) = mY +  
mY = 2mY. Thus the mean of the sample average is E312(Y1 + Y2)4 = 1

2 * 2mY =  
mY. In general,

 E(Y) =
1
na

n

i= 1
E(Yi ) = mY. (2.44)

The variance of Y  is found by applying Equation (2.37). For example, for 
n = 2, var(Y1 + Y2) = 2s2

Y, so [by applying Equation (2.31) with a = b = 1
2 and 

cov(Y1, Y2) = 04, var(Y) = 1
2 s

2
Y. For general n, because Y1, c, Yn are i.i.d., Yi 

and Yj are independently distributed for i ≠ j, so cov(Yi, Yj) = 0. Thus,

var(Y ) = vara 1
na

n

i= 1
Yib

 =
1
n2 a

n

i= 1
var(Yi ) +

1
n2 a  

n

i= 1
a
n

 
j= 1, j≠ i

cov(Yi,Yj) 

=
s2

Y

n
.  (2.45)

The standard deviation of Y is the square root of the variance, sY2n.
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In summary, the mean, the variance, and the standard deviation of Y are

 E(Y) = mY. (2.46)

 var(Y) = s2
Y 
=
s2

Y

n
, and (2.47)

 std.dev(Y) = s
Y
=
sY

2n
. (2.48)

These results hold whatever the distribution of Yi is; that is, the distribution of Yi 
does not need to take on a specific form, such as the normal distribution, for 
Equations (2.46) through (2.48) to hold.

The notation sY
2  denotes the variance of the sampling distribution of the 

sample average Y. In contrast, s2
Y is the variance of each individual Yi, that is, the 

variance of the population distribution from which the observation is drawn. Sim-
ilarly, s  Y denotes the standard deviation of the sampling distribution of Y.

Sampling distribution of  Y
_

 when Y is normally distributed. Suppose that 
Y1, c, Yn are i.i.d. draws from the N(mY, s2

Y) distribution. As stated following 
Equation (2.42), the sum of n normally distributed random variables is itself  

T he principle of diversification says that you can 

reduce your risk by holding small investments 

in multiple assets, compared to putting all your 

money into one asset. That is, you shouldn’t put all 

your eggs in one basket.

The math of diversification follows from Equa-

tion (2.45). Suppose you divide $1 equally among n 

assets. Let Yi represent the payout in 1 year of $1 

invested in the ith asset. Because you invested 1>n 

dollars in each asset, the actual payoff of your port-

folio after 1 year is (Y1 + Y2 +g + Yn)>n = Y. 

To keep things simple, suppose that each asset has 

the same expected payout, mY, the same variance, s2, 

and the same positive correlation r across assets [so 

that cov(Yi, Yj ) = rs24. Then the expected payout is 

E(Y) = mY, and, for large n, the variance of the port-

folio payout is var(Y) = rs2 (Exercise 2.26). Putting 

all your money into one asset or spreading it equally 

across all n assets has the same expected payout, but 

diversifying reduces the variance from s2 to rs2.

The math of diversification has led to financial 

products such as stock mutual funds, in which the 

fund holds many stocks and an individual owns a 

share of the fund, thereby owning a small amount 

of many stocks. But diversification has its limits: For 

many assets, payouts are positively correlated, so 

var(Y) remains positive even if n is large. In the case 

of stocks, risk is reduced by holding a portfolio, but 

that portfolio remains subject to the unpredictable 

fluctuations of the overall stock market.

F>B6Bc>6l D>v:Fs>f>c6H>oB 6Bd poFHfol>os
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normally distributed. Because the mean of Y is mY and the variance of Y is s2
Y>n, 

this means that, if Y1, c, Yn are i.i.d. draws from the N(mY, s2
Y), then Y is dis-

tributed N(mY, s2
Y>n).

 2.6 Large-Sample Approximations  
to Sampling Distributions

Sampling distributions play a central role in the development of statistical and 
econometric procedures, so it is important to know, in a mathematical sense, what 
the sampling distribution of Y is. There are two approaches to characterizing 
sampling distributions: an “exact” approach and an “approximate” approach.

The “exact” approach entails deriving a formula for the sampling distribution 
that holds exactly for any value of n. The sampling distribution that exactly 
describes the distribution of Y for any n is called the exact distribution or finite-
sample distribution of Y. For example, if Y is normally distributed and Y1, c, Yn 
are i.i.d., then (as discussed in Section 2.5) the exact distribution of Y is normal 
with mean mY and variance s2

Y>n. Unfortunately, if the distribution of Y is not 
normal, then in general the exact sampling distribution of Y is very complicated 
and depends on the distribution of Y.

The “approximate” approach uses approximations to the sampling distribution 
that rely on the sample size being large. The large-sample approximation to the sam-
pling distribution is often called the asymptotic distribution—“asymptotic” because 
the approximations become exact in the limit that nS ∞ . As we see in this section, 
these approximations can be very accurate even if the sample size is only n = 30 
observations. Because sample sizes used in practice in econometrics typically number 
in the hundreds or thousands, these asymptotic distributions can be counted on to 
provide very good approximations to the exact sampling distribution.

This section presents the two key tools used to approximate sampling distri-
butions when the sample size is large: the law of large numbers and the central 
limit theorem. The law of large numbers says that, when the sample size is large, 
Y will be close to mY with very high probability. The central limit theorem says 
that, when the sample size is large, the sampling distribution of the standardized 
sample average, (Y - mY)>s  Y, is approximately normal.

Although exact sampling distributions are complicated and depend on the dis-
tribution of Y, the asymptotic distributions are simple. Moreover—remarkably—
the asymptotic normal distribution of (Y - mY)>s  Y does not depend on the 
distribution of Y. This normal approximate distribution provides enormous sim-
plifications and underlies the theory of regression used throughout this book.
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The Law of Large Numbers and Consistency
The law of large numbers states that, under general conditions, Y will be near mY 
with very high probability when n is large. This is sometimes called the “law of 
averages.” When a large number of random variables with the same mean are 
averaged together, the large values balance the small values and their sample 
average is close to their common mean.

For example, consider a simplified version of our student commuter’s exper-
iment in which she simply records whether her commute was short (less than  
20 minutes) or long. Let Yi = 1 if her commute was short on the ith randomly 
selected day and Yi = 0 if it was long. Because she used simple random sampling, 
Y1, c, Yn are i.i.d. Thus Yi,  i = 1, c,  n are i.i.d. draws of a Bernoulli random 
variable, where (from Table 2.2) the probability that Yi = 1 is 0.78. Because  
the expectation of a Bernoulli random variable is its success probability, 
E(Yi ) = mY = 0.78. The sample average Y is the fraction of days in her sample 
in which her commute was short.

Figure 2.8 shows the sampling distribution of Y for various sample sizes n. 
When n = 2 (Figure 2.8a), Y can take on only three values: 0, 12, and 1 (neither 
commute was short, one was short, and both were short), none of which is par-
ticularly close to the true proportion in the population, 0.78. As n increases, how-
ever (Figures 2.8b–d), Y takes on more values and the sampling distribution 
becomes tightly centered on mY.

The property that Y is near mY with increasing probability as n increases is 
called convergence in probability or, more concisely, consistency (see Key Con-
cept 2.6). The law of large numbers states that, under certain conditions, Y con-
verges in probability to mY or, equivalently, that Y is consistent for mY.

Conv2rg2nc2 in Prob.bili@y, Consis@2ncy, .nd @52 L.w  
of L.rg2 Numb2rs

The sample average Y converges in probability to mY (or, equivalently, Y is con-
sistent for mY) if the probability that Y is in the range (mY - c) to (mY + c) becomes 
arbitrarily close to 1 as n increases for any constant c 7 0. The convergence of Y  
to mY in probability is written, Y ¡p

mY.
The law of large numbers says that if Yi, i = 1, c, n are independently and 

identically distributed with E(Yi) = mY and if large outliers are unlikely (techni-
cally if var(Yi) = s2

Y 6∞), then Y ¡p
mY.

Key COnCept

2.6
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Figure 2.8  S.mpling Dis@ribu@ion of @52 S.mpl2 av2r.g2 of n B2rnoulli  
R.ndom V.ri.bl2s

The distributions are the sampling distributions of Y, the sample average of n independent Bernoulli random variables 

with p = Pr(Yi = 1) = 0.78 (the probability of a short commute is 78%). The variance of the sampling distribution of 

Y decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean m = 0.78 
as the sample size n increases.
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The conditions for the law of large numbers that we will use in this book are 
that Yi, i = 1, c, n are i.i.d. and that the variance of Yi, s

2
Y, is finite. The math-

ematical role of these conditions is made clear in Section 17.2, where the law of large 
numbers is proven. If the data are collected by simple random sampling, then the i.i.d. 
assumption holds. The assumption that the variance is finite says that extremely large 
values of Yi—that is, outliers—are unlikely and observed infrequently; otherwise, these 
large values could dominate Y and the sample average would be unreliable. This 
assumption is plausible for the applications in this book. For example, because there 
is an upper limit to our student’s commuting time (she could park and walk if the 
traffic is dreadful), the variance of the distribution of commuting times is finite.

The Central Limit Theorem
The central limit theorem says that, under general conditions, the distribution of 
Y is well approximated by a normal distribution when n is large. Recall that the 
mean of Y is mY and its variance is s2

Y = s
2
Y>n. According to the central limit 

theorem, when n is large, the distribution of Y is approximately N(mY, sY
2). As 

discussed at the end of Section 2.5, the distribution of Y is exactly N(mY, sY
2) when 

the sample is drawn from a population with the normal distribution N(mY, s2
Y). 

The central limit theorem says that this same result is approximately true when n 
is large even if Y1, c, Yn are not themselves normally distributed.

The convergence of the distribution of Y to the bell-shaped, normal approxi-
mation can be seen (a bit) in Figure 2.8. However, because the distribution gets 
quite tight for large n, this requires some squinting. It would be easier to see the 
shape of the distribution of Y if you used a magnifying glass or had some other 
way to zoom in or to expand the horizontal axis of the figure.

One way to do this is to standardize Y by subtracting its mean and dividing 
by its standard deviation so that it has a mean of 0 and a variance of 1. This  
process leads to examining the distribution of the standardized version of 
Y, (Y - mY)>s  Y. According to the central limit theorem, this distribution should 
be well approximated by a N(0, 1) distribution when n is large.

The distribution of the standardized average (Y - mY)>s  Y is plotted in Fig-
ure 2.9 for the distributions in Figure 2.8; the distributions in Figure 2.9 are exactly 
the same as in Figure 2.8, except that the scale of the horizontal axis is changed so 
that the standardized variable has a mean of 0 and a variance of 1. After this 
change of scale, it is easy to see that, if n is large enough, the distribution of Y is 
well approximated by a normal distribution.

One might ask, how large is “large enough”? That is, how large must n be for 
the distribution of Y to be approximately normal? The answer is, “It depends.” The 
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Figure 2.9   Dis@ribu@ion of @52 S@.nd.rdiz2d S.mpl2 av2r.g2 of n B2rnoulli  
R.ndom V.ri.bl2s wi@5 p = 0.78

The sampling distribution of Y  in Figure 2.8 is plotted here after standardizing Y . This plot centers the distributions in 
Figure 2.8 and magnifies the scale on the horizontal axis by a factor of 2n. When the sample size is large, the sam-

pling distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the 

central limit theorem. The normal distribution is scaled so that the height of the distributions is approximately the 

same in all figures.
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quality of the normal approximation depends on the distribution of the underly-
ing Yi that make up the average. At one extreme, if the Yi are themselves nor-
mally distributed, then Y is exactly normally distributed for all n. In contrast, 
when the underlying Yi themselves have a distribution that is far from normal, 
then this approximation can require n = 30 or even more.

This point is illustrated in Figure 2.10 for a population distribution, shown in 
Figure 2.10a, that is quite different from the Bernoulli distribution. This distribu-
tion has a long right tail (it is “skewed” to the right). The sampling distribution of 
Y, after centering and scaling, is shown in Figures 2.10b–d for n = 5, 25, and 100, 
respectively. Although the sampling distribution is approaching the bell shape for 
n = 25, the normal approximation still has noticeable imperfections. By n = 100, 
however, the normal approximation is quite good. In fact, for n Ú 100, the normal 
approximation to the distribution of Y typically is very good for a wide variety of 
population distributions.

The central limit theorem is a remarkable result. While the “small n” distribu-
tions of Y in parts b and c of Figures 2.9 and 2.10 are complicated and quite different 
from each other, the “large n” distributions in Figures 2.9d and 2.10d are simple 
and, amazingly, have a similar shape. Because the distribution of Y approaches the 
normal as n grows large, Y is said to have an asymptotic normal distribution.

The convenience of the normal approximation, combined with its wide appli-
cability because of the central limit theorem, makes it a key underpinning of mod-
ern applied econometrics. The central limit theorem is summarized in Key 
Concept 2.7.

Summary

 1. The probabilities with which a random variable takes on different values are 
summarized by the cumulative distribution function, the probability distri-
bution function (for discrete random variables), and the probability density 
function (for continuous random variables).

t52 C2n@r.l Limi@ t52or2m

Suppose that Y1, c, Yn are i.i.d. with E(Yi) = mY and var(Yi) = s2
Y, where 

0 6s2
Y 6  ∞ . As nS ∞ , the distribution of (Y - mY) >s  Y (where s2

Y = sY
2 >n) 

becomes arbitrarily well approximated by the standard normal distribution.

Key COnCept

2.7
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Figure 2.10   Dis@ribu@ion of @52 S@.nd.rdiz2d S.mpl2 av2r.g2 of n Dr.ws  
from . Sk2w2d Dis@ribu@ion

The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asymmetric) 

population distribution shown in Figure 2.10a. When n is small (n = 5), the sampling distribution, like the population 
distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a standard 

normal distribution (solid line), as predicted by the central limit theorem. The normal distribution is scaled so that the 

height of the distributions is approximately the same in all figures.
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 2. The expected value of a random variable Y (also called its mean, mY), 
denoted E(Y), is its probability-weighted average value. The variance of Y 
is s2

Y = E3(Y - mY)24, and the standard deviation of Y is the square root 
of its variance.

 3. The joint probabilities for two random variables X and Y are summarized 
by their joint probability distribution. The conditional probability distribu-
tion of Y given X = x is the probability distribution of Y, conditional on X 
taking on the value x.

 4. A normally distributed random variable has the bell-shaped probability 
density in Figure 2.5. To calculate a probability associated with a normal 
random variable, first standardize the variable and then use the standard 
normal cumulative distribution tabulated in Appendix Table 1.

 5. Simple random sampling produces n random observations Y1, c, Yn that 
are independently and identically distributed (i.i.d.).

 6. The sample average, Y, varies from one randomly chosen sample to the next 
and thus is a random variable with a sampling distribution. If Y1, c, Yn are 
i.i.d., then:

 a. the sampling distribution of Y has mean mY and variance s2
Y = s

2
Y>n;

 b. the law of large numbers says that Y converges in probability to mY; and

 c. the central limit theorem says that the standardized version of Y,  
(Y - mY)>s  Y, has a standard normal distribution 3N(0, 1) distribution] 
when n is large.

Key Terms

outcomes (15) 
probability (15) 
sample space (15) 
event (15) 
discrete random variable (15) 
continuous random variable (15) 
probability distribution (16) 
cumulative probability  

distribution (16) 
cumulative distribution function 

(c.d.f.) (17) 
Bernoulli random variable (17) 
Bernoulli distribution (17) 

probability density  
function (p.d.f.) (19) 

density function (19) 
density (19) 
expected value (19) 
expectation (19) 
mean (19) 
variance (21) 
standard deviation (21) 
moments of a distribution (23) 
skewness (23) 
kurtosis (25) 
outlier (25) 
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leptokurtic (25) 
rth moment (25) 
joint probability distribution (26) 
marginal probability distribution (27) 
conditional distribution (27) 
conditional expectation (28) 
conditional mean (28) 
law of iterated expectations (29) 
conditional variance (30) 
independently distributed (31) 
independent (31) 
covariance (31) 
correlation (32) 
uncorrelated (32) 
normal distribution (36) 
standard normal distribution (36) 
standardize a variable (36) 
multivariate normal distribution (38) 
bivariate normal distribution (38) 

chi-squared distribution (41) 
Student t distribution (41) 
t distribution (42) 
F distribution (42) 
simple random sampling (43) 
population (43) 
identically distributed (44) 
independently and identically  

distributed (i.i.d.) (44) 
sample average (44) 
sample mean (44) 
sampling distribution (45) 
exact (finite-sample) distribution (47) 
asymptotic distribution (47) 
law of large numbers (48) 
convergence in probability (48) 
consistency (48) 
central limit theorem (50) 
asymptotic normal distribution (52) 

Review the Concepts

 2.1. Examples of random variables used in this chapter included (a) the gender 
of the next person you meet, (b) the number of times a computer crashes, 
(c) the time it takes to commute to school, (d) whether the computer you 
are assigned in the library is new or old, and (e) whether it is raining or not. 
Explain why each can be thought of as random.

 2.2. Suppose that the random variables X and Y are independent and you know 
their distributions. Explain why knowing the value of X tells you nothing 
about the value of Y.

MyEconLab Can Help You Get a Better Grade

MyEconLab   If your exam were tomorrow, would you be ready? For each chapter,  
 MyEconLab Practice Tests and Study Plan help you prepare for your exams. 
You can also find the Exercises and all Review the Concepts Questions available now in MyEconLab. 
To see how it works, turn to the MyEconLab spread on the inside front cover of this book and then 
go to www.myeconlab.com.

For additional Empirical Exercises and Data Sets, log on to the Companion Website at  
www.pearsonhighered.com/stock_watson.
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 2.3. Suppose that X denotes the amount of rainfall in your hometown during 
a randomly selected month and Y denotes the number of children born 
in Los Angeles during the same month. Are X and Y independent? 
Explain.

 2.4. An econometrics class has 80 students, and the mean student weight is 
145 lb. A random sample of 4 students is selected from the class, and their 
average weight is calculated. Will the average weight of the students in the 
sample equal 145 lb? Why or why not? Use this example to explain why 
the sample average, Y, is a random variable.

 2.5. Suppose that Y1, c, Yn are i.i.d. random variables with a N(1, 4) distri-
bution. Sketch the probability density of Y when n = 2. Repeat this for 
n = 10 and n = 100. In words, describe how the densities differ. What is 
the relationship between your answer and the law of large numbers?

 2.6. Suppose that Y1, c, Yn are i.i.d. random variables with the probability 
distribution given in Figure 2.10a. You want to calculate Pr( Y … 0.1). 
Would it be reasonable to use the normal approximation if n = 5? What 
about n = 25 or n = 100? Explain.

 2.7. Y is a random variable with mY = 0, sY = 1, skewness = 0, and 
kurtosis = 100. Sketch a hypothetical probability distribution of Y. 
Explain why n random variables drawn from this distribution might have 
some large outliers.

Exercises

 2.1 Let Y denote the number of “heads” that occur when two coins are tossed.
 a. Derive the probability distribution of Y.

 b. Derive the cumulative probability distribution of Y.

 c. Derive the mean and variance of Y.

 2.2 Use the probability distribution given in Table 2.2 to compute (a) E(Y) and 
E(X); (b) s2

X and s2
Y; and (c) sXY and corr(X, Y).

 2.3 Using the random variables X and Y from Table 2.2, consider two new 
random variables W = 3 + 6X and V = 20 - 7Y. Compute (a) E(W) and 
E(V); (b) s2

W and s2
V; and (c) sWV and corr(W, V).

 2.4 Suppose X is a Bernoulli random variable with P(X = 1) = p.

 a. Show E(X3) = p.

 b. Show E(Xk) = p for k 7 0.
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 c. Suppose that p = 0.3. Compute the mean, variance, skewness, and 
kurtosis of X. (Hint: You might find it helpful to use the formulas 
given in Exercise 2.21.)

 2.5 In September, Seattle’s daily high temperature has a mean of 70°F and 
a standard deviation of 7°F. What are the mean, standard deviation, and 
variance in °C?

 2.6 The following table gives the joint probability distribution between employ-
ment status and college graduation among those either employed or looking 
for work (unemployed) in the working-age U.S. population for 2012.

 a. Compute E(Y).

 b. The unemployment rate is the fraction of the labor force that is 
unemployed. Show that the unemployment rate is given by 1 − E(Y).

 c. Calculate E(Y 
X = 1) and E(Y 
X = 0).

 d. Calculate the unemployment rate for (i) college graduates and  
(ii) non–college graduates.

 e. A randomly selected member of this population reports being unem-
ployed. What is the probability that this worker is a college graduate? 
A non–college graduate?

 f. Are educational achievement and employment status independent? 
Explain.

 2.7 In a given population of two-earner male-female couples, male earnings 
have a mean of $40,000 per year and a standard deviation of $12,000. 
Female earnings have a mean of $45,000 per year and a standard deviation 
of $18,000. The correlation between male and female earnings for a couple 
is 0.80. Let C denote the combined earnings for a randomly selected couple.

 a. What is the mean of C?

 b. What is the covariance between male and female earnings?

Join@ Dis@ribu@ion of employm2n@ S@.@us .nd Coll2g2 Gr.du.@ion in @52  
U.S. Popul.@ion ag2d 25 .nd Old2r, 2012

  uB:mDloM:d 

(Y = 0)

emDloM:d  

(Y = 1)

 

toH6l

Non–college grads (X = 0) 0.053 0.586 0.639

College grads (X = 1) 0.015 0.346 0.361

Total 0.068 0.932 1.000
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 c. What is the standard deviation of C?

 d. Convert the answers to (a) through (c) from U.S. dollars ($) to  
euros (:).

 2.8 The random variable Y has a mean of 1 and a variance of 4. Let Z =
1
2(Y - 1). Show that mZ = 0 and s2

Z = 1.

 2.9 X and Y are discrete random variables with the following joint distribution:

  That is, Pr(X = 1, Y = 14) = 0.02, and so forth.

 a. Calculate the probability distribution, mean, and variance of Y.

 b. Calculate the probability distribution, mean, and variance of Y given 
X = 8.

 c. Calculate the covariance and correlation between X and Y.

 2.10 Compute the following probabilities:

 a. If Y is distributed N(1, 4), find Pr(Y … 3).

 b. If Y is distributed N(3, 9), find Pr(Y 7 0).

 c. If Y is distributed N(50, 25), find Pr(40 … Y … 52).

 d. If Y is distributed N(5, 2), find Pr(6 … Y … 8).

 2.11 Compute the following probabilities:

 a. If Y is distributed x2
4, find Pr(Y … 7.78).

 b. If Y is distributed x2
10, find Pr(Y 7 18.31).

 c. If Y is distributed F10,∞, find Pr(Y 7 1.83).

 d. Why are the answers to (b) and (c) the same?

 e. If Y is distributed x2
1, find Pr(Y … 1.0). (Hint: Use the definition of 

the x2
1 distribution.)

 2.12 Compute the following probabilities:

 a. If Y is distributed t15, find Pr(Y 7 1.75).

    V6lI: of  Y

    14 22 30 40 65

 1 0.02 0.05 0.10 0.03 0.01

V6lI: of X 5 0.17 0.15 0.05 0.02 0.01

  8 0.02 0.03 0.15 0.10 0.09
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 b. If Y is distributed t90, find Pr(-1.99 … Y … 1.99).

 c. If Y is distributed N(0, 1), find Pr(-1.99 … Y … 1.99).

 d. Why are the answers to (b) and (c) approximately the same?

 e. If Y is distributed F7,4, find Pr(Y 7 4.12).

 f. If Y is distributed F7,120, find Pr(Y 7 2.79).

 2.13 X is a Bernoulli random variable with Pr(X = 1) = 0.99, Y is distributed 
N(0, 1), W is distributed N(0, 100), and X, Y, and W are independent. Let 
S = XY + (1 - X)W. (That is, S = Y when X = 1, and S = W when 
X = 0.)

 a. Show that E(Y 2) = 1 and E(W 2) = 100.

 b. Show that E(Y3) = 0 and E(W3) = 0. (Hint: What is the skewness 
for a symmetric distribution?)

 c. Show that E(Y4) = 3 and E(W4) = 3 * 1002. (Hint: Use the fact that 
the kurtosis is 3 for a normal distribution.)

 d. Derive E(S), E(S2), E(S3) and E(S4). (Hint: Use the law of iterated 
expectations conditioning on X = 0 and X = 1.)

 e. Derive the skewness and kurtosis for S.

 2.14 In a population mY = 100 and s2
Y = 43. Use the central limit theorem to 

answer the following questions:

 a. In a random sample of size n = 100, find Pr(Y … 101).

 b. In a random sample of size n = 165, find Pr(Y 7 98).

 c. In a random sample of size n = 64, find Pr(101 … Y … 103).

 2.15 Suppose Yi, i = 1, 2, c, n, are i.i.d. random variables, each distributed 
N(10, 4).

 a. Compute Pr(9.6 … Y … 10.4) when (i) n = 20, (ii) n = 100, and  
(iii) n = 1000.

 b. Suppose c is a positive number. Show that Pr(10 - c … Y … 10 + c) 
becomes close to 1.0 as n grows large.

 c. Use your answer in (b) to argue that Y converges in probability 
to 10.

 2.16 Y is distributed N(5, 100) and you want to calculate Pr(Y 6 3.6). Unfor-
tunately, you do not have your textbook, and do not have access to a nor-
mal probability table like Appendix Table 1. However, you do have your 
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computer and a computer program that can generate i.i.d. draws from the  
N(5, 100) distribution. Explain how you can use your computer to compute 
an accurate approximation for Pr(Y 6 3.6).

 2.17 Yi, i = 1, c, n, are i.i.d. Bernoulli random variables with p = 0.4. Let  
Y denote the sample mean.

 a. Use the central limit to compute approximations for

i. Pr(Y Ú 0.43) when n = 100.

ii. Pr(Y … 0.37) when n = 400.

 b. How large would n need to be to ensure that Pr(0.39 … Y … 0.41) Ú
0.95? (Use the central limit theorem to compute an approximate 
answer.)

 2.18 In any year, the weather can inflict storm damage to a home. From year to 
year, the damage is random. Let Y denote the dollar value of damage in 
any given year. Suppose that in 95% of the years Y = $0, but in 5% of the 
years Y = $20,000.

 a. What are the mean and standard deviation of the damage in any year?

 b. Consider an “insurance pool” of 100 people whose homes are suffi-
ciently dispersed so that, in any year, the damage to different homes 
can be viewed as independently distributed random variables. Let Y 
denote the average damage to these 100 homes in a year. (i) What is 
the expected value of the average damage Y? (ii) What is the prob-
ability that Y exceeds $2000?

 2.19 Consider two random variables X and Y. Suppose that Y takes on k values 
y1, c, yk and that X takes on l values x1, c, xl.

 a. Show that Pr(Y = yj) = g l
i= 1Pr(Y = yj 
  X = xi) Pr(X = xi). [Hint: 

Use the definition of Pr(Y = yj 
  X = xi).]

 b. Use your answer to (a) to verify Equation (2.19).

 c. Suppose that X and Y are independent. Show that sXY = 0 and 
corr(X, Y) = 0.

 2.20 Consider three random variables X, Y, and Z. Suppose that Y takes on 
k values y1, c, yk, that X takes on l values x1, c, xl, and that Z takes 
on m values z1, c, zm. The joint probability distribution of X, Y, Z is 
Pr(X = x, Y = y, Z = z), and the conditional probability distribution of 
Y given X and Z is Pr(Y = y 
  X = x, Z = z) = Pr(Y = y, X = x, Z = z)

Pr(X = x, Z = z) .
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 a. Explain how the marginal probability that Y = y can be calculated 
from the joint probability distribution. [Hint: This is a generalization 
of Equation (2.16).]

 b. Show that E(Y) = E[E(Y 0  X, Z)]. [Hint: This is a generalization of 
Equations (2.19) and (2.20).]

 2.21 X is a random variable with moments E(X), E(X2), E(X3), and so forth.

 a. Show E(X - m)3 = E(X3) - 3[E(X2)][E(X)] + 2[E(X)]3.

 b. Show E(X - m)4 = E(X4) - 4[E(X)][E(X3)] + 6[E(X)]2[E(X2)] -
3[E(X)]4.

 2.22 Suppose you have some money to invest—for simplicity, $1—and you are 
planning to put a fraction w into a stock market mutual fund and the rest, 
1 - w, into a bond mutual fund. Suppose that $1 invested in a stock fund 
yields Rs after 1 year and that $1 invested in a bond fund yields Rb, suppose 
that Rs is random with mean 0.08 (8%) and standard deviation 0.07, and 
suppose that Rb is random with mean 0.05 (5%) and standard deviation 
0.04. The correlation between Rs and Rb is 0.25. If you place a fraction w 
of your money in the stock fund and the rest, 1 - w, in the bond fund, then 
the return on your investment is R = wRs + (1 - w)Rb.

 a. Suppose that w = 0.5. Compute the mean and standard deviation of R.

 b. Suppose that w = 0.75. Compute the mean and standard deviation of R.

 c. What value of w makes the mean of R as large as possible? What is 
the standard deviation of R for this value of w?

 d. (Harder) What is the value of w that minimizes the standard deviation 
of R? (Show using a graph, algebra, or calculus.)

 2.23 This exercise provides an example of a pair of random variables X 
and Y for which the conditional mean of Y given X depends on X but 
corr(X, Y) = 0. Let X and Z be two independently distributed standard 
normal random variables, and let Y = X2 + Z.

 a. Show that E(Y 0  X ) = X2.

 b. Show that mY = 1.

 c. Show that E(XY ) = 0. (Hint: Use the fact that the odd moments of a 
standard normal random variable are all zero.)

 d. Show that cov(X, Y ) = 0 and thus corr(X, Y ) = 0.
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 2.24 Suppose Yi is distributed i.i.d. N(0, s2) for i = 1, 2, c, n.

 a. Show that E(Y  

2
i  >  s2) = 1.

 b. Show that W = (1>s2)gn
i= 1Y 2i  is distributed x2

n.

 c. Show that E(W) = n. [Hint: Use your answer to (a).]

 d. Show that V = Y1n
gn

i= 2Yi
2

n - 1
 is distributed tn - 1.

 2.25 (Review of summation notation) Let x1, c, xn denote a sequence of 
numbers, y1, c, yn denote another sequence of numbers, and a, b, and c 
denote three constants. Show that

 a. a
n

i= 1
axi = aa

n

i= 1
xi

 b. a
n

i= 1
(xi + yi) = a

n

i= 1
xi + a

n

i= 1
yi

 c. a
n

i= 1
a = na

 d. a
n

i= 1
(a + bxi + cyi)2 = na2 + b2

a
n

i= 1
x2

i + c2
a
n

i= 1
y2

i + 2aba
n

i= 1
xi +

  2aca
n

i= 1
yi + 2bca

n

i= 1
xiyi

 2.26 Suppose that Y1, Y2, c, Yn are random variables with a common mean mY, 
a common variance s 2

Y, and the same correlation r (so that the correlation 
between Yi and Yj is equal to r for all pairs i and j, where i ≠ j).

 a. Show that cov(Yi, Yj ) = rs 2
Y for i ≠ j.

 b. Suppose that n = 2. Show that E(Y ) = mY and var(Y ) = 1
2s

2
Y + 1

2rs
2
Y.

 c. For n Ú 2, show that E(Y ) = mY and var(Y ) = s2
Y>n +

[(n - 1)>n]rs2
Y.

 d. When n is very large, show that var(Y ) ≈ rs2
Y.

 2.27 X and Z are two jointly distributed random variables. Suppose you know 
the value of Z, but not the value of X. Let X∼ = E(X 
  Z) denote a guess 
of the value of X using the information on Z, and let W = X - X

∼  denote 
the error associated with this guess.

 a. Show that E(W ) = 0. (Hint: Use the law of iterated expectations.)

 b. Show that E(WZ ) = 0.
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 c. Let Xn = g(Z) denote another guess of X using Z, and V = X - Xn  
denote its error. Show that E(V2) Ú E(W 2). [Hint: Let h(Z ) =
g(Z) - E(X 
  Z), so that V = 3X - E(X 
  Z )4 - h(Z ). Derive 
E(V2).]

Empirical Exercise

 E2.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the spreadsheet Age_HourlyEarnings, which contains the joint 
distribution of age (Age) and average hourly earnings (AHE) for 25- to 
34-year-old full-time workers in 2012 with an education level that exceeds 
a high school diploma. Use this joint distribution to carry out the follow-
ing exercises. (Note: For these exercises, you need to be able to carry out 
calculations and construct charts using a spreadsheet.)

 a. Compute the marginal distribution of Age.

 b. Compute the mean of AHE for each value of Age; that is, compute, 
E(AHE|Age = 25), and so forth.

 c. Compute and plot the mean of AHE versus Age. Are average hourly 
earnings and age related? Explain.

 d. Use the law of iterated expectations to compute the mean of AHE; 
that is, compute E(AHE).

 e. Compute the variance of AHE.

 f. Compute the covariance between AHE and Age.

 g. Compute the correlation between AHE and Age.

 h. Relate your answers in parts (f) and (g) to the plot you constructed  
in (c).

 a p p e n D i x

 2.1 Derivation of Results in Key Concept 2.3

This appendix derives the equations in Key Concept 2.3.

Equation (2.29) follows from the definition of the expectation.

To derive Equation (2.30), use the definition of the variance to write var(a + bY) =
E{[a + bY - E(a + bY)]2} = E{[b(Y - mY)]2} = b2E[(Y - mY)2] = b2s2

Y.
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To derive Equation (2.31), use the definition of the variance to write

 var(aX + bY ) = E5 3(aX + bY ) - (amX + bmY)426
 = E5 3a(X - mX) + b(Y - mY)426
 = E3a2

 (X - mX)24 + 2E3ab(X - mX)(Y - mY)4
           + E3b2

 (Y - mY)24
 = a2

 var(X ) + 2ab cov(X, Y ) + b2 var(Y )

  = a2s2
X + 2absXY + b2s2

Y, (2.49)

where the second equality follows by collecting terms, the third equality follows by expanding 

the quadratic, and the fourth equality follows by the definition of the variance and covariance.

To derive Equation (2.32), write E(Y2) = E53(Y - mY) + mY]26 = E[(Y - mY)24 +
2 mYE(Y - mY) + m2

Y =  s 2
Y + m 2

Y because E(Y - mY) = 0.

To derive Equation (2.33), use the definition of the covariance to write

 cov(a + bX + cV, Y) = E5[a + bX + cV - E(a + bX + cV)43Y - mY]6
 = E5[b(X - mX) + c(V - mV)43Y - mY]6
 = E53b(X - mX)43Y - mY]6 + E53c(V - mV)43Y - mY46

  = bsXY + csVY, (2.50)

which is Equation (2.33).

To derive Equation (2.34), write E(XY ) = E53(X - mX) + mX43(Y - mY) + mY]6 =
E3(X - mX)(Y - mY)4 + mXE(Y - mY) + mYE(X - mX) + mX mY = sXY + mX mY.

We now prove the correlation inequality in Equation (2.35); that is, 0  corr (X, Y ) 0 … 1. 

Let a = -sXY>s2
X and b = 1. Applying Equation (2.31), we have that

 var(aX + Y ) = a2s2
X + s2

Y + 2asXY

  = (-sXY>s2
X)2 s2

X + s2
Y + 2(-sXY>s2

X)sXY 

  = s2
Y - s2

XY  >  s2
X. (2.51)

Because var(aX + Y) is a variance, it cannot be negative, so from the final line of Equa-

tion (2.51), it must be that s2
Y - s2

XY  >  s2
X Ú 0. Rearranging this inequality yields

 s2
XY … s2

X s
2
Y (covariance inequality). (2.52)

The covariance inequality implies that s2
XY  >  (s2

X s
2
Y) … 1 or, equivalently, 

0sXY  >  (sX  sY) 0 … 1, which (using the definition of the correlation) proves the correlation 

inequality, 0  corr (X Y ) 0 … 1.



Statistics is the science of using data to learn about the world around us. Statisti-
cal tools help us answer questions about unknown characteristics of distribu-

tions in populations of interest. For example, what is the mean of the distribution of 
earnings of recent college graduates? Do mean earnings differ for men and women, 
and, if so, by how much?

These questions relate to the distribution of earnings in the population of 
workers. One way to answer these questions would be to perform an exhaustive 
survey of the population of workers, measuring the earnings of each worker and 
thus finding the population distribution of earnings. In practice, however, such a 
comprehensive survey would be extremely expensive. The only comprehensive sur-
vey of the U.S. population is the decennial census, which cost $13 billion to carry 
out in 2010. The process of designing the census forms, managing and conducting 
the surveys, and compiling and analyzing the data takes ten years. Despite this 
extraordinary commitment, many members of the population slip through the 
cracks and are not surveyed. Thus a different, more practical approach is needed.

The key insight of statistics is that one can learn about a population distribution 
by selecting a random sample from that population. Rather than survey the entire 
U.S. population, we might survey, say, 1000 members of the population, selected at 
random by simple random sampling. Using statistical methods, we can use this 
sample to reach tentative conclusions—to draw statistical inferences—about char-
acteristics of the full population.

Three types of statistical methods are used throughout econometrics: estima-
tion, hypothesis testing, and confidence intervals. Estimation entails computing a 
“best guess” numerical value for an unknown characteristic of a population distri-
bution, such as its mean, from a sample of data. Hypothesis testing entails formulat-
ing a specific hypothesis about the population, then using sample evidence to 
decide whether it is true. Confidence intervals use a set of data to estimate an inter-
val or range for an unknown population characteristic. Sections 3.1, 3.2, and 3.3 
review estimation, hypothesis testing, and confidence intervals in the context of 
statistical inference about an unknown population mean.

Most of the interesting questions in economics involve relationships between 
two or more variables or comparisons between different populations. For example, 
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is there a gap between the mean earnings for male and female recent college grad-
uates? In Section 3.4, the methods for learning about the mean of a single popula-
tion in Sections 3.1 through 3.3 are extended to compare means in two different 
populations. Section 3.5 discusses how the methods for comparing the means of 
two populations can be used to estimate causal effects in experiments. Sections 3.2 
through 3.5 focus on the use of the normal distribution for performing hypothesis 
tests and for constructing confidence intervals when the sample size is large. In 
some special circumstances, hypothesis tests and confidence intervals can be based 
on the Student t distribution instead of the normal distribution; these special cir-
cumstances are discussed in Section 3.6. The chapter concludes with a discussion of 
the sample correlation and scatterplots in Section 3.7.

 3.1 Estimation of the Population Mean

Suppose you w=nt to know the Ie=n v=lue of Y (th=t is, mY) in = popul=tion, 
such =s the Ie=n e=rnings of woIen recently gr=du=ted froI college. A n=tur=l 
w=y to estiI=te this Ie=n is to coIpute the s=Iple =ver=ge Y froI = s=Iple of 
n independently =nd identic=lly distributed (i.i.d.) observ=tions, Y1,c, Yn 
(rec=ll th=t Y1,c, Yn =re i.i.d. if they =re collected by siIple r=ndoI s=I-
pling). This section discusses estiI=tion of mY =nd the properties of Y =s =n 
estiI=tor of mY.

Estimators and Their Properties
Estimators. The s=Iple =ver=ge Y is = n=tur=l w=y to estiI=te mY, but it is not 
the only w=y. For ex=Iple, =nother w=y to estiI=te mY is siIply to use the first 
observ=tion, Y1. Both Y =nd Y1 =re functions of the d=t= th=t =re designed to 
estiI=te mY; using the terIinology in Key Concept 3.1, both =re estiI=tors of mY. 
When ev=lu=ted in repe=ted s=Iples, Y =nd Y1 t=ke on different v=lues (they 
produce different estiI=tes) froI one s=Iple to the next. Thus the estiI=tors Y 
=nd Y1 both h=ve s=Ipling distributions. There =re, in f=ct, I=ny estiI=tors of mY, 
of which Y =nd Y1 =re two ex=Iples.

There =re I=ny possible estiI=tors, so wh=t I=kes one estiI=tor “better” 
th=n =nother? Bec=use estiI=tors =re r=ndoI v=ri=bles, this question c=n be 
phr=sed Iore precisely: Wh=t =re desir=ble ch=r=cteristics of the s=Ipling distri-
bution of =n estiI=tor? In gener=l, we would like =n estiI=tor th=t gets =s close 
=s possible to the unknown true v=lue, =t le=st in soIe =ver=ge sense; in other 
words, we would like the s=Ipling distribution of =n estiI=tor to be =s tightly 
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centered on the unknown v=lue =s possible. This observ=tion le=ds to three specific 
desir=ble ch=r=cteristics of =n estiI=tor: unbi=sedness (= l=ck of bi=s), consis-
tency, =nd efficiency.

Unbiasedness. Suppose you ev=lu=te =n estiI=tor I=ny tiIes over repe=ted r=n-
doIly dr=wn s=Iples. It is re=son=ble to hope th=t, on =ver=ge, you would get the 
right =nswer. Thus = desir=ble property of =n estiI=tor is th=t the Ie=n of its 
s=Ipling distribution equ=ls mY; if so, the estiI=tor is s=id to be unbi=sed.

To st=te this concept I=theI=tic=lly, let mnY denote soIe estiI=tor of mY, 
such =s Y or Y1. The estiI=tor mnY is unbi=sed if E(mnY) = mY, where E(mnY) is the 
Ie=n of the s=Ipling distribution of mnY; otherwise, mnY is bi=sed.

Consistency. Another desir=ble property of =n estiI=tor mY is th=t, when the 
s=Iple size is l=rge, the uncert=inty =bout the v=lue of mY =rising froI r=ndoI 
v=ri=tions in the s=Iple is very sI=ll. St=ted Iore precisely, = desir=ble property 
of mnY is th=t the prob=bility th=t it is within = sI=ll interv=l of the true v=lue mY 
=ppro=ches 1 =s the s=Iple size incre=ses, th=t is, mnY is consistent for mY (Key 
Concept 2.6).

Variance and efficiency. Suppose you h=ve two c=ndid=te estiI=tors, mnY =nd  
m∼Y, both of which =re unbi=sed. How Iight you choose between theI? One w=y 
to do so is to choose the estiI=tor with the tightest s=Ipling distribution. This 
suggests choosing between mnY =nd m∼Y by picking the estiI=tor with the sI=llest 
v=ri=nce. If mnY h=s = sI=ller v=ri=nce th=n m∼Y, then mnY is s=id to be Iore efficient 
th=n m∼Y. The terIinology “efficiency” steIs froI the notion th=t if mnY h=s = 
sI=ller v=ri=nce th=n m∼Y, then it uses the inforI=tion in the d=t= Iore efficiently 
th=n does m∼Y.

es@im.@ors .nd es@im.@2s

An estimator is = function of = s=Iple of d=t= to be dr=wn r=ndoIly froI = 
popul=tion. An estimate is the nuIeric=l v=lue of the estiI=tor when it is =ctu=lly 
coIputed using d=t= froI = specific s=Iple. An estiI=tor is = r=ndoI v=ri=ble 
bec=use of r=ndoIness in selecting the s=Iple, while =n estiI=te is = nonr=ndoI 
nuIber.

Key ConCept

3.1
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Bias, consistency, =nd efficiency =re suII=rized in Key Concept 3.2.

Properties of Y
How does Y f=re =s =n estiI=tor of mY when judged by the three criteri= of bi=s, 
consistency, =nd efficiency?

Bias and consistency. The s=Ipling distribution of Y h=s =lre=dy been ex=Iined 
in Sections 2.5 =nd 2.6. As shown in Section 2.5, E(Y ) = mY, so Y is =n unbi=sed 
estiI=tor of mY. SiIil=rly, the l=w of l=rge nuIbers (Key Concept 2.6) st=tes th=t 
Y ¡p

mY; th=t is, Y is consistent.

Efficiency. Wh=t c=n be s=id =bout the efficiency of Y? Bec=use efficiency ent=ils 
= coIp=rison of estiI=tors, we need to specify the estiI=tor or estiI=tors to 
which Y is to be coIp=red.

We st=rt by coIp=ring the efficiency of Y to the estiI=tor Y1. Bec=use 
Y1,c, Yn =re i.i.d., the Ie=n of the s=Ipling distribution of Y1 is E(Y1) = mY; 
thus Y1 is =n unbi=sed estiI=tor of mY. Its v=ri=nce is v=r(Y1) = s2

Y. FroI Section 
2.5, the v=ri=nce of Y is s2

Y>n. Thus, for n Ú 2, the v=ri=nce of Y is less th=n the 
v=ri=nce of Y1; th=t is, Y is = Iore efficient estiI=tor th=n Y1, so, =ccording to the 
criterion of efficiency, Y should be used inste=d of Y1. The estiI=tor Y1 Iight 
strike you =s =n obviously poor estiI=tor—why would you go to the trouble of 
collecting = s=Iple of n observ=tions only to throw =w=y =ll but the first?—=nd 
the concept of efficiency provides = forI=l w=y to show th=t Y is = Iore desir=ble 
estiI=tor th=n Y1.

Bi.s, Consis@2ncy, .nd effici2ncy

Let mnY be =n estiI=tor of mY. Then:

• The bias of mnY is E(mnY) - mY.

• mnY is =n unbiased estimator of mY if E(mnY) = mY.

• mnY is = consistent estimator of mY if mnY ¡
p
mY.

• Let m∼Y be =nother estiI=tor of mY =nd suppose th=t both mnY =nd m∼Y =re unbi=sed. 
Then mnY is s=id to be Iore efficient th=n mnY if v=r(mnY) 6 v=r(m∼Y).

Key ConCept

3.2
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Wh=t =bout = less obviously poor estiI=tor? Consider the weighted =ver=ge 
in which the observ=tions =re =ltern=tely weighted by 12 =nd 32:

 Y
∼ =

1
n
a

1
2

Y1 +
3
2

Y2 +
1
2

Y3 +
3
2

Y4 + g +
1
2

Yn - 1 +
3
2

Ynb , (3.1)

where the nuIber of observ=tions n is =ssuIed to be even for convenience. The 
Ie=n of Y∼ is mY =nd its v=ri=nce is v=r(Y

∼) = 1.25s2
Y>n (Exercise 3.11). Thus Y∼ is 

unbi=sed =nd, bec=use v=r(Y
∼)S 0 =s nS ∞ , Y

∼ is consistent. However, Y∼ h=s = 
l=rger v=ri=nce th=n Y. Thus Y is Iore efficient th=n Y∼.

The estiI=tors Y, Y1, =nd Y∼ h=ve = coIIon I=theI=tic=l structure: They 
=re weighted =ver=ges of Y1, c, Yn. The coIp=risons in the previous two p=r=-
gr=phs show th=t the weighted =ver=ges Y1 =nd Y∼ h=ve l=rger v=ri=nces th=n Y. 
In f=ct, these conclusions reflect = Iore gener=l result: Y is the Iost efficient 
estiI=tor of all unbi=sed estiI=tors th=t =re weighted =ver=ges of Y1, c, Yn. 
S=id differently, Y is the Best Line=r Unbi=sed EstiI=tor (BLUE); th=t is, it is 
the Iost efficient (best) estiI=tor =Iong =ll estiI=tors th=t =re unbi=sed =nd =re 
line=r functions of Y1, c, Yn. This result is st=ted in Key Concept 3.3 =nd is 
proved in Ch=pter 5.

Y    is the least squares estimator of mY. The s=Iple =ver=ge Y provides the best fit 
to the d=t= in the sense th=t the =ver=ge squ=red differences between the observ=-
tions =nd Y =re the sI=llest of =ll possible estiI=tors.

Consider the probleI of finding the estiI=tor m th=t IiniIizes

 a
n

i= 1
(Yi - m)2, (3.2)

which is = Ie=sure of the tot=l squ=red g=p or dist=nce between the estiI=tor m 
=nd the s=Iple points. Bec=use m is =n estiI=tor of E(Y), you c=n think of it =s = 

effici2ncy of Y: Y  Is BLUe

Let mnY be =n estiI=tor of mY th=t is = weighted =ver=ge of Y1,c, Yn, th=t is,  
mnY = (1>n)gn

i= 1 aiYi, where a1,c, an =re nonr=ndoI const=nts. If mnY  is un-  
bi=sed, then v=r(Y) 6 v=r(mnY) unless mnY = Y. Thus Y is the Best Line=r Unbi=sed 
EstiI=tor (BLUE); th=t is, Y  is the Iost efficient estiI=tor of mY =Iong =ll 
unbi=sed estiI=tors th=t =re weighted =ver=ges of Y1,c, Yn.

Key ConCept

3.3
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prediction of the v=lue of Yi, so the g=p Yi - m c=n be thought of =s = prediction 
Iist=ke. The suI of squ=red g=ps in Expression (3.2) c=n be thought of =s the suI 
of squ=red prediction Iist=kes.

The estiI=tor m th=t IiniIizes the suI of squ=red g=ps Yi - m in Expres-
sion (3.2) is c=lled the least squares estimator. One c=n iI=gine using tri=l =nd 
error to solve the le=st squ=res probleI: Try I=ny v=lues of m until you =re s=tis-
fied th=t you h=ve the v=lue th=t I=kes Expression (3.2) =s sI=ll =s possible. 
Altern=tively, =s is done in Appendix 3.2, you c=n use =lgebr= or c=lculus to show 
th=t choosing m = Y IiniIizes the suI of squ=red g=ps in Expression (3.2) so 
th=t Y is the le=st squ=res estiI=tor of mY.

The Importance of Random Sampling
We h=ve =ssuIed th=t Y1, c, Yn =re i.i.d. dr=ws, such =s those th=t would be 
obt=ined froI siIple r=ndoI s=Ipling. This =ssuIption is iIport=nt bec=use 
nonr=ndoI s=Ipling c=n result in Y being bi=sed. Suppose th=t, to estiI=te the 
Ionthly n=tion=l uneIployIent r=te, = st=tistic=l =gency =dopts = s=Ipling 
scheIe in which interviewers survey working-=ge =dults sitting in city p=rks =t 
10 a.m. on the second Wednesd=y of the Ionth. Bec=use Iost eIployed people 
=re =t work =t th=t hour (not sitting in the p=rk!), the uneIployed =re overly 
represented in the s=Iple, =nd =n estiI=te of the uneIployIent r=te b=sed on 
this s=Ipling pl=n would be bi=sed. This bi=s =rises bec=use this s=Ipling scheIe 
overrepresents, or overs=Iples, the uneIployed IeIbers of the popul=tion. This 
ex=Iple is fictitious, but the “L=ndon Wins!” box gives = re=l-world ex=Iple of 
bi=ses introduced by s=Ipling th=t is not entirely r=ndoI.

S hortly before the 1936 U.S. presidenti=l election, 

the Literary Gazette published = poll indic=ting 

th=t Alf M. L=ndon would defe=t the incuIbent, 

Fr=nklin D. Roosevelt, by = l=ndslide—57% to 43%. 

The Gazette w=s right th=t the election w=s = l=nd-

slide, but it w=s wrong =bout the winner: Roosevelt 

won by 59% to 41%!

How could the Gazette h=ve I=de such = big 

Iist=ke? The Gazette’s s=Iple w=s chosen froI 

telephone records =nd =utoIobile registr=tion 

files. But in 1936 I=ny households did not h=ve 

c=rs or telephones, =nd those th=t did tended 

to be richer—=nd were =lso Iore likely to be 

Republic=n. Bec=use the telephone survey did 

not s=Iple r=ndoIly froI the popul=tion but 

inste=d unders=Ipled DeIocr=ts, the estiI=tor 

w=s bi=sed =nd the Gazette I=de =n eIb=rr=ss-

ing Iist=ke.

Do you think surveys conducted using soci=l 

Iedi= Iight h=ve = siIil=r probleI with bi=s?

L6BdCB W>Bs!
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It is iIport=nt to design s=Iple selection scheIes in = w=y th=t IiniIizes 
bi=s. Appendix 3.1 includes = discussion of wh=t the Bure=u of L=bor St=tistics 
=ctu=lly does when it conducts the U.S. Current Popul=tion Survey (CPS), the 
survey it uses to estiI=te the Ionthly U.S. uneIployIent r=te.

 3.2 Hypothesis Tests Concerning  
the Population Mean

M=ny hypotheses =bout the world =round us c=n be phr=sed =s yes/no questions. 
Do the Ie=n hourly e=rnings of recent U.S. college gr=du=tes equ=l $20 per hour? 
Are Ie=n e=rnings the s=Ie for I=le =nd feI=le college gr=du=tes? Both these 
questions eIbody specific hypotheses =bout the popul=tion distribution of e=rn-
ings. The st=tistic=l ch=llenge is to =nswer these questions b=sed on = s=Iple of 
evidence. This section describes hypothesis tests concerning the popul=tion Ie=n 
(Does the popul=tion Ie=n of hourly e=rnings equ=l $20?). Hypothesis tests 
involving two popul=tions (Are Ie=n e=rnings the s=Ie for Ien =nd woIen?) 
=re t=ken up in Section 3.4.

Null and Alternative Hypotheses
The st=rting point of st=tistic=l hypotheses testing is specifying the hypothesis to 
be tested, c=lled the null hypothesis. Hypothesis testing ent=ils using d=t= to coI-
p=re the null hypothesis to = second hypothesis, c=lled the alternative hypothesis, 
th=t holds if the null does not.

The null hypothesis is th=t the popul=tion Ie=n, E(Y), t=kes on = specific 
v=lue, denoted mY,0. The null hypothesis is denoted H0 =nd thus is

 H0: E(Y) = mY,0. (3.3)

For ex=Iple, the conjecture th=t, on =ver=ge in the popul=tion, college gr=du=tes 
e=rn $20 per hour constitutes = null hypothesis =bout the popul=tion distribution 
of hourly e=rnings. St=ted I=theI=tic=lly, if Y is the hourly e=rning of = r=ndoIly 
selected recent college gr=du=te, then the null hypothesis is th=t E(Y) = 20; th=t 
is, mY,0 = 20 in Equ=tion (3.3).

The =ltern=tive hypothesis specifies wh=t is true if the null hypothesis is not. 
The Iost gener=l =ltern=tive hypothesis is th=t E(Y) ≠ mY,0, which is c=lled = 
two-sided alternative hypothesis bec=use it =llows E(Y) to be either less th=n or 
gre=ter th=n mY,0. The two-sided =ltern=tive is written =s

 H1 : E(Y) ≠ mY,0 (two @sided =ltern=tive). (3.4)
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One-sided =ltern=tives =re =lso possible, =nd these =re discussed l=ter in this  
section.

The probleI f=cing the st=tistici=n is to use the evidence in = r=ndoIly 
selected s=Iple of d=t= to decide whether to =ccept the null hypothesis H0 or to 
reject it in f=vor of the =ltern=tive hypothesis H1. If the null hypothesis is 
“=ccepted,” this does not Ie=n th=t the st=tistici=n decl=res it to be true; r=ther, 
it is =ccepted tent=tively with the recognition th=t it Iight be rejected l=ter b=sed 
on =ddition=l evidence. For this re=son, st=tistic=l hypothesis testing c=n be posed 
=s either rejecting the null hypothesis or f=iling to do so.

The p-Value
In =ny given s=Iple, the s=Iple =ver=ge Y will r=rely be ex=ctly equ=l to the 
hypothesized v=lue mY,0. Differences between Y =nd mY,0 c=n =rise bec=use the true 
Ie=n in f=ct does not equ=l mY,0 (the null hypothesis is f=lse) or bec=use the true 
Ie=n equ=ls mY,0 (the null hypothesis is true) but Y differs froI mY,0 bec=use of 
r=ndoI s=Ipling. It is iIpossible to distinguish between these two possibilities 
with cert=inty. Although = s=Iple of d=t= c=nnot provide conclusive evidence 
=bout the null hypothesis, it is possible to do = prob=bilistic c=lcul=tion th=t perIits 
testing the null hypothesis in = w=y th=t =ccounts for s=Ipling uncert=inty. This 
c=lcul=tion involves using the d=t= to coIpute the p-v=lue of the null hypothesis.

The p-value, =lso c=lled the significance probability, is the prob=bility of dr=w-
ing = st=tistic =t le=st =s =dverse to the null hypothesis =s the one you =ctu=lly coI-
puted in your s=Iple, =ssuIing the null hypothesis is correct. In the c=se =t h=nd, 
the p-v=lue is the prob=bility of dr=wing Y =t le=st =s f=r in the t=ils of its distribu-
tion under the null hypothesis =s the s=Iple =ver=ge you =ctu=lly coIputed.

For ex=Iple, suppose th=t, in your s=Iple of recent college gr=du=tes, the 
=ver=ge w=ge is $22.64. The p-v=lue is the prob=bility of observing = v=lue of Y  
=t le=st =s different froI $20 (the popul=tion Ie=n under the null) =s the observed 
v=lue of $22.64 by pure r=ndoI s=Ipling v=ri=tion, =ssuIing th=t the null hypoth-
esis is true. If this p-v=lue is sI=ll, s=y 0.5%, then it is very unlikely th=t this 
s=Iple would h=ve been dr=wn if the null hypothesis is true; thus it is re=son=ble 
to conclude th=t the null hypothesis is not true. By contr=st, if this p-v=lue is l=rge, 
s=y 40%, then it is quite likely th=t the observed s=Iple =ver=ge of $22.64 could 
h=ve =risen just by r=ndoI s=Ipling v=ri=tion if the null hypothesis is true; 
=ccordingly, the evidence =g=inst the null hypothesis is we=k in this prob=bilistic 
sense, =nd it is re=son=ble not to reject the null hypothesis.

To st=te the definition of the p-v=lue I=theI=tic=lly, let Y act denote the 
v=lue of the s=Iple =ver=ge =ctu=lly coIputed in the d=t= set =t h=nd =nd let PrH0
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denote the prob=bility coIputed under the null hypothesis (th=t is, coIputed 
=ssuIing th=t E(Yi) = mY,0). The p-v=lue is

 p@  v=lue = PrH0
3 0  Y - mY,0 0 7  0Y act - mY,0 0 4 . (3.5)

Th=t is, the p-v=lue is the =re= in the t=ils of the distribution of Y under the null 
hypothesis beyond mY,0 { 
Yact - mY,0 
 . If the p-v=lue is l=rge, then the observed 
v=lue Yact is consistent with the null hypothesis, but if the p-v=lue is sI=ll, it is not.

To coIpute the p-v=lue, it is necess=ry to know the s=Ipling distribution of 
Y under the null hypothesis. As discussed in Section 2.6, when the s=Iple size is 
sI=ll this distribution is coIplic=ted. However, =ccording to the centr=l liIit 
theoreI, when the s=Iple size is l=rge, the s=Ipling distribution of Y is well 
=pproxiI=ted by = norI=l distribution. Under the null hypothesis the Ie=n of 
this norI=l distribution is mY,0, so under the null hypothesis Y is distributed 
N(mY,0, s2

Y), where s2
Y = s

2
Y>n. This l=rge-s=Iple norI=l =pproxiI=tion I=kes 

it possible to coIpute the p-v=lue without needing to know the popul=tion distri-
bution of Y, =s long =s the s=Iple size is l=rge. The det=ils of the c=lcul=tion, 
however, depend on whether s2

Y is known.

Calculating the p-Value When sY Is Known
The c=lcul=tion of the p-v=lue when sY is known is suII=rized in Figure 3.1. If 
the s=Iple size is l=rge, then under the null hypothesis the s=Ipling distribution 
of Y is N(mY,0, s2

Y), where s2
  Y = s

2
Y>n. Thus, under the null hypothesis, the st=n-

d=rdized version of Y, (Y - mY,0)>sY, h=s = st=nd=rd norI=l distribution. The 
p-v=lue is the prob=bility of obt=ining = v=lue of Y f=rther froI mY,0 th=n Yact 
under the null hypothesis or, equiv=lently, is the prob=bility of obt=ining 
(Y - mY,0) >  sY gre=ter th=n (Y act - mY,0) >  sY in =bsolute v=lue. This prob=bility 
is the sh=ded =re= shown in Figure 3.1. Written I=theI=tic=lly, the sh=ded t=il 
prob=bility in Figure 3.1 (th=t is, the p-v=lue) is

  p  @  v=lue = PrH0
a

Y - mY,0

sY

7
Y act - mY,0

sY

b = 2Φ   a -
Y act - mY,0

s  Y
b , (3.6)

where Φ is the st=nd=rd norI=l cuIul=tive distribution function. Th=t is, the 
p-v=lue is the =re= in the t=ils of = st=nd=rd norI=l distribution outside 
{ 0  Y act - mY,0 0 >s Y.

The forIul= for the p-v=lue in Equ=tion (3.6) depends on the v=ri=nce of the 
popul=tion distribution, s2

Y. In pr=ctice, this v=ri=nce is typic=lly unknown. [An 
exception is when Yi is bin=ry so th=t its distribution is Bernoulli, in which c=se 
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the v=ri=nce is deterIined by the null hypothesis; see Equ=tion (2.7) =nd Exer-
cise 3.2.] Bec=use in gener=l s2

Y Iust be estiI=ted before the p-v=lue c=n be 
coIputed, we now turn to the probleI of estiI=ting s2

Y.

The Sample Variance, Sample Standard Deviation, 
and Standard Error
The s=Iple v=ri=nce s2

Y is =n estiI=tor of the popul=tion v=ri=nce s2
Y, the s=Iple 

st=nd=rd devi=tion sY is =n estiI=tor of the popul=tion st=nd=rd devi=tion sY, =nd 
the st=nd=rd error of the s=Iple =ver=ge Y is =n estiI=tor of the st=nd=rd devi=-
tion of the s=Ipling distribution of Y.

The sample variance and standard deviation. The sample variance, s2
Y, is

 s2
Y =

1
n - 1

 a
n

i= 1
(Yi - Y )2. (3.7)

The sample standard deviation, sY, is the squ=re root of the s=Iple v=ri=nce.
The forIul= for the s=Iple v=ri=nce is Iuch like the forIul= for the popul=-

tion v=ri=nce. The popul=tion v=ri=nce, E(Y - mY)2, is the =ver=ge v=lue of 
(Y - mY)2 in the popul=tion distribution. SiIil=rly, the s=Iple v=ri=nce is the 
s=Iple =ver=ge of (Yi - mY)2, i = 1,c, n, with two Iodific=tions: First, mY is 
repl=ced by Y, =nd second, the =ver=ge uses the divisor n - 1 inste=d of n.

Figure 3.1  C.lcul.@ing . p-v.lu2

The p-value is the 

probability of drawing 

a value of Y  that differs 

from mY,0 by at least as 
much as Y act. In large 

samples, Y  is distrib-

uted N(mY,0, s
2
Y   ) , under 

the null hypothesis, so 

(Y - mY,0)>sY is distrib-

uted N(0, 1). Thus the 

p-value is the shaded 

standard normal tail 

probability outside 
{ 
 (Y act - mY,0)>s Y 
 .

zY act – mY,0
–

sY–
–

Y act – mY,0
–

sY–

0

The p-value is the shaded area
in the graph

N(0, 1)
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The re=son for the first Iodific=tion—repl=cing mY  by Y—is th=t mY is 
unknown =nd thus Iust be estiI=ted; the n=tur=l estiI=tor of mY is Y. The re=son 
for the second Iodific=tion—dividing by n - 1 inste=d of by n—is th=t estiI=ting 
mY by Y introduces = sI=ll downw=rd bi=s in (Yi - Y )2. Specific=lly, =s is shown 
in Exercise 3.18, E3(Yi - Y )24 = 3(n - 1)>n4s2

Y . Thus Egn
i= 1(Yi - Y )2 =

nE3(Yi - Y )24 = (n - 1)s2
Y. Dividing by n - 1 in Equ=tion (3.7) inste=d of n 

corrects for this sI=ll downw=rd bi=s, =nd =s = result s2
Y is unbi=sed.

Dividing by n - 1 in Equ=tion (3.7) inste=d of n is c=lled = degrees of freedom 
correction: EstiI=ting the Ie=n uses up soIe of the inforI=tion—th=t is, uses up 
1 “degree of freedoI”—in the d=t=, so th=t only n - 1 degrees of freedoI reI=in.

Consistency of the sample variance. The s=Iple v=ri=nce is = consistent estiI=tor 
of the popul=tion v=ri=nce:

 s2
Y ¡ s2

Y. (3.9)

In other words, the s=Iple v=ri=nce is close to the popul=tion v=ri=nce with high 
prob=bility when n is l=rge.

The result in Equ=tion (3.9) is proven in Appendix 3.3 under the =ssuIptions 
th=t Y1,c, Yn =re i.i.d. =nd Yi h=s = finite fourth IoIent; th=t is, E(Y4

i ) 6 ∞ . 
Intuitively, the re=son th=t s2

Y is consistent is th=t it is = s=Iple =ver=ge, so s2
Y 

obeys the l=w of l=rge nuIbers. But for s2
Y to obey the l=w of l=rge nuIbers in 

Key Concept 2.6, (Yi - mY)2 Iust h=ve finite v=ri=nce, which in turn Ie=ns th=t 
E(Y4

i ) Iust be finite; in other words, Yi Iust h=ve = finite fourth IoIent.

The standard error of  Y   . Bec=use the st=nd=rd devi=tion of the s=Ipling distribu-
tion of Y is sY = sY>1n, Equ=tion (3.9) justifies using sY>1n =s =n estiI=tor of 
s Y. The estiI=tor of s Y, sY>1n, is c=lled the standard error of Y  =nd is denoted 
SE(Y) or snY (the c=ret “^” over the syIbol Ie=ns th=t it is =n estiI=tor of s Y). 
The st=nd=rd error of Y is suII=rized =s in Key Concept 3.4.

t52 S@.nd.rd error of Y

The st=nd=rd error of Y is =n estiI=tor of the st=nd=rd devi=tion of Y. The st=n-
d=rd error of Y is denoted SE(Y) or snY. When Y1,c,Yn =re i.i.d.,

 SE(Y) = sn Y = sY>2n. (3.8)

Key ConCept

3.4
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When Y1,c, Yn =re i.i.d. dr=ws froI = Bernoulli distribution with success 
prob=bility p, the forIul= for the v=ri=nce of Y siIplifies to p(1 - p)>n (see 
Exercise 3.2). The forIul= for the st=nd=rd error =lso t=kes on = siIple forI th=t 
depends only on Y =nd n: SE(Y ) = 2Y(1 - Y)>n.

Calculating the p-Value When sY Is Unknown
Bec=use s2

Y is = consistent estiI=tor of s2
Y, the p-v=lue c=n be coIputed by repl=c-

ing s Y in Equ=tion (3.6) by the st=nd=rd error, SE(Y ) = s n Y. Th=t is, when sY is 
unknown =nd Y1,c, Yn =re i.i.d., the p-v=lue is c=lcul=ted using the forIul=

 p@v=lue = 2Φa -
Yact - mY,0

SE(Y)
b . (3.10)

The t-Statistic
The st=nd=rdized s=Iple =ver=ge (Y - mY,0)>SE(Y) pl=ys = centr=l role in testing 
st=tistic=l hypotheses =nd h=s = speci=l n=Ie, the t-statistic or t-ratio:

 t =
Y - mY,0

SE(Y)
. (3.11)

In gener=l, = test statistic is = st=tistic used to perforI = hypothesis test. The 
t-st=tistic is =n iIport=nt ex=Iple of = test st=tistic.

Large-sample distribution of the @-statistic. When n is l=rge, s2
Y is close to s2

Y with 
high prob=bility. Thus the distribution of the t-st=tistic is =pproxiI=tely the s=Ie 
=s the distribution of (Y - mY,0) >  sY, which in turn is well =pproxiI=ted by the 
st=nd=rd norI=l distribution when n is l=rge bec=use of the centr=l liIit theoreI 
(Key Concept 2.7). Accordingly, under the null hypothesis,

 t is =pproxiI=tely distributed N(0,1) for l=rge n. (3.12)

The forIul= for the p-v=lue in Equ=tion (3.10) c=n be rewritten in terIs of the 
t-st=tistic. Let t act denote the v=lue of the t-st=tistic =ctu=lly coIputed:

 t act =
Y act - mY,0

SE(Y)
. (3.13)
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Accordingly, when n is l=rge, the p-v=lue c=n be c=lcul=ted using

 p@v=lue = 2Φ(- 
 tact 
). (3.14)

As = hypothetic=l ex=Iple, suppose th=t = s=Iple of n = 200 recent college gr=d-
u=tes is used to test the null hypothesis th=t the Ie=n w=ge, E(Y), is $20 per hour. 
The s=Iple =ver=ge w=ge is Yact = $22.64, =nd the s=Iple st=nd=rd devi=tion is 
sY = $18.14. Then the st=nd=rd error of Y is sY>2n = 18.14>2200 = 1.28. The 
v=lue of the t-st=tistic is t act = (22.64 - 20)>1.28 = 2.06. FroI Appendix T=ble 1, 
the p-v=lue is 2Φ(-2.06) = 0.039, or 3.9%. Th=t is, =ssuIing the null hypothesis 
to be true, the prob=bility of obt=ining = s=Iple =ver=ge =t le=st =s different froI 
the null =s the one =ctu=lly coIputed is 3.9%.

Hypothesis Testing with a Prespecified  
Significance Level
When you undert=ke = st=tistic=l hypothesis test, you c=n I=ke two types of 
Iist=kes: You c=n incorrectly reject the null hypothesis when it is true, or you 
c=n f=il to reject the null hypothesis when it is f=lse. Hypothesis tests c=n be 
perforIed without coIputing the p-v=lue if you =re willing to specify in 
=dv=nce the prob=bility you =re willing to toler=te of I=king the first kind of 
Iist=ke—th=t is, of incorrectly rejecting the null hypothesis when it is true. If 
you choose = prespecified prob=bility of rejecting the null hypothesis when it 
is true (for ex=Iple, 5%), then you will reject the null hypothesis if =nd only 
if the p-v=lue is less th=n 0.05. This =ppro=ch gives preferenti=l tre=tIent to 
the null hypothesis, but in I=ny pr=ctic=l situ=tions this preferenti=l tre=tIent 
is =ppropri=te.

Hypothesis tests using a fixed significance level. Suppose it h=s been decided th=t 
the hypothesis will be rejected if the p-v=lue is less th=n 5%. Bec=use the =re= 
under the t=ils of the st=nd=rd norI=l distribution outside {1.96 is 5%, this gives 
= siIple rule:

 Reject H0 if 
  t act
 
 7 1.96. (3.15)

Th=t is, reject if the =bsolute v=lue of the t-st=tistic coIputed froI the s=Iple is 
gre=ter th=n 1.96. If n is l=rge enough, then under the null hypothesis the t-st=tistic 
h=s = N(0, 1) distribution. Thus the prob=bility of erroneously rejecting the null 
hypothesis (rejecting the null hypothesis when it is in f=ct true) is 5%.
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This fr=Iework for testing st=tistic=l hypotheses h=s soIe speci=lized terIi-
nology, suII=rized in Key Concept 3.5. The signific=nce level of the test in Equ=-
tion (3.15) is 5%, the critic=l v=lue of this two-sided test is 1.96, =nd the rejection 
region is the v=lues of the t-st=tistic outside ±1.96. If the test rejects =t the 5% 
signific=nce level, the popul=tion Ie=n mY is s=id to be st=tistic=lly signific=ntly 
different froI mY,0 =t the 5% signific=nce level.

Testing hypotheses using = prespecified signific=nce level does not require 
coIputing p-v=lues. In the previous ex=Iple of testing the hypothesis th=t the 
Ie=n e=rnings of recent college gr=du=tes is $20 per hour, the t-st=tistic w=s 2.06. 
This v=lue exceeds 1.96, so the hypothesis is rejected =t the 5% level. Although 
perforIing the test with = 5% signific=nce level is e=sy, reporting only whether 
the null hypothesis is rejected =t = prespecified signific=nce level conveys less 
inforI=tion th=n reporting the p-v=lue.

What significance level should you use in practice? In I=ny c=ses, st=tistici=ns 
=nd econoIetrici=ns use = 5% signific=nce level. If you were to test I=ny st=tistic=l 

t52 t2rminology of hy<o@52sis t2s@ing

A st=tistic=l hypothesis test c=n I=ke two types of Iist=kes: = type I error, in which 
the null hypothesis is rejected when in f=ct it is true, =nd = type II error, in which 
the null hypothesis is not rejected when in f=ct it is f=lse. The prespecified rejection 
prob=bility of = st=tistic=l hypothesis test when the null hypothesis is true—th=t 
is, the prespecified prob=bility of = type I error—is the significance level of the 
test. The critical value of the test st=tistic is the v=lue of the st=tistic for which 
the test just rejects the null hypothesis =t the given signific=nce level. The set 
of v=lues of the test st=tistic for which the test rejects the null hypothesis is the 
rejection region, =nd the v=lues of the test st=tistic for which it does not reject 
the null hypothesis is the acceptance region. The prob=bility th=t the test =ctu=lly 
incorrectly rejects the null hypothesis when it is true is the size of the test, =nd the 
prob=bility th=t the test correctly rejects the null hypothesis when the =ltern=tive 
is true is the power of the test.

The p-v=lue is the prob=bility of obt=ining = test st=tistic, by r=ndoI s=Ipling 
v=ri=tion, =t le=st =s =dverse to the null hypothesis v=lue =s is the st=tistic =ctu=lly 
observed, =ssuIing th=t the null hypothesis is correct. Equiv=lently, the p-v=lue is 
the sI=llest signific=nce level =t which you c=n reject the null hypothesis.

Key ConCept

3.5
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hypotheses =t the 5% level, you would incorrectly reject the null on =ver=ge once 
in 20 c=ses. SoIetiIes = Iore conserv=tive signific=nce level Iight be in order. 
For ex=Iple, leg=l c=ses soIetiIes involve st=tistic=l evidence, =nd the null 
hypothesis could be th=t the defend=nt is not guilty; then one would w=nt to be 
quite sure th=t = rejection of the null (conclusion of guilt) is not just = result of 
r=ndoI s=Iple v=ri=tion. In soIe leg=l settings, the signific=nce level used is 1%, 
or even 0.1%, to =void this sort of Iist=ke. SiIil=rly, if = governIent =gency is 
considering perIitting the s=le of = new drug, = very conserv=tive st=nd=rd Iight 
be in order so th=t consuIers c=n be sure th=t the drugs =v=il=ble in the I=rket 
=ctu=lly work.

Being conserv=tive, in the sense of using = very low signific=nce level, h=s = 
cost: The sI=ller the signific=nce level, the l=rger the critic=l v=lue =nd the Iore 
difficult it becoIes to reject the null when the null is f=lse. In f=ct, the Iost con-
serv=tive thing to do is never to reject the null hypothesis—but if th=t is your view, 
then you never need to look =t =ny st=tistic=l evidence for you will never ch=nge 
your Iind! The lower the signific=nce level, the lower the power of the test. M=ny 
econoIic =nd policy =pplic=tions c=n c=ll for less conserv=tisI th=n = leg=l c=se, 
so = 5% signific=nce level is often considered to be = re=son=ble coIproIise.

Key Concept 3.6 suII=rizes hypothesis tests for the popul=tion Ie=n =g=inst 
the two-sided =ltern=tive.

One-Sided Alternatives
In soIe circuIst=nces, the =ltern=tive hypothesis Iight be th=t the Ie=n exceeds 
mY,0. For ex=Iple, one hopes th=t educ=tion helps in the l=bor I=rket, so the 
relev=nt =ltern=tive to the null hypothesis th=t e=rnings =re the s=Ie for college 
gr=du=tes =nd non–college gr=du=tes is not just th=t their e=rnings differ, but 

t2s@ing @52 hy<o@52sis E(Y) = mY,0 
ag.ins@ @52 al@2rn.@iv2 E(Y) ≠ mY,0

 1. CoIpute the st=nd=rd error of Y, SE(Y) [Equ=tion (3.8)].

 2. CoIpute the t-st=tistic [Equ=tion (3.13)].

 3. CoIpute the p-v=lue [Equ=tion (3.14)]. Reject the hypothesis =t the 5% sig-
nific=nce level if the p-v=lue is less th=n 0.05 (equiv=lently, if 
 t act 
 7 1.96).

Key ConCept

3.6
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r=ther th=t gr=du=tes e=rn Iore th=n nongr=du=tes. This is c=lled = one-sided 
alternative hypothesis =nd c=n be written

 H1 : E(Y) 7 mY,0 (one@sided =ltern=tive). (3.16)

The gener=l =ppro=ch to coIputing p-v=lues =nd to hypothesis testing is the s=Ie 
for one-sided =ltern=tives =s it is for two-sided =ltern=tives, with the Iodific=tion 
th=t only l=rge positive v=lues of the t-st=tistic reject the null hypothesis r=ther 
th=n v=lues th=t =re l=rge in =bsolute v=lue. Specific=lly, to test the one-sided 
hypothesis in Equ=tion (3.16), construct the t-st=tistic in Equ=tion (3.13). The 
p-v=lue is the =re= under the st=nd=rd norI=l distribution to the right of the c=l-
cul=ted t-st=tistic. Th=t is, the p-v=lue, b=sed on the N(0, 1) =pproxiI=tion to the 
distribution of the t-st=tistic, is

 p@v=lue = PrH0
(Z 7 t act ) = 1 - Φ(t act). (3.17)

The N(0, 1) critic=l v=lue for = one-sided test with = 5% signific=nce level is 1.64. 
The rejection region for this test is =ll v=lues of the t-st=tistic exceeding 1.64.

The one-sided hypothesis in Equ=tion (3.16) concerns v=lues of mY exceeding 
mY,0. If inste=d the =ltern=tive hypothesis is th=t E(Y) 6 mY,0, then the discussion 
of the previous p=r=gr=ph =pplies except th=t the signs =re switched; for ex=Iple, 
the 5% rejection region consists of v=lues of the t-st=tistic less th=n −1.64.

 3.3 Confidence Intervals  
for the Population Mean

Bec=use of r=ndoI s=Ipling error, it is iIpossible to le=rn the ex=ct v=lue of the 
popul=tion Ie=n of Y using only the inforI=tion in = s=Iple. However, it is pos-
sible to use d=t= froI = r=ndoI s=Iple to construct = set of v=lues th=t cont=ins 
the true popul=tion Ie=n mY with = cert=in prespecified prob=bility. Such = set is 
c=lled = confidence set, =nd the prespecified prob=bility th=t mY is cont=ined in 
this set is c=lled the confidence level. The confidence set for mY turns out to be =ll 
the possible v=lues of the Ie=n between = lower =nd =n upper liIit, so th=t the 
confidence set is =n interv=l, c=lled = confidence interval.

Here is one w=y to construct = 95% confidence set for the popul=tion Ie=n. 
Begin by picking soIe =rbitr=ry v=lue for the Ie=n; c=ll it mY,0. Test the null hypoth-
esis th=t mY = mY,0 =g=inst the =ltern=tive th=t mY ≠ mY,0 by coIputing the t-st=tistic; 
if its =bsolute v=lue is less th=n 1.96, this hypothesized v=lue mY,0 is not rejected =t 
the 5% level, =nd write down this nonrejected v=lue mY,0. Now pick =nother =rbitr=ry 
v=lue of mY,0 =nd test it; if you c=nnot reject it, write down this v=lue on your list. 



 3.3  Confidence Intervals for the Population Mean 81

Do this =g=in =nd =g=in; indeed, do so for =ll possible v=lues of the popul=tion 
Ie=n. Continuing this process yields the set of =ll v=lues of the popul=tion Ie=n 
th=t c=nnot be rejected =t the 5% level by = two-sided hypothesis test.

This list is useful bec=use it suII=rizes the set of hypotheses you c=n =nd 
c=nnot reject (=t the 5% level) b=sed on your d=t=: If soIeone w=lks up to you 
with = specific nuIber in Iind, you c=n tell hiI whether his hypothesis is rejected 
or not siIply by looking up his nuIber on your h=ndy list. A bit of clever re=son-
ing shows th=t this set of v=lues h=s = reI=rk=ble property: The prob=bility th=t 
it cont=ins the true v=lue of the popul=tion Ie=n is 95%.

The clever re=soning goes like this: Suppose the true v=lue of mY is 21.5 
(=lthough we do not know this). Then Y h=s = norI=l distribution centered on 
21.5, =nd the t-st=tistic testing the null hypothesis mY = 21.5 h=s = N(0, 1) distribu-
tion. Thus, if n is l=rge, the prob=bility of rejecting the null hypothesis mY = 21.5 
=t the 5% level is 5%. But bec=use you tested =ll possible v=lues of the popul=tion 
Ie=n in constructing your set, in p=rticul=r you tested the true v=lue, mY = 21.5. 
In 95% of =ll s=Iples, you will correctly =ccept 21.5; this Ie=ns th=t in 95% of =ll 
s=Iples, your list will cont=in the true v=lue of mY. Thus the v=lues on your list 
constitute = 95% confidence set for mY.

This Iethod of constructing = confidence set is iIpr=ctic=l, for it requires you 
to test =ll possible v=lues of mY =s null hypotheses. Fortun=tely, there is = Iuch 
e=sier =ppro=ch. According to the forIul= for the t-st=tistic in Equ=tion (3.13), = 
tri=l v=lue of mY,0 is rejected =t the 5% level if it is Iore th=n 1.96 st=nd=rd errors 
=w=y froI Y. Thus the set of v=lues of mY th=t =re not rejected =t the 5% level 
consists of those v=lues within { 1.96SE(Y) of Y; th=t is, = 95% confidence 
interv=l for mY is Y - 1.96SE(Y) … mY … Y + 1.96SE(Y). Key Concept 3.7 suI-
I=rizes this =ppro=ch.

Confid2nc2 In@2rv.ls for @52 po<ul.@ion M2.n

A 95% two-sided confidence interv=l for mY is =n interv=l constructed so th=t it 
cont=ins the true v=lue of mY in 95% of =ll possible r=ndoI s=Iples. When the 
s=Iple size n is l=rge, 95%, 90%, =nd 99% confidence interv=ls for mY =re

95% confidence interv=l for mY = 5Y { 1.96SE(Y )6.

90% confidence interv=l for mY = 5Y { 1.64SE(Y )6.

99% confidence interv=l for mY = 5Y { 2.58SE(Y )6.

Key ConCept

3.7
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As =n ex=Iple, consider the probleI of constructing = 95% confidence inter-
v=l for the Ie=n hourly e=rnings of recent college gr=du=tes using = hypothetic=l 
r=ndoI s=Iple of 200 recent college gr=du=tes where Y = $22.64 =nd 
SE(Y) = 1.28. The 95% confidence interv=l for Ie=n hourly e=rnings is 
22.64 { 1.96 * 1.28 = 22.64 { 2.51 = 3$20.13, $25.154.

This discussion so f=r h=s focused on two-sided confidence interv=ls. One 
could inste=d construct = one-sided confidence interv=l =s the set of v=lues of mY 
th=t c=nnot be rejected by = one-sided hypothesis test. Although one-sided confi-
dence interv=ls h=ve =pplic=tions in soIe br=nches of st=tistics, they =re uncoI-
Ion in =pplied econoIetric =n=lysis.

Coverage probabilities. The coverage probability of = confidence interv=l for the 
popul=tion Ie=n is the prob=bility, coIputed over =ll possible r=ndoI s=Iples, 
th=t it cont=ins the true popul=tion Ie=n.

 3.4 Comparing Means from Different  
Populations

Do recent I=le =nd feI=le college gr=du=tes e=rn the s=Ie =Iount on =ver=ge? 
This question involves coIp=ring the Ie=ns of two different popul=tion distribu-
tions. This section suII=rizes how to test hypotheses =nd how to construct con-
fidence interv=ls for the difference in the Ie=ns froI two different popul=tions.

Hypothesis Tests for the Difference  
Between Two Means
To illustr=te = test for the difference between two means, let mw be the Ie=n 
hourly e=rning in the popul=tion of woIen recently gr=du=ted froI college =nd 
let mm be the popul=tion Ie=n for recently gr=du=ted Ien. Consider the null 
hypothesis th=t Ie=n e=rnings for these two popul=tions differ by = cert=in 
=Iount, s=y d0. Then the null hypothesis =nd the two-sided =ltern=tive hypothesis 
=re

 H0: mm - mw = d0 vs. H1: mm - mw ≠ d0. (3.18)

The null hypothesis th=t Ien =nd woIen in these popul=tions h=ve the s=Ie 
Ie=n e=rnings corresponds to H0 in Equ=tion (3.18) with d0 = 0.
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Bec=use these popul=tion Ie=ns =re unknown, they Iust be estiI=ted froI 
s=Iples of Ien =nd woIen. Suppose we h=ve s=Iples of nm Ien =nd nw woIen 
dr=wn =t r=ndoI froI their popul=tions. Let the s=Iple =ver=ge =nnu=l e=rnings 
be Ym for Ien =nd Yw for woIen. Then =n estiI=tor of mm - mw is Ym - Yw.

To test the null hypothesis th=t mm - mw = d0 using Ym - Yw, we need to 
know the distribution of Ym - Yw. Rec=ll th=t Ym is, =ccording to the centr=l liIit 
theoreI, =pproxiI=tely distributed N(mm, s2

m>nm), where s2
m is the popul=tion 

v=ri=nce of e=rnings for Ien. SiIil=rly, Yw is =pproxiI=tely distributed 
N(mw, s2

w>nw) where s2
w is the popul=tion v=ri=nce of e=rnings for woIen. Also, 

rec=ll froI Section 2.4 th=t = weighted =ver=ge of two norI=l r=ndoI v=ri=bles 
is itself norI=lly distributed. Bec=use Ym =nd Yw =re constructed froI different 
r=ndoIly selected s=Iples, they =re independent r=ndoI v=ri=bles. Thus 
Ym - Yw is distributed N3mm - mw, (s2

m>nm) + (s2
w>nw)4.

If s2
m =nd s2

w =re known, then this =pproxiI=te norI=l distribution c=n be 
used to coIpute p-v=lues for the test of the null hypothesis th=t mm - mw = d0. 
In pr=ctice, however, these popul=tion v=ri=nces =re typic=lly unknown so they 
Iust be estiI=ted. As before, they c=n be estiI=ted using the s=Iple v=ri=nces, 
s2

m =nd s2
w where s2

m is defined =s in Equ=tion (3.7), except th=t the st=tistic is coI-
puted only for the Ien in the s=Iple, =nd s2

w is defined siIil=rly for the woIen. 
Thus the st=nd=rd error of Ym - Yw is

 SE(Ym - Yw) = C
s2

m

nm
+

s2
w

nw
. (3.19)

For = siIplified version of Equ=tion (3.19) when Y is = Bernoulli r=ndoI v=ri=ble, 
see Exercise 3.15.

The t-st=tistic for testing the null hypothesis is constructed =n=logously to the 
t-st=tistic for testing = hypothesis =bout = single popul=tion Ie=n, by subtr=cting 
the null hypothesized v=lue of mm - mw froI the estiI=tor Ym - Yw =nd dividing 
the result by the st=nd=rd error of Ym - Yw:

 
t =

(Ym - Yw) - d0

SE(Ym - Yw)
 (t@st=tistic for coIp=ring two Ie=ns).

 
(3.20)

If both nm =nd nw =re l=rge, then this t-st=tistic h=s = st=nd=rd norI=l distribution 
when the null hypothesis is true.

Bec=use the t-st=tistic in Equ=tion (3.20) h=s = st=nd=rd norI=l distribution 
under the null hypothesis when nm =nd nw =re l=rge, the p-v=lue of the two-sided 
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test is coIputed ex=ctly =s it w=s in the c=se of = single popul=tion. Th=t is, the 
p-v=lue is coIputed using Equ=tion (3.14).

To conduct = test with = prespecified signific=nce level, siIply c=lcul=te the 
t-st=tistic in Equ=tion (3.20) =nd coIp=re it to the =ppropri=te critic=l v=lue. For 
ex=Iple, the null hypothesis is rejected =t the 5% signific=nce level if the =bsolute 
v=lue of the t-st=tistic exceeds 1.96.

If the =ltern=tive is one-sided r=ther th=n two-sided (th=t is, if the =ltern=tive 
is th=t mm - mw 7 d0), then the test is Iodified =s outlined in Section 3.2. The 
p-v=lue is coIputed using Equ=tion (3.17), =nd = test with = 5% signific=nce level 
rejects when t 7 1.64.

Confidence Intervals for the Difference  
Between Two Population Means
The Iethod for constructing confidence interv=ls suII=rized in Section 3.3 
extends to constructing = confidence interv=l for the difference between the 
Ie=ns, d = mm - mw. Bec=use the hypothesized v=lue d0 is rejected =t the 5% 
level if 
 t 
 7 1.96, d0 will be in the confidence set if 
 t 
 … 1.96. But 
 t 
 … 1.96 
Ie=ns th=t the estiI=ted difference, Ym - Yw, is less th=n 1.96 st=nd=rd errors 
=w=y froI d0. Thus the 95% two-sided confidence interv=l for d consists of those 
v=lues of d within { 1.96 st=nd=rd errors of Ym - Yw:

95% confidence interv=l for d = mm - mw is

 (Ym - Yw) { 1.96SE(Ym - Yw). (3.21)

With these forIul=s in h=nd, the box “The Gender G=p of E=rnings of College 
Gr=du=tes in the United St=tes” cont=ins =n eIpiric=l investig=tion of gender 
differences in e=rnings of U.S. college gr=du=tes.

 3.5 Differences-of-Means Estimation of Causal 
Effects Using Experimental Data

Rec=ll froI Section 1.2 th=t = r=ndoIized controlled experiIent r=ndoIly selects 
subjects (individu=ls or, Iore gener=lly, entities) froI = popul=tion of interest, 
then r=ndoIly =ssigns theI either to = tre=tIent group, which receives the exper-
iIent=l tre=tIent, or to = control group, which does not receive the tre=tIent. 
The difference between the s=Iple Ie=ns of the tre=tIent =nd control groups is 
=n estiI=tor of the c=us=l effect of the tre=tIent.
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The Causal Effect as a Difference  
of Conditional Expectations
The c=us=l effect of = tre=tIent is the expected effect on the outcoIe of interest 
of the tre=tIent =s Ie=sured in =n ide=l r=ndoIized controlled experiIent. This 
effect c=n be expressed =s the difference of two condition=l expect=tions. Spe-
cific=lly, the causal effect on Y of tre=tIent level x is the difference in the condi-
tion=l expect=tions, E(Y  0  X = x) - E(Y  0  X = 0), where E(Y  0  X = x) is the 
expected v=lue of Y for the tre=tIent group (which receives tre=tIent level 
X = x) in =n ide=l r=ndoIized controlled experiIent =nd E(Y  0  X = 0) is the 
expected v=lue of Y for the control group (which receives tre=tIent level X = 0). 
In the context of experiIents, the c=us=l effect is =lso c=lled the treatment effect. 
If there =re only two tre=tIent levels (th=t is, if the tre=tIent is bin=ry), then  
we c=n let X = 0 denote the control group =nd X = 1 denote the tre=tIent 
group. If the tre=tIent is bin=ry tre=tIent, then the c=us=l effect (th=t is, the 
tre=tIent effect) is E(Y  0  X = 1) - E(Y  0  X = 0) in =n ide=l r=ndoIized con-
trolled experiIent.

Estimation of the Causal Effect Using  
Differences of Means
If the tre=tIent in = r=ndoIized controlled experiIent is bin=ry, then the c=us=l 
effect c=n be estiI=ted by the difference in the s=Iple =ver=ge outcoIes between 
the tre=tIent =nd control groups. The hypothesis th=t the tre=tIent is ineffective 
is equiv=lent to the hypothesis th=t the two Ie=ns =re the s=Ie, which c=n be 
tested using the t-st=tistic for coIp=ring two Ie=ns, given in Equ=tion (3.20). A 
95% confidence interv=l for the difference in the Ie=ns of the two groups is = 
95% confidence interv=l for the c=us=l effect, so = 95% confidence interv=l for the 
c=us=l effect c=n be constructed using Equ=tion (3.21).

A well-designed, well-run experiIent c=n provide = coIpelling estiI=te of = 
c=us=l effect. For this re=son, r=ndoIized controlled experiIents =re coIIonly 
conducted in soIe fields, such =s Iedicine. In econoIics, however, experiIents 
tend to be expensive, difficult to =dIinister, =nd, in soIe c=ses, ethic=lly ques-
tion=ble, so they =re used less often. For this re=son, econoIetrici=ns soIetiIes 
study “n=tur=l experiIents,” =lso c=lled qu=si-experiIents, in which soIe event 
unrel=ted to the tre=tIent or subject ch=r=cteristics h=s the effect of =ssigning 
different tre=tIents to different subjects as if they h=d been p=rt of = r=ndoIized 
controlled experiIent. The box “A Novel W=y to Boost RetireIent S=vings” 
provides =n ex=Iple of such = qu=si-experiIent th=t yielded soIe surprising  
conclusions.
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e=rnings of the 2004 Ien surveyed w=s $25.30, 

=nd the st=nd=rd devi=tion of e=rnings for Ien 

w=s $12.09. The =ver=ge hourly e=rnings in 2012 

of the 1951 woIen surveyed w=s $21.50, =nd the 

st=nd=rd devi=tion of e=rnings w=s $9.99. Thus the 

estiI=te of the gender g=p in e=rnings for 2012 is 

$3.80 (=  $25.30 - $21.50), with = st=nd=rd error of 

$0.35 (= 212.092>2004 + 9.992>1951). The 95% con- 

fidence interv=l for the gender g=p in e=rnings in 2012 

is 3.80 { 1.96 * 0.35 = ($3.11, $4.49).

The results in T=ble 3.1 suggest four conclusions. 

First, the gender g=p is l=rge. An hourly g=p of $3.80 

Iight not sound like Iuch, but over = ye=r it =dds 

up to $7600, =ssuIing = 40-hour workweek =nd 50 

p=id weeks per ye=r. Second, froI 1992 to 2012, the 

estiI=ted gender g=p incre=sed by $0.36 per hour in 

re=l terIs, froI $3.44 per hour to $3.80 per hour; 

T he box in Ch=pter 2 “The Distribution of E=rn-

ings in the United St=tes in 2012” shows th=t, 

on =ver=ge, I=le college gr=du=tes e=rn Iore th=n 

feI=le college gr=du=tes. Wh=t =re the recent trends 

in this “gender g=p” in e=rnings? Soci=l norIs =nd 

l=ws governing gender discriIin=tion in the work-

pl=ce h=ve ch=nged subst=nti=lly in the United St=tes. 

Is the gender g=p in e=rnings of college gr=du=tes 

st=ble, or h=s it diIinished over tiIe?

T=ble 3.1 gives estiI=tes of hourly e=rnings 

for college-educ=ted full-tiIe workers =ges 25–34 

in the United St=tes in 1992, 1996, 2000, 2004, 

2008, =nd 2012, using d=t= collected by the Cur-

rent Popul=tion Survey. E=rnings for 1992, 1996,  

2000, 2004, =nd 2008 were =djusted for infl=tion by 

putting theI in 2012 doll=rs using the ConsuIer 

Price Index (CPI).1 In 2012, the =ver=ge hourly 

taBLe 3.1  tr2nds in hourly e.rnings in @52 Uni@2d S@.@2s of Working Coll2g2 Gr.du.@2s, 
ag2s 25–34, 1992 @o 2012, in 2012 Doll.rs

 M:B WCm:B D>ff:F:Bc:, M:B vs. WCm:B
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1992 24.83 10.85 1594 21.39 8.39 1368 3.44** 0.35 2.75–4.14

1996 23.97 10.79 1380 20.26 8.48 1230 3.71** 0.38 2.97–4.46

2000 26.55 12.38 1303 22.13 9.98 1181 4.42** 0.45 3.54–5.30

2004 26.80 12.81 1894 22.43 9.99 1735 4.37** 0.38 3.63–5.12

2008 26.63 12.57 1839 22.26 10.30 1871 4.36** 0.38 3.62–5.10

2012 25.30 12.09 2004 21.50 9.99 1951 3.80** 0.35 3.11–4.49

These estiI=tes =re coIputed using d=t= on =ll full-tiIe workers =ges 25–34 surveyed in the Current Popul=tion Survey 
conducted in M=rch of the next ye=r (for ex=Iple, the d=t= for 2012 were collected in M=rch 2013). The difference is sig-
nific=ntly different froI zero =t the **1% signific=nce level.

(continued )
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 3.6 Using the t-Statistic When the Sample  
Size Is Small

In Sections 3.2 through 3.5, the t-st=tistic is used in conjunction with critic=l v=lues 
froI the st=nd=rd norI=l distribution for hypothesis testing =nd for the construc-
tion of confidence interv=ls. The use of the st=nd=rd norI=l distribution is justi-
fied by the centr=l liIit theoreI, which =pplies when the s=Iple size is l=rge. 
When the s=Iple size is sI=ll, the st=nd=rd norI=l distribution c=n provide = 
poor =pproxiI=tion to the distribution of the t-st=tistic. If, however, the popul=-
tion distribution is itself norI=lly distributed, then the ex=ct distribution (th=t is, 
the finite-s=Iple distribution; see Section 2.6) of the t-st=tistic testing the Ie=n of 
= single popul=tion is the Student t distribution with n - 1 degrees of freedoI, 
=nd critic=l v=lues c=n be t=ken froI the Student t distribution.

The t-Statistic and the Student t Distribution
The @-statistic testing the mean. Consider the t-st=tistic used to test the hypothesis 
th=t the Ie=n of Y is mY,0, using d=t= Y1,c, Yn. The forIul= for this st=tistic is 

g=p exists. Does it =rise froI gender discriIin=tion in 

the l=bor I=rket? Does it reflect differences in skills, 

experience, or educ=tion between Ien =nd woIen? 

Does it reflect differences in choice of jobs? Or is 

there soIe other c=use? We return to these questions 

once we h=ve in h=nd the tools of Iultiple regression 

=n=lysis, the topic of P=rt II.

however, this incre=se is not st=tistic=lly signific=nt 

=t the 5% signific=nce level (Exercise 3.17). Third, 

the g=p is l=rge if it is Ie=sured inste=d in percent-

=ge terIs: According to the estiI=tes in T=ble 3.1, 

in 2012 woIen e=rned 15% less per hour th=n Ien 

did ($3.80>$25.30), slightly Iore th=n the g=p of 

14% seen in 1992 ($3.44>$24.83). Fourth, the gen-

der g=p is sI=ller for young college gr=du=tes (the 

group =n=lyzed in T=ble 3.1) th=n it is for =ll college 

gr=du=tes (=n=lyzed in T=ble 2.4): As reported in 

T=ble 2.4, the Ie=n e=rnings for =ll college-educ=ted 

woIen working full-tiIe in 2012 w=s $25.42, while 

for Ien this Ie=n w=s $32.73, which corresponds 

to = gender g=p of 22% 3=  (32.73 - 25.42)>32.734 
=Iong =ll full-tiIe college-educ=ted workers.

This eIpiric=l =n=lysis docuIents th=t the “gen-

der g=p” in hourly e=rnings is l=rge =nd h=s been f=irly 

st=ble (or perh=ps incre=sed slightly) over the recent 

p=st. The =n=lysis does not, however, tell us why this 

1Bec=use of infl=tion, = doll=r in 1992 w=s worth Iore th=n 
= doll=r in 2012, in the sense th=t = doll=r in 1992 could 
buy Iore goods =nd services th=n = doll=r in 2012 could. 
Thus e=rnings in 1992 c=nnot be directly coIp=red to e=rn-
ings in 2012 without =djusting for infl=tion. One w=y to 
I=ke this =djustIent is to use the CPI, = Ie=sure of the 
price of = “I=rket b=sket” of consuIer goods =nd services 
constructed by the Bure=u of L=bor St=tistics. Over the 
20 ye=rs froI 1992 to 2012, the price of the CPI I=rket 
b=sket rose by 63.6%; in other words, the CPI b=sket of 
goods =nd services th=t cost $100 in 1992 cost $163.64 in 
2012. To I=ke e=rnings in 1992 =nd 2012 coIp=r=ble in  
T=ble 3.1, 1992 e=rnings =re infl=ted by the =Iount of 
over=ll CPI price infl=tion, th=t is, by Iultiplying 1992 
e=rnings by 1.636 to put theI into “2012 doll=rs.”
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given by Equ=tion (3.10), where the st=nd=rd error of Y is given by Equ=tion 
(3.8). Substitution of the l=tter expression into the forIer yields the forIul= for 
the t-st=tistic:

 t =
Y - mY,0

2s2
Y>n

, (3.22)

where s2
Y is given in Equ=tion (3.7).

As discussed in Section 3.2, under gener=l conditions the t-st=tistic h=s = st=n-
d=rd norI=l distribution if the s=Iple size is l=rge =nd the null hypothesis is true 
[see Equ=tion (3.12)]. Although the st=nd=rd norI=l =pproxiI=tion to the t-st=-
tistic is reli=ble for = wide r=nge of distributions of Y if n is l=rge, it c=n be unreli-
=ble if n is sI=ll. The ex=ct distribution of the t-st=tistic depends on the distribution 
of Y, =nd it c=n be very coIplic=ted. There is, however, one speci=l c=se in which 
the ex=ct distribution of the t-st=tistic is rel=tively siIple: If Y is norI=lly distrib-
uted, then the t-st=tistic in Equ=tion (3.22) h=s = Student t distribution with n - 1 
degrees of freedoI. (The I=theI=tics behind this result is provided in Sections 
17.4 =nd 18.4.)

If the popul=tion distribution is norI=lly distributed, then critic=l v=lues froI 
the Student t distribution c=n be used to perforI hypothesis tests =nd to construct 
confidence interv=ls. As =n ex=Iple, consider = hypothetic=l probleI in which 
t act = 2.15 =nd n = 20 so th=t the degrees of freedoI is n - 1 = 19. FroI 
Appendix T=ble 2, the 5% two-sided critic=l v=lue for the t19 distribution is 2.09. 
Bec=use the t-st=tistic is l=rger in =bsolute v=lue th=n the critic=l v=lue 
(2.15 7 2.09), the null hypothesis would be rejected =t the 5% signific=nce level 
=g=inst the two-sided =ltern=tive. The 95% confidence interv=l for mY, constructed 
using the t19 distribution, would be Y { 2.09 SE(Y). This confidence interv=l is 
soIewh=t wider th=n the confidence interv=l constructed using the st=nd=rd nor-
I=l critic=l v=lue of 1.96.

The @-statistic testing differences of means. The t-st=tistic testing the difference 
of two Ie=ns, given in Equ=tion (3.20), does not h=ve = Student t distribution, 
even if the popul=tion distribution of Y is norI=l. (The Student t distribution does 
not =pply here bec=use the v=ri=nce estiI=tor used to coIpute the st=nd=rd error 
in Equ=tion (3.19) does not produce = denoIin=tor in the t-st=tistic with = chi-
squ=red distribution.)

A Iodified version of the differences-of-Ie=ns t-st=tistic, b=sed on = differ-
ent st=nd=rd error forIul=—the “pooled” st=nd=rd error forIul=—h=s =n ex=ct 
Student t distribution when Y is norI=lly distributed; however, the pooled  
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st=nd=rd error forIul= =pplies only in the speci=l c=se th=t the two groups h=ve 
the s=Ie v=ri=nce or th=t e=ch group h=s the s=Ie nuIber of observ=tions (Exer-
cise 3.21). Adopt the not=tion of Equ=tion (3.19) so th=t the two groups =re 
denoted =s m =nd w. The pooled v=ri=nce estiI=tor is

 s  

2
pooled =

1
nm + nw - 2

 
 a

nm

i= 1
 (Yi - Ym)2 +  a

nw

i= 1
 (Yi - Ym)2

group m  group w

, (3.23)

where the first suII=tion is for the observ=tions in group m =nd the second suI-
I=tion is for the observ=tions in group w. The pooled st=nd=rd error of the dif-
ference in Ie=ns is SEpooled(Ym - Yw) = spooled * 11>nm + 1>nw, =nd the 
pooled t-st=tistic is coIputed using Equ=tion (3.20), where the st=nd=rd error is 
the pooled st=nd=rd error, SEpooled(Ym - Yw).

If the popul=tion distribution of Y in group m is N(mm, s2
m), if the popul=tion 

distribution of Y in group w is N(mw, s2
w), and if the two group v=ri=nces =re the 

s=Ie (th=t is, s2
m = s2

w), then under the null hypothesis the t-st=tistic coIputed 
using the pooled st=nd=rd error h=s = Student t distribution with nm + nw - 2 
degrees of freedoI.

The dr=wb=ck of using the pooled v=ri=nce estiI=tor s2
pooled is th=t it =pplies 

only if the two popul=tion v=ri=nces =re the s=Ie (=ssuIing nm ≠ nw). If the 
popul=tion v=ri=nces =re different, the pooled v=ri=nce estiI=tor is bi=sed =nd 
inconsistent. If the popul=tion v=ri=nces =re different but the pooled v=ri=nce 
forIul= is used, the null distribution of the pooled t-st=tistic is not = Student  
t distribution, even if the d=t= =re norI=lly distributed; in f=ct, it does not even 
h=ve = st=nd=rd norI=l distribution in l=rge s=Iples. Therefore, the pooled st=n-
d=rd error =nd the pooled t-st=tistic should not be used unless you h=ve = good 
re=son to believe th=t the popul=tion v=ri=nces =re the s=Ie.

Use of the Student t Distribution in Practice
For the probleI of testing the Ie=n of Y, the Student t distribution is =pplic=ble 
if the underlying popul=tion distribution of Y is norI=l. For econoIic v=ri=bles, 
however, norI=l distributions =re the exception (for ex=Iple, see the boxes in 
Ch=pter 2 “The Distribution of E=rnings in the United St=tes in 2012” =nd “A 
B=d D=y on W=ll Street”). Even if the underlying d=t= =re not norI=lly distrib-
uted, the norI=l =pproxiI=tion to the distribution of the t-st=tistic is v=lid if  
the s=Iple size is l=rge. Therefore, inferences—hypothesis tests =nd confidence 
interv=ls—=bout the Ie=n of = distribution should be b=sed on the l=rge-s=Iple 
norI=l =pproxiI=tion.
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between the workers hired before =nd =fter the 

ch=nge. Thus, froI =n econoIetrici=n’s perspec-

tive, the ch=nge w=s like = r=ndoIly =ssigned tre=t-

Ient =nd the c=us=l effect of the ch=nge could be 

estiI=ted by the difference in Ie=ns between the 

two groups.

M=dri=n =nd She= found th=t the def=ult enroll-

Ient rule I=de = huge difference: The enroll-

Ient r=te for the “opt-in” (control) group w=s 

37.4% (n = 4249), where=s the enrollIent r=te 

for the “opt-out” (tre=tIent) group w=s 85.9% 

(n = 5801). The estiI=te of the tre=tIent effect 

is 48.5% (=  85.9% - 37.4%). Bec=use their s=Iple 

is l=rge, the 95% confidence (coIputed in Exer-

cise 3.15) for the tre=tIent effect is tight, 46.8% 

to 50.2%.

How could the def=ult choice I=tter so Iuch? 

M=ybe workers found these fin=nci=l choices too 

confusing, or I=ybe they just didn’t w=nt to think 

=bout growing old. Neither expl=n=tion is econoIi-

c=lly r=tion=l—but both =re consistent with the 

predictions of the growing field of “beh=viour=l 

econoIics,” =nd both could le=d to =ccepting the 

def=ult enrollIent option.

This rese=rch h=d =n iIport=nt pr=ctic=l iIp=ct. 

In August 2006, Congress p=ssed the Pension Pro-

tection Act th=t (=Iong other things) encour=ged 

firIs to offer 401(k) pl=ns in which enrollIent is the 

def=ult. The econoIetric findings of M=dri=n =nd 

She= =nd others fe=tured proIinently in testiIony 

on this p=rt of the legisl=tion.

To le=rn Iore =bout beh=vior=l econoIics =nd 

the design of retireIent s=vings pl=ns, see Ben=rtzi 

=nd Th=ler (2007) =nd Beshe=rs, Choi, L=ibson, =nd 

M=dri=n (2008).

M =ny econoIists think th=t people do not 

s=ve enough for retireIent. Convention=l 

Iethods for encour=ging retireIent s=vings focus 

on fin=nci=l incentives, but there =lso h=s been 

=n upsurge in interest in unconvention=l w=ys to 

encour=ge s=ving for retireIent.

In =n iIport=nt study published in 2001, Brigitte 

M=dri=n =nd Dennis She= considered one such 

unconvention=l Iethod for stiIul=ting retireIent 

s=vings. M=ny firIs offer retireIent s=vings pl=ns 

in which the firI I=tches, in full or in p=rt, s=vings 

t=ken out of the p=ycheck of p=rticip=ting eIploy-

ees. EnrollIent in such pl=ns, c=lled 401(k) pl=ns 

=fter the =pplic=ble section of the U.S. t=x code, is 

=lw=ys option=l. However, =t soIe firIs eIployees 

=re =utoI=tic=lly enrolled in the pl=n, =lthough they 

c=n opt out; =t other firIs, eIployees =re enrolled 

only if they choose to opt in. According to conven-

tion=l econoIic Iodels of beh=vior, the Iethod of 

enrollIent—opt out or opt in—should not I=tter: 

The r=tion=l worker coIputes the optiI=l =ction, 

then t=kes it. But, M=dri=n =nd She= wondered, 

could convention=l econoIics be wrong? Does the 

method of enrollment in = s=vings pl=n directly =ffect 

its enrollIent r=te?

To Ie=sure the effect of the Iethod of enroll-

Ient, M=dri=n =nd She= studied = l=rge firI th=t 

ch=nged the def=ult option for its 401(k) pl=n froI 

nonp=rticip=tion to p=rticip=tion. They coIp=red 

two groups of workers: those hired the ye=r before 

the ch=nge =nd not =utoI=tic=lly enrolled (but could  

opt in) =nd those hired in the ye=r =fter the ch=nge 

=nd =utoI=tic=lly enrolled (but could opt out). The 

fin=nci=l =spects of the pl=n reI=ined the s=Ie, =nd 

M=dri=n =nd She= found no systeI=tic differences 
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When coIp=ring two Ie=ns, =ny econoIic re=son for two groups h=ving 
different Ie=ns typic=lly iIplies th=t the two groups =lso could h=ve different 
v=ri=nces. Accordingly, the pooled st=nd=rd error forIul= is in=ppropri=te, =nd 
the correct st=nd=rd error forIul=, which =llows for different group v=ri=nces, is 
=s given in Equ=tion (3.19). Even if the popul=tion distributions =re norI=l, the 
t-st=tistic coIputed using the st=nd=rd error forIul= in Equ=tion (3.19) does not 
h=ve = Student t distribution. In pr=ctice, therefore, inferences =bout differences 
in Ie=ns should be b=sed on Equ=tion (3.19), used in conjunction with the l=rge-
s=Iple st=nd=rd norI=l =pproxiI=tion.

Even though the Student t distribution is r=rely =pplic=ble in econoIics, soIe 
softw=re uses the Student t distribution to coIpute p-v=lues =nd confidence inter-
v=ls. In pr=ctice, this does not pose = probleI bec=use the difference between 
the Student t distribution =nd the st=nd=rd norI=l distribution is negligible if the 
s=Iple size is l=rge. For n 7 15, the difference in the p-v=lues coIputed using the 
Student t =nd st=nd=rd norI=l distributions never exceeds 0.01; for n 7 80, 
the difference never exceeds 0.002. In Iost Iodern =pplic=tions, =nd in =ll =ppli-
c=tions in this textbook, the s=Iple sizes =re in the hundreds or thous=nds, l=rge 
enough for the difference between the Student t distribution =nd the st=nd=rd 
norI=l distribution to be negligible.

 3.7 Scatterplots, the Sample Covariance, and 
the Sample Correlation

Wh=t is the rel=tionship between =ge =nd e=rnings? This question, like I=ny oth-
ers, rel=tes one v=ri=ble, X (=ge), to =nother, Y (e=rnings). This section reviews 
three w=ys to suII=rize the rel=tionship between v=ri=bles: the sc=tterplot, the 
s=Iple cov=ri=nce, =nd the s=Iple correl=tion coefficient.

Scatterplots
A scatterplot is = plot of n observ=tions on Xi =nd Yi, in which e=ch observ=tion 
is represented by the point (Xi, Yi ). For ex=Iple, Figure 3.2 is = sc=tterplot of =ge 
(X) =nd hourly e=rnings (Y) for = s=Iple of 200 I=n=gers in the inforI=tion 
industry froI the M=rch 2009 CPS. E=ch dot in Figure 3.2 corresponds to =n  
(X, Y) p=ir for one of the observ=tions. For ex=Iple, one of the workers in this 
s=Iple is 40 ye=rs old =nd e=rns $35.78 per hour; this worker’s =ge =nd e=rnings 
=re indic=ted by the highlighted dot in Figure 3.2. The sc=tterplot shows = positive 
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rel=tionship between =ge =nd e=rnings in this s=Iple: Older workers tend to e=rn 
Iore th=n younger workers. This rel=tionship is not ex=ct, however, =nd e=rnings 
could not be predicted perfectly using only = person’s =ge.

Sample Covariance and Correlation
The cov=ri=nce =nd correl=tion were introduced in Section 2.3 =s two properties 
of the joint prob=bility distribution of the r=ndoI v=ri=bles X =nd Y. Bec=use the 
popul=tion distribution is unknown, in pr=ctice we do not know the popul=tion 
cov=ri=nce or correl=tion. The popul=tion cov=ri=nce =nd correl=tion c=n, however, 
be estiI=ted by t=king = r=ndoI s=Iple of n IeIbers of the popul=tion =nd col-
lecting the d=t= (Xi, Yi ), i = 1,c, n.

Figure 3.2  Sc.@@2r<lo@ of av2r.g2 hourly e.rnings vs. ag2

Each point in the plot represents the age and average earnings of one of the 200 workers in the sample. The high-

lighted dot corresponds to a 40-year-old worker who earns $35.78 per hour. The data are for computer and informa-

tion systems managers from the March 2009 CPS.
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The s=Iple cov=ri=nce =nd correl=tion =re estiI=tors of the popul=tion 
cov=ri=nce =nd correl=tion. Like the estiI=tors discussed previously in this ch=pter, 
they =re coIputed by repl=cing = popul=tion Ie=n (the expect=tion) with = s=Iple 
Ie=n. The sample covariance, denoted sXY, is

 sXY =
1

n - 1
 a

n

i= 1
(Xi - X )(Yi - Y ). (3.24)

Like the s=Iple v=ri=nce, the =ver=ge in Equ=tion (3.24) is coIputed by dividing 
by n - 1 inste=d of n; here, too, this difference steIs froI using X =nd Y to esti-
I=te the respective popul=tion Ie=ns. When n is l=rge, it I=kes little difference 
whether division is by n or n - 1.

The sample correlation coefficient, or sample correlation, is denoted rXY =nd 
is the r=tio of the s=Iple cov=ri=nce to the s=Iple st=nd=rd devi=tions:

 rXY =
sXY

sXsY
. (3.25)

The s=Iple correl=tion Ie=sures the strength of the line=r =ssoci=tion between X 
=nd Y in = s=Iple of n observ=tions. Like the popul=tion correl=tion, the s=Iple 
correl=tion is unitless =nd lies between −1 =nd 1: 
 rXY 
 … 1.

The s=Iple correl=tion equ=ls 1 if Xi = Yi for =ll i =nd equ=ls −1 if Xi = -Yi 
for =ll i. More gener=lly, the correl=tion is ±1 if the sc=tterplot is = str=ight line. If 
the line slopes upw=rd, then there is = positive rel=tionship between X =nd Y =nd 
the correl=tion is 1. If the line slopes down, then there is = neg=tive rel=tionship 
=nd the correl=tion is −1. The closer the sc=tterplot is to = str=ight line, the closer 
is the correl=tion to ±1. A high correl=tion coefficient does not necess=rily Ie=n 
th=t the line h=s = steep slope; r=ther, it Ie=ns th=t the points in the sc=tterplot 
f=ll very close to = str=ight line.

Consistency of the sample covariance and correlation. Like the s=Iple v=ri=nce, 
the s=Iple cov=ri=nce is consistent. Th=t is,

 sXY ¡
p
sXY. (3.26)

In other words, in l=rge s=Iples the s=Iple cov=ri=nce is close to the popul=tion 
cov=ri=nce with high prob=bility.

The proof of the result in Equ=tion (3.26) under the =ssuIption th=t (Xi, Yi) 
=re i.i.d. =nd th=t Xi =nd Yi h=ve finite fourth IoIents is siIil=r to the proof in 
Appendix 3.3 th=t the s=Iple cov=ri=nce is consistent =nd is left =s =n exercise 
(Exercise 3.20).
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Bec=use the s=Iple v=ri=nce =nd s=Iple cov=ri=nce =re consistent, the s=I-
ple correl=tion coefficient is consistent, th=t is, rXY ¡

p
corr(Xi, Yi).

Example. As =n ex=Iple, consider the d=t= on =ge =nd e=rnings in Figure 3.2. For 
these 200 workers, the s=Iple st=nd=rd devi=tion of =ge is sA = 9.07 ye=rs =nd 
the s=Iple st=nd=rd devi=tion of e=rnings is sE = $14.37 per hour. The s=Iple 
cov=ri=nce between =ge =nd e=rnings is sAE = 33.16 (the units =re ye=rs * doll=rs 
per hour, not re=dily interpret=ble). Thus the s=Iple correl=tion coefficient is 
rAE = 33.16>(9.07 *14.37) = 0.25 or 25%. The correl=tion of 0.25 Ie=ns th=t there 

Figure 3.3  Sc.@@2r<lo@s for Four hy<o@52@ic.l D.@. S2@s

The scatterplots in 

Figures 3.3a and 

3.3b show strong 

linear relationships 
between X and Y. 

In Figure 3.3c, X is 

independent of Y 

and the two variables 

are uncorrelated. In 
Figure 3.3d, the two 

variables also are 

uncorrelated even 

though they are 

related nonlinearly.
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is = positive rel=tionship between =ge =nd e=rnings, but =s is evident in the sc=tterplot, 
this rel=tionship is f=r froI perfect.

To verify th=t the correl=tion does not depend on the units of Ie=sureIent, 
suppose th=t e=rnings h=d been reported in cents, in which c=se the s=Iple st=n-
d=rd devi=tions of e=rnings is 1437¢ per hour =nd the cov=ri=nce between =ge =nd 
e=rnings is 3316 (units =re ye=rs * cents per hour); then the correl=tion is 
3316>(9.07 * 1437) = 0.25 or 25%.

Figure 3.3 gives =ddition=l ex=Iples of sc=tterplots =nd correl=tion. Figure 3.3= 
shows = strong positive line=r rel=tionship between these v=ri=bles, =nd the s=I-
ple correl=tion is 0.9.

Figure 3.3b shows = strong neg=tive rel=tionship with = s=Iple correl=tion of 
−0.8. Figure 3.3c shows = sc=tterplot with no evident rel=tionship, =nd the s=Iple 
correl=tion is zero. Figure 3.3d shows = cle=r rel=tionship: As X incre=ses, Y ini-
ti=lly incre=ses, but then decre=ses. Despite this discern=ble rel=tionship between 
X =nd Y, the s=Iple correl=tion is zero; the re=son is th=t, for these d=t=, sI=ll 
v=lues of Y =re =ssoci=ted with both l=rge =nd sI=ll v=lues of X.

This fin=l ex=Iple eIph=sizes =n iIport=nt point: The correl=tion coefficient is = 
Ie=sure of linear =ssoci=tion. There is = rel=tionship in Figure 3.3d, but it is not line=r.

Summary

 1. The s=Iple =ver=ge, Y, is =n estiI=tor of the popul=tion Ie=n, mY. When 
Y1,c, Yn =re i.i.d.,

  =. the s=Ipling distribution of Y h=s Ie=n mY =nd v=ri=nce s2
 Y = s

2
 Y >n;

  b. Y is unbi=sed;
  c. by the l=w of l=rge nuIbers, Y is consistent; =nd
  d.  by the centr=l liIit theoreI, Y h=s =n =pproxiI=tely norI=l s=Ipling 

distribution when the s=Iple size is l=rge.
 2. The t-st=tistic is used to test the null hypothesis th=t the popul=tion Ie=n 

t=kes on = p=rticul=r v=lue. If n is l=rge, the t-st=tistic h=s = st=nd=rd norI=l 
s=Ipling distribution when the null hypothesis is true.

 3. The t-st=tistic c=n be used to c=lcul=te the p-v=lue =ssoci=ted with the null 
hypothesis. A sI=ll p-v=lue is evidence th=t the null hypothesis is f=lse.

 4. A 95% confidence interv=l for mY is =n interv=l constructed so th=t it con-
t=ins the true v=lue of mY in 95% of =ll possible s=Iples.

 5. Hypothesis tests =nd confidence interv=ls for the difference in the Ie=ns of 
two popul=tions =re conceptu=lly siIil=r to tests =nd interv=ls for the Ie=n 
of = single popul=tion.
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 6. The sample correlation coefficient is an estimator of the population 
correlation coefficient and measures the linear relationship between 
two variables—that is, how well their scatterplot is approximated by a 
straight line.
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Review the Concepts

  3.1 Expl=in the difference between the s=Iple =ver=ge Y =nd the popul=tion 
Ie=n.

  3.2 Expl=in the difference between =n estiI=tor =nd =n estiI=te. Provide =n 
ex=Iple of e=ch.

  3.3 A popul=tion distribution h=s = Ie=n of 10 =nd = v=ri=nce of 16. DeterIine 
the Ie=n =nd v=ri=nce of Y froI =n i.i.d. s=Iple froI this popul=tion for 
(=) n = 10; (b) n = 100; =nd (c) n = 1000. Rel=te your =nswers to the l=w 
of l=rge nuIbers.

  3.4 Wh=t role does the centr=l liIit theoreI pl=y in st=tistic=l hypothesis test-
ing? In the construction of confidence interv=ls?

  3.5 Wh=t is the difference between = null hypothesis =nd =n =ltern=tive 
hypothesis? AIong size, signific=nce level, =nd power? Between = one-
sided =ltern=tive hypothesis =nd = two-sided =ltern=tive hypothesis?

  3.6 Why does = confidence interv=l cont=in Iore inforI=tion th=n the result 
of = single hypothesis test?

  3.7 Expl=in why the differences-of-Ie=ns estiI=tor, =pplied to d=t= froI = 
r=ndoIized controlled experiIent, is =n estiI=tor of the tre=tIent effect.

  3.8 Sketch = hypothetic=l sc=tterplot for = s=Iple of size 10 for two r=ndoI 
v=ri=bles with = popul=tion correl=tion of (=) 1.0; (b) −1.0; (c) 0.9; (d) −0.5; 
(e) 0.0.

Exercises

  3.1 In = popul=tion, mY = 100 =nd s2
Y = 43. Use the centr=l liIit theoreI to 

=nswer the following questions:

 a. In = r=ndoI s=Iple of size n = 100, find Pr(Y 6 101).

 b. In = r=ndoI s=Iple of size n = 64, find Pr(101 6 Y 6 103).

 c. In = r=ndoI s=Iple of size n = 165, find Pr( Y 7 98).

  3.2 Let Y be = Bernoulli r=ndoI v=ri=ble with success prob=bility Pr(Y = 1) =
p, =nd let Y1,c, Yn be i.i.d. dr=ws froI this distribution. Let pn  be the 
fr=ction of successes (1s) in this s=Iple.
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 a. Show th=t pn = Y.

 b. Show th=t pn  is =n unbi=sed estiI=tor of p.

 c. Show th=t v=r(pn) = p(1 - p)>n.

  3.3 In = survey of 400 likely voters, 215 responded th=t they would vote for the 
incuIbent, =nd 185 responded th=t they would vote for the ch=llenger. Let 
p denote the fr=ction of =ll likely voters who preferred the incuIbent =t 
the tiIe of the survey, =nd let pn  be the fr=ction of survey respondents who 
preferred the incuIbent.

 a. Use the survey results to estiI=te p.

 b. Use the estiI=tor of the v=ri=nce of pn, pn (1 - pn)>n, to c=lcul=te the 
st=nd=rd error of your estiI=tor.

 c. Wh=t is the p-v=lue for the test H0: p = 0.5 vs. H1: p ≠ 0.5?

 d. Wh=t is the p-v=lue for the test H0: p = 0.5 vs. H1: p 7 0.5?

 e. Why do the results froI (c) =nd (d) differ?

 f. Did the survey cont=in st=tistic=lly signific=nt evidence th=t the 
incuIbent w=s =he=d of the ch=llenger =t the tiIe of the survey? 
Expl=in.

  3.4 Using the d=t= in Exercise 3.3:

 a. Construct = 95% confidence interv=l for p.

 b. Construct = 99% confidence interv=l for p.

 c. Why is the interv=l in (b) wider th=n the interv=l in (=)?

 a. Without doing =ny =ddition=l c=lcul=tions, test the hypothesis 
H0: p = 0.50 vs. H1: p ≠ 0.50 =t the 5% signific=nce level.

  3.5 A survey of 1055 registered voters is conducted, =nd the voters =re  
=sked to choose between c=ndid=te A =nd c=ndid=te B. Let p denote  
the fr=ction of voters in the popul=tion who prefer c=ndid=te A, =nd  
let pn  denote the fr=ction of voters in the s=Iple who prefer  
C=ndid=te A.

 a. You =re interested in the coIpeting hypotheses H0: p = 0.5 
vs. H1: p ≠ 0.5. Suppose th=t you decide to reject H0 if 

pn - 0.5 
 7  0.02.

 i. Wh=t is the size of this test?

 ii. CoIpute the power of this test if p = 0.53.
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 b. In the survey, pn = 0.54.

 i. Test H0: p = 0.5 vs. H1: p ≠ 0.5 using = 5% signific=nce level.

 ii. Test H0: p = 0.5 vs. H1: p 7 0.5 using = 5% signific=nce level.

 iii. Construct = 95% confidence interv=l for p.

 iv. Construct = 99% confidence interv=l for p.

 v. Construct = 50% confidence interv=l for p.

 c. Suppose th=t the survey is c=rried out 20 tiIes, using independently 
selected voters in e=ch survey. For e=ch of these 20 surveys, = 95% 
confidence interv=l for p is constructed.

 i. Wh=t is the prob=bility th=t the true v=lue of p is cont=ined in =ll 
20 of these confidence interv=ls?

 ii. How I=ny of these confidence interv=ls do you expect to cont=in 
the true v=lue of p?

 d. In survey j=rgon, the “I=rgin of error” is 1.96 * SE(pn); th=t is, it 
is h=lf the length of 95% confidence interv=l. Suppose you w=nt to 
design = survey th=t h=s = I=rgin of error of =t Iost 1%. Th=t is, you 
w=nt Pr( 
pn - p 
 7 0.01) … 0.05. How l=rge should n be if the survey 
uses siIple r=ndoI s=Ipling?

  3.6 Let Y1,c, Yn be i.i.d. dr=ws froI = distribution with Ie=n m. A test of 
H0: m = 5 vs. H1: m ≠ 5 using the usu=l t-st=tistic yields = p-v=lue of 0.03.

 a. Does the 95% confidence interv=l cont=in m = 5? Expl=in.

 b. C=n you deterIine if m = 6 is cont=ined in the 95% confidence 
interv=l? Expl=in.

  3.7 In = given popul=tion, 11% of the likely voters =re Afric=n AIeric=n. A sur-
vey using = siIple r=ndoI s=Iple of 600 l=ndline telephone nuIbers finds 
8% Afric=n AIeric=ns. Is there evidence th=t the survey is bi=sed? Expl=in.

  3.8 A new version of the SAT is given to 1000 r=ndoIly selected high school 
seniors. The s=Iple Ie=n test score is 1110, =nd the s=Iple st=nd=rd devi-
=tion is 123. Construct = 95% confidence interv=l for the popul=tion Ie=n 
test score for high school seniors.

  3.9 Suppose th=t = lightbulb I=nuf=cturing pl=nt produces bulbs with = Ie=n 
life of 2000 hours =nd = st=nd=rd devi=tion of 200 hours. An inventor cl=iIs 
to h=ve developed =n iIproved process th=t produces bulbs with = longer 
Ie=n life =nd the s=Ie st=nd=rd devi=tion. The pl=nt I=n=ger r=ndoIly 
selects 100 bulbs produced by the process. She s=ys th=t she will believe the 
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inventor’s cl=iI if the s=Iple Ie=n life of the bulbs is gre=ter th=n 2100 
hours; otherwise, she will conclude th=t the new process is no better th=n 
the old process. Let m denote the Ie=n of the new process. Consider the 
null =nd =ltern=tive hypotheses H0: m = 2000 vs. H1: m 7 2000.

 a. Wh=t is the size of the pl=nt I=n=ger’s testing procedure?

 b. Suppose the new process is in f=ct better =nd h=s = Ie=n bulb life of 2150 
hours. Wh=t is the power of the pl=nt I=n=ger’s testing procedure?

 c. Wh=t testing procedure should the pl=nt I=n=ger use if she w=nts the 
size of her test to be 5%?

  3.10 Suppose = new st=nd=rdized test is given to 100 r=ndoIly selected third-
gr=de students in New Jersey. The s=Iple =ver=ge score Y on the test is  
58 points, =nd the s=Iple st=nd=rd devi=tion, sY, is 8 points.

 a. The =uthors pl=n to =dIinister the test to =ll third-gr=de students in 
New Jersey. Construct = 95% confidence interv=l for the Ie=n score 
of =ll New Jersey third gr=ders.

 b. Suppose the s=Ie test is given to 200 r=ndoIly selected third gr=ders 
froI Iow=, producing = s=Iple =ver=ge of 62 points =nd s=Iple st=n-
d=rd devi=tion of 11 points. Construct = 90% confidence interv=l for 
the difference in Ie=n scores between Iow= =nd New Jersey.

 c. C=n you conclude with = high degree of confidence th=t the popul=-
tion Ie=ns for Iow= =nd New Jersey students =re different? (Wh=t is 
the st=nd=rd error of the difference in the two s=Iple Ie=ns? Wh=t 
is the p-v=lue of the test of no difference in Ie=ns versus soIe differ-
ence?)

  3.11 Consider the estiI=tor Y
∼, defined in Equ=tion (3.1). Show th=t  

(=) E(Y
∼) = mY =nd (b) v=r(Y

∼) = 1.25s2
Y>n.

  3.12 To investig=te possible gender discriIin=tion in = firI, = s=Iple of 100 
Ien =nd 64 woIen with siIil=r job descriptions =re selected =t r=ndoI. 
A suII=ry of the resulting Ionthly s=l=ries follows:

av:F6<: S6l6FM (Y ) SH6Bd6Fd D:v>6H>CB (sY) n

Men $3100 $200 100

WoIen $2900 $320  64

 a. Wh=t do these d=t= suggest =bout w=ge differences in the firI? Do 
they represent st=tistic=lly signific=nt evidence th=t =ver=ge w=ges of 
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Ien =nd woIen =re different? (To =nswer this question, first st=te 
the null =nd =ltern=tive hypotheses; second, coIpute the relev=nt 
t-st=tistic; third, coIpute the p-v=lue =ssoci=ted with the t-st=tistic; 
=nd fin=lly, use the p-v=lue to =nswer the question.)

 b. Do these d=t= suggest th=t the firI is guilty of gender discriIin=tion 
in its coIpens=tion policies? Expl=in.

  3.13 D=t= on fifth-gr=de test scores (re=ding =nd I=theI=tics) for 420 school 
districts in C=liforni= yield Y = 646.2 =nd st=nd=rd devi=tion sY = 19.5.

 a. Construct = 95% confidence interv=l for the Ie=n test score in the 
popul=tion.

 b. When the districts were divided into districts with sI=ll cl=sses (6  20 
students per te=cher) =nd l=rge cl=sses  (≥ 20 students per te=cher), 
the following results were found:

Cl6ss S>z: av:F6<: ScCF: (Y ) SH6Bd6Fd D:v>6H>CB (sY) n

SI=ll 657.4 19.4 238

L=rge 650.0 17.9 182

  Is there st=tistic=lly signific=nt evidence th=t the districts with sI=ller 
cl=sses h=ve higher =ver=ge test scores? Expl=in.

  3.14 V=lues of height in inches (X) =nd weight in pounds (Y) =re recorded froI 
= s=Iple of 300 I=le college students. The resulting suII=ry st=tistics =re 
X = 70.5 in., Y = 158 lb., sX = 1.8 in., sY = 14.2 lb., sXY = 21.73 in. * lb., 
=nd rXY = 0.85. Convert these st=tistics to the Ietric systeI (Ieters =nd 
kilogr=Is).

  3.15 Let Ya =nd Yb denote Bernoulli r=ndoI v=ri=bles froI two different popu-
l=tions, denoted a =nd b. Suppose th=t E(Ya) = pa =nd E(Yb) = pb. A 
r=ndoI s=Iple of size na is chosen froI popul=tion a, with s=Iple =ver=ge 
denoted pna, =nd = r=ndoI s=Iple of size nb is chosen froI popul=tion b, 
with s=Iple =ver=ge denoted pnb. Suppose the s=Iple froI popul=tion a is 
independent of the s=Iple froI popul=tion b.

 a. Show th=t E( pna) = pa =nd v=r(pna) = pa(1 - pa)>na. Show th=t 
E(pnb) = pb =nd v=r(pnb) = pb(1 - pb)>nb.

 b. Show th=t v=r(pna - pnb) = pa(1 - pa)
na + pb(1 - pb)

nb . (Hint: ReIeIber th=t 
the s=Iples =re independent.)
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 c. Suppose th=t na =nd nb =re l=rge. Show th=t = 95% confidence inter-

v=l for pa - pb is given by (pna - pnb) { 1.964pna(1 - pna)
na + pnb(1 - pnb)

nb . 

How would you construct = 90% confidence interv=l for pa - pb?

 d. Re=d the box “A Novel W=y to Boost RetireIent S=vings” in Section 3.6. 
Let popul=tion a denote the “opt-out” (tre=tIent) group =nd popul=-
tion b denote the “opt-in” (control) group. Construct = 95% confi-
dence interv=l for the tre=tIent effect, pa - pb.

  3.16 Gr=des on = st=nd=rdized test =re known to h=ve = Ie=n of 1000 for 
students in the United St=tes. The test is =dIinistered to 453 r=ndoIly 
selected students in Florid=; in this s=Iple, the Ie=n is 1013, =nd the st=n-
d=rd devi=tion (s) is 108.

 a. Construct = 95% confidence interv=l for the =ver=ge test score for 
Florid= students.

 b. Is there st=tistic=lly signific=nt evidence th=t Florid= students perforI 
differently th=n other students in the United St=tes?

 c. Another 503 students =re selected =t r=ndoI froI Florid=. They  
=re given = 3-hour prep=r=tion course before the test is =dIinis-
tered. Their =ver=ge test score is 1019, with = st=nd=rd devi=tion  
of 95.

 i. Construct = 95% confidence interv=l for the ch=nge in =ver=ge 
test score =ssoci=ted with the prep course.

 ii. Is there st=tistic=lly signific=nt evidence th=t the prep course 
helped?

 d. The origin=l 453 students =re given the prep course =nd then =re 
=sked to t=ke the test = second tiIe. The =ver=ge ch=nge in their test 
scores is 9 points, =nd the st=nd=rd devi=tion of the ch=nge is  
60 points.

 i. Construct = 95% confidence interv=l for the ch=nge in =ver=ge 
test scores.

 ii. Is there st=tistic=lly signific=nt evidence th=t students will perforI 
better on their second =tteIpt, =fter t=king the prep course?

 iii. Students I=y h=ve perforIed better in their second =tteIpt 
bec=use of the prep course or bec=use they g=ined test-t=king 
experience in their first =tteIpt. Describe =n experiIent th=t 
would qu=ntify these two effects.
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  3.17 Re=d the box “The Gender G=p of E=rnings of College Gr=du=tes in the 
United St=tes” in Section 3.5.

 a. Construct = 95% confidence interv=l for the ch=nge in Ien’s =ver=ge 
hourly e=rnings between 1992 =nd 2012.

 b. Construct = 95% confidence interv=l for the ch=nge in woIen’s =ver-
=ge hourly e=rnings between 1992 =nd 2012.

 c. Construct = 95% confidence interv=l for the ch=nge in the gender 
g=p in =ver=ge hourly e=rnings between 1992 =nd 2012. (Hint: 
Ym,1992 - Yw,1992 is independent of Ym,2012 - Yw,2012.)

  3.18 This exercise shows th=t the s=Iple v=ri=nce is =n unbi=sed estiI=tor 
of the popul=tion v=ri=nce when Y1,c, Yn =re i.i.d. with Ie=n mY =nd  
v=ri=nce s2

Y.

 a. Use Equ=tion (2.31) to show th=t 
E3(Yi - Y )24 = v=r(Yi ) - 2cov(Yi, Y) + v=r(Y).

 b. Use Equ=tion (2.33) to show th=t cov(Y, Yi ) = s2
Y>n.

 c. Use the results in (=) =nd (b) to show th=t E(s2
Y) = s2

Y.

  3.19 a. Y is =n unbi=sed estiI=tor of mY. Is Y 2 =n unbi=sed estiI=tor of m2
Y?

 b. Y is = consistent estiI=tor of mY. Is Y 2 = consistent estiI=tor of m2
Y?

  3.20 Suppose th=t (Xi, Yi ) =re i.i.d. with finite fourth IoIents. Prove th=t the 
s=Iple cov=ri=nce is = consistent estiI=tor of the popul=tion cov=ri=nce, 
th=t is, sXY ¡

p
sXY, where sXY is defined in Equ=tion (3.24). (Hint: Use 

the str=tegy of Appendix 3.3.)

  3.21 Show th=t the pooled st=nd=rd error 3SEpooled( Ym - Yw)4  given fol-
lowing Equ=tion (3.23) equ=ls the usu=l st=nd=rd error for the differ-
ence in Ie=ns in Equ=tion (3.19) when the two group sizes =re the s=Ie 
(nm = nw).

Empirical Exercises

  E3.1 On the text website, http://www.pearsonhighered.com/stock_watson/, you 
will find the d=t= file CPS92_12, which cont=ins =n extended version of 
the d=t= set used in T=ble 3.1 of the text for the ye=rs 1992 =nd 2012. It 
cont=ins d=t= on full-tiIe workers, =ges 25–34, with = high school diploI= 
or B.A./B.S. =s their highest degree. A det=iled description is given in 
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CPS92_12_Description, =v=il=ble on the website. Use these d=t= to =nswer 
the following questions.

 a. i.  CoIpute the s=Iple Ie=n for =ver=ge hourly e=rnings (AHE) in 
1992 =nd 2012.

 ii. CoIpute the s=Iple st=nd=rd devi=tion for AHE in 1992 =nd 
2012.

 iii. Construct = 95% confidence interv=l for the popul=tion Ie=ns of 
AHE in 1992 =nd 2012.

 iv. Construct = 95% confidence interv=l for the ch=nge in the popul=-
tion Ie=n of AHE between 1992 =nd 2012.

 b. In 2012, the v=lue of the ConsuIer Price Index (CPI) w=s 229.6. In 
1992, the v=lue of the CPI w=s 140.3. Repe=t (=) but use AHE Ie=-
sured in re=l 2012 doll=rs ($2012); th=t is, =djust the 1992 d=t= for the 
price infl=tion th=t occurred between 1992 =nd 2012.

 c. If you were interested in the ch=nge in workers’ purch=sing power 
froI 1992 to 2012, would you use the results froI (=) or (b)? Expl=in.

 d. Using the d=t= for 2012:

 i. Construct = 95% confidence interv=l for the Ie=n of AHE for 
high school gr=du=tes.

 ii. Construct = 95% confidence interv=l for the Ie=n of AHE for 
workers with = college degree.

 iii. Construct = 95% confidence interv=l for the difference between 
the two Ie=ns.

 e. Repe=t (d) using the 1992 d=t= expressed in $2012.

 f. Using =ppropri=te estiI=tes, confidence interv=ls, =nd test st=tistics, 
=nswer the following questions:

 i. Did re=l (infl=tion-=djusted) w=ges of high school gr=du=tes 
incre=se froI 1992 to 2012?

 ii. Did re=l w=ges of college gr=du=tes incre=se?

 iii. Did the g=p between e=rnings of college =nd high school gr=du-
=tes incre=se? Expl=in.

 g. T=ble 3.1 presents inforI=tion on the gender g=p for college gr=du-
=tes. Prep=re = siIil=r t=ble for high school gr=du=tes, using the 1992 
=nd 2012 d=t=. Are there =ny not=ble differences between the results 
for high school =nd college gr=du=tes?
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  E3.2 A consuIer is given the ch=nce to buy = b=seb=ll c=rd for $1, but he 
declines the tr=de. If the consuIer is now given the b=seb=ll c=rd, will 
he be willing to sell it for $1? St=nd=rd consuIer theory suggests yes, but 
beh=vior=l econoIists h=ve found th=t “ownership” tends to incre=se the 
v=lue of goods to consuIers. Th=t is, the consuIer I=y hold out for soIe 
=Iount Iore th=n $1 (for ex=Iple, $1.20) when selling the c=rd, even 
though he w=s willing to p=y only soIe =Iount less th=n $1 (for ex=Iple, 
$0.88) when buying it. Beh=vior=l econoIists c=ll this phenoIenon the 
“endowIent effect.” John List investig=ted the endowIent effect in = r=n-
doIized experiIent involving sports IeIor=bili= tr=ders =t = sports-c=rd 
show. Tr=ders were r=ndoIly given one of two sports collectibles, s=y good 
A or good B, th=t h=d =pproxiI=tely equ=l I=rket v=lue.1 Those receiv-
ing good A were then given the option of tr=ding good A for good B with 
the experiIenter; those receiving good B were given the option of tr=ding 
good B for good A with the experiIenter. D=t= froI the experiIent =nd 
= det=iled description c=n be found on the textbook website, http://www 
.pearsonhighered.com/stock_watson/, in the files Sportscards =nd Sports-
cards_Description.2

 a. i.  Suppose th=t, =bsent =ny endowIent effect, =ll the subjects pre-
fer good A to good B. Wh=t fr=ction of the experiIent’s subjects 
would you expect to tr=de the good th=t they were given for the 
other good? (Hint: Bec=use of r=ndoI =ssignIent of the two tre=t-
Ients, =pproxiI=tely 50% of the subjects received good A =nd 
50% received good B.)

 ii. Suppose th=t, =bsent =ny endowIent effect, 50% of the subjects 
prefer good A to good B, =nd the other 50% prefer good B to 
good A. Wh=t fr=ction of the subjects would you expect to tr=de 
the good th=t they were given for the other good?

 iii. Suppose th=t, =bsent =ny endowIent effect, X% of the subjects 
prefer good A to good B, =nd the other (100 – X)% prefer good 
B to good A. Show th=t you would expect 50% of the subjects to 
tr=de the good th=t they were given for the other good.

2These d=t= were provided by Professor John List of the University of Chic=go =nd were used in his 
p=per “Does M=rket Experience EliIin=te M=rket AnoI=lies,” Quarterly Journal of Economics, 
2003, 118(1): 41–71.

1Good A w=s = ticket stub froI the g=Ie in which C=l Ripken, Jr., set the record for consecutive 
g=Ies pl=yed, =nd good B w=s = souvenir froI the g=Ie in which Nol=n Ry=n won his 300th g=Ie.
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 b. Using the sports-c=rd d=t=, wh=t fr=ction of the subjects tr=ded the 
good they were given? Is the fr=ction signific=ntly different froI 
50%? Is there evidence of =n endowIent effect? (Hint: Review  
Exercises 3.2 =nd 3.3)

 c. SoIe h=ve =rgued th=t the endowIent effect I=y be present, but 
th=t it is likely to dis=ppe=r =s tr=ders g=in Iore tr=ding experience. 
H=lf of the experiIent=l subjects were de=lers, =nd the other h=lf 
were nonde=lers. De=lers h=ve Iore experience th=n nonde=lers. 
Repe=t (b) for de=lers =nd nonde=lers. Is there = signific=nt differ-
ence in their beh=vior? Is the evidence consistent with the hypothesis 
th=t the endowIent effect dis=ppe=rs =s tr=ders g=in Iore experi-
ence? (Hint: Review Exercise 3.15).

  a p p e n D i x

 3.1 The U.S. Current Population Survey

E=ch Ionth, the U.S. Census Bure=u =nd the U.S. Bure=u of L=bor St=tistics conduct the 

Current Popul=tion Survey (CPS), which provides d=t= on l=bor force ch=r=cteristics of the 

popul=tion, including the levels of eIployIent, uneIployIent, =nd e=rnings. Approxi-

I=tely 60,000 U.S. households =re surveyed e=ch Ionth. The s=Iple is chosen by r=n-

doIly selecting =ddresses froI = d=t=b=se of =ddresses froI the Iost recent decenni=l 

census =ugIented with d=t= on new housing units constructed =fter the l=st census. The 

ex=ct r=ndoI s=Ipling scheIe is r=ther coIplic=ted (first, sI=ll geogr=phic=l =re=s =re 

r=ndoIly selected, then housing units within these =re=s =re r=ndoIly selected); det=ils 

c=n be found in the Handbook of Labor Statistics =nd on the Bure=u of L=bor St=tistics 

website (www.bls.gov).

The survey conducted e=ch M=rch is Iore det=iled th=n in other Ionths =nd =sks 

questions =bout e=rnings during the previous ye=r. The st=tistics in T=bles 2.4 =nd 3.1 were 

coIputed using the M=rch surveys. The CPS e=rnings d=t= =re for full-tiIe workers, 

defined to be soIebody eIployed Iore th=n 35 hours per week for =t le=st 48 weeks in 

the previous ye=r.
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 a p p e n D i x

 3.2 Two Proofs That Y  Is the Least Squares  
Estimator of mY

This =ppendix provides two proofs, one using c=lculus =nd one not, th=t Y IiniIizes the 

suI of squ=red prediction Iist=kes in Equ=tion (3.2)—th=t is, th=t Y is the le=st squ=res 

estiI=tor of E(Y).

Calculus Proof
To IiniIize the suI of squ=red prediction Iist=kes, t=ke its deriv=tive =nd set it to zero:

 
d

dm
 a

n

i= 1
(Yi - m)2 = -2a

n

i= 1
(Yi - m) = -2a

n

i= 1
Yi + 2nm = 0. (3.27)

Solving for the fin=l equ=tion for m shows th=t gn
i= 1(Yi - m)2 is IiniIized when  

m = Y.

Noncalculus Proof
The str=tegy is to show th=t the difference between the le=st squ=res estiI=tor =nd Y Iust 

be zero, froI which it follows th=t Y is the le=st squ=res estiI=tor. Let d = Y - m, so th=t 

m = Y - d . Then (Yi - m)2 = (Yi - 3Y - d4)2 = (3Yi - Y4 + d)2 = (Yi - Y)2 +
2d(Yi - Y) + d2. Thus the suI of squ=red prediction Iist=kes [Equ=tion (3.2)] is

a
n

i= 1
(Yi - m)2 = a

n

i= 1
(Yi - Y )2 + 2da

n

i= 1
(Yi - Y ) + nd 2 = a

n

i= 1
(Yi - Y )2 + nd 2,

  (3.28)

where the second equ=lity uses the f=ct th=t gn
i= 1(Yi - Y) = 0. Bec=use both terIs in the 

fin=l line of Equ=tion (3.28) =re nonneg=tive =nd bec=use the first terI does not depend 

on d, gn
i= 1(Yi - m)2 is IiniIized by choosing d to I=ke the second terI, nd2, =s sI=ll =s 

possible. This is done by setting d = 0—th=t is, by setting m = Y—so th=t Y is the le=st 

squ=res estiI=tor of E(Y).
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 a p p e n D i x

 3.3 A Proof  That the Sample Variance  
Is Consistent

This =ppendix uses the l=w of l=rge nuIbers to prove th=t the s=Iple v=ri=nce s2
Y is = con-

sistent estiI=tor of the popul=tion v=ri=nce s2
Y , =s st=ted in Equ=tion (3.9), when 

Y1,c, Yn =re i.i.d. =nd E(Y4
i ) 6 ∞ .

First, consider = version of the s=Iple v=ri=nce th=t uses n inste=d of n − 1 =s = divisor:

1
na

n

i= 1
(Yi - Y)2 =

1
na

n

i= 1
Y2

i - 2Y
1
na

n

i= 1
Yi + Y 2

 =
1
na

n

i= 1
Y2

i - Y 2 

 ¡p (s2
Y + m2

Y) - m2
Y

 = s2
Y, (3.29)

where the first equ=lity uses (Yi - Y)2 = Y2
i - 2YYi + Y2, =nd the second uses 1ngn

i= 1Yi = Y. 

The convergence in the third line follows froI (i) =pplying the l=w of l=rge nuIbers to
1
ngn

i= 1Y2
i ¡

p E(Y2) (which follows bec=use Y2
i  =re i.i.d. =nd h=ve finite v=ri=nce bec=use

E(Y4
i ) is finite), (ii) recognizing th=t E(Y2

i ) = s2
Y + m2

Y (Key Concept 2.3), =nd (iii) noting 

Y ¡p
mY so th=t Y 2 ¡p

m2
Y. Fin=lly, s2

Y = 1 n
n - 121

1
ngn

i= 1(Yi - Y)22 ¡p
s2

Y follows

froI Equ=tion (3.29) =nd 1 n
n - 12 S 1.


